JP2012058111A - Sampling bag and sampling method of floating fine particle - Google Patents

Sampling bag and sampling method of floating fine particle Download PDF

Info

Publication number
JP2012058111A
JP2012058111A JP2010202536A JP2010202536A JP2012058111A JP 2012058111 A JP2012058111 A JP 2012058111A JP 2010202536 A JP2010202536 A JP 2010202536A JP 2010202536 A JP2010202536 A JP 2010202536A JP 2012058111 A JP2012058111 A JP 2012058111A
Authority
JP
Japan
Prior art keywords
collection bag
fine particles
suspended
atmospheric gas
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010202536A
Other languages
Japanese (ja)
Inventor
Hisao Yasuhara
久雄 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010202536A priority Critical patent/JP2012058111A/en
Publication of JP2012058111A publication Critical patent/JP2012058111A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sampling bag and sampling method of floating fine particles for precisely analyzing/measuring floating fine particles in atmosphere gas.SOLUTION: The sampling bag includes a sampling bag body comprising an insulator, an introduction/output comprising an insulator attached to the sampling bag body, and a needle electrode which is provided so that its tip is located at a central part of the sampling body and is connectable to a power source. While the atmosphere gas containing floating fine particles of grain diameter equal to or smaller than 2.5 μm is sampled in the sampling bag, the power source is connected to the needle electrode, voltage equal to or larger than 3 kV is applied to generate corona discharge, and static electricity of the floating fine particles is removed.

Description

本発明は、雰囲気ガス中に浮遊する微粒子を採取して、各種分析や測定に供するための浮遊微粒子の採取袋および採取方法に関する。   The present invention relates to a floating particulate collection bag and a collection method for collecting fine particles floating in an atmospheric gas and using them for various analyzes and measurements.

大気や工場内などの雰囲気(以下、雰囲気ガスという)中に浮遊する微粒子は人体へのさまざまな影響が懸念されており、この観点から浮遊微粒子を規制するための各種基準が制定されている。これらの基準を満足させるためには、浮遊微粒子の性状を分析・測定する技術が必要であり、これまでに種々の技術が開発されている。   Fine particles suspended in the atmosphere (hereinafter referred to as “atmosphere gas”) such as the atmosphere or factory are concerned about various effects on the human body. From this viewpoint, various standards have been established for regulating suspended particles. In order to satisfy these standards, a technique for analyzing and measuring the properties of suspended particulates is required, and various techniques have been developed so far.

各種雰囲気ガス中の浮遊微粒子の重量を測定する方法としては、連続的に導入される微粒子にレーザー光を照射することで発生する散乱光を解析する方法や、フィルター上に微粒子を採取してβ線を照射しその減衰率から解析する方法、などが一般的である。特に前者は安定して重量測定ができるため、測定装置も市販され(例えば、Thermo社SHARP5030等)、広く用いられている。   As a method for measuring the weight of suspended fine particles in various atmospheric gases, there are a method for analyzing scattered light generated by irradiating continuously introduced fine particles with laser light, and collecting fine particles on a filter to obtain β A method of irradiating a line and analyzing from the attenuation rate is common. In particular, since the former can stably measure the weight, a measuring apparatus is also commercially available (for example, Thermo SHARP5030) and widely used.

浮遊微粒子の元素分析法としては、一定時間フィルター上に雰囲気ガス中の浮遊微粒子を採取し、採取された微粒子に対して、走査型電子顕微鏡(SEM)や電子線マイクロアナリシス(EPMA)、レーザー発光分光分析法、2次イオン質量分析法(SIMS)などを用いた分析、あるいは化学的な処理による分析を行い、成分元素とその量を解析する方法が知られている。   As an elemental analysis method for suspended particulates, suspended particulates in atmospheric gas are collected on a filter for a certain period of time, and the collected particulates are scanned using a scanning electron microscope (SEM), electron beam microanalysis (EPMA), or laser emission. A method of analyzing component elements and their amounts by performing analysis using spectroscopic analysis, secondary ion mass spectrometry (SIMS), or the like, or analysis by chemical treatment is known.

また、雰囲気ガス中の浮遊微粒子を連続的に元素分析する方法としては、浮遊微粒子を高周波誘導結合プラズマ質量分析装置(ICP−MS)に導入して元素分析する方法(特許文献1)が報告されている。また、キャピラリ等を介して真空中に取り込んだ浮遊微粒子にレーザーをパルス状に照射してイオン化し、飛行時間型質量分析装置(TOF−MS)(特許文献2、非特許文献1)を用いた分析、あるいは発光分析や質量分析で分析する方法(特許文献3)が報告されている。これらの分析方法は短時間で数千から数十万個もの浮遊微粒子の平均的な元素情報を得ることが可能である。   In addition, as a method for continuously elemental analysis of suspended fine particles in an atmospheric gas, a method (Patent Document 1) in which suspended fine particles are introduced into a high frequency inductively coupled plasma mass spectrometer (ICP-MS) has been reported. ing. In addition, the suspended fine particles taken into the vacuum via a capillary or the like are ionized by irradiating laser in a pulsed manner and using a time-of-flight mass spectrometer (TOF-MS) (Patent Document 2, Non-Patent Document 1). A method of analyzing by analysis, luminescence analysis or mass spectrometry (Patent Document 3) has been reported. These analysis methods can obtain average element information of thousands to hundreds of thousands of suspended particles in a short time.

