JP2012057709A - Axial force control bolt - Google Patents

Axial force control bolt Download PDF

Info

Publication number
JP2012057709A
JP2012057709A JP2010201118A JP2010201118A JP2012057709A JP 2012057709 A JP2012057709 A JP 2012057709A JP 2010201118 A JP2010201118 A JP 2010201118A JP 2010201118 A JP2010201118 A JP 2010201118A JP 2012057709 A JP2012057709 A JP 2012057709A
Authority
JP
Japan
Prior art keywords
bolt
axial force
liquid glass
axial
detection substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010201118A
Other languages
Japanese (ja)
Inventor
Takayuki Shimodaira
貴之 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2010201118A priority Critical patent/JP2012057709A/en
Publication of JP2012057709A publication Critical patent/JP2012057709A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an axial force control bolt with which a fastened object can be fastened with a predetermined axial force or axial force for reaching to a plastic region, and with which whether the bolt is before or after plastic deformation can be sorted simply.SOLUTION: The axial force control bolt has a shaft 1A and a screw 1c, and a head 1b and enables control of axial force acting in the axial direction, wherein an axial force detection material 2 to be destroyed when an axial strain amount of the bolt 1 exceeds a predetermined value is attached on at least an outer surface of the axial part 1A of the bolt 1, and the axial force detection material 2 is attached while axial tension is previously applied to the bolt 1.

Description

本発明は、被締結物を締結する軸力管理ボルトに係り、更に詳しくは締結時にボルトの軸線方向に生じる軸力を管理することができる軸力管理ボルトに関する。   The present invention relates to an axial force management bolt for fastening an object to be fastened, and more particularly to an axial force management bolt capable of managing an axial force generated in the axial direction of a bolt at the time of fastening.

一般に、二つの部材をボルトとナットで締め付けると、被締結体である二つの部材はボルトとナットから締付け圧縮力を受ける。一方、ボルトには、その反作用により引張方向の軸力が生じる。この軸力が弱いと緩みを引き起こす虞が生じ、強すぎると被締結部材の破壊を招く虞が生じる。   In general, when two members are tightened with a bolt and a nut, the two members which are fastened bodies receive a tightening compression force from the bolt and the nut. On the other hand, an axial force in the tensile direction is generated in the bolt due to the reaction. If this axial force is weak, there is a risk of causing looseness, and if it is too strong, there is a risk of causing destruction of the fastened member.

この軸力をボルトに適正に付与するために、通常はトルクレンチなどのトルク検出機能を備えた締付け具を用いて締付けトルクを管理しながら締め付けるトルク管理法が行われている。   In order to appropriately apply this axial force to a bolt, a torque management method is generally used in which tightening is performed while managing the tightening torque using a tightening tool having a torque detection function such as a torque wrench.

しかし、ボルト締結時の軸力とトルクとの関係には、雄ねじと雌ねじの接触部、及び、ボルト頭と被締結部材の接触部の2箇所の摩擦係数の影響が大きく左右する。摩擦係数が小さい場合はトルクに対する軸力の勾配が増加し、摩擦係数が大きい場合はトルクに対する軸力の勾配が減少する。このように、トルク管理法は、上述した接触部の潤滑条件によって、トルクとボルトの軸力の関係特性がばらつくため、所定のトルクで締め付けてもボルトの軸力が不足したり、逆に高くなりすぎたりするという問題があった。   However, the relationship between the axial force and torque at the time of bolt fastening greatly depends on the influence of the friction coefficient at two locations of the contact portion between the male screw and the female screw and the contact portion between the bolt head and the fastening member. When the friction coefficient is small, the gradient of the axial force with respect to the torque increases, and when the friction coefficient is large, the gradient of the axial force with respect to the torque decreases. Thus, in the torque management method, the relationship between the torque and the axial force of the bolt varies depending on the lubrication condition of the contact portion described above. Therefore, even if the bolt is tightened with a predetermined torque, the axial force of the bolt is insufficient or conversely high. There was a problem of becoming too much.

このため、より正確なボルト締結方法として、所定の軽度のトルク(スナッグトルク)まで一旦締め付けた後、所定の角度だけボルトを回転させることにより所定の軸力を得る回転角度法や、ボルトの回転角と締付けトルクとをモニタしながらボルトを締め付け、ボルトが塑性域に達してボルトの回転角に対してトルクの増加が少なくなる状態を検知したときに締め付けを終了することにより安定した軸力を得るトルク勾配法などが開示されている(例えば、特許文献1参照)。また、ボルトの締め付けにより発生する弾性波をアコースティックエミッション法(以下AE法という)で連続モニタし、塑性域に達したことを検知してボルトの締め付けを終了する方法も開示されている(例えば、特許文献2参照)。   For this reason, as a more accurate bolt fastening method, a rotational angle method in which a predetermined axial force is obtained by rotating a bolt by a predetermined angle after being tightened once to a predetermined light torque (snugg torque), or rotation of a bolt Tighten the bolt while monitoring the angle and tightening torque, and stop the tightening when it detects that the bolt reaches the plastic range and the torque increases less than the rotation angle of the bolt. A torque gradient method to be obtained is disclosed (for example, see Patent Document 1). In addition, a method is also disclosed in which the elastic wave generated by tightening the bolt is continuously monitored by an acoustic emission method (hereinafter referred to as AE method), and the tightening of the bolt is terminated by detecting that the plastic region has been reached (for example, Patent Document 2).

特開平6−79552号公報JP-A-6-79552 特開2006−55989号公報JP 2006-55989 A

上述したボルト締結方法において、回転角度法は、ボルト頭と座面を密着させるのに必要な締付けトルクであるスナッグトルクで最初に締め付けを行うが、雄ねじと雌ねじの接触部のかじりなどの影響で同じ締付けトルクでも軸力が異なる場合がある。したがって、スナッグトルクで締め付けた位置から同じ回転角度で締め付けても所定の軸力にならない場合があった。   In the bolt fastening method described above, the rotation angle method is initially tightened with a snug torque that is a tightening torque necessary to bring the bolt head and the seating surface into close contact with each other. The axial force may be different even with the same tightening torque. Therefore, there is a case where a predetermined axial force is not obtained even when tightening at the same rotation angle from the position tightened with the snag torque.

トルク勾配法は、ボルトが塑性域に達した状態を検知することから安定した軸力が得られる。したがって、他の方法と比べて精度よく軸力を管理することができる。しかし、ボルトの回転角度と締付けトルクを測定すると共に、回転角度に対する締付けトルクの変動率を演算する必要があり、限られた箇所にしか適用できないという問題と締付け装置が高価になるという問題があった。   In the torque gradient method, a stable axial force can be obtained by detecting a state where the bolt has reached the plastic region. Therefore, the axial force can be managed with higher accuracy than other methods. However, it is necessary to measure the rotation angle and tightening torque of the bolt and calculate the fluctuation rate of the tightening torque with respect to the rotation angle, which can be applied only to limited places and the tightening device is expensive. It was.

