JP2012057608A - Fluid transport device and fluid transport method using the same - Google Patents

Fluid transport device and fluid transport method using the same Download PDF

Info

Publication number
JP2012057608A
JP2012057608A JP2010219890A JP2010219890A JP2012057608A JP 2012057608 A JP2012057608 A JP 2012057608A JP 2010219890 A JP2010219890 A JP 2010219890A JP 2010219890 A JP2010219890 A JP 2010219890A JP 2012057608 A JP2012057608 A JP 2012057608A
Authority
JP
Japan
Prior art keywords
water
fluid
air
water conduit
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010219890A
Other languages
Japanese (ja)
Inventor
Zenji Orimo
善治 下茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010219890A priority Critical patent/JP2012057608A/en
Publication of JP2012057608A publication Critical patent/JP2012057608A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid transport device and a fluid transport method using the same, for reducing a load applied to a pump, and reducing cost in pumping up fluid.SOLUTION: This well water transport device 8 includes the pump 12 arranged in the bottom part vicinity of a well 10 for storing well water 24, a water introducing pipe 14 for flowing the well water 24 forcibly fed by this pump 12 and a compressor 18 for injecting air 20 via an air feed pipe 16 into a midway part of the water introducing pipe 14. The air 20-injected well water 24 is transported up to a predetermined place of, for example, a water storage tank on the ground.

Description

本発明は、例えば井戸から井戸水を地上の所定箇所に輸送する流体輸送装置およびそれを用いた流体輸送方法に関するものである。  The present invention relates to a fluid transportation device that transports well water from a well to a predetermined location on the ground, and a fluid transportation method using the fluid transportation device.

従来の井戸ポンプとして、井戸の下端付近に、多段タービン構造を有する貯留された井戸水に水中ポンプを浸漬し、この水中ポンプの圧力により井戸水を地上に汲み出すものが知られている。
この種の井戸ポンプの場合、井戸の近傍に配置された制御装置により水中ポンプの稼働が制御され、水中ポンプにより汲み上げられた井戸水はパイプ等の輸送手段を経由して、貯水槽等の地上の所定箇所に輸送される。
As a conventional well pump, a submersible pump is immersed in the stored well water having a multistage turbine structure near the lower end of the well, and the well water is pumped to the ground by the pressure of the submersible pump.
In the case of this type of well pump, the operation of the submersible pump is controlled by a control device arranged in the vicinity of the well, and the well water pumped up by the submersible pump passes through transportation means such as pipes to the ground such as a water tank. It is transported to a predetermined location.

特開2005−222415号公報JP 2005-222415 A

しかしながら、上記した水中ポンプで、地下数百メートル程度に深く掘削された井戸から井戸水を地上に汲み出す場合、出力の大きい水中ポンプを高負荷で稼働させる必要があり、このことが井戸水の汲み上げに係るコストを大きくしていた。
更に、直径が10cm乃至20cm程度の細い井戸の内部に水中ポンプを設置することを考慮した場合、大型で高出力のポンプを井戸の内部に配置し難く、このことも大深度からの井戸水の汲み上げを困難とする要因となっていた。
更にまた、深さが数百メートルの井戸から井戸水を汲みとる場合、井戸の深さと同程度の長さのパイプを井戸の内部に備える必要がある。このことから、特に井戸の下底付近において、パイプ内部を流通する井戸水自体の圧力がパイプやポンプに負荷を与える恐れがあった。
本発明は上記した問題を鑑みてなされたものであり、本発明の目的は、ポンプに与える負荷が軽減されるとともに、汲み上げに係るコストが低減された流体輸送装置およびそれを用いた流体輸送方法を提供することにある。
However, when pumping well water from a well that has been deeply drilled about several hundred meters below ground with the above-mentioned submersible pump, it is necessary to operate a submersible pump with a large output at a high load, which is the reason for pumping well water. The cost concerned was large.
Furthermore, when considering installing a submersible pump inside a thin well with a diameter of about 10 cm to 20 cm, it is difficult to arrange a large, high-power pump inside the well, which also pumps well water from a large depth. It was a factor that made it difficult.
Furthermore, when well water is drawn from a well having a depth of several hundred meters, it is necessary to provide a pipe having a length similar to the depth of the well inside the well. For this reason, the pressure of the well water itself that circulates inside the pipe, particularly in the vicinity of the bottom of the well, may cause a load on the pipe and the pump.
The present invention has been made in view of the above problems, and an object of the present invention is to reduce a load applied to a pump and reduce a cost for pumping, and a fluid transport method using the same Is to provide.