上記したいずれの方法も、現場にて直接浮遊微粒子を採取して分析・測定する場合と、一旦、現場で吸引ポンプ等を用いて浮遊微粒子を採取袋に吸引・採取した後に、別の場所にある分析・測定装置にこの採取袋内の微粒子を供給することで分析・測定する場合がある。特に、高温環境・低温環境などの劣悪環境下や高所など、分析・測定装置を持ち込むことが困難な場所では後者の採取袋による手法を用いざるを得ない。しかしながら、採取袋を用いる方法には次のような問題がある。   In any of the above-mentioned methods, the suspended particles are directly collected and analyzed / measured at the site, and once the suspended particles are aspirated and collected in the collection bag using a suction pump, etc. Analysis and measurement may be performed by supplying fine particles in the collection bag to a certain analysis / measurement device. In particular, the latter method using a collection bag must be used in places where it is difficult to bring in an analysis / measurement device, such as in a poor environment such as a high temperature environment or a low temperature environment, or in a high place. However, the method using the collection bag has the following problems.

数十μm以上の粒径を有する粒子は重力により時間の経過とともに自然沈降する。このため、沈降した微粒子が採取袋の内壁に付着ないし堆積すると、採取袋から微粒子を全量回収することは困難であり、採取袋を用いた微粒子の分析・測定はその精度がよくない。   Particles having a particle size of several tens of μm or more naturally settle over time due to gravity. For this reason, if the settled fine particles adhere to or accumulate on the inner wall of the collection bag, it is difficult to collect the total amount of fine particles from the collection bag, and the accuracy of the analysis and measurement of the fine particles using the collection bag is not good.

一方、近年挙動が注目されているPM2.5(雰囲気ガス中に浮遊している粒径2.5μm以下の微粒子)は雰囲気ガス中に半永久的に浮遊していると推定されており、従って、上記の自然沈降の問題はなく、採取袋を用いた微粒子の分析・測定は精度よく行なうことができると考えられている。   On the other hand, PM2.5 (fine particles with a particle size of 2.5 μm or less suspended in the atmospheric gas) that has been attracting attention in recent years is estimated to be semipermanently suspended in the atmospheric gas. There is no problem of the natural sedimentation described above, and it is considered that the analysis and measurement of fine particles using a collection bag can be performed with high accuracy.

特開平10−288601号公報Japanese Patent Laid-Open No. 10-288601 特開平10−288602号公報JP-A-10-288602 特開2006−071492号公報JP 2006-071492 A 特開2005−147861号公報Japanese Patent Laid-Open No. 2005-147861 特開2005−283212号公報JP-A-2005-283212 特開2007−127427号公報JP 2007-127427 A

E.Gard et.al.,Ana1.Chem.69,p.4083 1997E.Gard et.al., Ana1.Chem.69, p.4083 1997

しかし、本発明者が検討したところ、粒径が2.5μm以下の浮遊微粒子であっても、採取袋に採取してから分析・測定に供するまでの経過時間が長くなるに従って浮遊微粒子の分析・測定値が減少して、正確な値が得られない場合があることが判明した。これは、採取された浮遊微粒子が採取袋内で互いに衝突したり、採取袋内壁に衝突したりすることによって発生する静電気が原因であると推定された。即ち、このようにして発生した静電気により帯電した浮遊微粒子が採取袋内壁に吸着したり、微粒子同士が凝着して大きくなって沈降し内壁に吸着・堆積したりしてそのまま袋内に残留する結果、分析・測定に供される微粒子の量が減少するためである考えられる。特に、市販の採取袋はビニル系やポリエステル系等の素材を用いているものが多く、採取袋自体も静電気に帯電しやすいという性質があり、上述した現象を助長していると考えられる。   However, as a result of examination by the present inventor, even when suspended particles having a particle size of 2.5 μm or less, the suspended particles are analyzed and analyzed as the elapsed time from collection into a collection bag to use for analysis / measurement increases. It has been found that the measured value may decrease and an accurate value may not be obtained. This was presumed to be caused by static electricity generated by the collected floating particles colliding with each other in the collection bag or colliding with the inner wall of the collection bag. That is, the floating particles charged by the static electricity generated in this way are adsorbed on the inner wall of the collection bag, or the particles adhere to each other and become larger, settle, adsorb and deposit on the inner wall, and remain in the bag as they are. As a result, the amount of fine particles used for analysis / measurement is considered to decrease. In particular, many of the commercially available collection bags use vinyl-based or polyester-based materials, and the collection bags themselves have a property of being easily charged with static electricity, which is considered to promote the above-described phenomenon.