また、AE法は、材料が塑性変形するときに生じる弾性波を検知するため、ボルトが塑性変形したことを正確に捉えることができるが、材料によっては塑性変形しても弾性波が発生し難いものもあり、全てのボルトに使用できるものではなかった。また、材料が塑性変形するときに生じる弾性波を検知するものであることから、例えば、弾性域までの締め付けには適用できないという問題があった。   Further, since the AE method detects an elastic wave generated when the material is plastically deformed, it can accurately grasp that the bolt is plastically deformed. However, depending on the material, an elastic wave is hardly generated even if the material is plastically deformed. Some were not available for all bolts. Further, since the elastic wave generated when the material is plastically deformed is detected, there is a problem that it cannot be applied to tightening up to an elastic region, for example.

更に、塑性域まで締め付けたボルトは初期状態より伸びているため、一旦緩めた後に、再度使用するのは好ましくないが、そのボルトが塑性変形する前のものか塑性変形した後のものかを見分けるのは困難であるという問題があった。   Furthermore, since the bolt tightened up to the plastic zone is stretched from the initial state, it is not desirable to use it again after it has been loosened, but it can be distinguished whether the bolt is before plastic deformation or after plastic deformation. There was a problem that it was difficult.

本発明は、上記事項に基づいてなされたもので、その目的は、高価な器具や装置を使用せずに、所定の軸力で、あるいは塑性域に達する軸力で被締結物を締結でき、ボルトが塑性変形前のものか塑性変形後のものかを簡単に選別できる軸力管理ボルトを提供するものである。   The present invention has been made based on the above matters, and the object thereof can be fastened with a predetermined axial force or an axial force reaching a plastic region without using an expensive instrument or device, The present invention provides an axial force management bolt capable of easily selecting whether a bolt is before plastic deformation or after plastic deformation.

上記の目的を達成するために、第1の発明は、軸部とねじ部と頭部とを備え、軸線方向に作用する軸力を管理することができる軸力管理ボルトであって、前記ボルトの軸方向のひずみ量が所定値を超えたときに破壊する軸力検知物質を前記ボルトの少なくとも軸部の外表面に付着し、前記軸力検知物質は、予め前記ボルトに軸方向の張力をかけた状態で付着されたものとする。   In order to achieve the above object, the first invention is an axial force management bolt including a shaft portion, a screw portion, and a head, and capable of managing an axial force acting in an axial direction, wherein the bolt An axial force detection material that breaks when the axial strain amount exceeds a predetermined value is attached to at least the outer surface of the shaft of the bolt, and the axial force detection material applies an axial tension to the bolt in advance. It shall be attached in the state of being applied.

また、第2の発明は、第1の発明において、前記軸力検知物質は脆性物質を付着させたものであることを特徴とする。   The second invention is characterized in that, in the first invention, the axial force detection substance has a brittle substance attached thereto.

更に、第3の発明は、第1又は第2の発明において、前記軸力検知物質の破壊をアコースティックエミッションセンサで検知することを特徴とする。   Furthermore, the third invention is characterized in that, in the first or second invention, the destruction of the axial force detection substance is detected by an acoustic emission sensor.

また、第4の発明は、第1又は第2の発明において、前記軸力検知物質の破壊を音響ピックアップで検知することを特徴とする。   According to a fourth invention, in the first or second invention, the destruction of the axial force detection substance is detected by an acoustic pickup.

更に、第5の発明は、第1又は第2の発明において、前記軸力検知物質の破壊を内視鏡で検知することを特徴とする。   Furthermore, the fifth invention is characterized in that, in the first or second invention, the destruction of the axial force detection substance is detected by an endoscope.

本発明によれば、予張力を与えた状態でボルトの軸部に脆性物質を付着させ硬化させたボルトと、この脆性物質の破壊を検知する検知手段とを設けたので、このボルトにより所定の軸力であるいは塑性域に達する軸力で被締結物を締結することができる。また、脆性物質の破壊/非破壊状態を確認することで、ボルトが塑性変形前のものか塑性変形後のものかを簡単に選別することができる。この結果、塑性変形後のボルトの誤使用を防止することができる。   According to the present invention, there is provided a bolt in which a brittle substance is attached to the shaft portion of the bolt in a pre-tensioned state and hardened, and a detecting means for detecting the breakage of the brittle substance. The object to be fastened can be fastened by an axial force or an axial force reaching the plastic region. Further, by confirming the fracture / non-destructive state of the brittle substance, it is possible to easily select whether the bolt is before plastic deformation or after plastic deformation. As a result, misuse of the bolt after plastic deformation can be prevented.

本発明の軸力管理ボルトの第1の実施の形態を示す正面図である。It is a front view which shows 1st Embodiment of the axial force management volt | bolt of this invention. 本発明の軸力管理ボルトの第1の実施の形態において軸力検知物質を付着する方法の一例を一部断面で示す正面図である。It is a front view which shows in a partial cross section an example of the method of attaching an axial force detection substance in 1st Embodiment of the axial force management bolt of this invention. 本発明の軸力管理ボルトの第1の実施の形態において軸力検知物質を付着する方法の他の例を一部断面で示す正面図である。It is a front view which shows in a partial cross section the other example of the method of attaching an axial force detection substance in 1st Embodiment of the axial force management bolt of this invention. 本発明の軸力管理ボルトの第1の実施の形態においてボルトの締付け状態を一部断面で示す正面図である。It is a front view which shows the tightening state of a volt | bolt in 1st Embodiment of the axial force management volt | bolt of this invention in a partial cross section. 本発明の軸力管理ボルトの第1の実施の形態を構成する軸力検知物質の破壊を検知する方法の一例を一部断面で示す正面図である。It is a front view which shows an example of the method of detecting destruction of the axial force detection substance which comprises 1st Embodiment of the axial force management bolt of this invention in a partial cross section. 本発明の軸力管理ボルトの第1の実施の形態を構成する軸力検知物質の破壊を検知する方法の他の例を一部断面で示す正面図である。It is a front view which shows the other example of the method of detecting destruction of the axial force detection substance which comprises 1st Embodiment of the axial force management bolt of this invention in a partial cross section. 本発明の軸力管理ボルトの第2の実施の形態を示す正面図である。It is a front view which shows 2nd Embodiment of the axial force management volt | bolt of this invention. 本発明の軸力管理ボルトの第3の実施の形態を一部断面で示す正面図である。It is a front view which shows 3rd Embodiment of the axial force management volt | bolt of this invention in a partial cross section. 本発明の軸力管理ボルトの第4の実施の形態を示す正面図である。It is a front view which shows 4th Embodiment of the axial force management volt | bolt of this invention. 本発明の軸力管理ボルトの第5の実施の形態を示す正面図である。It is a front view which shows 5th Embodiment of the axial force management volt | bolt of this invention.