本発明の流体輸送装置は、流体が流通する導水管と、前記流体に圧力を与えて前記導水管に送り出すポンプと、前記導水管の途中部分にエアを注入するコンプレッサと、を備えることを特徴とする。
本発明は、流体を所定箇所に輸送する流体移動方法であり、前記流体をポンプで導水管に送り出すと共に、前記流体が流通する前記導水管の途中部分に、コンプレッサから圧送されるエアを注入することを特徴とする。
The fluid transport device of the present invention includes a water conduit through which a fluid flows, a pump that applies pressure to the fluid and sends the fluid to the water conduit, and a compressor that injects air into a middle portion of the water conduit. And
The present invention is a fluid movement method for transporting a fluid to a predetermined location, and the fluid is pumped out to a conduit, and air pumped from a compressor is injected into a middle portion of the conduit where the fluid flows. It is characterized by that.

本発明によれば、ポンプにより井戸水が圧送される導水管の途中部分に、コンプレッサからエアを注入している。これにより発生するエアリフト効果により、比較的小さい圧力で井戸水を輸送することが可能となり、井戸水の輸送に必要とされるコストが低減される。
更に、導水管にエアが注入されることで、井戸の最下部付近の導水管やポンプに与える水圧が小さくなるので、導水管が圧力により損傷することが抑止され、更にポンプに与える負荷が軽減される。
更に本発明では、エアが注入される部分の前記導水管を、他の部分よりも内径を大きくしている。このようにすることで、多量のエアを導水管に注入することが可能となり、エアリフト効果を顕著なものとすることができる。
According to the present invention, air is injected from the compressor into the middle portion of the water conduit to which the well water is pumped by the pump. Due to the air lift effect generated by this, it becomes possible to transport well water with a relatively small pressure, and the cost required for transporting well water is reduced.
Furthermore, since air is injected into the conduit, the water pressure applied to the conduit and pump near the bottom of the well is reduced, so that the conduit is prevented from being damaged by pressure, and the load applied to the pump is reduced. Is done.
Furthermore, in this invention, the internal diameter of the said water conduit of the part into which air is inject | poured is made larger than another part. By doing so, it becomes possible to inject a large amount of air into the water conduit, and the air lift effect can be made remarkable.

本発明の形態に係る井戸水輸送装置の構成を示す図である。  It is a figure which shows the structure of the well water transport apparatus which concerns on the form of this invention. (A)および(B)は、本形態の井戸水輸送装置を用いて井戸水が貯水槽に輸送される状態を示す模式図である。  (A) And (B) is a schematic diagram which shows the state by which well water is conveyed to a water storage tank using the well water transport apparatus of this form. 本発明の他の形態の井戸水輸送装置を示す図である。  It is a figure which shows the well water transport apparatus of the other form of this invention. 本発明の形態に係る井戸水輸送方法を示すフローチャートである。  It is a flowchart which shows the well water transport method which concerns on the form of this invention.

