JP2012056861A - Photochromic compound, postscript type optical recording molecule material, display material, and fluorescence label material - Google Patents

Photochromic compound, postscript type optical recording molecule material, display material, and fluorescence label material Download PDF

Info

Publication number
JP2012056861A
JP2012056861A JP2010200091A JP2010200091A JP2012056861A JP 2012056861 A JP2012056861 A JP 2012056861A JP 2010200091 A JP2010200091 A JP 2010200091A JP 2010200091 A JP2010200091 A JP 2010200091A JP 2012056861 A JP2012056861 A JP 2012056861A
Authority
JP
Japan
Prior art keywords
ring
group
light
photochromic compound
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010200091A
Other languages
Japanese (ja)
Other versions
JP5700400B2 (en
Inventor
Takeshi Kawai
壯 河合
Masaaki Taguchi
正晃 田口
Tetsuya Nakagawa
哲也 中川
Sayo Fukumoto
紗世 福本
Takuya Nakajima
琢也 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2010200091A priority Critical patent/JP5700400B2/en
Publication of JP2012056861A publication Critical patent/JP2012056861A/en
Application granted granted Critical
Publication of JP5700400B2 publication Critical patent/JP5700400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photochromic compound which excels in recording retentivity and durability, and is useful as a high sensitivity optical recording medium without the volume change at the time of information recording, and to provide a postscript type optical recording molecule material, a display material and a fluorescence label material using the same.SOLUTION: The photochromic compound is expressed by general formula (1). In the formula, X is hydrogen, a halogen, a cyano group, a 1-5C linear or branched alkyl group, a 1-5C alkoxy group, or a substituent chosen from the group consisting of CHCOO-; Z is an alicyclic compound of a five-membered ring (atoms other than carbon may be included in the ring), or a heteroaromatic five-membered ring; Rand Reach independently denote a hydrogen atom, a 1-3C alkyl group or alkoxy group, a halogen element, a cyano group, or a formyl group; and Pdenotes a phenyl group.

Description

本発明は、フォトクロミック化合物及びそれを用いた追記型光記録分子材料、表示材料、蛍光ラベル材料に関する。   The present invention relates to a photochromic compound, a write-once optical recording molecular material using the same, a display material, and a fluorescent label material.

従来の光記録媒体は、記録媒体中に光応答性の色素を分散させ、この色素の熱劣化反応を利用して情報を記録、再生している。即ち、細く絞り込んだ光ビームを記録媒体上に照射することによって、光ビームの熱エネルギーを用い、照射箇所の反射率や屈折率などを変化させ、照射部分と非照射部分の違いを利用している。このようなヒートモード記録方式は、光ビームの熱エネルギーを用いているため、エネルギー効率が悪い。また、S/N比や記録密度、耐久性の点で問題があった。   In a conventional optical recording medium, a photoresponsive dye is dispersed in the recording medium, and information is recorded and reproduced by utilizing a thermal degradation reaction of the dye. In other words, by irradiating a thinly focused light beam onto the recording medium, the thermal energy of the light beam is used to change the reflectance and refractive index of the irradiated part, and the difference between the irradiated part and the non-irradiated part is utilized. Yes. Such a heat mode recording method uses heat energy of a light beam, and therefore has low energy efficiency. There are also problems in terms of S / N ratio, recording density, and durability.

これに対して、フォトクロミック化合物のフォトクロミズムを利用した光記録媒体が提案されている(特許文献1)。フォトクロミズムとは、光照射により単一の分子が化学結合を組み換え、それによって吸収スペクトルの異なる2つの異性体を可逆的に生成する現象をいう。フォトクロミズムを利用した光記録媒体では、2つの異性体の色調の変化を情報として記録する。これら2つの異性体は吸収スペクトルが異なるため、一方の異性体の生成状態における所定波長に対する光の吸収強度と他方の状態における光の吸収強度との違いを検出することによって情報の再生が可能となる。一般的に、2つの異性体は無色状態の開環体と着色状態の閉環体からなり、開環体に光を照射することにより閉環体が生成される。   On the other hand, an optical recording medium using photochromism of a photochromic compound has been proposed (Patent Document 1). Photochromism is a phenomenon in which a single molecule recombines chemical bonds by light irradiation, thereby reversibly generating two isomers having different absorption spectra. In an optical recording medium using photochromism, changes in color tone of two isomers are recorded as information. Since these two isomers have different absorption spectra, it is possible to reproduce information by detecting the difference between the light absorption intensity at a predetermined wavelength in the production state of one isomer and the light absorption intensity in the other state. Become. In general, the two isomers consist of a colorless ring-opened body and a colored ring-closed body, and the ring-closed body is produced by irradiating the ring-opened body with light.