以下、本発明の軸力管理ボルトの実施の形態を図面を用いて説明する。
図1乃至図3は、本発明の軸力管理ボルトの第1の実施の形態を示すもので、図1は本発明の軸力管理ボルトの第1の実施の形態を示す正面図、図2は本発明の軸力管理ボルトの第1の実施の形態において軸力検知物質2を付着する方法の一例を一部断面で示す正面図、図3は本発明の軸力管理ボルトの第1の実施の形態において軸力検知物質2を付着する方法の他の例を一部断面で示す正面図である。
Hereinafter, embodiments of the axial force management bolt of the present invention will be described with reference to the drawings.
1 to 3 show a first embodiment of an axial force management bolt according to the present invention, and FIG. 1 is a front view showing the first embodiment of the axial force management bolt according to the present invention. FIG. 3 is a front view showing a partial cross-sectional view of an example of a method for attaching the axial force detection substance 2 in the first embodiment of the axial force management bolt of the present invention, and FIG. 3 shows the first of the axial force management bolt of the present invention. It is a front view which shows in a partial cross section the other example of the method of attaching the axial force detection substance 2 in embodiment.

本発明の軸力管理ボルトの第1の実施の形態は、図1に示すように、軸部1Aと軸部1Aの一方側に設けた頭部1Bと軸部1Aの他方側に設けた雄ねじ部1Cとを備えるボルト1と、このボルト1の軸部1Aの外表面に軸方向に脆性物質からなる軸力検知物質2を付着硬化させて構成している。軸力検知物質2としては例えば液体ガラス2Aや光硬化樹脂等の脆性物質を使用している。液体ガラス2Aは、例えばペルヒドロポリシラザン(PHPS)と呼ばれる常温・空気雰囲気下で硬化するものがあり、刷毛塗り等の現場作業が容易に実施可能である。この液体ガラス2Aは、硬化後には石英ガラスと近似した物理的性質を示すことが知られている。また、光硬化樹脂は、紫外線など特定の波長の光の照射によって急速に硬化する樹脂である。以下の説明では軸力検知物質2として液体ガラス2Aを用いた場合を例に説明する。   As shown in FIG. 1, the first embodiment of the axial force management bolt according to the present invention includes a shaft 1A, a head 1B provided on one side of the shaft 1A, and a male screw provided on the other side of the shaft 1A. A bolt 1 having a portion 1C and an axial force detection substance 2 made of a brittle substance in the axial direction are attached and cured on the outer surface of the shaft 1A of the bolt 1 in an axial direction. As the axial force detection substance 2, for example, a brittle substance such as liquid glass 2A or a photo-curing resin is used. The liquid glass 2A is, for example, a material called perhydropolysilazane (PHPS) that is hardened under a normal temperature / air atmosphere, and can be easily subjected to on-site work such as brushing. This liquid glass 2A is known to exhibit physical properties similar to quartz glass after curing. The photo-curing resin is a resin that rapidly cures when irradiated with light of a specific wavelength such as ultraviolet rays. In the following description, a case where liquid glass 2A is used as the axial force detection substance 2 will be described as an example.

一般に、ガラスは引張力に対して破壊しやすく、圧縮力に対しては破壊し難く、ほとんど塑性変形しないという特徴がある。例えば液体ガラス2Aの主成分である石英ガラスは、引張強度50[N/mm]に対し圧縮強さ1150[N/mm]である。このため、単純にボルト1の軸部外表面に液体ガラス2Aを軸力検知物質2として付着硬化させた後に、このボルト1で被締結部材を締結すると、ボルト1の軸部1Aが締結に伴い伸長するため、所定の軸力に達する前に硬化した液体ガラス2Aは破壊してしまう。そこで、予めボルト1に所定の負荷をかけ軸部1Aを伸長させた状態の下で液体ガラス2Aを付着硬化させている。この結果、液体ガラス2Aが付着硬化した後にボルト1から負荷を除き軸部1Aが縮小しても液体ガラス2Aは破壊しない状態で軸部1A外表面に付着することになる。 In general, glass has a feature that it is easily broken by a tensile force, hardly broken by a compressive force, and hardly plastically deforms. For example, quartz glass which is the main component of the liquid glass 2A has a compressive strength of 1150 [N / mm 2 ] with respect to a tensile strength of 50 [N / mm 2 ]. For this reason, after the liquid glass 2A is simply adhered and cured as the axial force detection substance 2 on the outer surface of the shaft portion of the bolt 1, when the member to be fastened is fastened with the bolt 1, the shaft portion 1A of the bolt 1 is tightened. Since the liquid glass 2A is stretched, the liquid glass 2A cured before reaching a predetermined axial force is broken. Therefore, the liquid glass 2A is adhered and cured under a state where a predetermined load is applied to the bolt 1 in advance and the shaft portion 1A is extended. As a result, even if the load is removed from the bolt 1 after the liquid glass 2A is adhered and hardened, the liquid glass 2A adheres to the outer surface of the shaft 1A without breaking even if the shaft 1A is reduced.

図2はボルト1に軸力検知物質2を付着させるときに予張力を与える方法の例を説明する図である。
本実施の形態で使用する予張力付与用の冶具3は、ボルト1の頭部1Bの下面を支える天井板4aと天井板4aに対向する底板4bとこの天井板4aと底板4bとを連結する少なくとも2枚の対向する側板4c,4cからなる枠構造体4と、この枠構造体4の底板4bに載置固定されるロードセル5と、このロードセル5の上部に固定されボルト1の雄ねじ部1Cに螺合する雌ねじ部が形成された連結部材5Aとを備えている。なお、枠構造体4の天井板4aには、図2に示すように、ボルト1の軸部1Aは貫通するがボルトの頭部1Bは貫通しない径に形成された孔4dの中心が、連結部材5Aに形成された雌ねじ部の中心と合致するように設けられている。
FIG. 2 is a diagram for explaining an example of a method for applying a pretension when the axial force detection substance 2 is attached to the bolt 1.
The pre-tensioning jig 3 used in the present embodiment connects the ceiling plate 4a supporting the lower surface of the head 1B of the bolt 1, the bottom plate 4b facing the ceiling plate 4a, and the ceiling plate 4a and the bottom plate 4b. A frame structure 4 composed of at least two opposing side plates 4c, 4c, a load cell 5 placed and fixed on the bottom plate 4b of the frame structure 4, and a male screw portion 1C of the bolt 1 fixed to the top of the load cell 5 And a connecting member 5A in which a female thread portion is formed. As shown in FIG. 2, the center of a hole 4 d formed in a diameter that penetrates the shaft 1 </ b> A of the bolt 1 but does not penetrate the head 1 </ b> B of the bolt is connected to the ceiling plate 4 a of the frame structure 4. It is provided so as to coincide with the center of the female screw portion formed on the member 5A.

