JP2012057804A - Tube bank structure boiler - Google Patents

Tube bank structure boiler Download PDF

Info

Publication number
JP2012057804A
JP2012057804A JP2010198138A JP2010198138A JP2012057804A JP 2012057804 A JP2012057804 A JP 2012057804A JP 2010198138 A JP2010198138 A JP 2010198138A JP 2010198138 A JP2010198138 A JP 2010198138A JP 2012057804 A JP2012057804 A JP 2012057804A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat
combustion gas
tube wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010198138A
Other languages
Japanese (ja)
Other versions
JP5872146B2 (en
Inventor
Hiroshi Takashima
博史 高島
Shigeru Kuroki
茂 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2010198138A priority Critical patent/JP5872146B2/en
Publication of JP2012057804A publication Critical patent/JP2012057804A/en
Application granted granted Critical
Publication of JP5872146B2 publication Critical patent/JP5872146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance durability while maintaining advantages, such as low NOx emissions and space savings, of a tube bank structure boiler, and to reduce the amount of emission of CO.SOLUTION: In the tube bank structure boiler, a plurality of heat-transfer tubes 1 for a heat-transfer tube wall, which are elongated in a vertical direction, are laid out in a line toward a rear side from a front side on the right and left lateral surfaces of a storage water heater body; a fin 4 for the heat-transfer tube wall is provided between the adjacent heat-transfer tubes 1, so as to form the heat-transfer tube walls 8 in two rows; a space sandwiched between the heat-transfer tube walls 8 serves as a combustion gas flow space 7; and a heat-transfer tube bank, which is composed of many heat-transfer tubes for the heat-transfer tube bank, elongated in the vertical direction, is provided in the combustion gas flow space 7 to make combustion gas flow in the direction of crossing the heat-transfer tube in the combustion gas flow space 7, the heat-transfer tube bank and the heat-transfer tube wall are divided into an upstream area in which the combustion gas up to about 1,000°C flows and a downstream section with respect to the upstream area, so that an arrangement pitch of the heat-transfer tubes 1 can be set lower in the upstream area than in the downstream section.

Description

本発明は、多数の伝熱管と伝熱管をつなぐ伝熱管壁用フィンによって2列の平行な伝熱管壁を形成し、伝熱管壁の間には多数の伝熱管からなる伝熱管群を設置しておき、燃焼ガスを伝熱管群の伝熱管に対して交差方向に流すことで伝熱管内の缶水を加熱する管群構造ボイラに関するものである。   In the present invention, two parallel heat transfer tube walls are formed by heat transfer tube wall fins connecting a large number of heat transfer tubes and heat transfer tubes, and a heat transfer tube group including a plurality of heat transfer tubes is provided between the heat transfer tube walls. And a tube group structure boiler for heating the can water in the heat transfer tubes by flowing the combustion gas in the crossing direction with respect to the heat transfer tubes of the heat transfer tube group.

特許第2948519号公報に記載があるように、一対の伝熱管壁を左右に間隔を開けて設置し、伝熱管壁の間を燃焼ガス流動空間としておき、燃焼ガス流動空間の一方の開口部に燃焼装置、他方の開口部に燃焼ガス出口を配置し、燃焼ガス流動空間内には多数の伝熱管を設けた構成のボイラが知られている。この管群構造ボイラでは、燃焼装置のすぐ近くに伝熱管を設置しているため、燃焼装置で発生した火炎は伝熱管によってすぐに温度が低下することになり、火炎が高温で滞留する時間を短くすることによってNOx発生量を低減することができる。また、燃焼ガス流動空間内に伝熱管を詰め込む構成であるため、ボイラの設置面積を小さくすることができるという利点もある。   As described in Japanese Patent No. 2948519, a pair of heat transfer tube walls are installed with a space left and right, and a space between the heat transfer tube walls is set as a combustion gas flow space, and one opening of the combustion gas flow space is provided. 2. Description of the Related Art A boiler having a configuration in which a combustion device is disposed in a part, a combustion gas outlet is disposed in the other opening, and a large number of heat transfer tubes are provided in the combustion gas flow space is known. In this tube group structure boiler, since the heat transfer tube is installed in the immediate vicinity of the combustion device, the temperature of the flame generated in the combustion device is immediately reduced by the heat transfer tube, and the time for the flame to stay at high temperature is reduced. The amount of NOx generated can be reduced by shortening the length. Moreover, since it is the structure which packs a heat exchanger tube in combustion gas flow space, there also exists an advantage that the installation area of a boiler can be made small.

