JP2012056953A - Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device - Google Patents

Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device Download PDF

Info

Publication number
JP2012056953A
JP2012056953A JP2011219226A JP2011219226A JP2012056953A JP 2012056953 A JP2012056953 A JP 2012056953A JP 2011219226 A JP2011219226 A JP 2011219226A JP 2011219226 A JP2011219226 A JP 2011219226A JP 2012056953 A JP2012056953 A JP 2012056953A
Authority
JP
Japan
Prior art keywords
group
substituted
organic
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011219226A
Other languages
Japanese (ja)
Inventor
Tetsuzo Miki
鉄蔵 三木
Makoto Nagaoka
誠 長岡
Shuichi Hayashi
秀一 林
Morio Taniguchi
彬雄 谷口
Yu Ichikawa
結 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2011219226A priority Critical patent/JP2012056953A/en
Publication of JP2012056953A publication Critical patent/JP2012056953A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an organic compound having characteristics with excellent electron injection and transportation performances, a hole blocking ability and high stability in a thin-film state as a material for an organic EL (Electroluminescent) device having high efficiency and high durability, and to provide an organic EL device having high efficiency and high durability by using the above compound.SOLUTION: The compound is represented by general formula (1), and the organic electroluminescent (EL) device includes the compound. In the formula, Ar represents an aromatic hydrocarbon group or the like; among Rto R, one out of Rto Rand two out of Rto Rrepresent linking groups, while the others are the same or different from one another and represent a hydrogen atom or the like; m represents an integer of 1 to 3; and n represents an integer of 0 to 4. When n is 0, four out of Rto Rexcluding the linking group cannot be hydrogen atoms at the same time.

Description

本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス(EL)素子に適した化合物と素子に関するものであり、詳しくは置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物と、該化合物を用いた有機EL素子に関するものである。   The present invention relates to a compound and an element suitable for an organic electroluminescence (EL) element which is a self-luminous element suitable for various display devices, and more specifically, an oxadiazole ring structure in which a substituted pyridyl group is linked. And an organic EL device using the compound.

有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であるため、活発な研究がなされてきた。
1987年にイーストマン・コダック社のC.W.Tangらは二層型の積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送する蛍光体と正孔を輸送する有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
現在まで、有機EL素子の実用化のために多くの改良がなされ、二層の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されている(例えば、非特許文献1参照)。
また発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光体の利用が検討されている(例えば、非特許文献2参照)。
Since organic EL elements are self-luminous elements, they have been actively researched because they are brighter and more visible than liquid crystal elements and can be clearly displayed.
In 1987, Eastman Kodak's C.I. W. Tang et al. Have developed an organic EL element using an organic material by developing a two-layer type laminated structure element. They laminate a phosphor that transports electrons and an organic substance that transports holes, and inject both charges into the phosphor layer to emit light, so that they can emit 1000 cd / m 2 or more at a voltage of 10 V or less. High brightness can be obtained (see, for example, Patent Document 1 and Patent Document 2).
Up to now, many improvements have been made for practical use of organic EL devices, and the role of the two layers is further subdivided, and sequentially on the substrate, anode, hole injection layer, hole transport layer, light emitting layer, electron High efficiency and durability are achieved by an electroluminescent device provided with a transport layer, an electron injection layer, and a cathode (see, for example, Non-Patent Document 1).
Further, the use of triplet excitons has been attempted for the purpose of further improving the luminous efficiency, and the use of phosphorescent emitters has been studied (for example, see Non-Patent Document 2).

発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光体や燐光発光体をドープして作成することもできる。上記の講習会予稿集に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、電子の移動速度より正孔の移動速度が速いため、正孔の一部が発光層を通り抜けてしまうことによる効率低下が問題となる。そのため電子の移動速度の速い電子輸送材料が求められている。
代表的な発光材料であるトリス(8−ヒドロキシキノリン)アルミニウム(以後、Alqと略称する)は電子輸送材料としても一般的に用いられるが、電子の移動速度は遅いと言われている。そのために、移動速度の速い材料として、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(以後、PBDと略称する)などが提案された(例えば、非特許文献3参照)。
しかし、PBDは結晶化を起こしやすいなど、薄膜状態における安定性に乏しいことが指摘され、種々のオキサジアゾール誘導体が提案されている(例えば、特許文献3〜5参照)。
The light emitting layer can also be formed by doping a charge transporting compound generally called a host material with a phosphor or a phosphorescent material. As described in the above seminar proceedings collection, the selection of an organic material in an organic EL element greatly affects various characteristics such as efficiency and durability of the element.
In the organic EL element, the light injected from both electrodes is recombined in the light emitting layer to obtain light emission. However, since the hole moving speed is faster than the electron moving speed, some of the holes pass through the light emitting layer. There is a problem of efficiency reduction due to passing through. Therefore, an electron transport material having a high electron moving speed is demanded.
Tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq), which is a typical light emitting material, is generally used as an electron transporting material, but is said to have a low electron moving speed. Therefore, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (hereinafter abbreviated as PBD) has been proposed as a material having a high moving speed. (For example, refer nonpatent literature 3).
However, it is pointed out that PBD is poor in stability in a thin film state, such as being easily crystallized, and various oxadiazole derivatives have been proposed (see, for example, Patent Documents 3 to 5).

これらの電子輸送材料においては、PBDと比較した安定性は改善されたがまだ充分であるとは言えず、正孔の移動速度との均衡という観点では電子の移動速度がまだ不十分であった。そのため、安定性の良好なAlqが電子輸送材料として用いられることが多かったが、満足できる素子特性が得られていなかった。
また正孔の一部が発光層を通り抜けてしまうことを防ぎ、発光層での電荷再結合の確率を向上させる方策には、正孔阻止層を挿入する方法がある。正孔阻止材料としてはこれまでに、トリアゾール誘導体(例えば、特許文献6参照)やバソクプロイン(以後、BCPと略称する)、アルミニウムの混合配位子錯体(BAlq)(例えば、非特許文献2参照)などが提案されている。
しかし、いずれの材料も膜の安定性が不足していたり、もしくは正孔を阻止する機能が不十分である。現在一般的に用いられている正孔阻止材料はBCPであるが、充分に安定な材料とは言えないため、正孔阻止層として十分に機能しているとは言えず、満足できる素子特性が得られていなかった。
有機EL素子の素子特性を改善させるために、電子の注入・輸送性能と正孔阻止能力に優れ、薄膜状態での安定性が高い有機化合物が求められている。
In these electron transport materials, the stability compared with PBD is improved, but it is still not sufficient, and the electron transfer rate is still insufficient from the viewpoint of balance with the hole transfer rate. . For this reason, Alq having good stability was often used as an electron transport material, but satisfactory device characteristics were not obtained.
In addition, there is a method of inserting a hole blocking layer as a measure for preventing a part of holes from passing through the light emitting layer and improving the probability of charge recombination in the light emitting layer. As a hole blocking material, triazole derivatives (for example, see Patent Document 6), bathocuproine (hereinafter abbreviated as BCP), aluminum mixed ligand complex (BAlq) (for example, see Non-Patent Document 2). Etc. have been proposed.
However, any of the materials has insufficient film stability or insufficient function of blocking holes. Although the hole blocking material generally used at present is BCP, it cannot be said that it is a sufficiently stable material, so it cannot be said that it functions sufficiently as a hole blocking layer, and has satisfactory device characteristics. It was not obtained.
In order to improve the device characteristics of an organic EL device, an organic compound having excellent electron injection / transport performance and hole blocking capability and high stability in a thin film state is required.

特開平8−48656号公報JP-A-8-48656 特許第3194657号公報Japanese Patent No. 3194657 特許第2721442号公報Japanese Patent No. 2721442 特許第3316236号公報Japanese Patent No. 3316236 特許第3486994号公報Japanese Patent No. 3486994 特許第2734341号公報Japanese Patent No. 2734341

応用物理学会第9回講習会予稿集55〜61ページ(2001)Proceedings of the 9th meeting of the Japan Society of Applied Physics 55-61 pages (2001) 応用物理学会第9回講習会予稿集23〜31ページ(2001)Proceedings of the 9th Workshop of the Japan Society of Applied Physics 23-31 pages (2001) Jpn.J.Appl.Phys.,27,L269(1988)Jpn. J. et al. Appl. Phys. , 27, L269 (1988)

本発明の目的は、高効率、高耐久性の有機EL素子用の材料として、電子の注入・輸送性能に優れ、正孔阻止能力を有し、薄膜状態での安定性が高い優れた特性を有する有機化合物を提供することにある。
本発明の他の目的は、上記化合物を用いて、高効率、高耐久性の有機EL素子を提供することにある。
本発明に適した有機化合物の物理的な特性としては、(1)電子の注入性が良いこと、(2)電子の移動速度が速いこと、(3)正孔阻止能力に優れること、(4)薄膜状態が安定であることをあげることができる。また、本発明に適した素子の物理的な特性としては、(1)発光効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いこと、(4)最大発光輝度が高いことをあげることができる。
The object of the present invention is as a material for an organic EL device having high efficiency and high durability, having excellent electron injection / transport performance, hole blocking ability, and excellent stability in a thin film state. It is in providing the organic compound which has.
Another object of the present invention is to provide a highly efficient and highly durable organic EL device using the above compound.
The physical characteristics of the organic compound suitable for the present invention are as follows: (1) good electron injectability, (2) fast electron transfer speed, (3) excellent hole blocking ability, (4 ) It can be mentioned that the thin film state is stable. The physical characteristics of the element suitable for the present invention include (1) high luminous efficiency, (2) low emission starting voltage, (3) low practical driving voltage, and (4) maximum light emission. It can be mentioned that the brightness is high.

そこで本発明者らは上記の目的を達成するために、電子親和性であるピリジン環の窒素原子が金属に配位する能力を有していることに着目して、置換されたピリジン環をオキサジアゾール環に連結した新規な有機化合物を設計して化学合成し、該化合物を用いて種々の有機EL素子を試作し、素子の特性評価を鋭意行なった結果、本発明を完成するに至った。
すなわち、上記目的は下記化合物を提供することにより達成された。
Therefore, in order to achieve the above-mentioned object, the present inventors pay attention to the fact that the nitrogen atom of the pyridine ring, which is electron-affinity, has the ability to coordinate with the metal. As a result of designing and chemically synthesizing a novel organic compound linked to a diazole ring, trial production of various organic EL devices using the compound, and diligent evaluation of device characteristics, the present invention was completed. .
That is, the above object has been achieved by providing the following compounds.

(1)下記一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物。 (1) A compound represented by the following general formula (1) having an oxadiazole ring structure in which substituted pyridyl groups are linked.