また、図2に示すように、枠構造体4の内側は、天井板4aと側板4c,4cと連結部材5Aとで空間が形成され、図示垂直方向は開口状態であるため、ボルト1が孔4dを介して連結部材5Aに螺合すると、露出しているボルト1の軸部1A,雄ねじ部1Cの上部に開口側から近接することができる。   Further, as shown in FIG. 2, the space inside the frame structure 4 is formed by the ceiling plate 4a, the side plates 4c and 4c, and the connecting member 5A, and the vertical direction in the drawing is an open state, so that the bolt 1 is a hole. When screwed into the connecting member 5A via 4d, the exposed upper portion of the shaft portion 1A and male screw portion 1C of the bolt 1 can be approached from the opening side.

まず、ボルト1の雌ねじ部1Cを冶具3の枠構造体4の天井板4aの孔4dから内部へ挿入し、連結部材5Aの雌ねじ部に螺合させる。その後、ボルト1のねじ込みを行う。この際に、ロードセル5の出力をモニタしながらねじ込みを行うことで、図2の符号Xで示すようにボルト1に所定の予張力を与えることができる。具体的には、ボルト1を連結部材5Aにねじ込み、ボルト1の頭部1Bの下部面と天井板4aの上部面とが接触した後から、ボルト1の予張力であるロードセル5の出力が表示される。   First, the internal thread portion 1C of the bolt 1 is inserted into the hole 4d of the ceiling plate 4a of the frame structure 4 of the jig 3 and screwed into the internal thread portion of the connecting member 5A. Thereafter, the bolt 1 is screwed. At this time, by performing screwing while monitoring the output of the load cell 5, a predetermined pretension can be applied to the bolt 1 as indicated by a symbol X in FIG. 2. Specifically, after the bolt 1 is screwed into the connecting member 5A and the lower surface of the head 1B of the bolt 1 comes into contact with the upper surface of the ceiling plate 4a, the output of the load cell 5 that is the pretension of the bolt 1 is displayed. Is done.

所定の予張力(軸力)まで、ねじ込みを行なった後、開口部から液体ガラス2Aを例えば刷毛等でボルト1の軸部1A外表面に塗布し、この状態で放置することで、液体ガラス2Aを硬化させる。   After screwing up to a predetermined pretension (axial force), the liquid glass 2A is applied to the outer surface of the shaft 1A of the bolt 1 with, for example, a brush from the opening, and left in this state, whereby the liquid glass 2A Is cured.

液体ガラス2Aの硬化後に、ボルト1を連結部材5Aから緩める方向にまわすことで除荷し、冶具3からボルト1を取り出す。これによりボルト1が締め付けられていない状態では付着した液体ガラス2Aは圧縮状態になる。上述のようにガラスは圧縮力に対しては十分な強度を持つためこの状態で液体ガラス2Aが破壊することは無い。   After the liquid glass 2 </ b> A is cured, the bolt 1 is unloaded by turning it in the direction of loosening the connecting member 5 </ b> A, and the bolt 1 is taken out from the jig 3. Thereby, in the state where the bolt 1 is not tightened, the attached liquid glass 2A is in a compressed state. As described above, since the glass has sufficient strength against the compressive force, the liquid glass 2A is not broken in this state.

なお、図3は本発明の軸力管理ボルトの第1の実施の形態において軸力検知物質2を付着する方法の他の例を示す正面図であって、図2に示すロードセル5の下方に油圧シリンダ6を設けたものである。ロードセル5には、上方に連結部材5Aが下方には油圧シリンダ6のロッドがそれぞれ連結されていて、油圧シリンダ6でボルト1を引っ張ることで、所定の軸力をボルト1に印加できる。また、油圧シリンダ6の油圧力に替えて、例えば送りねじ等の機械的方法で引っ張ることも可能である。   FIG. 3 is a front view showing another example of the method of attaching the axial force detection substance 2 in the first embodiment of the axial force management bolt of the present invention, and is below the load cell 5 shown in FIG. A hydraulic cylinder 6 is provided. A connecting member 5 </ b> A is connected to the load cell 5 and a rod of the hydraulic cylinder 6 is connected to the lower side. By pulling the bolt 1 with the hydraulic cylinder 6, a predetermined axial force can be applied to the bolt 1. Further, instead of the hydraulic pressure of the hydraulic cylinder 6, it is also possible to pull by a mechanical method such as a feed screw.

次に、本発明の軸力管理ボルトの第1の実施の形態における締め付け動作について図4を用いて詳細に説明する。図4は本発明の軸力管理ボルトの第1の実施の形態においてボルトの締付け状態を一部断面で示す正面図である。図4において、図1乃至図3に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Next, the tightening operation in the first embodiment of the axial force management bolt of the present invention will be described in detail with reference to FIG. FIG. 4 is a front view showing a partially tightened state of the bolt in the first embodiment of the axial force management bolt of the present invention. In FIG. 4, the same reference numerals as those shown in FIGS. 1 to 3 are the same parts, and detailed description thereof is omitted.

図4に示すように、ボルト1とナット10とで上部被締結物7Aと下部被締結物7Bとからなる被締結物7を締め付けると、ボルト1の頭部1Bの下部面と上部被締結物7Aの上部面との接触部、及びナット10の上部面と下部被締結物7Bの下部面との接触部のそれぞれに締結力P2とその反力P1とが発生する。この反力P1がボルト1の軸部1Aとナット10の螺合した雄ねじ部とを伸ばし軸力FBを発生させる。このとき、ボルト1の伸びと共に軸部1Aの外表面に付着した液体ガラス2Aも伸ばされる。このとき液体ガラス2Aはボルト1と一緒に変形するためボルト1のひずみ値εbと液体ガラス2Aのひずみ値εgとは等量となる。   As shown in FIG. 4, when the fastened object 7 including the upper fastened object 7A and the lower fastened object 7B is tightened with the bolt 1 and the nut 10, the lower surface of the head 1B of the bolt 1 and the upper fastened object. A fastening force P2 and a reaction force P1 are generated at the contact portion between the upper surface of 7A and the contact portion between the upper surface of the nut 10 and the lower surface of the lower article 7B. This reaction force P1 extends the shaft portion 1A of the bolt 1 and the male screw portion in which the nut 10 is screwed to generate an axial force FB. At this time, the liquid glass 2 </ b> A attached to the outer surface of the shaft portion 1 </ b> A is stretched along with the elongation of the bolt 1. At this time, since the liquid glass 2A is deformed together with the bolt 1, the strain value εb of the bolt 1 and the strain value εg of the liquid glass 2A are equal.