しかし上記のような管群構造のボイラでは、燃焼装置に近い上流側の燃焼ガスは高温であって、伝熱管との熱交換を行うことで燃焼ガス温度は徐々に低下していくものであるため、伝熱管に対する加熱量は場所によって異なることになる。燃焼ガス流上流側の伝熱管壁では、高温の燃焼ガスによって強く加熱されるために隣り合う伝熱管間をつなぐ伝熱管壁用フィンは高温となる。伝熱管壁用フィンは高温になると膨張するため、上流の伝熱管壁では伝熱管壁用伝熱管と伝熱管壁用フィンの間にかかる熱応力が大きくなり、耐久性が低くなるという問題がある。   However, in the boiler having the tube group structure as described above, the combustion gas on the upstream side close to the combustion device is high in temperature, and the combustion gas temperature gradually decreases by performing heat exchange with the heat transfer tube. Therefore, the heating amount for the heat transfer tube varies depending on the place. In the heat transfer tube wall on the upstream side of the combustion gas flow, the heat transfer tube wall fin connecting the adjacent heat transfer tubes becomes high temperature because it is strongly heated by the high temperature combustion gas. Since the heat transfer tube wall fins expand at high temperatures, the thermal stress applied between the heat transfer tube wall heat transfer tube and the heat transfer tube wall fins increases in the upstream heat transfer tube wall, resulting in lower durability. There is a problem.

また、特許第2948519号では伝熱管非存在空間を形成することでCOの発生量を低減している。燃焼ガス流動空間内に伝熱管を設置していると、燃焼が完了する前に伝熱管によって火炎温度を低下することになり、燃焼が不完全になるとCO発生量が多くなる。そのため、伝熱管非存在空間を設け、COを酸化させるための空間を開けているのであるが、伝熱管群から伝熱管を抜いた構成の場合には燃焼ガス流に偏流が生じることがある。伝熱管を設置している伝熱管存在空間と伝熱管を抜いた伝熱管非存在空間があると、燃焼ガスは抵抗の少ない伝熱管非存在空間に集中するため、伝熱管非存在空間の下流には多くの燃焼ガスが流れ、それ以外の部分では燃焼ガスの流量が減少することになる。伝熱管群での燃焼ガス流に偏りが発生すると、ボイラ全体での熱吸収効率が低下することにもなる。   Japanese Patent No. 2948519 reduces the amount of CO generated by forming a heat transfer tube nonexistent space. If a heat transfer tube is installed in the combustion gas flow space, the flame temperature is lowered by the heat transfer tube before the combustion is completed, and if combustion is incomplete, the amount of CO generated increases. Therefore, a heat transfer tube non-existing space is provided and a space for oxidizing CO is opened, but in the case of a configuration in which the heat transfer tube is removed from the heat transfer tube group, a drift may occur in the combustion gas flow. If there is a heat transfer tube existence space where the heat transfer tube is installed and a heat transfer tube nonexistence space where the heat transfer tube is removed, the combustion gas concentrates in the heat transfer tube nonexistence space with low resistance. A lot of combustion gas flows, and the flow rate of the combustion gas is reduced in other portions. If the combustion gas flow in the heat transfer tube group is biased, the heat absorption efficiency of the entire boiler is also lowered.

特許2948519号公報Japanese Patent No. 2948519

本発明が解決しようとする課題は、低NOxや省スペースといった管群構造ボイラの利点を維持したままで耐久性を高くし、COの発生量も低減することのできる管群構造ボイラを提供することにある。   The problem to be solved by the present invention is to provide a tube group structure boiler that can increase the durability and reduce the amount of CO generated while maintaining the advantages of the tube group structure boiler such as low NOx and space saving. There is.

缶体の左右側面には、垂直方向に延びる複数の伝熱管壁用伝熱管を前面側から後面側に向けて一列に並べ、隣り合う伝熱管壁用伝熱管の間に伝熱管壁用フィンを設けることで2列の伝熱管壁を形成しておき、伝熱管壁で挟まれた空間を燃焼ガス流動空間として燃焼ガス流動空間内には垂直方向に延びる多数の伝熱管群用伝熱管からなる伝熱管群を設け、伝熱管群の伝熱管に対して交差方向に燃焼ガスを流す構成の管群構造ボイラにおいて、伝熱管群及び伝熱管壁を、おおむね1000℃までの燃焼ガスが流れる上流域とそれよりも下流部分とに区分し、伝熱管壁用伝熱管の配置ピッチは、下流部分よりも上流域の方が小さくなるようにしておく   On the left and right side surfaces of the can body, a plurality of heat transfer tube wall heat transfer tubes extending in the vertical direction are arranged in a line from the front side to the rear side, and the heat transfer tube wall is located between adjacent heat transfer tube wall heat transfer tubes. A plurality of heat transfer tube groups extending in the vertical direction in the combustion gas flow space, with a space sandwiched between the heat transfer tube walls as a combustion gas flow space. In a tube group structure boiler having a structure in which a heat transfer tube group comprising heat transfer tubes is provided and combustion gas flows in a direction crossing the heat transfer tubes of the heat transfer tube group, the heat transfer tube group and the heat transfer tube wall are approximately up to 1000 ° C. It is divided into an upstream area where the combustion gas flows and a downstream part, and the arrangement pitch of the heat transfer tube wall heat transfer tubes is set to be smaller in the upstream area than in the downstream part.