そこで、上記問題を解決するためには採取袋内に採取された浮遊微粒子の帯電除去(以下、除電ともいう)を行なうことが考えられる。帯電除去技術としてコロナ放電を利用した手法が開発されており、市販品としてキーエンス社製SJ-H、SJ-Fシリーズ等が挙げられる。この技術は、コロナ放電によってイオン化された空気を対象物(例えば、エ業的に製造された樹脂シートやフィルム、半導体ウエハなど)に吹き付けて静電気を除去するもので、製品の安定生産に有効な手段として利用されている。しかし、この技術は、本発明が対象とする採取袋内部における浮遊微粒子の除電への適用は困難である。   Therefore, in order to solve the above problem, it is conceivable to perform electrification removal (hereinafter, also referred to as charge removal) of the suspended fine particles collected in the collection bag. A technique using corona discharge has been developed as a charge removal technique, and commercially available products include SJ-H and SJ-F series manufactured by Keyence Corporation. This technology removes static electricity by blowing air ionized by corona discharge onto an object (for example, an industrially produced resin sheet, film, semiconductor wafer, etc.), and is effective for stable production of products. It is used as a means. However, this technique is difficult to apply to the charge removal of suspended particulates in the collection bag targeted by the present invention.

本発明は、上述したような事情に鑑みてなされたもので、雰囲気ガス中の浮遊微粒子を精度よく分析・測定することのできる浮遊微粒子の採取袋および採取方法を提供すること、詳しくは、採取袋内で静電気に帯電した浮遊微粒子の除電を行なうことで精度よい浮遊微粒子の分析・測定を可能とする浮遊微粒子の採取袋および採取方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a floating particulate collection bag and a collection method that can accurately analyze and measure suspended particulate in an atmospheric gas. It is an object of the present invention to provide a floating particulate collection bag and a collection method that can accurately analyze and measure suspended particulates by eliminating static electricity from electrostatically charged suspended particulates in the bag.

なお、帯電除去技術ではないが、静電気を利用して浮遊微粒子を効率よく集める技術が特許文献4〜6等に開示されている。しかし、これらの技術は微粒子を帯電させて集塵電極や採取板に吸着して採取するもので、採取袋内の浮遊微粒子の除電を目的とする本発明に対して参考になるものではない。   Although not a charge removal technique, Patent Documents 4 to 6 disclose a technique for efficiently collecting floating particles using static electricity. However, these techniques are to collect fine particles by charging them and attracting them to a dust collecting electrode or a collection plate, and are not a reference for the present invention for the purpose of removing static particles from the collection bags.

上記課題を解決するために鋭意検討した結果、本発明者は採取袋に採取した浮遊微粒子が袋内壁に吸着するのを防止するためには、採取袋の内部でコロナ放電を発生させて雰囲気ガスをイオン化し、このイオン化した雰囲気ガスにより微粒子の衝突で発生した静電気を除去すればよいことに想到し、本発明を完成させた。   As a result of diligent studies to solve the above problems, the present inventor has developed a corona discharge inside the collection bag to prevent atmospheric particles collected in the collection bag from adsorbing to the inner wall of the bag. The present invention has been completed by conceiving that the static electricity generated by the collision of fine particles may be removed by this ionized atmospheric gas.