ボルト1の軸力値をFb[N]とすると、ボルト1の軸部1Aでの応力値σbj[N/mm2]はボルト1の軸部1Aの断面積をAj[mm2]として(数1)の式で求まる。 Assuming that the axial force value of the bolt 1 is Fb [N], the stress value σbj [N / mm 2 ] at the shaft portion 1A of the bolt 1 is represented by the cross-sectional area of the shaft portion 1A of the bolt 1 as Aj [mm 2 ] (several It is obtained by the formula of 1).

Figure 2012057709
Figure 2012057709

応カ−ひずみの関係からボルト1の弾性係数をEb[N/mm2]とするとボルト1の軸部1Aのひずみ値εbjは(数2)の式で求まる。 Assuming that the elastic coefficient of the bolt 1 is Eb [N / mm 2 ] from the relationship between the stress and the strain, the strain value εbj of the shaft portion 1A of the bolt 1 is obtained by the equation (Equation 2).

Figure 2012057709
Figure 2012057709

上述したように、液体ガラス2Aのひずみ値εgとボルト1のひずみ値εbとは、等量となるので、ボルト1の軸部1Aでの液体ガラス2Aのひずみ値εgjは(数3)の式で求まる。   As described above, since the strain value εg of the liquid glass 2A and the strain value εb of the bolt 1 are equal, the strain value εgj of the liquid glass 2A at the shaft portion 1A of the bolt 1 is expressed by the equation (3). It is obtained by

Figure 2012057709
Figure 2012057709

液体ガラス2Aの弾性係数をEg[N/mm2]とすると、ボルト1の軸部1Aでの液体ガラス2Aの応力値σgj[N/mm2]は(数4)の式で求まる。 Assuming that the elastic coefficient of the liquid glass 2A is Eg [N / mm 2 ], the stress value σgj [N / mm 2 ] of the liquid glass 2A at the shaft 1A of the bolt 1 is obtained by the equation (Equation 4).

Figure 2012057709
Figure 2012057709

(数4)の式に(数1)、(数2)、(数3)の式を代入すると(数5)の式が求まる。   Substituting the equations (Equation 1), (Equation 2), and (Equation 3) into the equation (Equation 4) yields the equation (Equation 5).

Figure 2012057709
Figure 2012057709

締め付けによってボルト1の軸力値Fb[N]が増大すると、(数5)の式から求まる液体ガラス2Aの応力値σgj[N/mm2]も増加する。一方、上述したように液体ガラス2Aはほとんど塑性変形しない。このため、この液体ガラス2Aの応力値σgj[N/mm2]が液体ガラス2Aの引張強度を超えると液体ガラス2Aは破壊する。 When the axial force value Fb [N] of the bolt 1 is increased by tightening, the stress value σgj [N / mm 2 ] of the liquid glass 2A obtained from the equation (Equation 5) is also increased. On the other hand, as described above, the liquid glass 2A hardly undergoes plastic deformation. For this reason, when the stress value σgj [N / mm 2 ] of the liquid glass 2A exceeds the tensile strength of the liquid glass 2A, the liquid glass 2A breaks.

液体ガラス2Aを付着させるときにボルト1に予張力値Fpr[N]を与えておき、液体ガラス2Aが硬化した後にボルト1の予張力値Fpr[N]を除荷すると、液体ガラス2Aにはボルト1から除荷された分の圧縮応カ値−σgjpr[N/mm2]が生じる。この圧縮応力値−σgjpr[N/mm2]は、(数5)の式のボルト1の軸力値Fb[N]をボルト1の予張力値Fpr[N]に置換えることで(数6)の式で求まる。 When the liquid glass 2A is attached, a pretension value Fpr [N] is given to the bolt 1, and after the liquid glass 2A is cured, the pretension value Fpr [N] of the bolt 1 is unloaded, A compression response value −σgjpr [N / mm 2 ] corresponding to the amount unloaded from the bolt 1 is generated. This compressive stress value −σgjpr [N / mm 2 ] is obtained by replacing the axial force value Fb [N] of the bolt 1 in the equation (Equation 5) with the pretension value Fpr [N] of the bolt 1 (Equation 6). ).

Figure 2012057709
Figure 2012057709

つまり、上述した液体ガラス2Aの付着と予張力値Fpr[N]の除荷とを終えた後の締め付けていない状態のボルト1においては、液体ガラス2Aの応力値σgj[N/mm2]は(数6)から求まる圧縮応カ値−σgjpr[N/mm2]と等量の状態にある。次に、ボルト1で被締結物を締付け、ボルト1に伸びが生じた際における液体ガラス2Aの応力値σgj[N/mm2]は、(数5)及び(数6)の式から(数7)の式で求まる。 That is, in the bolt 1 in the untightened state after finishing the above-described attachment of the liquid glass 2A and unloading of the pretension value Fpr [N], the stress value σgj [N / mm 2 ] of the liquid glass 2A is It is in a state equivalent to the compression response value −σgjpr [N / mm 2 ] obtained from (Equation 6). Next, the object to be fastened is tightened with the bolt 1, and the stress value σgj [N / mm 2 ] of the liquid glass 2 A when the bolt 1 is stretched is calculated from the equations of (Equation 5) and (Equation 6): 7).

Figure 2012057709
Figure 2012057709

(数7)の式において、液体ガラス2Aの引張強度に相当する応力値[N/mm2]をσgjに、ボルト1の目標軸力値[N]をFbにそれぞれ代入することで、予張力値Fpr[N]を算出することができる。 By substituting the stress value [N / mm 2 ] corresponding to the tensile strength of the liquid glass 2A into σgj and the target axial force value [N] of the bolt 1 into Fb in the equation (Equation 7), the pretension The value Fpr [N] can be calculated.

この算出された予張力値Fpr[N]をボルト1に加えた状態の下で、軸部1Aの外表面に液体ガラス2Aを付着硬化させ、その後除荷することで、軸力管理のボルト1を形成する。このボルト1で被締結物を締め付け、ボルト1の軸力により液体ガラス2Aが破壊するまで締め付けることにより、目標の軸力値で被締結物を締結することができる。   Under the condition that the calculated pretension value Fpr [N] is applied to the bolt 1, the liquid glass 2A is adhered and cured to the outer surface of the shaft portion 1A, and then unloaded, thereby the bolt 1 for axial force management. Form. By tightening the object to be fastened with the bolt 1 and tightening until the liquid glass 2A is broken by the axial force of the bolt 1, the object to be fastened can be fastened with a target axial force value.