図1を参照して、先ず、本形態の井戸水輸送装置8(流体輸送装置)の構成を説明する。
井戸水輸送装置8は、井戸水24が貯留されている井戸10の底部付近に配位されるポンプ12と、このポンプ12により圧送される井戸水24が流通する導水管14と、導水管14の途中部分に送気管16を経由してエア20を注入するコンプレッサ18とを備えている。エア20が注入された井戸水24は、地上の例えば貯水槽等の所定箇所まで輸送される。
井戸10の大きさの一例は、深さが200m〜300m程度であり、その直径は10cm〜20cm程度である。即ち、本形態の井戸10は極めて細長く掘削されたものであり、その内部のスペース的制約が大きく、従って高出力な大型のポンプをその内部に収納することは非常に困難である。
ポンプ12は、井戸10の底部付近に周囲から滲みでて貯留された井戸水24に浸漬されている。所謂水中ポンプである。ポンプ12は、地上に設置された不図示の制御手段から供給される電力に基づいて回転するモータを備え、井戸水24を導水管14に高圧で送り出す。上記したように、井戸10の深さは数百メートルであるので、ポンプ12は、その深度から井戸水24を地上まで汲み出すことを可能とする出力を備える必要がある。一方、井戸10の直径は10cm〜20cm程度と細長い形状であるので、ポンプ12は、矮小な空間に収納可能に小型である必要がある。即ち、本形態に適用されるポンプ12は、小型化と高出力とを高いレベルで両立する必要がある。
導水管14は、ポンプ12により加圧された井戸水24が流通する管路であり、井戸10の底部に配置されたポンプ12に一端が連通し、他端は井戸水24が供給される貯水槽に至る。導水管14の全長は例えば数百m程度〜数km程度であり、その材料としてはパイプ状に形成された金属からなる鋼管または、ポリ塩化ビニルから成る所謂塩ビ管が採用される。ここで、実際の使用では、井戸10に挿入される部分の導水管14は剛性が考慮されて鋼管が採用され、地表に配置される部分の導水管14は、配置される地形にその形状を追従させるために塩ビ管が採用される。
また、導水管14は、エア20がコンプレッサ18から供給される箇所よりも下方の導水管14Aと、この箇所よりも上方の導水管14Bから成る。ここで、導水管14Bは導水管14Aよりも内径が大きく形成されており、例えば導水管14Aの内径は4cmであり、導水管14Bの内径は5cm程度である。
このように、注入されるエアが流通する部分の導水管14Bを、エアが注入されない上流側(下部部分)の導水管14Aよりも太くすることにより、注入されたエア20により奏されるエアリフト効果が顕著と成る。具体的には、導水管14Bの内径を長くすることにより、その導水管部分の容積が大きくなるので、コンプレッサ18により注入可能と成るエア20の絶対量が多くなる。したがって、導水管14Bを流通する井戸水24に多量のエア20が含まれることにより、井戸水24とエア20との混合物としての密度が小さくなり、結果的に井戸水24を地上または貯水槽に輸送するために必要とされる圧力が小さくなる。
また、注入されたエア20が流通しない部分の導水管14Aは、エア20が流通する部分の導水管14Bよりも内径が小さい。このようにすることで、エア20を含まないことにより密度が比較的大きい井戸水24の流通量が少なくなり、このことによっても、井戸水24の輸送に必要とされる圧力が低減される。
ここで、エアリフトの効果を大きくするために、コンプレッサ18から与えられるエア20を、ポンプ12の直上の導水管14に注入することも考えられる。しかしながら、本形態の簡易型の井戸水輸送装置8が備えるコンプレッサ18から発生するエアの圧力は、例えば9kgf/cm程度である。従って、井戸10の深さが例えば200m程度であれば、井戸10の最深部付近の導水管14の内部圧力の方が、コンプレッサ18の圧縮圧力よりも大きくなり、この部分にてエアを導水管14内部に供給することができなくなる。従って、本形態では、導水管14の深さ方向の途中部分にてエア20を供給し、この部分よりも上方の導水管14Bの内径を大きくする一方、この部分よりも下方の導水管14Aの内径を比較的小さくしている。この途中部分は、導水管14に充填された井戸水24の水圧が、コンプレッサ18から供給されるエア20の圧力よりも小さくなる箇所よりも上方という条件が与えられる。このようにすることにより、上記したエアリフト効果を顕著なものとする。
コンプレッサ18は、送気管16を経由して、エア20を圧縮して導水管14に供給する。送気管16の大部分は導水管14と主に、井戸10の内部に収納される。
送気管16と導水管14との接続部には逆流弁22が設けられている。この逆流弁22は、導水管14の内部の井戸水24が送気管16に流入しないように備えられている。このようにすることで、コンプレッサ18による圧力の印加を解除した場合であっても、導水管14側から送気管16に井戸水24が侵入することが防止される。特に本形態の場合、導水管14と送気管16との接続箇所は、地下100m程度の深度にある。従って、ポンプ12を停止した場合であっても、導水管14の内部に滞留する井戸水24の自重により、この接続箇所には大きな水圧が作用する。本形態では、この接続部に逆流弁22を介装することによって、この水圧により送気管16側に井戸水24が流入することを防止している。
なおここで、導水管14の内径は全体的に同一でも良い。更に、上記説明では、導水管14の内部にエア20が供給される供給箇所は一箇所のみであったが、この供給箇所を複数個設けても良い。
図2(A)を参照して、次に、上記した井戸水輸送装置が実際に使用される状況を説明する。ここでは、山麓付近に上記した井戸10が掘削されており、この井戸10から組み上げた井戸水を、山頂付近に配置された貯水槽26に輸送している。ここで、井戸10と貯水槽26との間に敷設される導水管14の長さは、数百m〜数km程度であり、井戸10と貯水槽26との高低差は、数十m〜数百m程度である。
井戸10の深さは例えば100m以上の深さを備えており、この井戸10の最深部に滲みでた井戸水を不図示のポンプの圧力で、貯水槽26まで輸送している。ここでは、コンプレッサ18は、井戸10の深さ方向の途中部分で、導水管14の内部にエアを注入している。注入されたエアは井戸水と共に導水管14を流通して貯水槽26に至り、貯水槽26に井戸水が吐出され、エアも同時に外部に放出される。そして、貯水槽26に貯留された井戸水は、適宜使用される。また、貯水槽26から供給される井戸水は、別体の導水管を経由して適宜輸送され、この時は導水管内部にはエアは存在しない状態で輸送される。
貯水槽26に貯留された井戸水の使用用途は、例えば、養鶏等の畜産、灌漑、生活水、工業用水等である。
図2(B)を参照して、ここでは、山腹の途中部分にて、コンプレッサ18により圧縮されたエアを導水管14の内部に供給している。この例は、例えば、井戸10の深さが数十メートル程度に浅い場合に適用可能である。
図3を参照して、本形態が高層ビル等の構造物28に適用された場合を説明する。ここでは、水道水または井戸水を、構造物28の屋上等に配置された貯水槽26に供給している。具体的には、水道水または井戸水は、ポンプ12の圧力により導水管14を経由して、貯水槽26に輸送される。そして、略垂直に敷設される導水管14の途中部分にて、コンプレッサ18により圧縮されたエアが導水管14に注入する。注入されたエアによるエアリフト効果により、ポンプ12の小さい圧力にて水を貯水槽26に供給されることは、上記した通りである。
ここで、図2乃至図3を参照して説明した他の形態は、基本的には図1を参照して説明したものと同様であり、その説明は援用される。
図4のフローチャートと図1および図2を参照して、上記した構成の井戸水輸送装置を用いた井戸水輸送方法(流体輸送方法)を説明する。本形態での井戸水輸送方法の目的は、井戸水を組み上げて貯水槽まで輸送することにある。
ステップS1で井戸水輸送装置8を稼働させると、貯水槽26に貯留された井戸水の水量を水位等で計測する。貯水槽26に貯留された水量が規定以上である場合は、ENDに移行し、即ち井戸水輸送装置を稼働させない。
一方、貯水槽に貯留された井戸水の貯水量の規定未満の場合は、本形態の井戸水輸送装置を稼働させる。具体的には、図1を参照して、ポンプ12を稼働させることにより、井戸10の最下部に滲み出した井戸水24を、導水管14に圧力を掛けて送り出す(ステップS3)。そして、コンプレッサ18も稼働させて、圧縮されたエア20を導水管14の内部に注入する。このようにすることで、流体内部にエア20が注入されることで奏されるエアリフト効果により、ポンプ12により印加される少ない圧力で、井戸水24を地上に到達させることが可能となる。
ここで、コンプレッサ18から供給される空気は、必ずしも井戸10の内部にて導水管14に注入される必要はなく、図2(B)や図3に示したように、地上にて導水管14にエア20が注入されても良い。
このように、ポンプ12により圧送されると共にエア20が注入された井戸水24は、図2(A)等に示される貯水槽26に至るように輸送される。即ち、ステップS5にて、貯水槽26の水量(水位)が規定以上か否かが判断され、規定以上の場合は、ポンプ12を停止する(ステップS6)。また、貯水槽26に貯留された井戸水の水量(水位)が規定未満の場合はステップS3に戻り、井戸水輸送を継続する。
貯水槽26に貯留された井戸水の水量が規定以上の場合は上記したようにポンプ12が停止されるが、コンプレッサ18に関しては、ポンプ12と同時に停止しても良いし、時間差を持って停止しても良い。
具体的には、図1を参照して、ポンプ12を停止させた後に、数分〜数十分程度コンプレッサ18のみを連続して稼働させても良い。このようにすることで、導水管14の内部に滞留した井戸水24が貯水槽26に吐出され、導水管14の内部に滞留する井戸水24の水量が低減される。ここでは、コンプレッサ18からエアが供給される接続箇所から上方部分の導水管14内部に滞留した井戸水24が外部に放出される。このようにすることで、滞留した井戸水24の自重による圧力が軽減され、この圧力が導水管14に与えるダメージが軽減される。特に、導水管14が塩ビ管等の樹脂製管路である場合は、この材料は劣化しやすい材料であるため、かかる方法により奏される効果が顕著と成る。
上記ステップが終了してコンプレッサを停止させたら(ステップS7)、ステップS2に戻り、貯水槽26の水量が規定未満と成れば、再び井戸水輸送装置を稼働させる。