また、特許文献2には、スルホン型ジアリールエテン系のフォトクロミック化合物として、エテン部位とアリール部位の結合位置が2位の熱不可逆性の逆フォトクロミック化合物が提案されている。逆フォトクロミック化合物とは、初期状態(開環体)が着色しており、光照射によって着色状態(閉環体)となるものである。
さらに、非特許文献1には、スルホン型ジアリールエテン系のフォトクロミック化合物であって、エテン部位とアリール部位の結合位置が3位のものが報告されている(非特許文献1の図16(B2))。この化合物は開環体と閉環体とが可逆に変化する。
Patent Document 2 proposes a thermally irreversible reverse photochromic compound in which the bonding position of the ethene moiety and the aryl moiety is 2-position as the sulfone-type diarylethene-based photochromic compound. The reverse photochromic compound is one in which the initial state (ring-opened body) is colored and becomes colored (ring-closed body) by light irradiation.
Furthermore, Non-Patent Document 1 reports a sulfone-type diarylethene-based photochromic compound in which the binding position of the ethene moiety and the aryl moiety is 3-position (FIG. 16 (B2) of Non-Patent Document 1). . In this compound, a ring-opened body and a ring-closed body are reversibly changed.

ところが、フォトクロミズムを利用した光記録媒体は、フォトクロミック化合物の高い光可逆反応性のため、再生光等の記録光以外の光照射による情報の破壊が問題になる。
このような課題を解決するものとして、本発明者らは、光反応により誘起される脱離反応により閉環体から縮環体に非可逆で変化するフォトクロミック化合物を見出した(特許文献3)。脱離反応により閉環体から変化した縮環体が再び閉環体に戻る反応は通常では起こりにくいことから、脱離反応により得られる縮環体は安定性に優れる。このような性質から、特許文献3に記載のフォトクロミック化合物は記録保持性、耐久性に優れた光記録媒体の光記録分子材料として有用である。
However, an optical recording medium using photochromism has a problem of destruction of information due to light irradiation other than recording light such as reproduction light because of the high photoreversible reactivity of the photochromic compound.
In order to solve such problems, the present inventors have found a photochromic compound that changes irreversibly from a closed ring to a condensed ring by an elimination reaction induced by a photoreaction (Patent Document 3). Since a reaction in which a condensed ring that has been changed from a closed ring by the elimination reaction returns to the closed ring does not normally occur, the condensed ring obtained by the elimination reaction is excellent in stability. Because of these properties, the photochromic compound described in Patent Document 3 is useful as an optical recording molecular material for an optical recording medium having excellent record retention and durability.

特開2006-134365号公報JP 2006-134365 A 特開2009-062344号公報JP 2009-062344 JP 特開2010-064968号公報JP 2010-064968

Kim et al., Chem. Comm., 2005, p. 2503Kim et al., Chem. Comm., 2005, p. 2503

ところが、特許文献3に記載のフォトクロミック化合物は、脱離反応により閉環体から物質を放出して縮環体に変化するため、体積収縮を伴う。フォトクロミック化合物を光記録分子材料として用いる場合、該フォトクロミック化合物を適当なバインダ樹脂材料に分散させて光記録媒体を形成することが考えられる。従って、特許文献3に記載のフォトクロミック化合物を用いて光記録媒体を形成すると、情報を記録する毎に体積収縮して光記録媒体にひずみやゆがみが生じるおそれがある。   However, the photochromic compound described in Patent Document 3 is accompanied by volume shrinkage because the substance is released from the ring-closed body by the elimination reaction and is changed to a condensed ring. When using a photochromic compound as an optical recording molecular material, it is conceivable to form an optical recording medium by dispersing the photochromic compound in an appropriate binder resin material. Therefore, when an optical recording medium is formed using the photochromic compound described in Patent Document 3, there is a possibility that the optical recording medium may be distorted and distorted due to volume shrinkage every time information is recorded.

本発明が解決しようとする課題は、記録保持性、耐久性に優れ、且つ、情報記録時に体積変化を伴わない高感度光記録媒体として有用なフォトクロミック化合物及びこれを用いた追記型光記録分子材料、表示材料及び蛍光ラベル材料を提供することである。   The problem to be solved by the present invention is a photochromic compound that is excellent in record retention and durability, and is useful as a high-sensitivity optical recording medium that does not undergo volume change during information recording, and a write-once optical recording molecular material using the same It is to provide a display material and a fluorescent label material.