また、ボルト1で被締結物を塑性締めしたい場合は、予張力値Fpr[N]をボルト1が塑性変形開始するよりやや低い値に設定して、軸部1Aの外表面に液体ガラス2Aを付着硬化させる。この結果、この予張力値Fpr[N]に液体ガラス2Aの引張強度分の軸力値が加えられた軸力値がボルト1に加えられると液体ガラス2Aが破壊する。したがって、液体ガラス2Aの破壊まで、ボルト1を締め付けることにより、ほぼ塑性変形開始の軸力値で被締結物を締結することが可能になる。   When it is desired to plastically fasten the object to be fastened with the bolt 1, the pretension value Fpr [N] is set to a value slightly lower than the bolt 1 starts plastic deformation, and the liquid glass 2A is placed on the outer surface of the shaft portion 1A. Adhesive cure. As a result, when an axial force value obtained by adding an axial force value corresponding to the tensile strength of the liquid glass 2A to the pretension value Fpr [N] is applied to the bolt 1, the liquid glass 2A is broken. Therefore, by tightening the bolt 1 until the liquid glass 2A is broken, it is possible to fasten the article to be fastened with the axial force value at the start of plastic deformation.

次に、本発明の軸力管理ボルトの第1の実施の形態における軸力検知物質の破壊検知方法について図5及び図6を用いて説明する。図5は本発明の軸力管理ボルトの第1の実施の形態を構成する軸力検知物質の破壊を検知する方法の一例を一部断面で示す正面図、図6は本発明の軸力管理ボルトの第1の実施の形態を構成する軸力検知物質の破壊を検知する方法の他の例を一部断面で示す正面図である。図5及び図6において、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Next, a method for detecting a breakage of the axial force detection substance in the first embodiment of the axial force management bolt of the present invention will be described with reference to FIGS. FIG. 5 is a front view showing a partial cross-sectional view of an example of a method for detecting the destruction of the axial force detection substance constituting the first embodiment of the axial force management bolt of the present invention, and FIG. 6 is an axial force management of the present invention. It is a front view which shows the other example of the method of detecting destruction of the axial force detection substance which comprises 1st Embodiment of a bolt in a partial cross section. 5 and 6, the same reference numerals as those shown in FIG. 1 to FIG. 4 are the same parts, and detailed description thereof is omitted.

図5に示すように、上部被締結物7Aの上部のボルト締結部の近傍に、音響ピックアップ8を設置しておき、ボルト1に付着した軸力検知物質2である液体ガラス2Aが破壊するときの音を検知する方法がある。このとき音響ピックアップ8からの出力を図示しない増幅器で増幅し、図示しないスピーカ等から音を出すようにしておくことにより、音の変化から軸力検知物質2が破壊したことが判り、締め付けによるボルト1の軸力が所定の値になったことを検知できる。   As shown in FIG. 5, when the acoustic pickup 8 is installed in the vicinity of the upper bolt fastening portion of the upper article to be fastened 7 </ b> A, and the liquid glass 2 </ b> A that is the axial force detection substance 2 attached to the bolt 1 is broken. There is a method to detect the sound of. At this time, the output from the acoustic pickup 8 is amplified by an amplifier (not shown), and a sound is output from a speaker (not shown). It can be detected that the axial force of 1 has reached a predetermined value.

また、図6に示すように、上部被締結物7Aの側部に小さな孔を設けることが可能な場合には、この孔に照明付の内視鏡9を挿入しておき、ボルト1の軸部外表面に付着した軸力検知物質2である液体ガラス2Aが破壊することを光学的に検知して、締め付けによるボルト1の軸力が所定の値になったことを検知できる。また、上部被締結物7Aの側部に設けた小さな孔に、内視鏡9の代わりに音響ピックアップ8を挿入して、音の検知から、締め付けによるボルト1の軸力が所定の値になったことを検知することも可能である。   In addition, as shown in FIG. 6, when a small hole can be provided in the side portion of the upper article to be fastened 7A, an illuminated endoscope 9 is inserted into the hole and the shaft of the bolt 1 is inserted. It is possible to optically detect that the liquid glass 2A, which is the axial force detection substance 2 attached to the outer surface, breaks, and to detect that the axial force of the bolt 1 due to tightening has reached a predetermined value. In addition, an acoustic pickup 8 is inserted instead of the endoscope 9 into a small hole provided in the side portion of the upper fastening object 7A, and the axial force of the bolt 1 by tightening becomes a predetermined value from the detection of sound. Can also be detected.

さらに、他の方法としては、上述した特許文献2に示されるようにAEセンサを用いる方法がある。特許文献2ではボルト材料が塑性変形する時に発生する弾性波をAEセンサで検知しているため弾性波が発生しにくい部材からなるボルトではこの方法の適用が困難となる問題があった。   Furthermore, as another method, there is a method using an AE sensor as shown in Patent Document 2 described above. In Patent Document 2, since an elastic wave generated when the bolt material is plastically deformed is detected by an AE sensor, there is a problem that it is difficult to apply this method to a bolt made of a member that hardly generates an elastic wave.

本発明の軸力管理ボルトの第1の実施の形態においては、所定の軸力までの締め付けによって、ボルト1の軸部1Aの外表面に付着した軸力検知物質2である液体ガラス2Aが破壊するのでボルト1の材質に依存せず液体ガラス2Aの破壊時に液体ガラス2Aの弾性波を発生させることが可能となる。この結果、液体ガラス2Aの塑性変形時弾性波の発生はボルトの材質に依存せず、ボルト1が塑性変形しない弾性範囲内での締め付けであっても、液体ガラス2Aの塑性変形時弾性波を発生させられるので、このような締め付け範囲内における使用が可能となる。   In the first embodiment of the axial force management bolt of the present invention, the liquid glass 2A which is the axial force detection substance 2 attached to the outer surface of the shaft portion 1A of the bolt 1 is broken by tightening up to a predetermined axial force. Therefore, the elastic wave of the liquid glass 2A can be generated when the liquid glass 2A is broken without depending on the material of the bolt 1. As a result, the generation of elastic waves at the time of plastic deformation of the liquid glass 2A does not depend on the material of the bolt, and even if the bolt 1 is tightened within the elastic range where the plastic glass is not plastically deformed, the elastic wave at the time of plastic deformation of the liquid glass 2A is generated. Since it is generated, it can be used within such a tightening range.

また、本発明の軸力管理ボルトの第1の実施の形態においては、所定の軸力で締め付けを行うと付着した液体ガラス2Aが破壊してしまうので、一度使用したボルト1が判別可能となる。塑性締めのように一度使用したボルト1を再使用することが、構造物の安全性を確保するために禁止されている場合であっても、本発明の軸力管理ボルトの第1の実施の形態にあっては、使用済みか否かが容易に判別できる。   Further, in the first embodiment of the axial force management bolt of the present invention, the attached liquid glass 2A is broken when tightened with a predetermined axial force, so that the bolt 1 once used can be discriminated. . Even if it is prohibited to reuse the bolt 1 that has been used once, such as plastic fastening, in order to ensure the safety of the structure, the first implementation of the axial force management bolt of the present invention In the form, it can be easily determined whether or not it is used.