また、上流域の伝熱管群を上流域前部と上流域後部に区分し、上流域前部には径の大きな伝熱管を設置し、上流域後部には径の小さな伝熱管を設置する。そして、燃焼ガス流動空間内に設けている伝熱管群及び伝熱管壁を、上流域、中流域、下流域に区分した場合、伝熱管壁用伝熱管及び伝熱管群用伝熱管の配置ピッチは、上流域<中流域<下流域としており、下流域に向けて伝熱管の伝熱面積が大きくなるように伝熱管表面の加工を行っている。   In addition, the upstream heat transfer tube group is divided into an upstream front portion and an upstream rear portion, a large diameter heat transfer tube is installed at the upstream front portion, and a small diameter heat transfer tube is installed at the upstream rear portion. And when the heat transfer tube group and the heat transfer tube wall provided in the combustion gas flow space are divided into an upstream region, a middle flow region, and a downstream region, the arrangement of the heat transfer tube wall heat transfer tube and the heat transfer tube group heat transfer tube The pitch is set so that the upstream region <the middle flow region <the downstream region, and the heat transfer tube surface is processed so that the heat transfer area of the heat transfer tube increases toward the downstream region.

燃焼ガス流の上流域に当たる伝熱管壁では、伝熱管壁用フィンの前後方向長さが小さくなるために伝熱管壁用フィン部分の温度上昇が抑制され、伝熱管壁用フィンと伝熱管壁用伝熱管の間に掛かる熱応力が小さくなるため伝熱管壁用フィン部分の耐久性が向上する。また、燃焼ガス流上流域後部の伝熱管群用伝熱管の径を小さくしたことで、伝熱管群用伝熱管の配列は変更せずに伝熱管の間隔を広くすることができ、間隔が広がることで燃焼ガスの急激な温度低下が抑えられ、燃焼を完了させることができるためにCOの発生量を少なくすることができる。   In the heat transfer tube wall corresponding to the upstream region of the combustion gas flow, the length of the heat transfer tube wall fin decreases in the front-rear direction, so that the temperature rise of the heat transfer tube wall fin portion is suppressed, and the heat transfer tube wall fin Since the thermal stress applied between the heat transfer tube wall heat transfer tubes is reduced, the durability of the heat transfer tube wall fin portion is improved. In addition, by reducing the diameter of the heat transfer tube group for the heat transfer tube group at the rear of the combustion gas flow upstream region, the interval between the heat transfer tubes can be increased without changing the arrangement of the heat transfer tube groups, and the interval increases. As a result, the rapid temperature drop of the combustion gas can be suppressed and combustion can be completed, so that the amount of CO generated can be reduced.

本発明を実施しているボイラの燃焼ガス流動空間部分を横方向に切断した断面図Sectional drawing which cut | disconnected the combustion gas flow space part of the boiler which is implementing this invention in the horizontal direction

本発明の一実施例を図面を用いて説明する。図1は本発明を実施しているボイラの燃焼ガス流動空間部分を横方向に切断した断面図であり、ボイラの上方から見た図である。ボイラは、缶体上部に設けている上部管寄せ(図示せず)と、缶体下部に設けている下部管寄せ(図示せず)の間を多数の垂直な伝熱管でつないでおり、下部から供給した水を伝熱管内で加熱して蒸気を発生し、上部から蒸気を取り出す多管式貫流ボイラである。ボイラの缶体は、側面に設けた2列の伝熱管壁8と、伝熱管壁8によって挟まれた空間である燃焼ガス流動空間7に設けている伝熱管群からなっている。伝熱管壁8は、多数の伝熱管壁用伝熱管1によって形成し、伝熱管群は多数の伝熱管群用伝熱管2によって形成している。伝熱管壁8は、垂直方向に延びる伝熱管壁用伝熱管1を横一列に並べ、各隣り合う伝熱管の間を伝熱管壁用フィン3で連結したものであり、2列の伝熱管壁8によって缶体の外壁を構成している。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a combustion gas flow space portion of a boiler embodying the present invention cut in the transverse direction, as viewed from above the boiler. The boiler connects the upper header (not shown) provided at the upper part of the can body and the lower header (not shown) provided at the lower part of the can body with a number of vertical heat transfer tubes. This is a multi-tube once-through boiler in which water supplied from is heated in a heat transfer tube to generate steam, and the steam is taken out from the top. The boiler body comprises two rows of heat transfer tube walls 8 provided on the side surface and a heat transfer tube group provided in a combustion gas flow space 7 which is a space sandwiched between the heat transfer tube walls 8. The heat transfer tube wall 8 is formed by a large number of heat transfer tube wall heat transfer tubes 1, and the heat transfer tube group is formed by a large number of heat transfer tube group heat transfer tubes 2. The heat transfer tube wall 8 is formed by arranging the heat transfer tube wall heat transfer tubes 1 extending in the vertical direction in a horizontal row and connecting the adjacent heat transfer tubes with the heat transfer tube wall fins 3. The outer wall of the can is constituted by the heat transfer tube wall 8.