本発明者は、固体中でも高いフォトクロミック反応を示し、閉環状態が熱的に安定なヘキサトリエン骨格フォトクロミック分子に着目し、追記型光記録材料に展開可能な化合物の開発を進めた結果、下記の骨格構造(1)及び(1’)を有するフォトクロミック化合物が優れた諸特性を有することを見出した。

Figure 2012056861
(上記した骨格構造(1)において、Xは、水素、ハロゲン、シアノ基、−CHや−C等の炭素数1〜5の直鎖もしくは分岐型アルキル基、−OCHや−OCHCH等の炭素数1〜5のアルコキシ基、又はCHCOO−から成るグループの中から選択される置換基、Zは五員環(環上に炭素以外の原子を含んでも良い)の脂環式化合物、又は複素芳香族五員環、R、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基もしくはアルコキシ基、ハロゲン元素、シアノ基、又はホルミル基を表す。また、Phはフェニル基を表す。) The present inventor has developed a compound that can be developed into a write-once optical recording material by focusing on a hexatriene skeleton photochromic molecule that exhibits a high photochromic reaction even in a solid state and whose ring-closing state is thermally stable. It has been found that the photochromic compounds having the structures (1) and (1 ′) have various characteristics.
Figure 2012056861
(In the above skeleton structure (1), X represents hydrogen, halogen, cyano group, a linear or branched alkyl group having 1 to 5 carbon atoms such as —CH 3 or —C 2 H 5 , —OCH 3 or — A substituent selected from the group consisting of an alkoxy group having 1 to 5 carbon atoms such as OCH 2 CH 5 or a group consisting of CH 3 COO—, Z is a five-membered ring (which may contain atoms other than carbon on the ring); Or a heteroaromatic five-membered ring, R 1 and R 2 each independently represents a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, a halogen element, a cyano group, or a formyl group. In addition, Ph represents a phenyl group.)

これまで知られているフォトクロミック材料の一つに下記の骨格構造(2)

Figure 2012056861
を有するジアリールエテン化合物が知られているが、骨格構造(1)と(2)の比較から明らかなように、本発明のフォトクロミック化合物は、アリール基がスルホン化されているという特徴を有する。このような特徴的な構造は、本発明者が様々な構造のジアリールエテン化合物に関し、その分子構造と開環量子収率及び閉環量子収率との関係を調べた結果、スルホン化により開環量子収率が低下する傾向があることを見出した知見に基づき得られたものである。従って、本発明に係るフォトクロミック化合物は、閉環量子収率に比べて開環量子収率が非常に低いという特徴を有し、光照射によりいったん開環体(1)から閉環体(1’)に変化すると、開環体(1)にはほとんど戻らない。 One of the photochromic materials known so far is the following skeletal structure (2)
Figure 2012056861
Although the diarylethene compound which has this is known, the photochromic compound of the present invention has a feature that the aryl group is sulfonated, as is clear from the comparison between the skeleton structures (1) and (2). Such a characteristic structure is the result of the present inventors examining the relationship between the molecular structure and the ring-opening quantum yield and the ring-closing quantum yield of diarylethene compounds having various structures. It was obtained based on the finding that the rate tends to decrease. Therefore, the photochromic compound according to the present invention has a feature that the ring-opening quantum yield is very low as compared with the ring-closing quantum yield, and is once changed from the ring-opened body (1) to the closed ring body (1 ′) by light irradiation. When changed, it hardly returns to the ring-opened product (1).

骨格構造(1)及び(1’)を有する本発明のフォトクロミック化合物において、X、Z、R、Rとして特定の構造のものを選択することにより、本発明のフォトクロミック化合物は、光照射によって開環体から閉環体に変化し、その変化は非可逆となる。このようなフォトクロミック化合物を用いて追記型光記録分子材料や表示材料等を構成した場合、開環体(1)から閉環体(1’)に変化させる光を記録光とし、この閉環体の蛍光波長を与える励起光の波長を再生光とする。
ここで、開環体から閉環体に非可逆で変化するとは、開環体から閉環体への変化のみが起こり、閉環体は開環体へ変化しないことをいう。なお、開環体から閉環体に非可逆で変化する場合とは、フォトクロミック化合物の開環量子収率が、測定不能もしくは1×10-4 以下である場合をいう。
In the photochromic compound of the present invention having the skeleton structures (1) and (1 ′), by selecting a specific structure as X, Z, R 1 , R 2 , the photochromic compound of the present invention can be irradiated by light irradiation. It changes from an open ring to a closed ring, and the change is irreversible. When a write-once optical recording molecular material, display material, or the like is configured using such a photochromic compound, the light that changes from the ring-opened body (1) to the ring-closed body (1 ′) is used as recording light, and the fluorescence of this ring-closed body The wavelength of the excitation light that gives the wavelength is the reproduction light.
Here, irreversibly changing from a ring-opened body to a ring-closed body means that only a change from the ring-opened body to the ring-closed body occurs and the ring-closed body does not change to the ring-opened body. Note that the case of irreversibly changing from a ring-opened body to a ring-closed body means a case where the ring-opening quantum yield of the photochromic compound is not measurable or 1 × 10 −4 or less.