すなわち、本発明は前記課題を解決するために以下の特徴を有する。
[1]雰囲気ガス中に含まれる粒径2.5μm以下の浮遊微粒子を採取する浮遊微粒子の採取袋であって、前記浮遊微粒子を含む雰囲気ガスを採取する、絶縁物からなる採取袋本体と、前記浮遊微粒子を含む雰囲気ガスを前記採取袋本体に導入し放出するための、絶縁物からなる導入・放出口と、先端が前記採取袋本体の中心部に位置するように設けられ、電源と接続可能に構成された針状電極と、からなることを特徴とする浮遊微粒子の採取袋。
[2]絶縁物からなる採取袋本体と、該採取袋本体に取り付けられた絶縁物からなる導入・放出口と、先端が前記採取袋本体の中心部に位置するように設けられ、電源と接続可能に構成された針状電極と、からなる浮遊微粒子の採取袋を用いて、粒径2.5μm以下の浮遊微粒子を含む雰囲気ガスを採取する浮遊微粒子の採取方法であって、前記採取袋本体に、粒径2.5μm以下の浮遊微粒子を含む雰囲気ガスを採取している間は、前記針状電極に前記電源を接続して3kV以上の電圧を印加してコロナ放電を発生させて、前記浮遊微粒子の静電気を除去することを特徴とする浮遊微粒子の採取方法。
That is, the present invention has the following features in order to solve the above problems.
[1] A collection bag of floating fine particles for collecting floating fine particles having a particle diameter of 2.5 μm or less contained in an atmospheric gas, the collection bag body made of an insulator collecting the atmospheric gas containing the floating fine particles, An inlet / discharge port made of an insulator for introducing and releasing the atmospheric gas containing the suspended fine particles into and from the collection bag body, and a tip is located at the center of the collection bag body, and is connected to a power source. A collection bag of suspended fine particles, characterized by comprising needle-shaped electrodes configured to be possible.
[2] A collection bag main body made of an insulating material, an introduction / discharge port made of an insulating material attached to the collection bag main body, and a tip positioned at the center of the collection bag main body, connected to a power source A floating particulate collection method for collecting an atmospheric gas containing suspended particulates having a particle diameter of 2.5 μm or less using a suspended particulate collection bag comprising a needle-shaped electrode configured to be possible, the collection bag body In addition, while collecting atmospheric gas containing suspended fine particles having a particle size of 2.5 μm or less, the power supply is connected to the needle-like electrode and a voltage of 3 kV or more is applied to generate a corona discharge. A method for collecting airborne particles, which comprises removing static electricity from airborne particles.

なお、本発明において、「粒径2.5μm以下の浮遊微粒子」とは、空気動力学径(対象とする粒子と空気中で同じ挙動を示す仮想的な水滴の直径)が2.5μm以下となる浮遊微粒子のことである。   In the present invention, “floating fine particles having a particle diameter of 2.5 μm or less” means that the aerodynamic diameter (the diameter of a virtual water droplet that exhibits the same behavior in the air as the target particles) is 2.5 μm or less. It is a floating fine particle.

本発明によれば、雰囲気ガス中の浮遊微粒子を採取袋に採取している間に、浮遊微粒子が袋内壁に衝突したり、微粒子同士が衝突したりして発生する静電気を除去することができるので、浮遊微粒子が袋内壁に吸着して残存することなく、ほぼ全ての微粒子を分析・測定装置に供することが可能となり、精度よい浮遊微粒子の分析・測定ができる。   According to the present invention, it is possible to remove static electricity generated when airborne particles collide with the inner wall of the bag or particles collide with each other while airborne particles are collected in the collection bag. Therefore, almost all the fine particles can be supplied to the analysis / measurement device without adsorbing and remaining on the inner wall of the bag, and the analysis / measurement of the floating fine particles can be performed with high accuracy.

本発明の実施形態にかかる浮遊微粒子の採取袋を示す図である。It is a figure which shows the collection bag of floating particulates concerning embodiment of this invention. 採取袋内の浮遊微粒子を分析・測定装置に供するための系統図である。It is a systematic diagram for supplying suspended particulates in a collection bag to an analysis and measurement device. 実施例にかかる採取袋に採取された浮遊微粒子の成分を分析した結果を示す図である。It is a figure which shows the result of having analyzed the component of the floating particulates extract | collected by the collection bag concerning an Example. 比較例にかかる採取袋に採取された浮遊微粒子の成分を分析した結果を示す図である。It is a figure which shows the result of having analyzed the component of the floating particulates extract | collected by the collection bag concerning a comparative example.

本発明では、採取袋に針状電極を取り付け、この針状電極に高電圧を印加して先端からコロナ放電を発生させるように構成した。そして、採取袋に浮遊微粒子を含む雰囲気ガスを採取している間は、前記針状電極の先端からコロナ放電を発生させて袋内の雰囲気ガスをイオン化し、このイオン化した雰囲気ガスで袋内の浮遊微粒子の静電気を除去するようにしたので、静電気により浮遊微粒子同士が凝集したり、袋の内壁に付着したりすることを防止することができる。   In the present invention, a needle electrode is attached to the collection bag, and a high voltage is applied to the needle electrode to generate a corona discharge from the tip. And while collecting the atmospheric gas containing the suspended fine particles in the collection bag, corona discharge is generated from the tip of the needle electrode to ionize the atmospheric gas in the bag, and the ionized atmospheric gas in the bag Since the static electricity of the suspended particles is removed, it is possible to prevent the suspended particles from aggregating or adhering to the inner wall of the bag due to the static electricity.