燃焼ガス流動空間7は図の左側から右側へ向けて燃焼ガスが流れるものであり、燃焼ガス流動空間7の両端部に開口部を開けており、図の左側を燃焼装置設置部5、図の右側を燃焼ガス出口6としている。燃焼装置設置部5では、燃焼ガス流動空間7の方向に向けて火炎を発生する燃焼装置(図示せず)を設置しておき、燃焼装置での燃焼を行うと、燃焼によって発生した燃焼ガスは燃焼ガス流動空間内を右方向に流れ、燃焼ガス出口6から排気筒(図示せず)へと排出される。   The combustion gas flow space 7 is one in which the combustion gas flows from the left side to the right side of the drawing, and openings are opened at both ends of the combustion gas flow space 7. The right side is the combustion gas outlet 6. In the combustion device installation unit 5, a combustion device (not shown) that generates a flame is installed in the direction of the combustion gas flow space 7. When combustion is performed in the combustion device, the combustion gas generated by the combustion is It flows in the combustion gas flow space in the right direction and is discharged from the combustion gas outlet 6 to an exhaust pipe (not shown).

伝熱管壁及び伝熱管群は、燃焼ガスの流動方向に沿って、上流域・中流域・下流域に区分しておく。上流域・中流域・下流域の区分は、燃焼ガス温度がおおむね1000℃程度よりも高い部分を上流域、600℃程度よりも低い部分を下流域、その間の部分が中流域となる。なお、燃焼ガス温度は測定場所や燃焼状態などで様々に変化するものであるため、前記の温度は目安としてのものであり、状況によって前後することがある。また、前記の上流域では、燃焼装置に最も近い部分である上流域前部とそれ以外の部分である上流域後部に区分している。   The heat transfer tube wall and the heat transfer tube group are divided into an upstream region, a middle flow region, and a downstream region along the flow direction of the combustion gas. As for the division of the upstream region / middle flow region / downstream region, a portion where the combustion gas temperature is generally higher than about 1000 ° C. is an upstream region, a portion lower than about 600 ° C. is a downstream region, and a portion therebetween is a middle flow region. Note that the combustion gas temperature varies depending on the measurement location, the combustion state, and the like. Therefore, the above temperature is a guideline and may vary depending on the situation. Further, the upstream region is divided into an upstream region front portion that is the portion closest to the combustion apparatus and an upstream region rear portion that is the other portion.

伝熱管壁8での伝熱管壁用伝熱管1の配置ピッチ(隣り合う伝熱管壁用伝熱管1の中心軸間距離)は、上流域・中流域・下流域で異なる値としている。伝熱管壁用伝熱管1の上流域でのピッチをA、中流域でのピッチをB、下流域でのピッチをCとした場合、各ピッチの大きさはA<B<Cとなり、上流域、中流域、下流域の順にピッチを大きくしていく。伝熱管壁用伝熱管の配置ピッチが異なると、隣り合う伝熱管壁用伝熱管の間をつなぐ伝熱管壁用フィンの前後方向長さが異なる。上流域での伝熱管壁用フィン3は丸棒など前後方向は短い伝熱管壁用フィンを使用し、中流域と下流域での伝熱管壁用フィン3は平板状のものであって、中流域よりも下流域の伝熱管壁用フィンの方が前後方向の長さが長いものを使用する。伝熱管群用伝熱管2の配置ピッチも、伝熱管壁用伝熱管の配置ピッチに合わせて設置しており、上流域・中流域・下流域の順に配置ピッチは広くなっている。   The arrangement pitch of the heat transfer tube wall heat transfer tubes 1 in the heat transfer tube wall 8 (the distance between the central axes of the adjacent heat transfer tube wall heat transfer tubes 1) is different in the upstream region, the midstream region, and the downstream region. . When the pitch in the upstream region of the heat transfer tube 1 for the heat transfer tube wall is A, the pitch in the middle flow region is B, and the pitch in the downstream region is C, the size of each pitch is A <B <C. The pitch is increased in the order of basin, middle basin, and downstream. When the arrangement pitch of the heat transfer tube wall heat transfer tubes is different, the length of the heat transfer tube wall fins connecting the adjacent heat transfer tube wall heat transfer tubes is different. The heat transfer tube wall fins 3 in the upstream region use heat transfer tube wall fins such as round bars that are short in the front-rear direction, and the heat transfer tube wall fins 3 in the middle and downstream regions are flat. Therefore, the heat transfer tube wall fins in the downstream region are longer in the front-rear direction than in the middle flow region. The arrangement pitch of the heat transfer tubes 2 for the heat transfer tube group is also set in accordance with the arrangement pitch of the heat transfer tubes for the heat transfer tube wall, and the arrangement pitch becomes wider in the order of the upstream region, the midstream region, and the downstream region.