(式中、Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、R、R、R、RおよびRは、それらのうちの1つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、R、R、R、RおよびR10は、それらのうちの2つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、mは1〜3の整数を表し、nは0〜4の整数を表す。但し、n=0の場合、R、R、R、RおよびRから結合基を除いた4つの基は同時に水素原子ではないものとする。) (In the formula, Ar represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group; R 1 , R 2 , R 3 , R 4 and R 5 , one of them is a linking group, and the other may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group, an alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted group. Represents a substituted naphthyl group, and R 6 , R 7 , R 8 , R 9 and R 10 are two of them being a linking group, and the others may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group , An alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, m represents an integer of 1 to 3, and n represents an integer of 0 to 4. However, when n = 0, R 1, R 2, R 3 , R 4 you Four groups excluding the linking group from the fine R 5 shall not simultaneously hydrogen atoms.)

(2)上記一般式(1)においてn=1である、上記(1)記載のオキサジアゾール環構造を有する化合物。
(3)上記一般式(1)においてn=2である、上記(1)記載のオキサジアゾール環構造を有する化合物。
(4)上記一般式(1)においてn=0であり、R、R、R、RおよびRから結合基を除いた4つの基のうち1つがフェニル基である、上記(1)記載のオキサジアゾール環構造を有する化合物。
(2) The compound having an oxadiazole ring structure according to (1), wherein n = 1 in the general formula (1).
(3) The compound having an oxadiazole ring structure according to (1), wherein n = 2 in the general formula (1).
(4) In the above general formula (1), n = 0, and one of the four groups obtained by removing the bonding group from R 1 , R 2 , R 3 , R 4 and R 5 is a phenyl group ( 1) The compound which has an oxadiazole ring structure as described.

また、本発明は、一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、上記化合物を少なくとも1つの有機層の構成材料として含有する有機エレクトロルミネッセンス素子も提供する。   The present invention also provides an organic electroluminescence device comprising a pair of electrodes and at least one organic layer sandwiched between them, and containing the above compound as a constituent material of at least one organic layer.

一般式(1)中のArで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的には、フェニル基、ビフェニル基、ターフェニル基、テトラキスフェニル基、スチリル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ピリジル基、ピリミジル基、フラニル基、ピロニル基、チオフェニル基、キノリル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、キノキサリル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基などが挙げられる。
一般式(1)中のArで表される、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基の置換基としては、具体的には、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、アルキル基、アルコキシ基、アミノ基、置換アミノ基、トリフルオロメチル基、フェニル基、トリル基、ナフチル基、アラルキル基などが挙げられる。
Aromatic carbonization of a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group or a substituted or unsubstituted condensed polycyclic aromatic group represented by Ar in the general formula (1) Specific examples of the hydrogen group, aromatic heterocyclic group or condensed polycyclic aromatic group include phenyl group, biphenyl group, terphenyl group, tetrakisphenyl group, styryl group, naphthyl group, anthryl group, acenaphthenyl group, fluorenyl group. Group, phenanthryl group, indenyl group, pyrenyl group, pyridyl group, pyrimidyl group, furanyl group, pyronyl group, thiophenyl group, quinolyl group, benzofuranyl group, benzothiophenyl group, indolyl group, carbazolyl group, benzoxazolyl group, quinoxalyl Group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothiophenyl And the like.
As a substituent of a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group or a substituted or unsubstituted condensed polycyclic aromatic group represented by Ar in the general formula (1) Specifically, fluorine atom, chlorine atom, cyano group, hydroxyl group, nitro group, alkyl group, alkoxy group, amino group, substituted amino group, trifluoromethyl group, phenyl group, tolyl group, naphthyl group, aralkyl group Etc.

一般式(1)中の置換されたピリジル基としては、具体的にジピリジル基、ターピリジル基、フェニルピリジル基をあげることができる。
本発明の一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、従来の電子輸送材料より電子の移動が速く、優れた正孔の阻止能力を有し、かつ薄膜状態が安定である。
本発明の一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、有機EL素子の電子輸送層の構成材料として使用することができる。従来の材料に比べて電子の注入・移動速度の高い材料を用いることにより、電子輸送層から発光層への電子輸送効率が向上して、発光効率が向上すると共に、駆動電圧が低下して、有機EL素子の耐久性が向上するという作用を有する。
Specific examples of the substituted pyridyl group in the general formula (1) include a dipyridyl group, a terpyridyl group, and a phenylpyridyl group.
The compound represented by the general formula (1) of the present invention and having an oxadiazole ring structure in which a substituted pyridyl group is linked has a faster electron transfer than a conventional electron transport material and has an excellent hole blocking ability. And the thin film state is stable.
The compound represented by the general formula (1) of the present invention and having an oxadiazole ring structure in which a substituted pyridyl group is linked can be used as a constituent material of an electron transport layer of an organic EL device. By using a material having a higher electron injection / movement speed than conventional materials, the electron transport efficiency from the electron transport layer to the light emitting layer is improved, the light emission efficiency is improved, and the driving voltage is lowered, It has the effect | action that durability of an organic EL element improves.

本発明の一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、有機EL素子の正孔阻止層の構成材料としても使用することができる。優れた正孔の阻止能力と共に従来の材料に比べて電子輸送性に優れ、かつ薄膜状態の安定性の高い材料を用いることにより、高い発光効率を有しながら、駆動電圧が低下し、電流耐性が改善されて、有機EL素子の最大発光輝度が向上するという作用を有する。
本発明の一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、有機EL素子の発光層の構成材料としても使用することができる。従来の材料に比べて電子輸送性に優れ、かつバンドギャップの広い本発明の材料を発光層のホスト材料として用い、ドーパントと呼ばれている蛍光体や燐光発光体を担持させて、発光層として用いることにより、駆動電圧が低下し、発光効率が改善された有機EL素子を実現できるという作用を有する。
The compound represented by the general formula (1) of the present invention and having an oxadiazole ring structure linked with a substituted pyridyl group can also be used as a constituent material of a hole blocking layer of an organic EL device. By using a material with excellent hole-blocking ability and electron transportability compared to conventional materials and high stability in the thin film state, the driving voltage is lowered and current resistance is maintained while having high luminous efficiency. Is improved and the maximum light emission luminance of the organic EL element is improved.
The compound represented by the general formula (1) of the present invention and having an oxadiazole ring structure linked with a substituted pyridyl group can also be used as a constituent material of a light emitting layer of an organic EL device. Compared with conventional materials, the material of the present invention, which has excellent electron transport properties and a wide band gap, is used as a host material for a light emitting layer, and a phosphor or phosphorescent light emitter called a dopant is supported to form a light emitting layer. By using it, the drive voltage is lowered, and an organic EL element with improved luminous efficiency can be realized.

本発明の有機EL素子は、従来の電子輸送材料より電子の移動が速く、優れた正孔の阻止能力を有し、かつ薄膜状態が安定な、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物を用いているため、高効率、高耐久性を実現することが可能となった。   The organic EL device of the present invention has an oxadiazole ring linked with a substituted pyridyl group, which has faster electron movement than conventional electron transport materials, has excellent hole blocking capability, and is stable in a thin film state. Since a compound having a structure is used, high efficiency and high durability can be realized.

本発明は、有機EL素子の電子輸送層、正孔阻止層あるいは発光層の構成材料として有用な、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物であり、該化合物を用いて作製した有機EL素子である。本発明によって、従来の有機EL素子の発光効率と耐久性を格段に改良することができた。   The present invention is a compound having an oxadiazole ring structure in which substituted pyridyl groups are linked, which is useful as a constituent material of an electron transport layer, a hole blocking layer, or a light emitting layer of an organic EL device. It is the produced organic EL element. According to the present invention, the luminous efficiency and durability of a conventional organic EL device can be remarkably improved.

実施例19のEL素子構成を示した図である。14 is a diagram showing an EL element configuration of Example 19. FIG. 実施例21のEL素子構成を示した図である。22 is a diagram showing an EL element configuration of Example 21. FIG. 実施例22のEL素子構成を示した図である。22 is a diagram showing an EL element configuration of Example 22. FIG. 実施例23のEL素子構成を示した図である。14 is a diagram showing an EL element configuration of Example 23. FIG. 実施例19と比較例1の電圧/電流密度特性を比較したグラフである。4 is a graph comparing voltage / current density characteristics of Example 19 and Comparative Example 1. FIG. 実施例19と比較例1の電圧/輝度特性を比較したグラフである。10 is a graph comparing voltage / luminance characteristics of Example 19 and Comparative Example 1. FIG. 実施例19と比較例1の電流密度/輝度特性を比較したグラフである。6 is a graph comparing current density / luminance characteristics of Example 19 and Comparative Example 1. FIG. 実施例19と比較例1の電流密度/電流効率を比較したグラフである。6 is a graph comparing current density / current efficiency of Example 19 and Comparative Example 1. FIG. 実施例21と比較例2の電圧/電流密度特性を比較したグラフである。6 is a graph comparing voltage / current density characteristics of Example 21 and Comparative Example 2. FIG. 実施例21と比較例2の電圧/輝度特性を比較したグラフである。10 is a graph comparing the voltage / luminance characteristics of Example 21 and Comparative Example 2. 実施例21と比較例2の電流密度/輝度特性を比較したグラフである。It is the graph which compared the current density / luminance characteristic of Example 21 and Comparative Example 2. FIG. 実施例21と比較例2の電流密度/電流効率を比較したグラフである。It is the graph which compared the current density / current efficiency of Example 21 and Comparative Example 2.

本発明の置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、新規な化合物であり、これらの化合物は例えば、6−(2H−テトラゾール−5−イル)−2,2’−ビピリジンや相当するターピリジンまたはフェニルピリジンを種々の芳香族酸クロライドと縮合することによって合成することができる。
一般式(1)で表される置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。
The compounds having an oxadiazole ring structure in which a substituted pyridyl group of the present invention is linked are novel compounds, and these compounds include, for example, 6- (2H-tetrazol-5-yl) -2,2′- It can be synthesized by condensing bipyridine or the corresponding terpyridine or phenylpyridine with various aromatic acid chlorides.
Specific examples of preferable compounds among the compounds having an oxadiazole ring structure in which the substituted pyridyl groups represented by the general formula (1) are linked are shown below, but the present invention is limited to these compounds. It is not something.