ここで、上記説明では、井戸水を輸送する井戸水輸送装置等に関して説明したが、井戸水以外の流体(例えば水道水等)の輸送にも本形態は適用可能である。
With reference to FIG. 1, the structure of the well water transport apparatus 8 (fluid transport apparatus) of this form is demonstrated first.
The well water transport device 8 includes a pump 12 arranged near the bottom of the well 10 in which the well water 24 is stored, a water conduit 14 through which the well water 24 pumped by the pump 12 circulates, and an intermediate portion of the water conduit 14. And a compressor 18 for injecting air 20 via an air supply pipe 16. The well water 24 into which the air 20 has been injected is transported to a predetermined location such as a water storage tank on the ground.
An example of the size of the well 10 has a depth of about 200 m to 300 m and a diameter of about 10 cm to 20 cm. That is, the well 10 of this embodiment is excavated extremely long and has a large space restriction. Therefore, it is very difficult to accommodate a large pump with high output in the inside.
The pump 12 is immersed in the well water 24 that has been stored in the vicinity of the bottom of the well 10 by bleeding from the surroundings. This is a so-called submersible pump. The pump 12 includes a motor that rotates based on electric power supplied from a control unit (not shown) installed on the ground, and sends the well water 24 to the water conduit 14 at a high pressure. As described above, since the depth of the well 10 is several hundred meters, the pump 12 needs to have an output that enables the well water 24 to be pumped from the depth to the ground. On the other hand, since the diameter of the well 10 is an elongated shape of about 10 cm to 20 cm, the pump 12 needs to be small enough to be housed in a small space. That is, it is necessary for the pump 12 applied to this embodiment to achieve both downsizing and high output at a high level.
The water conduit 14 is a conduit through which the well water 24 pressurized by the pump 12 circulates, and one end communicates with the pump 12 disposed at the bottom of the well 10 and the other end is a water tank to which the well water 24 is supplied. It reaches. The total length of the water guide pipe 14 is, for example, about several hundred meters to several kilometers, and a steel pipe made of metal formed in a pipe shape or a so-called polyvinyl chloride pipe made of polyvinyl chloride is adopted as the material thereof. Here, in actual use, a steel pipe is adopted in consideration of the rigidity of the water conduit 14 inserted into the well 10, and the shape of the water conduit 14 disposed on the ground surface is shaped to the terrain to be disposed. A PVC pipe is used to follow it.
The water conduit 14 includes a water conduit 14 </ b> A below the location where the air 20 is supplied from the compressor 18, and a water conduit 14 </ b> B above the location. Here, the inner diameter of the water conduit 14B is larger than that of the water conduit 14A. For example, the inner diameter of the water conduit 14A is 4 cm, and the inner diameter of the water conduit 14B is about 5 cm.
Thus, the air lift effect produced by the injected air 20 is made thicker than the upstream side (lower part) of the water guide pipe 14B through which the injected air circulates. Becomes prominent. Specifically, by increasing the inner diameter of the water conduit 14B, the volume of the water conduit portion increases, so the absolute amount of air 20 that can be injected by the compressor 18 increases. Therefore, since a large amount of air 20 is contained in the well water 24 flowing through the conduit 14B, the density of the mixture of the well water 24 and the air 20 is reduced, and as a result, the well water 24 is transported to the ground or a water tank. The pressure required for is reduced.
Further, the portion of the water conduit 14A where the injected air 20 does not flow has a smaller inner diameter than the portion of the water conduit 14B where the air 20 flows. By doing in this way, since the air 20 is not included, the circulation amount of the well water 24 having a relatively high density is reduced, and this also reduces the pressure required for transporting the well water 24.