上記骨格構造(1)及び(1’)を有する本発明のフォトクロミック化合物は、閉環状態の吸収スペクトルが、開環状態の吸収スペクトルよりも波長にして100nm以上変位していることが好ましく、また、長波長側に変位していることが好ましい。スペクトルの変位(シフト)によって、記録光と再生光との間の干渉などの相互の影響を抑制することができる。
すなわち、一般式(1)で表される開環状態を、一般式(1’)で表される閉環状態へ変化させる光である記録光の波長と、一般式(1’)で表される閉環状態に蛍光発光を与える光である励起光つまり上記の再生光の波長とが、少なくとも100nm以上異なることが好ましい。さらに、再生光が、記録光より長波長側に変位(シフト)していることが好ましい。
In the photochromic compound of the present invention having the skeleton structures (1) and (1 ′), the absorption spectrum in the closed state is preferably displaced by 100 nm or more in terms of wavelength from the absorption spectrum in the ring-opened state. It is preferable to be displaced to the long wavelength side. Mutual influences such as interference between the recording light and the reproduction light can be suppressed by the shift (shift) of the spectrum.
That is, the wavelength of the recording light, which is light for changing the ring-opened state represented by the general formula (1) to the ring-closed state represented by the general formula (1 ′), and the general formula (1 ′) It is preferable that the wavelength of excitation light, that is, light that gives fluorescence emission in a closed state, that is, the wavelength of the reproduction light is at least 100 nm or more. Furthermore, it is preferable that the reproduction light is displaced (shifted) to the longer wavelength side than the recording light.

本発明のフォトクロミック化合物の好ましい例は、下記の式(3)もしくは式(4)で表されるジアリールエテン構造から成る。

Figure 2012056861
Figure 2012056861
式(3)及び式(4)で表されるフォトクロミック化合物は、いずれも開環量子収率(閉環状態から開環状態への光反応量子収率)が 1×10-5 以下であり、開環体から閉環体に非可逆で変化する。 A preferred example of the photochromic compound of the present invention comprises a diarylethene structure represented by the following formula (3) or formula (4).
Figure 2012056861
Figure 2012056861
The photochromic compounds represented by formula (3) and formula (4) both have a ring-opening quantum yield (photoreaction quantum yield from a ring-closing state to a ring-opening state) of 1 × 10 −5 or less, It changes irreversibly from a ring to a closed ring.

上記した本発明のフォトクロミック化合物は、光照射によって単一の分子が開環状態から吸収スペクトルの異なる閉環状態に変化し、しかも、閉環状態から開環状態に非常に戻りにくいことから、追記型光記録媒体の材料として有用である。   In the photochromic compound of the present invention described above, a single molecule changes from a ring-opened state to a ring-closed state having a different absorption spectrum by light irradiation, and it is very difficult to return from the ring-closed state to the ring-opened state. It is useful as a material for recording media.

また、上記した本発明のフォトクロミック化合物を樹脂等の材料中に分散させて適宜の形状に成形すれば、表札や広告などの表示部材とすることができる。この表示部材は、表示させたい文字や図柄等の表示情報を記録光で書き込むことができ、その後、再生光を照射することで、書き込まれた文字や図柄等を表示させることができる。表示部材の内部から発光する文字等を表示することができるので、審美性に優れ、人目を惹きつける表示を実現することができる。さらに、表示情報を何度も追加して書き込むことができる。また、例えば人が近付いたとき等、必要に応じて再生光を照射して文字や図柄等を表示させることも可能であり、常時、再生光を照射する場合に比べて、表示を際立たせることができ、維持コストの低減を図ることができる。   Further, if the above-described photochromic compound of the present invention is dispersed in a material such as a resin and molded into an appropriate shape, it can be used as a display member for a nameplate or an advertisement. This display member can write display information such as characters and designs desired to be displayed with recording light, and then can display the written characters and designs by irradiating with reproduction light. Since it is possible to display characters or the like that emit light from the inside of the display member, it is possible to realize a display that has excellent aesthetics and attracts attention. Furthermore, display information can be added and written many times. In addition, for example, when a person approaches, it is also possible to display characters, symbols, etc. by irradiating with reproduction light as necessary, making the display stand out more than when irradiating with reproduction light at all times. The maintenance cost can be reduced.