これらの化合物の精製はカラムクロマトグラフによる精製、吸着精製、溶媒による再結晶や晶析法などによって行った。化合物の同定は、NMR分析によって行なった。物性値として、DSC測定(Tg)と融点の測定を行った。融点は蒸着性の指標となるものであり、ガラス転移点(Tg)は薄膜状態の安定性の指標となるものである。
融点とガラス転移点は、粉体を用いて、ブルカー・エイエックスエス製の高感度示差走査熱量計DSC3100Sを用いて測定した。
また仕事関数は、ITO基板の上に100nmの薄膜を作製して、理研計器製の大気中光電子分光装置AC2型を用いて測定した。仕事関数は正孔阻止能力の指標となるものである。
These compounds were purified by column chromatography purification, adsorption purification, solvent recrystallization or crystallization. The compound was identified by NMR analysis. As physical properties, DSC measurement (Tg) and melting point were measured. The melting point is an index of vapor deposition, and the glass transition point (Tg) is an index of stability in a thin film state.
The melting point and glass transition point were measured using a powder and a high-sensitivity differential scanning calorimeter DSC3100S manufactured by Bruker AXS.
The work function was measured using an atmospheric photoelectron spectrometer AC2 manufactured by Riken Keiki Co., Ltd. after a 100 nm thin film was formed on the ITO substrate. The work function is an index of hole blocking ability.

本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極からなるもの、また、電子輸送層と陰極の間に電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略することが可能であり、例えば基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層、陰極とすることもできる。
有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。正孔注入層としては銅フタロシアニン(以後、CuPcと略称する)のほか、スターバースト型のトリフェニルアミン誘導体、ナフタレンアミン化合物などの材料や塗付型の材料を用いることができる。
正孔輸送層にはベンジジン誘導体であるN,N’−ジフェニル−N,N’−ジ(m−トリル)ベンジジン(以後、TPDと略称する)やN,N’−ジフェニル−N,N’−ジ(α−ナフチル)ベンジジン(以後、NPDと略称する)、種々のトリフェニルアミン4量体などを用いることができる。また、正孔の注入・輸送層として、PEDOT/PSSなどの塗布型の高分子材料を用いることができる。
As the structure of the organic EL device of the present invention, a structure comprising an anode, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode sequentially on a substrate, or an electron transport Examples thereof include an electron injection layer between the layer and the cathode. In these multilayer structures, several organic layers can be omitted. For example, an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode can be sequentially formed on the substrate.
As an anode of the organic EL element, an electrode material having a large work function such as ITO or gold is used. As the hole injection layer, copper phthalocyanine (hereinafter abbreviated as CuPc), a starburst type triphenylamine derivative, a naphthaleneamine compound, or a coating type material can be used.
For the hole transport layer, N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (hereinafter abbreviated as TPD) or N, N′-diphenyl-N, N′-, which is a benzidine derivative. Di (α-naphthyl) benzidine (hereinafter abbreviated as NPD), various triphenylamine tetramers, and the like can be used. Also, a coating type polymer material such as PEDOT / PSS can be used for the hole injection / transport layer.

本発明の有機EL素子の発光層、正孔阻止層、電子輸送層としては置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物のほか、アルミニウムの錯体、オキサゾール誘導体、カルバゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。
アルミニウムの錯体、スチリル誘導体などの従来の発光材料を発光層に用い、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物を正孔阻止層、電子輸送層として用いることにより、高性能の有機EL素子を作製することができる。また、発光層のホスト材料として、例えば、キナクリドン、クマリン、ルブレンなどの蛍光体、あるいはフェニルピリジンのイリジウム錯体などの燐光発光体であるドーパントを添加することによっても、高性能の有機EL素子を作製することができる。
さらに、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物に、従来からの電子輸送性の材料を重層、あるいは共蒸着して電子輸送層として用いることができる。
本発明の有機EL素子は電子注入層を有していても良い。電子注入層としてはフッ化リチウムなどを用いることができる。陰極としては、アルミニウムのような仕事関数の低い電極材料や、アルミニウムマグネシウムのような、より仕事関数の低い合金が電極材料として用いられる。
In addition to compounds having an oxadiazole ring structure in which substituted pyridyl groups are linked as the light emitting layer, hole blocking layer, and electron transporting layer of the organic EL device of the present invention, aluminum complexes, oxazole derivatives, carbazole derivatives, poly Dialkylfluorene derivatives and the like can be used.
By using conventional light-emitting materials such as aluminum complexes and styryl derivatives in the light-emitting layer, and using compounds having an oxadiazole ring structure linked with substituted pyridyl groups as the hole-blocking layer and electron-transporting layer, high performance An organic EL element can be produced. In addition, a high-performance organic EL device can be produced by adding a dopant which is a phosphor such as quinacridone, coumarin, or rubrene, or a phosphorescent material such as an iridium complex of phenylpyridine as a host material for the light-emitting layer. can do.
Furthermore, a compound having an oxadiazole ring structure to which a substituted pyridyl group is linked can be used as an electron transport layer by stacking or co-depositing a conventional electron transport material.
The organic EL device of the present invention may have an electron injection layer. As the electron injection layer, lithium fluoride or the like can be used. As the cathode, an electrode material having a low work function such as aluminum or an alloy having a lower work function such as aluminum magnesium is used as the electrode material.

以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。   Embodiments of the present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
(1,3−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、BpyOXDmと略称する)(2)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン0.63gを脱水ピリジン10mlに溶解し、二塩化イソフタロイル0.29gをゆっくりと加えた。115℃に加温して6時間還流攪拌を行った。室温まで冷却した後、反応溶液を水中に注ぎ、析出した白色固体を吸引ろ過によって取り出し、水洗した。80℃で20時間真空乾燥して、得られた固形物をカラムクロマトグラフ(担体:シリカゲル、溶離液:クロロホルム/メタノール=20/1)によって精製して、BpyOXDm0.62g(収率81%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.071ppm(1H)、8.639−8.714ppm(6H)、8.325−8.477ppm(4H)、8.037ppm(2H)、7.756−7.854ppm(3H)、7.330ppm(2H)。
Example 1
Synthesis of (1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as BpyOXDm) (2) )
0.63 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 10 ml of dehydrated pyridine, and 0.29 g of isophthaloyl dichloride was slowly added. The mixture was heated to 115 ° C. and stirred under reflux for 6 hours. After cooling to room temperature, the reaction solution was poured into water, and the precipitated white solid was taken out by suction filtration and washed with water. After vacuum drying at 80 ° C. for 20 hours, the obtained solid was purified by column chromatography (carrier: silica gel, eluent: chloroform / methanol = 20/1) to obtain 0.62 g of BpyOXDm (81% yield). Obtained. The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.071 ppm (1H), 8.639-8.714 ppm (6H), 8.325-8.477 ppm (4H), 8.037 ppm (2H), 7.756-7.854 ppm (3H), 7.330 ppm (2H).

実施例2
(1,4−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、BpyOXDpと略称する)(3)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン0.67gを脱水ピリジン10mlに溶解し、二塩化テレフタロイル0.32gを加えた。110℃に加温して5時間還流攪拌を行った。室温まで冷却した後、反応溶液を水中に注ぎ、析出した白色固体を吸引ろ過によって取り出し、水洗した。80℃で20時間真空乾燥して、白色の粗製物を得た。カラムクロマトグラフによって精製して、BpyOXDp0.58g(収率74%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.736ppm(2H)、8.640ppm(4H)、8.463ppm(3H)、8.260−8.384ppm(4H)、8.060ppm(2H)、7.932ppm(2H)、7.380ppm(1H)。
Example 2
Synthesis of (1,4-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as BpyOXDp) (3) )
0.67 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 10 ml of dehydrated pyridine, and 0.32 g of terephthaloyl dichloride was added. The mixture was heated to 110 ° C. and stirred under reflux for 5 hours. After cooling to room temperature, the reaction solution was poured into water, and the precipitated white solid was taken out by suction filtration and washed with water. Vacuum drying at 80 ° C. for 20 hours gave a white crude product. Purification by column chromatography yielded 0.58 g (74% yield) of BpyOXDp. The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.736 ppm (2H), 8.640 ppm (4H), 8.463 ppm (3H), 8.260-8.384 ppm (4H), 8.060 ppm (2H), 7.932 ppm (2H), 7.380 ppm ( 1H).

実施例3
(2,6−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ピリジン(以後、BpyOXDPyと略称する)(4)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン0.50gを脱水ピリジン10mlに溶解し、2,6−ピリジンジカルボニルジクロライド0.26gを加えた。110℃に加温して9時間還流攪拌を行った。室温まで冷却した後、反応溶液を水中に注ぎ、析出した白色固体を吸引ろ過によって取り出し、水洗した。80℃で20時間真空乾燥して、白色の粗製物を得た。カラムクロマトグラフによって精製して、BpyOXDPy0.12g(収率24%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.005−8.648ppm(13H)、7.667ppm(2H)、7.256(2H)。
Example 3
Synthesis of (2,6-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] pyridine (hereinafter abbreviated as BpyOXDPy) (4) )
0.50 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 10 ml of dehydrated pyridine, and 0.26 g of 2,6-pyridinedicarbonyl dichloride was added. The mixture was heated to 110 ° C. and stirred for 9 hours under reflux. After cooling to room temperature, the reaction solution was poured into water, and the precipitated white solid was taken out by suction filtration and washed with water. Vacuum drying at 80 ° C. for 20 hours gave a white crude product. Purification by column chromatography yielded 0.12 g (24% yield) of BpyOXDPy. The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.005-8.648 ppm (13H), 7.667 ppm (2H), 7.256 (2H).

実施例4
(5−ターシャリーブチル(1,3−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、BpyOXDm(5tBu)と略称する)(5)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン5.00gをピリジン100mlに溶解し、共沸によって脱水した。5−ターシャリーブチルイソフタロイルジクロライド3.06gを加え、110℃に加温して1時間還流攪拌を行った。室温まで冷却した後、反応溶液を水中に注ぎ、水酸化ナトリウム水溶液を加え、析出した固体を吸引ろ過によって取り出し、水洗した。80℃で減圧乾燥し、BpyOXDm(5tBu)5.46g(収率84%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.852−8.863ppm(1H)、8.636−8.723ppm(6H)、8.489−8.495ppm(2H)、8.339−8.371ppm(2H)、8.014−8.086ppm(2H)、7.764−7.828ppm(2H)、7.307−7.357ppm(2H)、1.526ppm(9H)。
Example 4
(5-tertiarybutyl (1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl) benzene (hereinafter referred to as BpyOXDm (5 tBu) Abbreviated to (5)))
5.00 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 100 ml of pyridine and dehydrated by azeotropic distillation. 5-tertiary butyl isophthaloyl dichloride (3.06 g) was added, and the mixture was heated to 110 ° C. and stirred under reflux for 1 hour. After cooling to room temperature, the reaction solution was poured into water, an aqueous sodium hydroxide solution was added, and the precipitated solid was taken out by suction filtration and washed with water. It dried under reduced pressure at 80 degreeC and obtained 5.46 g (yield 84%) of BpyOXDm (5tBu). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.852-8.863 ppm (1H), 8.636-8.723 ppm (6H), 8.489-8.495 ppm (2H), 8.339-8.371 ppm (2H), 8.014-8. 086 ppm (2H), 7.76-7.828 ppm (2H), 7.307-7.357 ppm (2H), 1.526 ppm (9H).