Here, in order to increase the effect of the air lift, it is conceivable to inject the air 20 supplied from the compressor 18 into the water conduit 14 immediately above the pump 12. However, the pressure of the air generated from the compressor 18 provided in the simplified well water transport device 8 of this embodiment is, for example, about 9 kgf / cm 2 . Therefore, if the depth of the well 10 is about 200 m, for example, the internal pressure of the water conduit 14 near the deepest part of the well 10 becomes larger than the compression pressure of the compressor 18, and the air is guided through this portion. 14 cannot be supplied into the interior. Therefore, in this embodiment, the air 20 is supplied in the middle portion of the water conduit 14 in the depth direction, and the inner diameter of the water conduit 14B above this portion is increased, while the water conduit 14A below this portion is enlarged. The inner diameter is relatively small. This intermediate portion is given a condition that the water pressure of the well water 24 filled in the water conduit 14 is higher than a portion where the pressure of the air 20 supplied from the compressor 18 becomes smaller. By doing in this way, the above-mentioned air lift effect becomes remarkable.
The compressor 18 compresses the air 20 via the air supply pipe 16 and supplies the compressed air 20 to the water guide pipe 14. Most of the air supply pipe 16 is accommodated inside the well 10 mainly with the water conduit 14.
A check valve 22 is provided at the connection between the air supply pipe 16 and the water guide pipe 14. The backflow valve 22 is provided so that the well water 24 inside the water conduit 14 does not flow into the air supply pipe 16. By doing in this way, even if it is a case where the application of the pressure by the compressor 18 is cancelled | released, it is prevented that the well water 24 penetrate | invades into the air supply pipe 16 from the water guide pipe 14 side. In particular, in the case of this embodiment, the connection point between the water conduit 14 and the air pipe 16 is at a depth of about 100 m underground. Therefore, even when the pump 12 is stopped, a large water pressure acts on this connection location due to the weight of the well water 24 staying inside the water conduit 14. In this embodiment, the backflow valve 22 is interposed in the connection portion, thereby preventing the well water 24 from flowing into the air supply pipe 16 due to the water pressure.
Here, the inner diameter of the water conduit 14 may be the same as a whole. Furthermore, in the above description, the supply location where the air 20 is supplied into the water conduit 14 is only one location, but a plurality of supply locations may be provided.
Next, with reference to FIG. 2 (A), the situation where the above-mentioned well water transport apparatus is actually used will be described. Here, the well 10 described above is excavated near the foot of the mountain, and the well water assembled from the well 10 is transported to a water storage tank 26 disposed near the summit. Here, the length of the water conduit 14 laid between the well 10 and the water tank 26 is about several hundred m to several km, and the height difference between the well 10 and the water tank 26 is several tens m to It is about several hundred meters.
The well 10 has a depth of, for example, 100 m or more, and the well water that has oozed into the deepest portion of the well 10 is transported to the water storage tank 26 by a pump pressure (not shown). Here, the compressor 18 injects air into the water guide pipe 14 in the middle of the well 10 in the depth direction. The injected air flows through the water conduit 14 together with the well water and reaches the water storage tank 26. The well water is discharged into the water storage tank 26, and the air is simultaneously discharged to the outside. And the well water stored in the water storage tank 26 is used suitably. Further, the well water supplied from the water storage tank 26 is appropriately transported via a separate water conduit, and at this time, the well water is transported without air in the water conduit.
The usage of the well water stored in the water storage tank 26 is, for example, livestock such as poultry farming, irrigation, domestic water, and industrial water.
With reference to FIG. 2 (B), here, air compressed by the compressor 18 is supplied to the inside of the water conduit 14 in the middle of the mountainside. This example is applicable, for example, when the depth of the well 10 is as shallow as several tens of meters.