以下、本発明を図に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1に本発明による浮遊微粒子の採取袋を示す。図1において、1は採取袋で、採取袋本体(袋本体と称することもある)2、導入・放出口3、針状電極4から構成される。採取袋本体2はフッ素系樹脂(例えばFEP)やポリエステル系樹脂(例えばPET)などの絶縁物から構成され、内部に雰囲気ガスを採取できればいずれの形状でもよい。大きさ(容量)については特に規定しないが、持ち運びなどの利便性を考慮すると、1000リットル程度以下が好ましい。また、厚みについては、電圧をかけたときに絶縁破壊しない程度の厚みを有していればよく、特に規定はしない。導入・放出口3は採取袋本体2の内外を貫通するように取り付けられており、その材質は、袋本体2と同様に樹脂などの絶縁物とする必要がある。針状電極4はCu,Ptなどからなり、その先端が採取袋本体2の中心に位置するように取り付けられている。このようにすることで、効率よく浮遊微粒子の除電ができる。   FIG. 1 shows a collection bag for suspended particles according to the present invention. In FIG. 1, reference numeral 1 denotes a collection bag, which includes a collection bag main body (sometimes referred to as a bag main body) 2, an introduction / discharge port 3, and a needle electrode 4. The collection bag body 2 is made of an insulating material such as a fluorine-based resin (for example, FEP) or a polyester-based resin (for example, PET), and may have any shape as long as the atmospheric gas can be collected inside. The size (capacity) is not particularly specified, but is preferably about 1000 liters or less in consideration of convenience such as carrying. The thickness is not particularly specified as long as it has a thickness that does not cause dielectric breakdown when a voltage is applied. The introduction / discharge port 3 is attached so as to penetrate the inside and outside of the collection bag main body 2, and the material thereof needs to be an insulating material such as a resin like the bag main body 2. The needle electrode 4 is made of Cu, Pt or the like, and is attached so that the tip thereof is located at the center of the collection bag body 2. By doing in this way, charge removal of floating particulates can be performed efficiently.

5は電池などの電源、6は接地(アース)であり、針状電極4との接続および接続解除が可能となっている。電源5は針状電極4に高電圧を印加するもので、直流電源あるいは交流電源のいずれを用いてもよいが、交流電源は正と負の電荷を両方一度に除去できるので、より好ましい。電源5の容量は、コロナ放電を安定して発生させるために、3KV以上とする必要がある。上限は特に定めないが、あまり高圧であると、袋本体2が絶縁破壊したり、電源自体が大きくなるなどの理由から、実用上は10kV以下とするのが好ましい。   Reference numeral 5 denotes a power source such as a battery, and reference numeral 6 denotes a ground (earth), which can be connected to and disconnected from the needle electrode 4. The power source 5 applies a high voltage to the needle electrode 4 and may use either a DC power source or an AC power source. However, the AC power source is more preferable because it can remove both positive and negative charges at once. The capacity of the power source 5 needs to be 3 KV or more in order to stably generate corona discharge. The upper limit is not particularly defined, but if it is too high, it is preferable to set it to 10 kV or less practically because the bag body 2 breaks down or the power source itself becomes large.

次に、上記採取袋1を用いて浮遊微粒子を含む雰囲気ガスを採取する方法について述べる。上記の採取袋1を測定対象の雰囲気ガスのある現場に持ち込んで雰囲気ガスを吸引して採取する。採取にあたっては、導入・放出口3に吸引ポンプ(図示せず)を取り付け、この吸引ポンプで浮遊微粒子とともに雰囲気ガスを採取袋本体2の内部に取り込む。吸引完了後は、導入・放出口3から吸引ポンプを取り外し、図示しないキャップを被せて密閉する。次に電源5を針状電極4に接続し、針状電極4に3kV以上の電圧を印加してその先端からコロナ放電を発生させる。   Next, a method for collecting atmospheric gas containing suspended fine particles using the collection bag 1 will be described. The collection bag 1 is brought into the site where the measurement target atmospheric gas is present, and the atmospheric gas is sucked and collected. At the time of collection, a suction pump (not shown) is attached to the introduction / discharge port 3, and atmospheric gas is taken into the inside of the collection bag body 2 together with the suspended fine particles by this suction pump. After completion of the suction, the suction pump is removed from the introduction / discharge port 3, and a cap (not shown) is put on and sealed. Next, the power source 5 is connected to the needle electrode 4 and a voltage of 3 kV or more is applied to the needle electrode 4 to generate a corona discharge from the tip.