実施例5
(3,5−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−4’−シアノ−1,1’−ビフェニル(以後、CPBOと略称する)(6)の合成)
3,5−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−1−ブロモベンゼン4.9gを脱気したトルエン1200mlおよびエタノール200mlに溶解し、4−シアノフェニルボロン酸1.79gとテトラキス(トリフェニルホスフィン)パラジウム186mg、フッ化セシウム3.73gを加えた。75℃に加温して20時間攪拌を行った。室温まで冷却した後、反応溶媒を減圧下留去し、クロロホルム300mlを注ぎ、水洗した。有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧下留去して、得られた固形物をトルエン−メタノール(4:1)での分散洗浄によって精製して、CPBO3.17g(収率62%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.12ppm(1H)、8.63−8.74ppm(8H)、8.39ppm(2H)、8.08ppm(2H)、7.78−7.95ppm(6H)、7.33−7.38ppm(2H)。
Example 5
(3,5-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] -4′-cyano-1,1′-biphenyl (Abbreviated as CPBO) (synthesis of (6))
1,200 ml of toluene and 200 ml of ethanol from 4.9 g of 3,5-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] -1-bromobenzene Then, 1.79 g of 4-cyanophenylboronic acid, 186 mg of tetrakis (triphenylphosphine) palladium and 3.73 g of cesium fluoride were added. The mixture was heated to 75 ° C. and stirred for 20 hours. After cooling to room temperature, the reaction solvent was distilled off under reduced pressure, and 300 ml of chloroform was poured and washed with water. After drying the organic layer with magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting solid was purified by dispersion washing with toluene-methanol (4: 1) to obtain 3.17 g of CPBO (62% yield). ) The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.12 ppm (1H), 8.63-8.74 ppm (8H), 8.39 ppm (2H), 8.08 ppm (2H), 7.78-7.95 ppm (6H), 7.33-7.38 ppm (2H).

実施例6
(2,5−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕チオフェン(以後、BpyOXDThと略称する)(7)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン5.00gをピリジン100mlに溶解し、共沸によって脱水した。2,5−チオフェンジカルボニルジクロライド2.47gを加え、110℃に加温して1時間還流攪拌を行った。室温まで冷却後、反応溶液を水中に注ぎ、水酸化ナトリウム水溶液を加え、析出した固体を吸引ろ過によって取り出し、水洗した。70℃で減圧乾燥し、黄土色の粗製物を得た。トルエンで洗浄した後、70℃で減圧乾燥を行い、BpyOXDTh4.62g(収率78%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.619−8.733ppm(6H)、8.307−8.335ppm(2H)、7.887−8.071ppm(6H)、7.370−7.411(2H)。
Example 6
Synthesis of (2,5-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] thiophene (hereinafter abbreviated as BpyOXDTh) (7) )
5.00 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 100 ml of pyridine and dehydrated by azeotropic distillation. 2.47 g of 2,5-thiophene dicarbonyl dichloride was added, and the mixture was heated to 110 ° C. and stirred under reflux for 1 hour. After cooling to room temperature, the reaction solution was poured into water, an aqueous sodium hydroxide solution was added, and the precipitated solid was taken out by suction filtration and washed with water. It dried under reduced pressure at 70 degreeC and obtained the ocherous crude product. After washing with toluene, drying under reduced pressure was performed at 70 ° C. to obtain 4.62 g of BpyOXDTh (yield 78%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.619-8.733 ppm (6H), 8.307-8.335 ppm (2H), 7.887-8.071 ppm (6H), 7.370-7.411 (2H).

実施例7
(2,6−ビス〔2−(2,2’−ビピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ナフタレン(以後、BpyOXD(2,6NP)(8)と略称する)の合成)
6−(2H−テトラゾール−5−イル)−2,2’−ビピリジン5.00gをピリジン100mlに溶解し、共沸によって脱水した。2,6−ナフタレンジカルボニルジクロライド2.99gを加え、110℃に加温して1時間還流攪拌を行った。室温まで冷却後、反応溶液を水中に注ぎ、水酸化ナトリウム水溶液を加え、析出した固体を吸引ろ過によって取り出し、水洗した。70℃で減圧乾燥し、淡灰褐色のBpyOXD(2,6NP)5.41g(収率84%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.837ppm(2H)、8.642−8.754ppm(6H)、8.360−8.452ppm(4H)、8.205−8.237ppm(2H)、7.923−8.094ppm(4H)、7.386−7.430(2H)。
Example 7
(2,6-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazol-5-yl] naphthalene (hereinafter referred to as BpyOXD (2,6NP) (8)) Abbreviated)))
5.00 g of 6- (2H-tetrazol-5-yl) -2,2′-bipyridine was dissolved in 100 ml of pyridine and dehydrated by azeotropic distillation. 2.99 g of 2,6-naphthalenedicarbonyl dichloride was added, and the mixture was heated to 110 ° C. and stirred under reflux for 1 hour. After cooling to room temperature, the reaction solution was poured into water, an aqueous sodium hydroxide solution was added, and the precipitated solid was taken out by suction filtration and washed with water. It dried under reduced pressure at 70 degreeC, and obtained 5.41 g (yield 84%) of light grayish brown BpyOXD (2,6NP). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.837 ppm (2H), 8.642-8.754 ppm (6H), 8.360-8.452 ppm (4H), 8.205-8.237 ppm (2H), 7.923-8.094 ppm (4H) 7.386-7.430 (2H).

実施例8
(1,3−ビス〔2−(2,2’:6’2’’−ターピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、TpyOXDmと略称する)(9)の合成)
6−(2H−テトラゾール−5−イル)−2,2’:6’2’’−ターピリジン2.0gを脱水ピリジン50mlに溶解し、120℃に加温して30mlを共沸脱水した。50℃まで冷却した後、二塩化イソフタロイル0.68gを加え、110℃に加温して3時間還流攪拌を行った。室温まで冷却した後、反応溶液を水200ml中に注ぎ、析出した黄褐色固体を吸引ろ過によって取り出し、水洗した。80℃で20時間真空乾燥して、得られた固形物を吸着精製(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、TpyOXDm1.53g(収率67%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.12ppm(1H)、8.85ppm(2H)、8.62−8.73ppm(6H)、8.37−8.51ppm(6H)、7.79−8.12ppm(7H)、7.35ppm(2H)。
Example 8
(1,3-bis [2- (2,2 ′: 6′2 ″ -terpyridin-6-yl) -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as TpyOXDm) ) (9) synthesis)
6- (2H-tetrazol-5-yl) -2,2 ′: 2.0 ′ of 6′2 ″ -terpyridine was dissolved in 50 ml of dehydrated pyridine and heated to 120 ° C. to azeotropically dehydrate 30 ml. After cooling to 50 ° C., 0.68 g of isophthaloyl dichloride was added, and the mixture was heated to 110 ° C. and stirred under reflux for 3 hours. After cooling to room temperature, the reaction solution was poured into 200 ml of water, and the precipitated tan solid was taken out by suction filtration and washed with water. After vacuum drying at 80 ° C. for 20 hours, the obtained solid was purified by adsorption purification (carrier: NH silica gel, eluent: chloroform) to obtain 1.53 g (yield 67%) of TpyOXDm. The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.12 ppm (1H), 8.85 ppm (2H), 8.62-8.73 ppm (6H), 8.37-8.51 ppm (6H), 7.79-8.12 ppm (7H), 7.35 ppm (2H).

実施例9
(5−フェニル−2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール(以後、PhpyOXDPhと略称する)(10)の合成)
2−フェニル−6−(2H−テトラゾール−5−イル)ピリジン5.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、塩化ベンゾイル3.17gを加え、100℃に加温して2時間還流攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した黄色固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物を吸着精製(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、PhpyOXDPh6.11g(収率91%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.23−8.26ppm(3H)、8.14−8.17ppm(2H)、7.90−7.99ppm(2H)、7.48−7.58ppm(6H)。
Example 9
(Synthesis of 5-phenyl-2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazole (hereinafter abbreviated as PhpyOXDPh) (10))
2-phenyl-6- (2H-tetrazol-5-yl) pyridine (5.0 g) was dissolved in dehydrated pyridine (125 ml), heated to 120 ° C., and 75 ml was azeotropically dehydrated. After cooling to 50 ° C., 3.17 g of benzoyl chloride was added, and the mixture was heated to 100 ° C. and refluxed with stirring for 2 hours. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated yellow solid was taken out by suction filtration and washed with water. After vacuum drying at 70 ° C. for 20 hours, the obtained solid was purified by adsorption purification (carrier: NH silica gel, eluent: chloroform) to obtain 6.11 g of PhpyOXDPh (yield 91%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.23-8.26 ppm (3H), 8.14-8.17 ppm (2H), 7.90-7.99 ppm (2H), 7.48-7.58 ppm (6H).

実施例10
(1,3−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、PhpyOXDmと略称する)(11)の合成)
2−フェニル−6−(2H−テトラゾール−5−イル)ピリジン5.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、二塩化イソフタロイル2.28gを加え、100℃に加温して1時間還流攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した茶色の固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物をカラムクロマトグラフ(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、PhpyOXDm4.27g(収率73%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.07ppm(1H)、8.46ppm(2H)、8.28ppm(2H)、8.17ppm(4H)、7.92−8.15ppm(4H)、7.78ppm(1H)、7.46−7.55ppm(6H)。
Example 10
(Synthesis of 1,3-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as PhpyOXDm) (11))
2-phenyl-6- (2H-tetrazol-5-yl) pyridine (5.0 g) was dissolved in dehydrated pyridine (125 ml), heated to 120 ° C., and 75 ml was azeotropically dehydrated. After cooling to 50 ° C., 2.28 g of isophthaloyl dichloride was added, heated to 100 ° C., and refluxed with stirring for 1 hour. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated brown solid was taken out by suction filtration and washed with water. After drying in vacuo at 70 ° C. for 20 hours, the obtained solid was purified by column chromatography (carrier: NH silica gel, eluent: chloroform) to obtain 4.27 g of PhpyOXDm (yield 73%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.07 ppm (1H), 8.46 ppm (2H), 8.28 ppm (2H), 8.17 ppm (4H), 7.92-8.15 ppm (4H), 7.78 ppm (1H), 7.46- 7.55 ppm (6H).