With reference to FIG. 3, the case where this form is applied to structures 28, such as a high-rise building, is demonstrated. Here, tap water or well water is supplied to a water tank 26 arranged on the roof of the structure 28 or the like. Specifically, tap water or well water is transported to the water storage tank 26 via the water conduit 14 by the pressure of the pump 12. Then, air compressed by the compressor 18 is injected into the water conduit 14 at a midway portion of the water conduit 14 laid substantially vertically. As described above, the water is supplied to the water storage tank 26 with a small pressure of the pump 12 by the air lift effect by the injected air.
Here, the other forms described with reference to FIGS. 2 to 3 are basically the same as those described with reference to FIG. 1, and the description thereof is incorporated.
A well water transport method (fluid transport method) using the well water transport device having the above-described configuration will be described with reference to the flowchart of FIG. 4 and FIGS. 1 and 2. The purpose of the well water transport method in this embodiment is to assemble well water and transport it to a water storage tank.
When the well water transport device 8 is operated in step S1, the amount of well water stored in the water storage tank 26 is measured by the water level or the like. When the amount of water stored in the water storage tank 26 is equal to or greater than the specified value, the process proceeds to END, that is, the well water transport device is not operated.
On the other hand, when the amount of well water stored in the water tank is less than the specified amount, the well water transport device of this embodiment is operated. Specifically, referring to FIG. 1, by operating the pump 12, the well water 24 that has oozed out to the lowermost portion of the well 10 is sent out with pressure applied to the water conduit 14 (step S3). Then, the compressor 18 is also operated to inject the compressed air 20 into the water conduit 14. By doing in this way, it becomes possible to make the well water 24 reach | attain above-ground with the small pressure applied by the pump 12 by the air lift effect show | played when the air 20 is inject | poured inside the fluid.
Here, the air supplied from the compressor 18 does not necessarily need to be injected into the water conduit 14 inside the well 10, and as shown in FIG. 2 (B) and FIG. 3, the water conduit 14 on the ground. Air 20 may be injected into the air.
As described above, the well water 24 which is pumped by the pump 12 and into which the air 20 is injected is transported to reach the water storage tank 26 shown in FIG. That is, in step S5, it is determined whether or not the amount of water (water level) in the water storage tank 26 is equal to or greater than a specified value. Moreover, when the amount (water level) of the well water stored in the water storage tank 26 is less than a regulation, it returns to step S3 and continues well water transport.
When the amount of well water stored in the water storage tank 26 is more than the specified value, the pump 12 is stopped as described above. However, the compressor 18 may be stopped simultaneously with the pump 12 or may be stopped with a time difference. May be.
Specifically, referring to FIG. 1, after the pump 12 is stopped, only the compressor 18 may be continuously operated for several minutes to several tens of minutes. By doing in this way, the well water 24 staying inside the conduit pipe 14 is discharged to the water storage tank 26, and the amount of the well water 24 staying inside the conduit pipe 14 is reduced. Here, the well water 24 staying in the upper portion of the water conduit 14 is discharged to the outside from a connection location where air is supplied from the compressor 18. By doing in this way, the pressure by the dead weight of the well water 24 which stayed is reduced, and the damage which this pressure gives to the water conduit 14 is reduced. In particular, when the water conduit 14 is a resin pipe such as a polyvinyl chloride pipe, this material is easily deteriorated, and thus the effect produced by such a method becomes remarkable.
When the above steps are completed and the compressor is stopped (step S7), the process returns to step S2, and if the amount of water in the water storage tank 26 is less than the specified value, the well water transport device is operated again.
Here, in the above description, the well water transport device for transporting the well water has been described, but the present embodiment can also be applied to transport of fluids other than well water (for example, tap water).