本実施例での伝熱管壁用伝熱管1は、すべて同じ径のものを使用しているが、伝熱管群用伝熱管2は、場所によって径の大きさを変えた伝熱管を使用している。伝熱管群の伝熱管は、上流域前部には径の大きな伝熱管、上流域後部には径の小さな伝熱管を使用し、中流域と下流域はその間の径を持った伝熱管を使用している。伝熱管は、径が大きい方が燃焼ガスから受ける熱量が大きくなるため、熱吸収の点では有利である。しかし上流域の配置ピッチを小さくしてる部分に径の大きな伝熱管を使用すると、燃焼ガスが流れる空間が狭くなり、燃焼ガスと伝熱管群用伝熱管2の間で行われる熱交換量が大きくなる。すると、燃焼ガスの温度が早期に低下し、燃焼反応が不完全に終わってCOの発生量が増大することになる。そのため上流域後部の伝熱管群用伝熱管2は径の小さなものを使用するようにしている。つまり、燃焼装置に近い上流域前部の伝熱管には径の大きな伝熱管を使用することで、燃焼装置で発生させた高温の燃焼ガスを早期に冷却するようにしており、燃焼ガスが高温で滞留する時間を短くすることでNOxの発生量を抑えるようにしている。そして伝熱管群の上流域後部の伝熱管は径の小さな伝熱管を使用し、伝熱管の間に広めの空間を開けるようにしている。伝熱管の距離が広がり、燃焼ガスが流れる流路の面積が大きくなると、燃焼ガスの温度低下が抑えられ、その間に燃焼を完了させることができるためにCOの発生量が少なくなる。   The heat transfer tube wall heat transfer tubes 1 in this embodiment all have the same diameter, but the heat transfer tube group heat transfer tube 2 uses a heat transfer tube whose diameter varies depending on the location. ing. The heat transfer tubes in the heat transfer tube group use a heat transfer tube with a large diameter at the front of the upstream region, a heat transfer tube with a small diameter at the rear of the upstream region, and heat transfer tubes with a diameter between them in the midstream and downstream regions. is doing. A heat transfer tube having a larger diameter is advantageous in terms of heat absorption because the amount of heat received from the combustion gas increases. However, if a heat transfer tube having a large diameter is used in the portion where the arrangement pitch of the upstream region is reduced, the space through which the combustion gas flows becomes narrow, and the amount of heat exchange performed between the combustion gas and the heat transfer tube 2 for the heat transfer tube group is large. Become. Then, the temperature of the combustion gas decreases early, the combustion reaction ends incompletely, and the amount of CO generated increases. For this reason, the heat transfer tube 2 for the heat transfer tube group at the rear of the upstream region has a small diameter. In other words, a heat transfer tube with a large diameter is used as the heat transfer tube in the upstream area near the combustion device, so that the high-temperature combustion gas generated in the combustion device is cooled early, and the combustion gas is heated to a high temperature. The amount of NOx generated is suppressed by shortening the residence time. And the heat exchanger tube of the upstream area rear part of a heat exchanger tube group uses a heat exchanger tube with a small diameter, and is trying to open a large space between heat exchanger tubes. When the distance between the heat transfer tubes is increased and the area of the flow path through which the combustion gas flows is increased, the temperature drop of the combustion gas is suppressed, and combustion can be completed during that time, so that the amount of CO generated is reduced.