コロナ放電が発生すると、針状電極4の周囲に存在している雰囲気ガスが電離してイオンとなる。袋本体2内に捕捉された浮遊微粒子が互いに衝突し、あるいは袋本体2の内壁と衝突して該微粒子に発生した静電気は、前記イオン化された雰囲気ガスによって除去される。従って、粒径2.5μm以下の微粒子の場合は、静電気で袋本体の内壁に付着することはなく、袋本体内で浮遊を継続する。静電気を確実に除去するためには、前記コロナ放電を、採取袋に雰囲気ガスを採取してから該雰囲気ガスを分析・計測装置に供給するまでの間、継続する必要がある。   When corona discharge occurs, the atmospheric gas present around the needle electrode 4 is ionized to become ions. Static electricity generated in the fine particles by collision of the suspended fine particles trapped in the bag main body 2 with each other or with the inner wall of the bag main body 2 is removed by the ionized atmospheric gas. Therefore, in the case of fine particles having a particle size of 2.5 μm or less, they do not adhere to the inner wall of the bag body due to static electricity and continue to float in the bag body. In order to reliably remove static electricity, it is necessary to continue the corona discharge from the collection of the atmospheric gas in the collection bag to the supply of the atmospheric gas to the analysis / measurement device.

ある環境下において、採取袋1の導入・放出口3(材質:フッ化ビニル樹脂、口径:8mmφ)に吸引ポンプを取り付け、該吸引ポンプにより大気を採取袋本体(容量:20リットル、材質:フッ化ビニル樹脂、厚み:20μm)2に吸引・採取して密閉し、試料とした。次に、針状電極4に電源5(交流5kV)を接続して針状電極4からコロナ放電を継続的に発生させた。この状態にある採取袋1をICP−MS(高周波誘導結合プラズマ質量分析装置)に接続し、電源5との接続を解除した後、袋内の大気を該分析装置に供給した。ICP−MSへの供給は間隔をあけて5回行ない、各回ごとに分析を実施した。なお、試料は、大気を吸引する際、カスケードインパクター(東京ダイレック(株)製)で粒径2.5μm以下の浮遊微粒子に分級したもの(試料A)と、分級せずにそのまま吸引したもの(試料B)との2種類を用意した。   Under a certain environment, a suction pump is attached to the inlet / outlet 3 (material: vinyl fluoride resin, diameter: 8 mmφ) of the collection bag 1, and the atmosphere is collected by the suction pump (volume: 20 liters, material: foot). (Vinyl chloride resin, thickness: 20 μm) 2 was sucked and collected and sealed to prepare a sample. Next, a power source 5 (AC 5 kV) was connected to the needle electrode 4 to continuously generate corona discharge from the needle electrode 4. The collection bag 1 in this state was connected to an ICP-MS (high frequency inductively coupled plasma mass spectrometer), and after disconnecting from the power source 5, the air in the bag was supplied to the analyzer. Supply to ICP-MS was performed 5 times at intervals, and the analysis was performed each time. In addition, when aspirating the air, the sample was classified into suspended fine particles having a particle size of 2.5 μm or less (sample A) with a cascade impactor (manufactured by Tokyo Direc Co., Ltd.), and the sample was aspirated as it was without classification. Two types (Sample B) were prepared.

図2に、採取袋内の浮遊微粒子をICP−MSに供するための、本実施例による系統図を示す。採取袋内の微粒子を直接ICP−MSに供給すると、同時に袋内の大気も供給されてICP−MS内のプラズマが消灯されて分析ができなくなる。そのため、本実施例では、採取袋1をガス交換器10(住友精化(株)製)に接続し、採取袋内の大気をArガス11と置換した。置換された大気は排気12として排出した。図中13はアスピレータガスとしてのArガスであり、アスピレータガス13を供給することで採取袋1内の大気をガス交換器10に吸引するようにしている。また、ICP−MS16の入側でCr微粒子を含んだArガスを標準ガス14として供給した。15はキャリアガス15としてのArガスである。上記標準ガスを使用することで、分析対象である微粒子に含有される元素と標準ガス中のCrとのイオン強度比をとることができ、これによってICP−MSのドリフト(経時変化)の影響を除去することができる。なお、分析対象の微粒子中の分析すべき元素がCrである場合は、Cr以外の元素、例えばMoを含む標準ガスを使用すればよい。   In FIG. 2, the systematic diagram by a present Example for using the suspended fine particle in a collection bag for ICP-MS is shown. When the fine particles in the collection bag are directly supplied to the ICP-MS, the air in the bag is also supplied at the same time, the plasma in the ICP-MS is extinguished, and analysis becomes impossible. Therefore, in this example, the collection bag 1 was connected to a gas exchanger 10 (manufactured by Sumitomo Seika Co., Ltd.), and the atmosphere in the collection bag was replaced with Ar gas 11. The substituted atmosphere was discharged as exhaust 12. In the figure, reference numeral 13 denotes Ar gas as an aspirator gas. By supplying the aspirator gas 13, the atmosphere in the collection bag 1 is sucked into the gas exchanger 10. Further, Ar gas containing Cr fine particles was supplied as the standard gas 14 on the entrance side of the ICP-MS 16. Reference numeral 15 denotes Ar gas as the carrier gas 15. By using the standard gas, it is possible to obtain the ion intensity ratio between the element contained in the fine particles to be analyzed and Cr in the standard gas, thereby reducing the effect of ICP-MS drift (time-dependent change). Can be removed. In addition, when the element to be analyzed in the fine particles to be analyzed is Cr, an element other than Cr, for example, a standard gas containing Mo may be used.