8 井戸水輸送装置
10 井戸
12 ポンプ
14,14A,14B 導水管
16 送気管
18 コンプレッサ
20 エア
22 逆流弁
24 井戸水
26 貯水槽
28 構造物
8 Well water transport device 10 Well 12 Pump 14, 14A, 14B Water conduit 16 Air supply pipe 18 Compressor 20 Air 22 Backflow valve 24 Well water 26 Reservoir 28 Structure

Claims (8)

流体が流通する導水管と、
前記流体に圧力を与えて前記導水管に送り出すポンプと、
前記導水管の途中部分にエアを注入するコンプレッサと、
を備えることを特徴とする流体輸送装置。
A water conduit through which fluid flows;
A pump that applies pressure to the fluid and delivers the fluid to the conduit;
A compressor for injecting air into the middle portion of the water conduit;
A fluid transportation device comprising:
前記導水管は、第1導水管部と、前記第1導水管部よりも内径が大きい第2導水管部とを備え、
前記エアが注入される箇所よりも上方の部分の前記導水管を前記第2導水管とすることを特徴とする請求項1に記載の流体輸送装置。
The water conduit includes a first water conduit and a second water conduit having a larger inner diameter than the first water conduit,
2. The fluid transport device according to claim 1, wherein the water guide pipe in a portion above a portion where the air is injected is the second water guide pipe.
前記導水管の内部の水圧が、前記コンプレッサにより圧縮される空気の圧力よりも小さくなる箇所の、前記導水管に、前記エアを注入することを特徴とする請求項1または請求項2に記載の流体輸送装置。  The said air is inject | poured into the said water conduit at the location where the water pressure inside the said water conduit becomes smaller than the pressure of the air compressed by the said compressor, The Claim 1 or Claim 2 characterized by the above-mentioned. Fluid transport device. 前記コンプレッサは送気管を経由して前記導水管に前記エアを供給し、
前記導水管から前記流体が前記送気管に流入することを防止する弁を、前記送気管と前記導水管との接続部付近に設けることを特徴とする請求項1から請求項3の何れかに記載の流体輸送装置。
The compressor supplies the air to the water conduit via an air supply pipe,
The valve which prevents that the said fluid flows in into the said air pipe from the said water conduit is provided in the connection part vicinity of the said air pipe and the said water conduit, The claim 1 characterized by the above-mentioned. The fluid transport device described.
前記コンプレッサは、前記ポンプによる前記流体の送り出しが終了した後に、前記導水管に前記エアを供給し続けることにより、前記導水管の内部の前記流体を外部の吐出することを特徴とする請求項1から請求項4の何れかに記載の流体輸送装置。  The said compressor discharges the said fluid inside the said water conduit outside by continuing supplying the said air to the said water conduit after the delivery of the said fluid by the said pump is complete | finished. The fluid transport device according to claim 4. 前記コンプレッサは、井戸の内部で前記導水管に前記エアを注入することを特徴とする請求項1から請求項5の何れかに記載に流体輸送装置。  The fluid transportation device according to claim 1, wherein the compressor injects the air into the water conduit inside a well. 流体を所定箇所に輸送する流体移動方法であり、
前記流体をポンプで導水管に送り出すと共に、前記流体が流通する前記導水管の途中部分に、コンプレッサから圧送されるエアを注入することを特徴とする流体輸送方法。
A fluid movement method for transporting fluid to a predetermined location;
A fluid transporting method, wherein the fluid is sent out to a water conduit by a pump and air fed from a compressor is injected into a middle portion of the water conduit through which the fluid flows.
前記ポンプによる前記流体の輸送が終了した後に、
前記コンプレッサから前記エアを更に前記導水管に注入することにより、前記導水管の内部の前記流体を外部に吐出することを特徴とする請求項7に記載の流体輸送方法。
After transport of the fluid by the pump is finished,
The fluid transportation method according to claim 7, wherein the fluid inside the water conduit is discharged to the outside by further injecting the air from the compressor into the water conduit.
JP2010219890A 2010-09-08 2010-09-08 Fluid transport device and fluid transport method using the same Pending JP2012057608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219890A JP2012057608A (en) 2010-09-08 2010-09-08 Fluid transport device and fluid transport method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010219890A JP2012057608A (en) 2010-09-08 2010-09-08 Fluid transport device and fluid transport method using the same