中流域や下流域を流れる燃焼ガスは、上流域を流れる燃焼ガスに比べると温度が低下しており、燃焼ガスのボリュームも小さくなっているため、伝熱管が吸収することのできる熱量は少なくなる。そこで、伝熱管群の中流域以降の伝熱管には、表面に熱吸収用フィン4を設置しておき、伝熱管の伝熱面積は下流へ向けて大きくなるようにしておく。伝熱管表面に熱吸収用フィン4を設置すると、伝熱面の面積が増加するために、温度の低下した燃焼ガスからでも多くの熱を吸収することができる。   The temperature of the combustion gas flowing in the middle and downstream areas is lower than that of the combustion gas flowing in the upstream area, and the volume of the combustion gas is also small, so the amount of heat that can be absorbed by the heat transfer tube is reduced. . In view of this, heat absorbing fins 4 are provided on the surface of the heat transfer tubes after the midstream region of the heat transfer tube group so that the heat transfer area of the heat transfer tubes increases toward the downstream side. If the heat absorption fins 4 are installed on the surface of the heat transfer tube, the area of the heat transfer surface increases, so that a large amount of heat can be absorbed even from the combustion gas whose temperature has decreased.

ボイラの運転を行うと、燃焼装置設置部5に設けた燃焼装置(図示せず)から燃焼ガス流動空間内の伝熱管群へ向けて火炎を発生することになる。伝熱管群の最上流域である上流域前部では径の大きな伝熱管を密に配置しており、火炎は燃焼反応が進行している途中で伝熱管によって熱が奪われるため、火炎温度の上昇は抑制される。火炎温度が高くなると、NOx発生量が多くなるが、火炎温度の上昇を防止することでNOx発生量を少なくすることができる。   When the boiler is operated, a flame is generated from a combustion device (not shown) provided in the combustion device installation section 5 toward the heat transfer tube group in the combustion gas flow space. Heat transfer tubes with large diameters are densely arranged at the front upstream of the heat transfer tube group, and the heat is taken away by the heat transfer tubes while the combustion reaction is in progress. Is suppressed. When the flame temperature increases, the amount of NOx generated increases, but the amount of NOx generated can be reduced by preventing the flame temperature from rising.

伝熱管群の上流域前部を通過した燃焼ガスは、次に伝熱管群の上流域後部を流れる。上流域後部では径の小さな伝熱管を配置しているため、伝熱管の間には比較的大きな空間が開いており、伝熱管による燃焼ガス温度の低下は緩やかになる。この間に燃焼反応は進行するためにCOの発生量を減少させることができる。また、上流域後部では伝熱管を一様に配置しており、燃焼ガス流動用の空間が特定の位置に偏ることはないため、上流域後部を流れる燃焼ガスは偏ることなく流れ、そこより下流の中流域以降でも効率よく熱交換することができる。   The combustion gas that has passed through the upstream front portion of the heat transfer tube group then flows through the upstream rear portion of the heat transfer tube group. Since a heat transfer tube having a small diameter is arranged at the rear part of the upstream region, a relatively large space is opened between the heat transfer tubes, and the reduction of the combustion gas temperature by the heat transfer tube becomes gradual. During this time, the combustion reaction proceeds, so the amount of CO generated can be reduced. In addition, the heat transfer tubes are arranged uniformly at the rear of the upstream region, and the combustion gas flow space is not biased to a specific position. Heat exchange can be performed efficiently even after the middle basin.

中流域以降の燃焼ガス流は、上流域での熱交換によって温度が低下しており、燃焼ガスのボリュームは低下している。しかし中流域以降の伝熱管は、表面に熱吸収用フィン4を設けており、熱吸収用フィン4からも熱の吸収を行うため、温度の低下した燃焼ガスからも多くの熱を吸収することができる。また、燃焼ガスの温度は、中流域よりも下流域の方がさらに低くなっているため、下流域の熱吸収用フィン4は中流域の熱吸収用フィン4よりも大きなものを設置しておく。下流域での熱吸収用フィン4の伝熱面積を大きくしておくことで、温度の低下した燃焼ガスからも効果的に熱を吸収することができる。   The temperature of the combustion gas flow after the middle flow region is lowered by heat exchange in the upstream region, and the volume of the combustion gas is lowered. However, the heat transfer tubes after the middle basin are provided with heat absorbing fins 4 on the surface, and also absorb heat from the heat absorbing fins 4, and therefore absorb a lot of heat from the combustion gas whose temperature has decreased. Can do. Further, since the temperature of the combustion gas is further lower in the downstream region than in the middle flow region, the heat absorption fins 4 in the downstream region are larger than the heat absorption fins 4 in the middle flow region. . By increasing the heat transfer area of the heat absorbing fins 4 in the downstream region, heat can be effectively absorbed even from the combustion gas whose temperature has decreased.