実施例11
(3,5−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−1,1’−ビフェニル(以後、PhpyOXDBPと略称する)(12)の合成)
3,5−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−1−ブロモベンゼン2.4gを脱気したトルエン960mlおよびエタノール240mlに溶解し、2M−炭酸カリウム水溶液40mlとテトラキス(トリフェニルホスフィン)パラジウム144mg、フェニルボロン酸586mgを加えた。80℃に加温して20時間攪拌を行った。室温まで冷却した後、反応溶媒を減圧下留去し、クロロホルム300mlを注ぎ、水洗した。有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧下留去して、得られた固形物をカラムクロマトグラフ(担体:シリカゲル、溶離液:クロロホルム)によって精製して、PhpyOXDBP1.86g(収率78%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.02ppm(1H)、8.65ppm(2H)、8.29ppm(2H)、8.15ppm(4H)、7.92−8.03ppm(4H)、7.79ppm(2H)、7.45−7.56ppm(9H)。
Example 11
(3,5-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] -1,1′-biphenyl (hereinafter abbreviated as PhpyOXDBP) ( 12) Synthesis)
960 ml of toluene and 240 ml of ethanol degassed 2.4 g of 3,5-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] -1-bromobenzene Then, 40 ml of 2M potassium carbonate aqueous solution, 144 mg of tetrakis (triphenylphosphine) palladium and 586 mg of phenylboronic acid were added. The mixture was heated to 80 ° C. and stirred for 20 hours. After cooling to room temperature, the reaction solvent was distilled off under reduced pressure, and 300 ml of chloroform was poured and washed with water. After drying the organic layer over magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting solid was purified by column chromatography (carrier: silica gel, eluent: chloroform) to give 1.86 g of PhpyOXDBP (yield 78 %). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.02 ppm (1H), 8.65 ppm (2H), 8.29 ppm (2H), 8.15 ppm (4H), 7.92-8.03 ppm (4H), 7.79 ppm (2H), 7.45- 7.56 ppm (9H).

実施例12
(3,5−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−1,1’:4’1’’−ターフェニル(以後、PhpyOXDTPと略称する)(13)の合成)
3,5−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕−1−ブロモベンゼン2.5gを脱気したトルエン1000ml、エタノール250mlに溶解し、2M−炭酸カリウム水溶液42mlとテトラキス(トリフェニルホスフィン)パラジウム145mg、4−ビフェニルボロン酸991mgを加えた。80℃に加温して20時間攪拌を行った。室温まで冷却した後、反応溶媒を減圧下留去し、クロロホルム600mlを注ぎ、水洗した。有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧下留去して、得られた固形物を吸着精製(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、PhpyOXDTP2.13g(収率76%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.03ppm(1H)、8.71ppm(2H)、8.30ppm(2H)、8.16ppm(4H)、7.68−8.03ppm(10H)、7.40−7.52ppm(9H)。
Example 12
(3,5-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] -1,1 ′: 4′1 ″ -terphenyl (Abbreviated as PhpyOXDTP) (13))
1000 ml toluene, 250 ml ethanol degassed 2.5 g 3,5-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] -1-bromobenzene Then, 42 ml of 2M potassium carbonate aqueous solution, 145 mg of tetrakis (triphenylphosphine) palladium and 991 mg of 4-biphenylboronic acid were added. The mixture was heated to 80 ° C. and stirred for 20 hours. After cooling to room temperature, the reaction solvent was distilled off under reduced pressure, and 600 ml of chloroform was poured and washed with water. After drying the organic layer with magnesium sulfate, the solvent was distilled off under reduced pressure, and the resulting solid was purified by adsorption purification (carrier: NH silica gel, eluent: chloroform) to give 2.13 g of PhpyOXDTP (yield 76). %). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.03 ppm (1H), 8.71 ppm (2H), 8.30 ppm (2H), 8.16 ppm (4H), 7.68-8.03 ppm (10H), 7.40-7.52 ppm (9H).

実施例13
(2,6−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ピリジン(以後、PhpyOXDPyと略称する)(14)の合成)
2−フェニル−6−(2H−テトラゾール−5−イル)ピリジン5.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、2,6−ピリジンジカルボニルジクロライド2.30gを加え、100℃に加温して2時間攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した濃緑黒色固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物をカラムクロマトグラフ(担体:シリカゲル、溶離液:クロロホルム)によって精製して、PhpyOXDPy3.95g(収率67%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.54ppm(2H)、8.30ppm(2H)、8.14−8.20ppm(5H)、7.94−8.01ppm(4H)、7.41−7.51ppm(6H)。
Example 13
(Synthesis of 2,6-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] pyridine (hereinafter abbreviated as PhpyOXDPy) (14))
2-phenyl-6- (2H-tetrazol-5-yl) pyridine (5.0 g) was dissolved in dehydrated pyridine (125 ml), heated to 120 ° C., and 75 ml was azeotropically dehydrated. After cooling to 50 ° C., 2.30 g of 2,6-pyridinedicarbonyl dichloride was added, and the mixture was heated to 100 ° C. and stirred for 2 hours. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated dark green black solid was taken out by suction filtration and washed with water. After drying in vacuo at 70 ° C. for 20 hours, the obtained solid was purified by column chromatography (carrier: silica gel, eluent: chloroform) to obtain 3.95 g of PhpyOXDPy (yield 67%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.54 ppm (2H), 8.30 ppm (2H), 8.14-8.20 ppm (5H), 7.94-8.01 ppm (4H), 7.41-7.51 ppm (6H).

実施例14
(1,4−ビス〔2−(2−フェニルピリジン−6−イル)−1,3,4−オキサジアゾール−5−イル〕ベンゼン(以後、PhpyOXDpと略称する)(15)の合成)
2−フェニル−6−(2H−テトラゾール−5−イル)ピリジン5.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、二塩化テレフタロイル2.30gを加え、100℃に加温して5時間攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した黄色固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物をクロロホルム−メタノールの混合溶液の分散洗浄によって精製して、PhpyOXDp3.40g(収率58%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。8.45ppm(4H)、8.29ppm(2H)、8.16ppm(4H)、7.93−8.02ppm(4H)、7.50−7.59ppm(6H)。
Example 14
(Synthesis of 1,4-bis [2- (2-phenylpyridin-6-yl) -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as PhpyOXDp) (15))
2-phenyl-6- (2H-tetrazol-5-yl) pyridine (5.0 g) was dissolved in dehydrated pyridine (125 ml), heated to 120 ° C., and 75 ml was azeotropically dehydrated. After cooling to 50 ° C., 2.30 g of terephthaloyl dichloride was added, heated to 100 ° C. and stirred for 5 hours. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated yellow solid was taken out by suction filtration and washed with water. After drying in vacuo at 70 ° C. for 20 hours, the obtained solid was purified by dispersion washing with a mixed solution of chloroform-methanol to obtain 3.40 g of PhpyOXDp (yield 58%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 8.45 ppm (4H), 8.29 ppm (2H), 8.16 ppm (4H), 7.93-8.02 ppm (4H), 7.50-7.59 ppm (6H).

実施例15
(1,3−ビス[〔2−(2’−フルオロフェニル)ピリジン−6−イル〕−1,3,4−オキサジアゾール−5−イル]ベンゼン(以後、FPhpyOXDmと略称する)(16)の合成)
2−(2−フルオロフェニル)−6−(2H−テトラゾール−5−イル)ピリジン3.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、二塩化イソフタロイル1.30gを加え、100℃に加温して1時間攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した黄色固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物を吸着精製(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、FPhpyOXDm2.21g(収率63%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.05ppm(1H)、8.44ppm(2H)、8.30ppm(2H)、8.22ppm(2H)、7.96−8.05ppm(4H)、7.77ppm(1H)、7.16−7.48ppm(6H)。
Example 15
(1,3-bis [[2- (2′-fluorophenyl) pyridin-6-yl] -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as FPhpyOXDm) (16) Synthesis)
3.0 g of 2- (2-fluorophenyl) -6- (2H-tetrazol-5-yl) pyridine was dissolved in 125 ml of dehydrated pyridine, heated to 120 ° C., and 75 ml was azeotropically dehydrated. After cooling to 50 ° C., 1.30 g of isophthaloyl dichloride was added, and the mixture was heated to 100 ° C. and stirred for 1 hour. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated yellow solid was taken out by suction filtration and washed with water. After vacuum drying at 70 ° C. for 20 hours, the obtained solid was purified by adsorption purification (carrier: NH silica gel, eluent: chloroform) to obtain 2.21 g of FPhpyOXDm (yield 63%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.05 ppm (1H), 8.44 ppm (2H), 8.30 ppm (2H), 8.22 ppm (2H), 7.96-8.05 ppm (4H), 7.77 ppm (1H), 7.16- 7.48 ppm (6H).

実施例16
(1,3−ビス[〔2−(2’,4’−ジフルオロフェニル)ピリジン−6−イル〕−1,3,4−オキサジアゾール−5−イル]ベンゼン(以後、DFPhpyOXDmと略称する)(17)の合成)
2−(2,4−ジフルオロフェニル)−6−(2H−テトラゾール−5−イル)ピリジン3.0gを脱水ピリジン125mlに溶解し、120℃に加温して75mlを共沸脱水した。50℃まで冷却した後、二塩化イソフタロイル1.20gを加え、100℃に加温して1時間攪拌を行った。室温まで冷却した後、反応溶液を水300ml中に注ぎ、20%水酸化ナトリウム水溶液でpH12とした後、1時間攪拌を行った。析出した褐色固体を吸引ろ過によって取り出し、水洗した。70℃で20時間真空乾燥して、得られた固形物を吸着精製(担体:NHシリカゲル、溶離液:クロロホルム)によって精製して、DFPhpyOXDm2.79g(収率81%)を得た。NMR分析によって生成物の同定を行った。NMR分析(CDCl3)の結果は以下の通りであった。9.05ppm(1H)、8.45ppm(2H)、8.21−8.31ppm(4H)、7.98−8.01ppm(4H)、7.79ppm(1H)、6.92−7.09ppm(4H)。
Example 16
(1,3-bis [[2- (2 ′, 4′-difluorophenyl) pyridin-6-yl] -1,3,4-oxadiazol-5-yl] benzene (hereinafter abbreviated as DFPhpyOXDm) Synthesis of (17))
3.0 g of 2- (2,4-difluorophenyl) -6- (2H-tetrazol-5-yl) pyridine was dissolved in 125 ml of dehydrated pyridine and heated to 120 ° C. to azeotropically dehydrate 75 ml. After cooling to 50 ° C., 1.20 g of isophthaloyl dichloride was added, and the mixture was heated to 100 ° C. and stirred for 1 hour. After cooling to room temperature, the reaction solution was poured into 300 ml of water, adjusted to pH 12 with 20% aqueous sodium hydroxide solution, and stirred for 1 hour. The precipitated brown solid was taken out by suction filtration and washed with water. After vacuum drying at 70 ° C. for 20 hours, the obtained solid was purified by adsorption purification (carrier: NH silica gel, eluent: chloroform) to obtain 2.79 g of DFPhpyOXDm (yield 81%). The product was identified by NMR analysis. The results of NMR analysis (CDCl3) were as follows. 9.05 ppm (1H), 8.45 ppm (2H), 8.21-8.31 ppm (4H), 7.98-8.01 ppm (4H), 7.79 ppm (1H), 6.92-7.09 ppm (4H).