上述した本発明の軸力管理ボルトの第1の実施の形態によれば、予張力を与えた状態で軸部1Bの外表面に脆性物質である液体ガラス2Aを付着させ硬化させたボルト1と、この脆性物質である液体ガラス2Aの破壊を検知する検知手段とを設けたので、このボルト1により所定の軸力であるいは塑性域に達する軸力で被締結物を締結することができる。また、脆性物質である液体ガラス2Aの破壊/非破壊状態を確認することで、ボルト1が塑性変形前のものか塑性変形後のものかを簡単に選別することができる。この結果、塑性変形後のボルト1の誤使用を防止することができる。   According to the first embodiment of the axial force management bolt of the present invention described above, the bolt 1 in which the liquid glass 2A, which is a brittle substance, is attached and cured on the outer surface of the shaft portion 1B in a state in which a pretension is applied; Since the detecting means for detecting the breakage of the liquid glass 2A, which is a brittle substance, is provided, the bolt 1 can be used to fasten the object to be fastened with a predetermined axial force or with an axial force reaching the plastic region. Further, by confirming the fracture / non-destructive state of the liquid glass 2A which is a brittle substance, it is possible to easily select whether the bolt 1 is before plastic deformation or after plastic deformation. As a result, misuse of the bolt 1 after plastic deformation can be prevented.

図7に本発明の軸力管理ボルトの第2の実施の形態を示す。図1に示した第1の実施の形態では、軸力検知物質2として液体ガラス2Aを使用しているので、所定の軸力がボルト1に発生すると、液体ガラス2Aが破壊される。例えば、図4に示す締結形態の場合、この液体ガラス2Aの破片は、被締結体7の内部孔内にボルト1の頭部1Bとナット10によって封じ込まれ、外部に飛散しないが、保守等でこの被締結物6の締結を開放するために、ボルト1とナット10の締結を緩めると、液体ガラス2Aの破片が被締結体7の内部孔から外部に飛散する。したがって、ボルト1の下方部に異物混入を許容しない装置等が配置されている場合には、異物混入防止の処置が必要となる。本実施の形態では、図7に示すように、軸力検知物質2として液体ガラス2Aをボルト1の軸部1Aの外表面に付着硬化させた後に、液体ガラス2Aを覆うように柔軟性のある樹脂等からなるコーティング材11をボルトの軸部1Aに塗布したものである。この結果、上述したような液体ガラス2Aの破片の外部への飛散を防止することができる。   FIG. 7 shows a second embodiment of the axial force management bolt of the present invention. In the first embodiment shown in FIG. 1, since the liquid glass 2 </ b> A is used as the axial force detection substance 2, when a predetermined axial force is generated in the bolt 1, the liquid glass 2 </ b> A is broken. For example, in the case of the fastening configuration shown in FIG. 4, the broken pieces of the liquid glass 2 </ b> A are sealed in the inner hole of the body 7 to be fastened by the head 1 </ b> B of the bolt 1 and the nut 10, and are not scattered to the outside. When the fastening of the bolt 1 and the nut 10 is loosened in order to release the fastening of the fastened object 6, the pieces of the liquid glass 2 </ b> A are scattered from the inner hole of the fastened body 7 to the outside. Therefore, when a device or the like that does not allow foreign matters to be mixed is disposed in the lower portion of the bolt 1, measures for preventing foreign matters from being mixed are required. In the present embodiment, as shown in FIG. 7, the liquid glass 2 </ b> A as the axial force detection substance 2 is adhered and cured on the outer surface of the shaft 1 </ b> A of the bolt 1, and then flexible so as to cover the liquid glass 2 </ b> A. A coating material 11 made of resin or the like is applied to the shaft portion 1A of the bolt. As a result, it is possible to prevent the liquid glass 2A fragments as described above from being scattered outside.

図8に本発明の軸力管理ボルトの第3の実施の形態を一部断面で示す。図1に示した第1の実施の形態では、軸力検知物質2として液体ガラス2Aをボルト1の軸部1Aの上部外表面に付着硬化させているが、本実施の形態においては、図8に示すように、ボルト1の軸部1Aから雄ねじ部1Cの上部外表面に軸方向に軸力検知物質2として液体ガラス2Aを付着硬化させて構成している。軸力検知物質2を付着硬化させる部位は、ボルト1の軸部1Aの上部外表面に限るものではなく、雄ねじ部1Cの上部であって、例えばナット10等と螺合しない部分であれば、その部位の外表面に付着硬化させてもよい。   FIG. 8 shows a partial cross section of a third embodiment of the axial force management bolt of the present invention. In the first embodiment shown in FIG. 1, the liquid glass 2A is adhered and hardened on the upper outer surface of the shaft 1A of the bolt 1 as the axial force detection substance 2, but in this embodiment, FIG. As shown in FIG. 3, liquid glass 2A as an axial force detection substance 2 is adhered and cured in the axial direction from the shaft portion 1A of the bolt 1 to the upper outer surface of the male screw portion 1C. The site for adhering and curing the axial force detection substance 2 is not limited to the upper outer surface of the shaft portion 1A of the bolt 1, but is an upper portion of the male screw portion 1C, for example, a portion that does not screw with the nut 10 or the like. You may adhere and harden on the outer surface of the part.

図9に本発明の軸力管理ボルトの第4の実施の形態を示す。図1に示した第1の実施の形態では、軸力検知物質2として液体ガラス2Aをボルト1の軸部1Aの上部全周の外部表面に付着硬化させているが、本実施の形態においては、図9に示すように、ボルト1の軸部1Aの上部周方向の4方向の外部表面にのみ付着硬化させて構成している。軸力検知物質2の破壊を上述したように、音、光学、AEセンサ等で検知することから、このような部位に軸力検知物質2を付着硬化させてもよい。   FIG. 9 shows a fourth embodiment of the axial force management bolt of the present invention. In the first embodiment shown in FIG. 1, the liquid glass 2A is attached and cured as the axial force detection substance 2 on the outer surface of the entire upper periphery of the shaft portion 1A of the bolt 1, but in this embodiment, As shown in FIG. 9, it is configured to adhere and harden only on the four outer surfaces in the upper circumferential direction of the shaft portion 1A of the bolt 1. Since the destruction of the axial force detection substance 2 is detected by sound, optics, an AE sensor or the like as described above, the axial force detection substance 2 may be adhered and cured at such a site.

図10に本発明の軸力管理ボルトの第5の実施の形態を示す。第4の実施の形態で述べたように、軸力検知物質2の破壊が確実に検知できるのであれば、ボルト1の軸部1Aの上部周方向の4方向に限る必要はなく、例えば、検知手段が音響ピックアップ等であれば、ボルト1の軸部1Aの上部周方向の1方向に付着硬化させてもよい。   FIG. 10 shows a fifth embodiment of the axial force management bolt of the present invention. As described in the fourth embodiment, if the destruction of the axial force detection substance 2 can be reliably detected, it is not necessary to limit to the four directions in the upper circumferential direction of the shaft portion 1A of the bolt 1; If the means is an acoustic pickup or the like, it may be adhered and cured in one direction in the upper circumferential direction of the shaft portion 1A of the bolt 1.