また、燃焼ガスは伝熱管群だけでなく、伝熱管壁8に対しても加熱を行っている。伝熱管壁では隣り合う伝熱管の間に伝熱管壁用フィン3を設けることで伝熱管壁とするものであるが、伝熱管壁用フィン3には燃焼ガスの熱を吸収して伝熱管壁用伝熱管1へ送る熱伝達の働きもある。伝熱管壁用フィン3に対する加熱は、燃焼ガス温度が高い部分ほど強くなり、伝熱管壁用フィン3の長さが長くなるほど多くなるため、加熱量の大きさは伝熱管壁用フィンに接触する燃焼ガス温度と伝熱管壁用フィンの伝熱面積によって定まる。伝熱管壁用フィンへの加熱量が大きくなると、伝熱管壁用フィンは熱による膨張が大きくなるため、上流域での伝熱管壁用フィンの前後方向長さが長いと、高温の燃焼ガスによって加熱されるために大きな熱応力が発生することになる。伝熱管壁における伝熱管の配置ピッチは、上流域<中流域<下流域となるように配置し、伝熱管壁用フィンの前後方向長さは、上流域で短くすることで、伝熱管壁の上流域で大きな熱応力が発生することを防止でき、伝熱管壁の耐久性(寿命)を高めることができる。   Further, the combustion gas heats not only the heat transfer tube group but also the heat transfer tube wall 8. In the heat transfer tube wall, a heat transfer tube wall fin 3 is provided between adjacent heat transfer tubes to form a heat transfer tube wall. However, the heat transfer tube wall fin 3 absorbs the heat of the combustion gas. The heat transfer tube wall heat transfer tube 1 also has a heat transfer function. Heating of the heat transfer tube wall fins 3 becomes stronger as the temperature of the combustion gas becomes higher, and the heat transfer tube wall fins 3 increase as the length of the heat transfer tube wall fins 3 increases. It is determined by the temperature of the combustion gas in contact with the heat transfer area and the heat transfer area of the heat transfer tube wall fin. When the amount of heat applied to the heat transfer tube wall fins increases, the heat transfer tube wall fins expand due to heat, so if the length of the heat transfer tube wall fins in the upstream region is long, Since it is heated by the combustion gas, a large thermal stress is generated. The pitch of the heat transfer tubes on the heat transfer tube wall is arranged so that the upstream region <the middle flow region <the downstream region, and the length in the front-rear direction of the heat transfer tube wall fins is shortened in the upstream region. Generation of a large thermal stress in the upstream region of the tube wall can be prevented, and durability (life) of the heat transfer tube wall can be improved.

1 伝熱管壁用伝熱管
2 伝熱管群用伝熱管
3 伝熱管壁用フィン
4 熱吸収用フィン
5 燃焼装置設置部
6 燃焼ガス出口
7 燃焼ガス流動空間
8 伝熱管壁
1 Heat Transfer Tube for Heat Transfer Tube Wall 2 Heat Transfer Tube for Heat Transfer Tube Group
3 Heat transfer tube wall fins
4 Heat absorption fins
5 Combustion device installation section
6 Combustion gas outlet
7 Combustion gas flow space
8 Heat transfer tube wall

Claims (3)

缶体の左右側面には、垂直方向に延びる複数の伝熱管壁用伝熱管を前面側から後面側に向けて一列に並べ、隣り合う伝熱管壁用伝熱管の間に伝熱管壁用フィンを設けることで2列の伝熱管壁を形成しておき、伝熱管壁で挟まれた空間を燃焼ガス流動空間として燃焼ガス流動空間内には垂直方向に延びる多数の伝熱管群用伝熱管からなる伝熱管群を設け、伝熱管群の伝熱管に対して交差方向に燃焼ガスを流す構成の管群構造ボイラにおいて、伝熱管群及び伝熱管壁を、おおむね1000℃までの燃焼ガスが流れる上流域とそれよりも下流部分とに区分し、伝熱管壁用伝熱管の配置ピッチは、下流部分よりも上流域の方が小さくなるようにしていることを特徴とする管群構造ボイラ。   On the left and right side surfaces of the can body, a plurality of heat transfer tube wall heat transfer tubes extending in the vertical direction are arranged in a line from the front side to the rear side, and the heat transfer tube wall is located between adjacent heat transfer tube wall heat transfer tubes. A plurality of heat transfer tube groups extending in the vertical direction in the combustion gas flow space, with a space sandwiched between the heat transfer tube walls as a combustion gas flow space. In a tube group structure boiler having a structure in which a heat transfer tube group comprising heat transfer tubes is provided and combustion gas flows in a direction crossing the heat transfer tubes of the heat transfer tube group, the heat transfer tube group and the heat transfer tube wall are approximately up to 1000 ° C. A pipe characterized in that it is divided into an upstream area through which the combustion gas flows and a downstream part, and the arrangement pitch of the heat transfer pipes for the heat transfer pipe wall is smaller in the upstream area than in the downstream part. Group structure boiler. 請求項1に記載の管群構造ボイラにおいて、上流域の伝熱管群を上流域前部と上流域後部に区分し、上流域前部には径の大きな伝熱管を設置し、上流域後部には径の小さな伝熱管を設置していることを特徴とする管群構造ボイラ。   In the tube group structure boiler according to claim 1, the upstream heat transfer tube group is divided into an upstream region front portion and an upstream region rear portion, and a heat transfer tube having a large diameter is installed in the upstream region front portion, and the upstream region rear portion. Is a tube-group boiler characterized by installing heat transfer tubes with small diameters. 請求項1又は2に記載の管群構造ボイラにおいて、燃焼ガス流動空間内に設けている伝熱管群及び伝熱管壁を、上流域、中流域、下流域に区分し、伝熱管壁用伝熱管及び伝熱管群用伝熱管の配置ピッチは、上流域<中流域<下流域としており、下流域に向けて伝熱管の伝熱面積が大きくなるように伝熱管表面の加工を行っていることを特徴とする管群構造ボイラ。
The tube group structure boiler according to claim 1 or 2, wherein the heat transfer tube group and the heat transfer tube wall provided in the combustion gas flow space are divided into an upstream region, a middle flow region, and a downstream region, and the heat transfer tube wall The arrangement pitch of the heat transfer tubes and the heat transfer tubes for the heat transfer tube group is set as upstream region <middle flow region <downstream region, and the heat transfer tube surface is processed so that the heat transfer area of the heat transfer tube increases toward the downstream region. A tube group structure boiler characterized by that.
JP2010198138A 2010-09-03 2010-09-03 Tube group boiler Active JP5872146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198138A JP5872146B2 (en) 2010-09-03 2010-09-03 Tube group boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198138A JP5872146B2 (en) 2010-09-03 2010-09-03 Tube group boiler