実施例17
本発明の化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100S)によって融点とガラス転移点を求めた。
Example 17
About the compound of this invention, melting | fusing point and the glass transition point were calculated | required with the highly sensitive differential scanning calorimeter (The product made from Bruker AXS, DSC3100S).

融点 ガラス転移点
BpyOXDm 243℃ 106℃
BpyOXDPy 253℃ 114℃
BpyOXDm(5tBu) 274℃ 105℃
CPBO 341℃ 136℃
TpyOXDm 276℃ 119℃
PhpyOXDBP 262℃ 101℃
PhpyOXDTP 285℃ 116℃
Melting point Glass transition point BpyOXDm 243 ° C 106 ° C
BpyOXDPy 253 ° C 114 ° C
BpyOXDm (5tBu) 274 ° C 105 ° C
CPBO 341 ° C 136 ° C
TpyOXDm 276 ° C 119 ° C
PhpyOXDBP 262 ° C 101 ° C
PhpyOXDTP 285 ° C 116 ° C

本発明の化合物はガラス転移点が高く、薄膜状態が安定である。   The compound of the present invention has a high glass transition point and is stable in a thin film state.

実施例18
本発明の化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、大気中光電子分光装置(理研計器製、AC2型)で仕事関数を測定した。本発明の化合物はすべて測定装置の計測限界の6.2eVを越えた値であった。
このように本発明の化合物は正孔輸送材料より明らかに深い仕事関数を有しており、大きな正孔阻止能力を有している。
Example 18
Using the compound of the present invention, a deposited film having a film thickness of 100 nm was prepared on an ITO substrate, and the work function was measured with an atmospheric photoelectron spectrometer (AC2 type, manufactured by Riken Keiki Co., Ltd.). All of the compounds of the present invention exceeded the measurement limit 6.2 eV of the measuring apparatus.
Thus, the compound of the present invention has a clearly deeper work function than the hole transport material and has a large hole blocking ability.

実施例19
有機EL素子は、第1図に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層4、発光層5、電子輸送層7、陰極(アルミニウムマグネシウム電極)9の順に蒸着して作製した。膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理にて表面を洗浄した。これを、真空蒸着機内に取り付け0.001Pa以下まで減圧した。
続いて、正孔輸送層4として、TPDを蒸着速度6nm/minで約50nm形成した。次に、発光層5としてAlqを蒸着速度6nm/minで約20nm形成した。この発光層5の上に、電子輸送層7として本発明のBpyOXDm(2)を蒸着速度6nm/minで約30nm形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。最後に、陰極蒸着用のマスクを挿入して、MgAgの合金を10:1の比率で約200nm蒸着して陰極9を形成した。作成した素子は、真空デシケーター中に保存し、大気中、常温で特性測定を行なった。
Example 19
As shown in FIG. 1, the organic EL element has a hole transport layer 4, a light emitting layer 5, an electron transport layer 7, a cathode (aluminum) on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. Magnesium electrodes) 9 were deposited in this order. The glass substrate 1 on which ITO with a film thickness of 150 nm was formed was cleaned with an organic solvent, and then the surface was cleaned with oxygen plasma treatment. This was attached in a vacuum vapor deposition machine and depressurized to 0.001 Pa or less.
Subsequently, as the hole transport layer 4, TPD was formed to a thickness of about 50 nm at a deposition rate of 6 nm / min. Next, about 20 nm of Alq was formed as the light emitting layer 5 at a deposition rate of 6 nm / min. On this light emitting layer 5, BpyOXDm (2) of this invention was formed as an electron carrying layer 7 about 30 nm with the vapor deposition rate of 6 nm / min. The vapor deposition so far was continuously performed without breaking the vacuum. Finally, a cathode deposition mask was inserted, and an MgAg alloy was deposited at a ratio of 10: 1 by about 200 nm to form the cathode 9. The prepared element was stored in a vacuum desiccator, and the characteristics were measured at room temperature in the air.

このように形成された本発明の有機EL素子の特性を100cd/mの発光が得られる印加電圧、200mA/cmの電流を負荷した場合の発光輝度、発光輝度/電圧で定義される発光効率で評価した。
有機EL素子に直流電圧を印加した結果、3.7Vから100cd/mの発光が見られ、7.8Vでは200mA/cmの電流が流れ、11900cd/mの安定な緑色発光を得た。この輝度での発光効率は6.0cd/Aと高効率であった。
The characteristics of the organic EL device of the present invention formed as described above are the applied voltage at which light emission of 100 cd / m 2 is obtained, the light emission luminance when a current of 200 mA / cm 2 is loaded, and the light emission defined by the light emission luminance / voltage. Evaluated by efficiency.
As a result of applying a DC voltage to the organic EL element, light emission of 3.7 to 100 cd / m 2 was observed. At 7.8 V, a current of 200 mA / cm 2 flowed, and a stable green light emission of 11900 cd / m 2 was obtained. . The luminous efficiency at this luminance was as high as 6.0 cd / A.

実施例20
第1図の素子において、電子輸送層7の材料をBpyOXDm(2)から、BpyOXDPy(4)に代えて、実施例19と同じ条件で有機EL素子を作製してその特性を調べた。4.0Vから100cd/mの発光が見られ、8.5Vでは200mA/cmの電流が流れ、11500cd/mの安定な緑色発光を得た。この輝度での発光効率は5.8cd/Aと高効率であった。
Example 20
In the device shown in FIG. 1, an organic EL device was produced under the same conditions as in Example 19 by replacing the material of the electron transport layer 7 from BpyOXDm (2) to BpyOXDPy (4), and the characteristics thereof were examined. Light emission from 4.0 V to 100 cd / m 2 was observed, and at 8.5 V, a current of 200 mA / cm 2 flowed, and stable green light emission of 11500 cd / m 2 was obtained. The luminous efficiency at this luminance was as high as 5.8 cd / A.

比較例1
比較のために、電子輸送層7の材料をAlqに代えて、実施例19と同じ条件で有機EL素子を作製してその特性を調べた。すなわち発光層兼電子輸送層5および7としてAlq3を蒸着速度6nm/minで約50nm形成した。7.2Vから100cd/mの発光が見られ、13.3Vでは200mA/cmの電流が流れ、9600cd/mの緑色発光を得た。この輝度での発光効率は4.6cd/Aであった。
このように本発明の有機EL素子は、一般的な電子輸送材料として用いられているAlqを用いた素子と比較して、発光効率に優れており、さらに駆動電圧の顕著な低下が達成できるため、耐久性に優れていることがわかった。
上記の比較試験において、明らかな駆動電圧の低下が認められることから、本発明の化合物の電子移動の速度は、従来からの電子輸送材料であるAlqより各段に速いと予測される。
Comparative Example 1
For comparison, the material of the electron transport layer 7 was changed to Alq, and an organic EL element was produced under the same conditions as in Example 19 and the characteristics thereof were examined. That is, about 50 nm of Alq3 was formed at a deposition rate of 6 nm / min as the light emitting and electron transporting layers 5 and 7. Emission from 7.2 V to 100 cd / m 2 was observed, and at 13.3 V, a current of 200 mA / cm 2 flowed, and a green emission of 9600 cd / m 2 was obtained. The luminous efficiency at this luminance was 4.6 cd / A.
As described above, the organic EL device of the present invention is superior in luminous efficiency and can achieve a significant reduction in driving voltage as compared with a device using Alq which is used as a general electron transport material. It was found to be excellent in durability.
In the above comparative test, a clear decrease in the driving voltage is observed, so that the electron transfer speed of the compound of the present invention is predicted to be higher in each stage than Alq which is a conventional electron transport material.

実施例21
第2図に示すような有機EL素子を、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、陰極(アルミニウムマグネシウム電極)9の順に蒸着して作製した。膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理にて表面を洗浄した。これを、真空蒸着機内に取り付け0.001Pa以下まで減圧した。
続いて、正孔輸送層4として、TPDを蒸着速度6nm/minで約50nm形成した。次に、発光層5としてAlqを蒸着速度6nm/minで約30nm形成した。この発光層5の上に、正孔阻止層6として本発明であるBpyOXDm(2)を蒸着速度6nm/minで約20nm形成した。さらに、電子輸送層7としてAlqを蒸着速度6nm/minで約20nm形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。最後に、陰極蒸着用のマスクを挿入して、MgAgの合金を10:1の比率で約200nm蒸着して陰極9を形成した。作製した素子は、真空デシケーター中に保存し、大気中常温で特性測定を行なった。
Example 21
An organic EL device as shown in FIG. 2 is formed on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2, and a hole transport layer 4, a light emitting layer 5, a hole blocking layer 6, an electron transport layer. 7 and cathode (aluminum magnesium electrode) 9 were deposited in this order. The glass substrate 1 on which ITO with a film thickness of 150 nm was formed was cleaned with an organic solvent, and then the surface was cleaned with oxygen plasma treatment. This was attached in a vacuum vapor deposition machine and depressurized to 0.001 Pa or less.
Subsequently, as the hole transport layer 4, TPD was formed to a thickness of about 50 nm at a deposition rate of 6 nm / min. Next, about 30 nm of Alq was formed as the light emitting layer 5 at a deposition rate of 6 nm / min. On this light emitting layer 5, BpyOXDm (2) which is this invention was formed as a hole-blocking layer 6 about 20 nm with the vapor deposition rate of 6 nm / min. Furthermore, about 20 nm of Alq was formed as the electron transport layer 7 at a deposition rate of 6 nm / min. The vapor deposition so far was continuously performed without breaking the vacuum. Finally, a cathode deposition mask was inserted, and an MgAg alloy was deposited at a ratio of 10: 1 by about 200 nm to form the cathode 9. The fabricated device was stored in a vacuum desiccator and measured for characteristics at room temperature in the atmosphere.

このように形成された本発明の有機EL素子に直流電圧を印加した結果、5.7Vから100cd/mの発光が見られ、11.4Vでは200mA/cmの電流が流れ、11600cd/mの安定な緑色発光を得た。この輝度での発光効率は6.0cd/Aと高効率であった。さらに印加電圧を増大させて破過前の最大輝度22050cd/mを得た。測定された最大輝度は素子の電気的な安定性を反映しているため、有機EL素子の耐久性の指標となる。 As a result of applying a DC voltage to the organic EL device of the present invention formed as described above, light emission of 5.7 V to 100 cd / m 2 was observed, and at 11.4 V, a current of 200 mA / cm 2 flowed, and 11600 cd / m 2. A stable green emission of 2 was obtained. The luminous efficiency at this luminance was as high as 6.0 cd / A. Further, the applied voltage was increased to obtain a maximum luminance of 22050 cd / m 2 before breakthrough. Since the measured maximum luminance reflects the electrical stability of the element, it becomes an index of the durability of the organic EL element.