図3に分析結果を示す。浮遊微粒子を構成している元素中で代表的な、Al(質量数27)、K(質量数39)およびFe(質量数57)について示した。横軸は時間(Hr)、縦軸はCr(質量数53)に対するそれぞれの元素のイオン強度比である。粒径2.5μm以下に分級した試料Aは、経過時間によらず安定したイオン強度比が得られ、本発明による効果が確認できた。一方、分級処理をしていない試料Bは、時間が経過するとともにイオン強度比が減少する傾向が見られた。これは、コロナ放電による除電を行なったとしても、粒径が2.5μmを超える微粒子は時間とともに自然沈降して採取袋内壁に付着・堆積し、この付着・堆積した微粒子はそのまま袋内に留まってICP−MSに導入されないためであると推定される。   FIG. 3 shows the analysis results. Al (mass number 27), K (mass number 39), and Fe (mass number 57), which are representative of the elements constituting the suspended fine particles, are shown. The horizontal axis represents time (Hr), and the vertical axis represents the ratio of ionic strength of each element to Cr (mass number 53). Sample A classified to a particle size of 2.5 μm or less obtained a stable ionic strength ratio regardless of the elapsed time, and the effect of the present invention was confirmed. On the other hand, Sample B that was not classified showed a tendency that the ionic strength ratio decreased with time. This is because even if static elimination is performed by corona discharge, fine particles with a particle size exceeding 2.5 μm naturally settle with time and adhere to and accumulate on the inner wall of the collection bag, and these adhered and deposited fine particles remain in the bag as they are. This is presumably because it is not introduced into ICP-MS.

次に比較例として、コロナ放電による除電を行なわないで、上記と同様の方法で分析した結果を図4に示す。分級処理を行なった試料A、分級処理を行なっていない試料Bはいずれも、時間とともにイオン強度比が減少する傾向が見られた。これは微粒子中の粗大粒子が時間とともに沈降する現象に加えて、粒径2.5μm以下の微粒子が静電気によって袋内壁に付着することに起因すると考えられる。なお、この図4の試料Bと前掲図3の試料Bとを比較すると、後者の方が減少傾向の小さいことがわかる。この点からも本発明のコロナ放電による静電気除去による効果を確認できる。   Next, as a comparative example, FIG. 4 shows the result of analysis by the same method as described above without performing neutralization by corona discharge. In both the sample A subjected to the classification treatment and the sample B not subjected to the classification treatment, the ionic strength ratio tended to decrease with time. This is considered to be caused by the fact that coarse particles in the fine particles settle with time and fine particles having a particle size of 2.5 μm or less adhere to the inner wall of the bag due to static electricity. When comparing the sample B in FIG. 4 and the sample B in FIG. 3, it can be seen that the latter is less likely to decrease. Also from this point, the effect of removing static electricity by corona discharge of the present invention can be confirmed.

1 採取袋
2 採取袋本体
3 導入・放出口
4 針状電極
5 電源
6 接地(アース)
10 ガス交換器
11 Arガス
12 排気(大気)
13 アスピレータガス(Arガス)
14 標準ガス(Arガス+Cr粒子)
15 キャリアガス(Arガス)
16 高周波誘導結合プラズマ質量分析装置(ICP−MS)
DESCRIPTION OF SYMBOLS 1 Sampling bag 2 Sampling bag main body 3 Inlet / discharge port 4 Needle electrode 5 Power supply 6 Grounding (earth)
10 Gas exchanger 11 Ar gas 12 Exhaust (atmosphere)
13 Aspirator gas (Ar gas)
14 Standard gas (Ar gas + Cr particles)
15 Carrier gas (Ar gas)
16 High frequency inductively coupled plasma mass spectrometer (ICP-MS)

Claims (2)