Publications (1)

Publication Number Publication Date
JP2012057608A true JP2012057608A (en) 2012-03-22

Family

ID=46054987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219890A Pending JP2012057608A (en) 2010-09-08 2010-09-08 Fluid transport device and fluid transport method using the same

Country Status (1)

Country Link
JP (1) JP2012057608A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102400A (en) * 1988-10-07 1990-04-13 Hitachi Kiden Kogyo Ltd Sand lifting pump
JPH0519600U (en) * 1991-08-28 1993-03-12 三井造船株式会社 Bubble pump
JP2010190206A (en) * 2009-02-19 2010-09-02 Kunihiko Tsushima Pump having air pipe for auxiliary pumping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102400A (en) * 1988-10-07 1990-04-13 Hitachi Kiden Kogyo Ltd Sand lifting pump
JPH0519600U (en) * 1991-08-28 1993-03-12 三井造船株式会社 Bubble pump
JP2010190206A (en) * 2009-02-19 2010-09-02 Kunihiko Tsushima Pump having air pipe for auxiliary pumping

Similar Documents

Publication Publication Date Title
US9309750B2 (en) Subsea on-site chemical injection management system
US20090085353A1 (en) Hydroelectric pumped-storage
US8282752B2 (en) Mobile delivery platform for flowable explosive
US20100294456A1 (en) Geothermal heat pump system
KR20170021923A (en) System of power generation with under water pressure of air
US10139014B2 (en) Device for controlling the filling of a pipe as it is being laid in a stretch of water, and associated assembly and method
JP6038703B2 (en) Underground irrigation system
US8534364B2 (en) Assembly and method for production of gas or gas and condensate/oil
JP2012057608A (en) Fluid transport device and fluid transport method using the same
US11306568B2 (en) Hybrid artificial lift system and method
KR101415299B1 (en) Underground heat exchanger grouting device and method
KR101487422B1 (en) Freezimg pipe and ground freezing method using freezimg pipe
US6648072B1 (en) Method and apparatus for delivery of treatment chemicals to subterranean wells
AU2009238321A1 (en) An Improved Pump System
CN205662976U (en) Recharging well and system of recharging
CN108149751A (en) A kind of depth frozen soil extremely cold area pipe well defroster
US9587167B2 (en) For storage of surfactant concentrate solution
CN110185052A (en) A kind of servo-driver is applied to the method and system of base pit dewatering
CN213625847U (en) Anti-floating type tank-pump integrated buried water tank
KR20090129734A (en) Supply system for ground water using a pressure tank
CN204251328U (en) Foaming raw material takes out material machine
CN102661454A (en) Anti-floating tubular product for underground pavement and machining method
US20040000346A1 (en) Water pump structure by siphonage
CN210953396U (en) Liquid supplementing device for valve test
JP2019019611A (en) Construction method of rock bolt

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513