比較例2
比較のために、正孔阻止層6の材料をBCPに代えて、実施例21と同じ条件で有機EL素子を作製してその特性を調べた。すなわち正孔阻止層6としてBCPを蒸着速度6nm/minで約20nm形成した。12.0Vから100cd/mの発光が見られ、19.4Vでは200mA/cmの電流が流れ、10900cd/mの緑色発光を得た。この輝度での発光効率は5.3cd/Aであった。破過前の最大輝度は12790cd/mであった。
このように本発明の有機EL素子は、一般的な正孔阻止材料として用いられているBCPを用いた素子と比較して、耐久性に優れていることがわかった。さらに、高輝度発光に適した有機EL素子であることがわかった。
Comparative Example 2
For comparison, an organic EL element was produced under the same conditions as in Example 21 with the material of the hole blocking layer 6 replaced with BCP, and the characteristics thereof were examined. That is, about 20 nm of BCP was formed as the hole blocking layer 6 at a deposition rate of 6 nm / min. Emission from 12.0 V to 100 cd / m 2 was observed, and at 19.4 V, a current of 200 mA / cm 2 flowed, and green emission of 10900 cd / m 2 was obtained. The luminous efficiency at this luminance was 5.3 cd / A. The maximum luminance before breakthrough was 12790 cd / m 2 .
Thus, it was found that the organic EL device of the present invention was excellent in durability as compared with a device using BCP which is used as a general hole blocking material. Furthermore, it turned out that it is an organic EL element suitable for high-intensity light emission.

実施例22
第3図に示すような有機EL素子を、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、正孔阻止層6、電子輸送層7、陰極(アルミニウムマグネシウム電極)9の順に蒸着して作製した。膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理にて表面を洗浄した。これを、真空蒸着機内に取り付け0.001Pa以下まで減圧した。
続いて、正孔注入層3として、CuPcを蒸着速度6nm/minで約15nm形成した。その上に正孔輸送層4として、TPDを蒸着速度6nm/minで約50nm形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。ボートを入れ替えて再び減圧にして、正孔輸送層4の上に、発光層5としてAlqを蒸着速度6nm/minで約20nm形成した。この発光層5の上に、正孔阻止層兼電子輸送層6および7として本発明であるBpyOXDm(2)を蒸着速度6nm/minで約30nm形成した。最後に、大気圧に戻して陰極蒸着用のマスクを挿入し、再び減圧にして、MgAgの合金を10:1の比率で約200nm蒸着して陰極9を形成した。作成した素子作製は、真空デシケーター中に保存し、大気中、常温で特性測定を行なった。
このように形成された本発明の有機EL素子に直流電圧を印加した結果、3.8Vから100cd/mの緑色発光が見られた。この素子の破過前の最大輝度は40660cd/mであった。
Example 22
An organic EL device as shown in FIG. 3 is formed on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, and a hole blocking layer. The layer 6, the electron transport layer 7, and the cathode (aluminum magnesium electrode) 9 were deposited in this order. The glass substrate 1 on which ITO with a film thickness of 150 nm was formed was cleaned with an organic solvent, and then the surface was cleaned with oxygen plasma treatment. This was attached in a vacuum vapor deposition machine and depressurized to 0.001 Pa or less.
Subsequently, about 15 nm of CuPc was formed as the hole injection layer 3 at a deposition rate of 6 nm / min. On top of this, TPD was formed as a hole transport layer 4 at a deposition rate of 6 nm / min to about 50 nm. The vapor deposition so far was continuously performed without breaking the vacuum. The boat was replaced and the pressure was reduced again, and about 20 nm of Alq was formed on the hole transport layer 4 as the light emitting layer 5 at a deposition rate of 6 nm / min. On this light emitting layer 5, BpyOXDm (2) of the present invention was formed as a hole blocking layer / electron transport layer 6 and 7 with a deposition rate of 6 nm / min to about 30 nm. Finally, the pressure was returned to atmospheric pressure, a cathode vapor deposition mask was inserted, the pressure was reduced again, and an MgAg alloy was evaporated at a ratio of 10: 1 to about 200 nm to form the cathode 9. The fabricated device was stored in a vacuum desiccator and measured for characteristics at room temperature in the air.
As a result of applying a DC voltage to the organic EL device of the present invention formed as described above, green light emission of 3.8 V to 100 cd / m 2 was observed. The maximum luminance before breakthrough of this element was 40660 cd / m 2 .

比較例3
比較のために、本発明であるBpyOXDm(2)をAlqに代えて、実施例22と同じ条件で有機EL素子を作製してその特性を調べた。すなわち発光層兼正孔阻止層兼電子輸送層5、6および7としてAlqを蒸着速度6nm/minで約50nm形成した。7.2Vから100cd/mの緑色発光が見られた。この素子の破過前の最大輝度は14990cd/mであった。
このように本発明の有機EL素子は耐久性に優れており、高輝度発光に適した有機EL素子であることがわかった。
Comparative Example 3
For comparison, an organic EL device was produced under the same conditions as in Example 22 by replacing BpyOXDm (2) of the present invention with Alq, and the characteristics thereof were examined. That is, as the light emitting layer / hole blocking layer / electron transport layer 5, 6 and 7, Alq was formed to a thickness of about 50 nm at a deposition rate of 6 nm / min. Green light emission of 7.2 to 100 cd / m 2 was observed. The maximum luminance before breakthrough of this element was 14990 cd / m 2 .
Thus, it was found that the organic EL device of the present invention is excellent in durability and is an organic EL device suitable for high luminance light emission.

実施例23
第4図に示すような有機EL素子を、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔輸送層4、発光層5、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して作製した。膜厚150nmのITOを成膜したガラス基板1を有機溶媒洗浄後に、酸素プラズマ処理にて表面を洗浄した。これを、真空蒸着機内に取り付け0.001Pa以下まで減圧した。
続いて、正孔輸送層4として、NPDを蒸着速度6nm/minで約50nm形成した。次に、発光層5としてAlqを蒸着速度6nm/minで約20nm形成した。この発光層5の上に、電子輸送層7として本発明であるCPBO(6)を蒸着速度6nm/minで約30nm形成した。さらに、電子注入層8としてフッ化リチウムを蒸着速度0.6nm/minで約0.5nm形成した。ここまでの蒸着をいずれも真空を破らずに連続して行なった。最後に、陰極蒸着用のマスクを挿入して、アルミニウムを約200nm蒸着して陰極9を形成した。作製した素子は、真空デシケーター中に保存し、大気中常温で特性測定を行なった。
このように形成された本発明の有機EL素子に直流電圧を印加した結果、3.5Vから100cd/mの発光が見られ、6.5Vで10000cd/mの安定な緑色発光を得た。
Example 23
An organic EL element as shown in FIG. 4 is formed on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2, and a hole transport layer 4, a light emitting layer 5, an electron transport layer 7, and an electron injection layer 8. The cathode (aluminum electrode) 9 was deposited in this order. The glass substrate 1 on which ITO with a film thickness of 150 nm was formed was cleaned with an organic solvent, and then the surface was cleaned with oxygen plasma treatment. This was attached in a vacuum vapor deposition machine and depressurized to 0.001 Pa or less.
Subsequently, as the hole transport layer 4, NPD was formed at about 50 nm at a deposition rate of 6 nm / min. Next, about 20 nm of Alq was formed as the light emitting layer 5 at a deposition rate of 6 nm / min. On the light-emitting layer 5, CPBO (6) according to the present invention was formed as an electron transport layer 7 with a deposition rate of 6 nm / min to about 30 nm. Furthermore, about 0.5 nm of lithium fluoride was formed as the electron injection layer 8 at a deposition rate of 0.6 nm / min. The vapor deposition so far was continuously performed without breaking the vacuum. Finally, a cathode deposition mask was inserted, and aluminum was deposited by about 200 nm to form the cathode 9. The fabricated device was stored in a vacuum desiccator and measured for characteristics at room temperature in the atmosphere.
As a result of applying a DC voltage to the organic EL element thus formed present invention, light emission of 100 cd / m 2 was observed from 3.5 V, to obtain a stable green emission of 10000 cd / m 2 at 6.5V .

実施例24
第4図の素子において、電子輸送層7の材料を同じく本発明であるPhpyOXDm(11)に代えて、実施例23と同じ条件で有機EL素子を作製してその特性を調べた。
3.4Vから100cd/mの発光が見られ、6.3Vで10000cd/mの安定な緑色発光を得た。
実施例25
第4図の素子において、電子輸送層7の材料を同じく本発明であるFPhpyOXDm(16)に代えて、実施例23と同じ条件で有機EL素子を作製してその特性を調べた。
3.3Vから100cd/mの発光が見られ、6.5Vで10000cd/mの安定な緑色発光を得た。
Example 24
In the device shown in FIG. 4, an organic EL device was produced under the same conditions as in Example 23, except that the material of the electron transport layer 7 was changed to PhpyOXDm (11) of the present invention, and the characteristics thereof were examined.
Emission of 100 cd / m 2 was observed from 3.4 V, to obtain a stable green emission of 10000 cd / m 2 at 6.3V.
Example 25
In the device shown in FIG. 4, an organic EL device was prepared under the same conditions as in Example 23, except that the material for the electron transport layer 7 was replaced with FPhpyOXDm (16) of the present invention.
Emission of 100 cd / m 2 was observed from 3.3V, to obtain a stable green emission of 10000 cd / m 2 at 6.5V.

比較例4
比較のために、電子輸送層7の材料をAlqに代えて、実施例23と同じ条件で有機EL素子を作製してその特性を調べた。すなわち発光層兼電子輸送層5および7としてAlq3を蒸着速度6nm/minで約50nm形成した。100cd/mの発光は3.9Vで見られ、10000cd/mの発光は7.8Vで得られた。
電子注入材料を用いた場合の比較試験においても、駆動電圧の低下が明らかに認められることから、本発明の化合物の電子移動の速度は、従来からの電子輸送材料であるAlqより各段に速いと予測される。
Comparative Example 4
For comparison, the material of the electron transport layer 7 was changed to Alq, and an organic EL element was produced under the same conditions as in Example 23 and the characteristics thereof were examined. That is, about 50 nm of Alq3 was formed at a deposition rate of 6 nm / min as the light emitting and electron transporting layers 5 and 7. Emission of 100 cd / m 2 was observed at 3.9V, emission of 10000 cd / m 2 was obtained at 7.8 V.
In the comparative test using the electron injection material, a decrease in the driving voltage is clearly recognized. Therefore, the electron transfer speed of the compound of the present invention is higher in each stage than Alq which is a conventional electron transport material. It is predicted.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2004年3月25日出願の日本特許出願(特願2004−088909)、2004年3月25日出願の日本特許出願(特願2004−089277)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on March 25, 2004 (Japanese Patent Application No. 2004-088909) and a Japanese patent application filed on March 25, 2004 (Japanese Patent Application No. 2004-089277). Incorporated herein by reference.