Publications (2)

Publication Number Publication Date
JP2012057804A true JP2012057804A (en) 2012-03-22
JP5872146B2 JP5872146B2 (en) 2016-03-01

Family

ID=46055126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198138A Active JP5872146B2 (en) 2010-09-03 2010-09-03 Tube group boiler

Country Status (1)

Country Link
JP (1) JP5872146B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674409A (en) * 1992-07-06 1994-03-15 Miura Kenkyusho:Kk Boiler system equipped with combusion gas recirculating mechanism
JPH0694203A (en) * 1992-09-09 1994-04-05 Miura Kenkyusho:Kk Method and apparatus for low nox and low co combustion
JPH11193902A (en) * 1997-12-26 1999-07-21 Miura Co Ltd Multipipe water tube boiler
JP2000356302A (en) * 1988-08-12 2000-12-26 Miura Co Ltd LOW NOx AND LOW CO COMBUSTION METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356302A (en) * 1988-08-12 2000-12-26 Miura Co Ltd LOW NOx AND LOW CO COMBUSTION METHOD
JPH0674409A (en) * 1992-07-06 1994-03-15 Miura Kenkyusho:Kk Boiler system equipped with combusion gas recirculating mechanism
JPH0694203A (en) * 1992-09-09 1994-04-05 Miura Kenkyusho:Kk Method and apparatus for low nox and low co combustion
JPH11193902A (en) * 1997-12-26 1999-07-21 Miura Co Ltd Multipipe water tube boiler

Also Published As

Publication number Publication date
JP5872146B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5589062B2 (en) Heat exchanger
US9829204B2 (en) Water heater including heat exchanger
KR101367320B1 (en) Structure of exhaust pipe for exhaust-heat recovery
JP4246749B2 (en) 1 can type combined heat source machine
JP2020016418A (en) Heat exchanger, and water heating system including the same
KR20110107014A (en) Heat exchanger for gas boiler
JP2021134971A (en) Heat exchanger and water heater having the same
KR20180007984A (en) Structure for preventing combustion heat loss of heat exchanger
JP5872146B2 (en) Tube group boiler
JP6289251B2 (en) Waste heat recovery boiler
KR20160015945A (en) High efficiency environmental-friendly sensible heat exchanger
KR101810134B1 (en) A heat transfer pin of heat exchanger for a boiler
JP5900731B2 (en) Water heater
CN104534667A (en) Condensing gas heating water heating furnace heat exchanger
JP4952378B2 (en) Heat exchanger and water heater
WO2020066386A1 (en) Water heating device
KR101659786B1 (en) Finsless double pipe heat exchanger
KR20140051522A (en) Heat exchanger having water housing
CN211651313U (en) Heat exchanger adopting heat exchange tubes with high heat exchange area
JP2018132256A (en) Heat exchanger and water heater using the same
JP6260773B2 (en) Heat exchanger and hot water device provided with the same
JP4059702B2 (en) Water tube for boiler water wall
JP2007163006A (en) Boiler with fin for heat absorption
JP2020016417A (en) Water heating system
KR101614363B1 (en) once-through boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150