雰囲気ガス中に含まれる粒径2.5μm以下の浮遊微粒子を採取する浮遊微粒子の採取袋であって、前記浮遊微粒子を含む雰囲気ガスを採取する、絶縁物からなる採取袋本体と、前記浮遊微粒子を含む雰囲気ガスを前記採取袋本体に導入し放出するための、絶縁物からなる導入・放出口と、先端が前記採取袋本体の中心部に位置するように設けられ、電源と接続可能に構成された針状電極と、からなることを特徴とする浮遊微粒子の採取袋。   A floating particulate collection bag for collecting suspended fine particles having a particle size of 2.5 μm or less contained in an atmospheric gas, the collection bag body made of an insulator for collecting the atmospheric gas containing the suspended fine particles, and the suspended particulate An introduction / discharge port made of an insulating material for introducing and releasing an atmospheric gas containing the gas into the collection bag body, and a tip is located at the center of the collection bag body, and can be connected to a power source. A collection bag of suspended fine particles, characterized by comprising: 絶縁物からなる採取袋本体と、該採取袋本体に取り付けられた絶縁物からなる導入・放出口と、先端が前記採取袋本体の中心部に位置するように設けられ、電源と接続可能に構成された針状電極と、からなる浮遊微粒子の採取袋を用いて、粒径2.5μm以下の浮遊微粒子を含む雰囲気ガスを採取する浮遊微粒子の採取方法であって、前記採取袋本体に、粒径2.5μm以下の浮遊微粒子を含む雰囲気ガスを採取している間は、前記針状電極に前記電源を接続して3kV以上の電圧を印加してコロナ放電を発生させて、前記浮遊微粒子の静電気を除去することを特徴とする浮遊微粒子の採取方法。 A collection bag body made of an insulator, an introduction / discharge port made of an insulator attached to the collection bag body, and a tip positioned at the center of the collection bag body so that it can be connected to a power source A floating particulate collection method for collecting an atmospheric gas containing suspended particulates having a particle diameter of 2.5 μm or less using a suspended particulate collection bag comprising a needle-shaped electrode, wherein While collecting atmospheric gas containing suspended fine particles having a diameter of 2.5 μm or less, the power source is connected to the needle-like electrode and a voltage of 3 kV or more is applied to generate a corona discharge. A method for collecting airborne particles, characterized by removing static electricity.
JP2010202536A 2010-09-10 2010-09-10 Sampling bag and sampling method of floating fine particle Withdrawn JP2012058111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202536A JP2012058111A (en) 2010-09-10 2010-09-10 Sampling bag and sampling method of floating fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202536A JP2012058111A (en) 2010-09-10 2010-09-10 Sampling bag and sampling method of floating fine particle

Publications (1)

Publication Number Publication Date
JP2012058111A true JP2012058111A (en) 2012-03-22

Family

ID=46055379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202536A Withdrawn JP2012058111A (en) 2010-09-10 2010-09-10 Sampling bag and sampling method of floating fine particle

Country Status (1)

Country Link
JP (1) JP2012058111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677690A (en) * 2015-02-15 2015-06-03 南京信息工程大学 Automatic collecting device of atmospheric aerosol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677690A (en) * 2015-02-15 2015-06-03 南京信息工程大学 Automatic collecting device of atmospheric aerosol
CN104677690B (en) * 2015-02-15 2017-11-17 南京信息工程大学 A kind of atmospheric aerosol automatic acquisition device

Similar Documents

Publication Publication Date Title
Ji et al. Particle charging and agglomeration in DC and AC electric fields
US6904787B2 (en) Method for measuring suspended particulate matter in atmospheric air
US8454734B2 (en) Charging device, air handling device, method for charging, and method for handling air
US10799883B2 (en) Method for the selective purification of aerosols
JP2011506911A (en) Detection system for airborne particles
US20180128716A1 (en) Particle collecting apparatus
US10814335B2 (en) Selective aerosol particle collecting method and device, according to particle size
CN107921443B (en) Aerosol particle collecting device with nano particle concentration and particle size measuring device
JP2012518186A (en) Small area electrostatic aerosol collector
US9250162B2 (en) Direct impact aerosol sampling by electrostatic precipitation
JP2003337087A (en) Apparatus for collecting suspended particle
EP2988316A1 (en) Mass spectrometer
EP3195935A1 (en) Particle charger
US20050156118A1 (en) Microfabricated device for selectively removing and analyzing airborne particulates from an air stream
JP2020525754A (en) System and method for rapid elemental analysis of airborne particles using airglow discharge emission spectroscopy
JP2012058111A (en) Sampling bag and sampling method of floating fine particle
JP3487729B2 (en) Particle analyzer and method
Vaddi et al. Development of an EHD induced wind driven personal exposure monitor and in-situ analysis of characterization of exposure
CN103623925B (en) Atmospheric particulates bipolarity charge device
US9768005B1 (en) Electrospray ionizer for mass spectrometry of aerosol particles
JP6540064B2 (en) Microparticle sampling method and microparticle analysis method
KR101746148B1 (en) Device for Collecting Liquid and Method with the Same
JP2003215021A (en) Method for measuring suspended particulate matter in atmosphere
Byeon et al. Charge distributions of aerosol dioctyl sebacate particles charged in a dielectric barrier discharger
Zouaghi et al. Submicrometer Particle Penetration in a Miniature Dielectric Barrier Discharge type Electrostatic Precipitator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203