本発明の置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物は、電子の注入が良く、電子の移動速度が速く、薄膜状態が安定であるため、有機EL素子用の化合物として優れている。該化合物を用いて有機EL素子を作製することにより、駆動電圧を格段に低下させることができ、耐久性を改善させることができる。例えば、家庭電化製品や照明の用途への展開が可能となった。   The compound having an oxadiazole ring structure in which a substituted pyridyl group of the present invention is connected is excellent as a compound for an organic EL device because it has a good electron injection, a high electron moving speed, and a stable thin film state. ing. By producing an organic EL element using the compound, the driving voltage can be remarkably lowered and the durability can be improved. For example, it has become possible to develop home appliances and lighting.

尚、図中の符号はそれぞれ以下のものを表す。
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 電子注入層
9 陰極
In addition, the code | symbol in a figure represents the following, respectively.
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode

Claims (11)

下記一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物。

(式中、Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、R、R、R、RおよびRは、それらのうちの1つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、R、R、R、RおよびR10は、それらのうちの2つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、mは1〜3の整数を表し、nは0〜4の整数を表す。但し、n=0の場合、R、R、R、RおよびRから結合基を除いた4つの基は同時に水素原子ではないものとする。)
A compound represented by the following general formula (1) having an oxadiazole ring structure in which substituted pyridyl groups are linked.

(In the formula, Ar represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group; R 1 , R 2 , R 3 , R 4 and R 5 , one of them is a linking group, and the other may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group, an alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted group. Represents a substituted naphthyl group, and R 6 , R 7 , R 8 , R 9 and R 10 are two of them being a linking group, and the others may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group , An alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, m represents an integer of 1 to 3, and n represents an integer of 0 to 4. However, when n = 0, R 1, R 2, R 3 , R 4 you Four groups excluding the linking group from the fine R 5 shall not simultaneously hydrogen atoms.)
上記一般式(1)においてn=1である、請求項1記載のオキサジアゾール環構造を有する化合物。   The compound having an oxadiazole ring structure according to claim 1, wherein n = 1 in the general formula (1). 上記一般式(1)においてn=2である、請求項1記載のオキサジアゾール環構造を有する化合物。   The compound having an oxadiazole ring structure according to claim 1, wherein n = 2 in the general formula (1). 上記一般式(1)においてn=0であり、R、R、R、RおよびRから結合基を除いた4つの基のうち1つがフェニル基である、請求項1記載のオキサジアゾール環構造を有する化合物。 2 in the general formula (1), wherein n = 0, and one of the four groups excluding the binding group from R 1 , R 2 , R 3 , R 4 and R 5 is a phenyl group. A compound having an oxadiazole ring structure. 一対の電極とその間に挟まれた少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子において、下記一般式(1)で表される、置換されたピリジル基が連結したオキサジアゾール環構造を有する化合物を、少なくとも1つの有機層の構成材料として含有する有機エレクトロルミネッセンス素子。

(式中、Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基または置換もしくは無置換の縮合多環芳香族基を表し、R、R、R、RおよびRは、それらのうちの1つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、R、R、R、RおよびR10は、それらのうちの2つが結合基であり、他は同一でも異なってもよく水素原子、フッ素原子、シアノ基、アルキル基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を表し、mは1〜3の整数を表し、nは0〜4の整数を表す。但し、n=0の場合、R、R、R、RおよびRから結合基を除いた4つの基は同時に水素原子ではないものとする。)
In an organic electroluminescence device having a pair of electrodes and at least one organic layer sandwiched between them, a compound having an oxadiazole ring structure represented by the following general formula (1) and linked with a substituted pyridyl group An organic electroluminescence element contained as a constituent material of at least one organic layer.

(In the formula, Ar represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group; R 1 , R 2 , R 3 , R 4 and R 5 , one of them is a linking group, and the other may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group, an alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted group. Represents a substituted naphthyl group, and R 6 , R 7 , R 8 , R 9 and R 10 are two of them being a linking group, and the others may be the same or different, and may be a hydrogen atom, a fluorine atom, a cyano group , An alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, m represents an integer of 1 to 3, and n represents an integer of 0 to 4. However, when n = 0, R 1, R 2, R 3 , R 4 you Four groups excluding the linking group from the fine R 5 shall not simultaneously hydrogen atoms.)
上記一般式(1)においてn=1である、請求項5記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element according to claim 5, wherein n = 1 in the general formula (1). 上記一般式(1)においてn=2である、請求項5記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element according to claim 5, wherein n = 2 in the general formula (1). 上記一般式(1)においてn=0であり、R、R、R、RおよびRから結合基を除いた4つの基のうち1つがフェニル基である、請求項5記載の有機エレクトロルミネッセンス素子。 A n = 0 in the general formula (1), one of the four groups excluding the linking group from R 1, R 2, R 3 , R 4 and R 5 is a phenyl group, according to claim 5, wherein Organic electroluminescence device. 上記一般式(1)で表される化合物を電子輸送層中に含有する、請求項5記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element of Claim 5 which contains the compound represented by the said General formula (1) in an electron carrying layer. 上記一般式(1)で表される化合物を正孔阻止層中に含有する、請求項5記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element of Claim 5 which contains the compound represented by the said General formula (1) in a hole-blocking layer. 上記一般式(1)で表される化合物を発光層中に含有する、請求項5記載の有機エレクトロルミネッセンス素子。   The organic electroluminescent element of Claim 5 which contains the compound represented by the said General formula (1) in a light emitting layer.
JP2011219226A 2004-03-25 2011-10-03 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device Pending JP2012056953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219226A JP2012056953A (en) 2004-03-25 2011-10-03 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004088909 2004-03-25
JP2004088909 2004-03-25
JP2011219226A JP2012056953A (en) 2004-03-25 2011-10-03 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006511602A Division JP4879734B2 (en) 2004-03-25 2005-03-25 Compounds having an oxadiazole ring structure substituted with a pyridyl group, and organic electroluminescence devices

Publications (1)

Publication Number Publication Date
JP2012056953A true JP2012056953A (en) 2012-03-22

Family

ID=45851325

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006511602A Expired - Fee Related JP4879734B2 (en) 2004-03-25 2005-03-25 Compounds having an oxadiazole ring structure substituted with a pyridyl group, and organic electroluminescence devices
JP2011219226A Pending JP2012056953A (en) 2004-03-25 2011-10-03 Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006511602A Expired - Fee Related JP4879734B2 (en) 2004-03-25 2005-03-25 Compounds having an oxadiazole ring structure substituted with a pyridyl group, and organic electroluminescence devices

Country Status (1)

Country Link
JP (2) JP4879734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059965A (en) * 2012-09-14 2014-04-03 Toshiba Corp Organic electroluminescent element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363891A (en) * 1991-02-27 1992-12-16 Ricoh Co Ltd Electroluminescence element
JPH05152072A (en) * 1991-11-27 1993-06-18 Ricoh Co Ltd Electroluminescence element
JPH05202011A (en) * 1992-01-27 1993-08-10 Toshiba Corp Oxadiazole derivative
JPH0665569A (en) * 1992-06-20 1994-03-08 Ricoh Co Ltd Electroluminescent element
JPH06136359A (en) * 1992-10-29 1994-05-17 Sanyo Electric Co Ltd Electroluminescent element
JPH083148A (en) * 1994-06-16 1996-01-09 Ricoh Co Ltd Oxadiazole compound and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518816B2 (en) * 1994-06-16 2004-04-12 株式会社リコー Oxadiazole compound and method for producing the same
JP3525227B2 (en) * 1994-06-16 2004-05-10 株式会社リコー Oxadiazole compound and method for producing the same
JPH08176148A (en) * 1994-12-27 1996-07-09 Chisso Corp Hetero ring-containing oxadiazole derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363891A (en) * 1991-02-27 1992-12-16 Ricoh Co Ltd Electroluminescence element
JPH05152072A (en) * 1991-11-27 1993-06-18 Ricoh Co Ltd Electroluminescence element
JPH05202011A (en) * 1992-01-27 1993-08-10 Toshiba Corp Oxadiazole derivative
JPH0665569A (en) * 1992-06-20 1994-03-08 Ricoh Co Ltd Electroluminescent element
JPH06136359A (en) * 1992-10-29 1994-05-17 Sanyo Electric Co Ltd Electroluminescent element
JPH083148A (en) * 1994-06-16 1996-01-09 Ricoh Co Ltd Oxadiazole compound and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011026318; Advanced Functional Materials (2001), 11(1), 47-50 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059965A (en) * 2012-09-14 2014-04-03 Toshiba Corp Organic electroluminescent element

Also Published As

Publication number Publication date
JPWO2005092888A1 (en) 2008-02-14
JP4879734B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7977671B2 (en) Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescence device
JP5175099B2 (en) Compound having triazole ring structure substituted with pyridyl group and organic electroluminescence device
JP6049998B2 (en) Compound having carbazole ring structure and organic electroluminescence device
TWI422582B (en) A compound having a pyridine and indole ring structure to which a substituted pyridyl group is attached and an organic electroluminescent element
JP5636368B2 (en) Compounds having substituted anthracene ring structure and pyridoindole ring structure and organic electroluminescence device
KR101567112B1 (en) Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
KR20100115763A (en) Compound having pyridoindole ring structure bonded with substituted pyridyl group, and organic electroluminescent device
JPWO2010084729A1 (en) Compound having triazole ring structure linked to pyridyl group and organic electroluminescence device
JPWO2009107651A1 (en) Substituted bipyridyl compounds and organic electroluminescent devices
JP5291340B2 (en) Compounds having an oxadiazole ring structure to which an aromatic heterocycle is bonded, and organic electroluminescence devices
JP2009051764A (en) Substituted phenanthrene ring structure-having compound and organic electroluminescence element
JP5203935B2 (en) Compound having thiadiazole ring structure substituted with pyridyl group and organic electroluminescence device
JP5870346B2 (en) COMPOUND HAVING SUBSTITUTED ORTOTERPHENY STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
JP4879734B2 (en) Compounds having an oxadiazole ring structure substituted with a pyridyl group, and organic electroluminescence devices
JP4610918B2 (en) Compounds having an oxadiazole ring structure substituted with a pyridyl group
JP2007230867A (en) Fluorene group-containing carbazole derivative

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107