なお、本発明の実施の形態においては、軸力検知物質2として液体ガラス2Aを用いた場合について説明したが、これに限るものではない。例えば、光硬化樹脂であっても、液体ガラスと同様の性状を備えるものであり、軸力検知物質2として液体ガラス2Aと同様の使用が可能である。   In the embodiment of the present invention, the case where the liquid glass 2A is used as the axial force detection substance 2 has been described. However, the present invention is not limited to this. For example, even a photo-curing resin has the same properties as liquid glass and can be used as the axial force detection substance 2 in the same manner as the liquid glass 2A.

1 ボルト
1A 軸部
1B 頭部
1C 雄ねじ部
2 軸力検知物質
2A 液体ガラス
3 冶具
4 枠構造体
5 ロードセル
5A 連結部材
6 油圧シリンダ
7 被締結物
8 音響ピックアップ
9 内視鏡
10 ナット
11 コーティング材
DESCRIPTION OF SYMBOLS 1 Bolt 1A Shaft part 1B Head part 1C Male thread part 2 Axial force detection substance 2A Liquid glass 3 Jig 4 Frame structure 5 Load cell 5A Connection member 6 Hydraulic cylinder 7 Fastening object 8 Acoustic pick-up 9 Endoscope 10 Nut 11 Coating material

Claims (5)

軸部とねじ部と頭部とを備え、軸線方向に作用する軸力を管理することができる軸力管理ボルトであって、
前記ボルトの軸方向のひずみ量が所定値を超えたときに破壊する軸力検知物質を前記ボルトの少なくとも軸部の外表面に付着し、
前記軸力検知物質は、予め前記ボルトに軸方向の張力をかけた状態で付着された
ことを特徴とする軸力管理ボルト。
An axial force management bolt comprising an axial portion, a screw portion, and a head, and capable of managing axial force acting in the axial direction,
An axial force detection substance that breaks when the amount of axial strain of the bolt exceeds a predetermined value is attached to the outer surface of at least the shaft portion of the bolt,
The axial force management bolt is characterized in that the axial force detection substance is attached in advance in a state where an axial tension is applied to the bolt.
請求項1に記載の軸力管理ボルトにおいて
前記軸力検知物質は脆性物質を付着させたものである
ことを特徴とする軸力管理ボルト。
The axial force management bolt according to claim 1, wherein the axial force detection substance has a brittle substance attached thereto.
請求項1又は2に記載の軸力管理ボルトにおいて
前記軸力検知物質の破壊をアコースティックエミッションセンサで検知する
ことを特徴とする軸力管理ボルト。
The axial force management bolt according to claim 1 or 2, wherein the destruction of the axial force detection substance is detected by an acoustic emission sensor.
請求項1又は2に記載の軸力管理ボルトにおいて
前記軸力検知物質の破壊を音響ピックアップで検知する
ことを特徴とする軸力管理ボルト。
The axial force management bolt according to claim 1 or 2, wherein the destruction of the axial force detection substance is detected by an acoustic pickup.
請求項1又は2に記載の軸力管理ボルトにおいて
前記軸力検知物質の破壊を内視鏡で検知する
ことを特徴とする軸力管理ボルト。
The axial force management bolt according to claim 1 or 2, wherein the destruction of the axial force detection substance is detected by an endoscope.
JP2010201118A 2010-09-08 2010-09-08 Axial force control bolt Withdrawn JP2012057709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201118A JP2012057709A (en) 2010-09-08 2010-09-08 Axial force control bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201118A JP2012057709A (en) 2010-09-08 2010-09-08 Axial force control bolt

Publications (1)

Publication Number Publication Date
JP2012057709A true JP2012057709A (en) 2012-03-22

Family

ID=46055054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201118A Withdrawn JP2012057709A (en) 2010-09-08 2010-09-08 Axial force control bolt

Country Status (1)

Country Link
JP (1) JP2012057709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952129B2 (en) 2014-01-31 2018-04-24 Hiei Kensetsu Corporation Failure detection sensor, failure detection system, and structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9952129B2 (en) 2014-01-31 2018-04-24 Hiei Kensetsu Corporation Failure detection sensor, failure detection system, and structure

Similar Documents

Publication Publication Date Title
Benhamena et al. Effect of clamping force on fretting fatigue behaviour of bolted assemblies: Case of couple steel–aluminium
Zhang et al. Vibro-acoustic modulation (VAM)-inspired structural integrity monitoring and its applications to bolted composite joints
JP4323568B1 (en) Method and device for measuring stress of bolted portion
JP5465404B2 (en) Inner nut looseness and damage detection method and apparatus
CN103033471B (en) Detection method and detector for bonding strength of materials
JP7166426B2 (en) Apparatus and method for evaluating soundness of fiber-reinforced composite material
Sadeghi et al. Damage detection in adhesively bonded single lap joints by using backface strain: Proposing a new position for backface strain gauges
US20130036828A1 (en) Fixing jig fatigue testing test piece, and fatigue testing device
US8343294B2 (en) Method for enhancing the fatigue life of a structure
Shivakumar et al. Fracture mechanics and testing of interface adhesion strength in multilayered structures–application in advanced solar PV materials and technology
JP2012057709A (en) Axial force control bolt
JP2004212210A (en) Method for measuring shearing load of fastening implement
CN113530944B (en) Bolt pre-tightening method and system
Paliwal et al. A detailed study on the damage evolution and failure assessment of single-lap hybrid joints in CFRP laminates under tensile loading
JP4316283B2 (en) Tensile anchorage structure and tendon stress measurement method
JP2013160500A (en) Defect inspection apparatus and inspection method
Vand et al. An experimental method for measuring clamping force in bolted connections and effect of bolt threads lubrication on its value
JP2005091086A (en) Bolt axial force detector, bolt having the same, and method for controlling bolt and its fastening
Paliwal et al. Experimental characterization of CFRP single lap joints under tension at various loading rates
RU2760546C1 (en) Method for executing field joints on high-strength bolts with controlled tension
CN209638195U (en) A kind of mechanoluminescence type intelligent bolt with pretightning force instruction
JP2007046934A (en) Check system of anchor bolt required connection proof stress and check method for anchor bolt required connection proof strength
JP2007002553A (en) Concrete structure with self-diagnostic function, and its inspection/investigation/diagnosis method
de Vries et al. Determining the preload in preloaded bolt assemblies in existing steel structures
Szlosarek et al. Multiaxial fatigue crack initiation in bolted sheet material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203