本発明のフォトクロミック化合物を用いて形成された表示部材は、データの追加が可能であり、かつ記録されたデータは再生光なしには不可視であるという特性を有する。このような特性を利用することにより、例えば次のような有用なラベル材料を提供することができる。すなわち、市場に提供される商品が、本発明のフォトクロミック化合物を含むラベル材料を伴って流通するようにすれば、生産から消費、或いは廃棄までの各段階において情報を記録することができるので、商品の流通経路の追跡可能性(トレーサビリティ)を向上させることができる。このようなラベル材料は、商品の生産から消費・廃棄までの各段階に限らず、工場での製造工程等の各段階においても情報を記録することができるので、品質管理等に用いることができる。また、記録された情報は再生光の照射によってのみ視認することができるので、記録情報を秘匿することも可能である。   The display member formed using the photochromic compound of the present invention has characteristics that data can be added and recorded data is invisible without reproducing light. By utilizing such characteristics, for example, the following useful label material can be provided. That is, if the product offered to the market is distributed with the label material containing the photochromic compound of the present invention, information can be recorded at each stage from production to consumption or disposal. It is possible to improve traceability (traceability) of the distribution channel. Such a label material can be used for quality control and the like because information can be recorded not only at each stage from production to consumption / disposal of products but also at each stage such as a manufacturing process in a factory. . Moreover, since the recorded information can be visually recognized only by the irradiation of the reproduction light, the recorded information can be kept secret.

さらに本発明のフォトクロミックの化合物は、紫外光照射に伴って可視域に新たな吸収バンドを形成し、その吸収バンドを記録光によって光励起すると蛍光を発する光刺激蛍光特性を有している。近年、光刺激に伴って蛍光特性がON状態とOFF状態の間をスイッチできる蛍光タンパク質がバイオラベルなどの生体観測用色素として注目されている(宮脇らWO2005/113772)。このような光刺激蛍光を利用することで、従来の蛍光顕微鏡の解像度を飛躍的に向上させることが可能である(Science 2006年 313° 1642-1645)。本発明でもたらされるフォトクロミックの化合物についても光刺激により蛍光がON状態になることから、類似の超高分解能観察用蛍光ラベル色素としての応用が可能である。   Further, the photochromic compound of the present invention has a light-stimulated fluorescence property that forms a new absorption band in the visible region with ultraviolet light irradiation, and emits fluorescence when the absorption band is photoexcited by recording light. In recent years, fluorescent proteins whose fluorescence characteristics can be switched between an ON state and an OFF state in accordance with light stimulation have attracted attention as biological observation pigments such as biolabels (Miyawaki et al. WO2005 / 113772). By utilizing such photostimulated fluorescence, it is possible to dramatically improve the resolution of a conventional fluorescence microscope (Science 2006, 313 ° 1642-1645). Since the photochromic compound produced in the present invention is also turned on by light stimulation, it can be applied as a similar fluorescent label dye for ultra-high resolution observation.

本発明のフォトクロミック化合物は、光の照射によりフォトクロミック反応を起こし、開環体から吸収スペクトルが変位した閉環体に変化する。本発明のフォトクロミック化合物の特徴は閉環量子収率に比べて開環量子収率が非常に低いため、閉環体は安定性に優れる。このため、記録光や再生光の照射によって開環体に戻ることがほとんどない。   The photochromic compound of the present invention undergoes a photochromic reaction upon irradiation with light, and changes from a ring-opened body to a ring-closed body whose absorption spectrum is displaced. Since the photochromic compound of the present invention has a very low ring-opening quantum yield compared to the ring-closed quantum yield, the ring-closed compound is excellent in stability. For this reason, there is almost no return to the ring-opened body by irradiation of recording light or reproduction light.

このような性質から、本発明のフォトクロミック化合物は、種々の光機能性材料として有用であり、特に、記録された情報が消失することがないことから、記録保持性、耐久性に優れた高感度光記録分子材料として有用である。
特に、縮環体として、再生光を照射したときに蛍光発光するものを採用することにより、三次元光記録、近接場光記録、ホログラム型光記録が可能となる。
Because of these properties, the photochromic compound of the present invention is useful as various optical functional materials, and in particular, since recorded information is not lost, high sensitivity excellent in record retention and durability. It is useful as an optical recording molecular material.
In particular, by adopting a condensed ring that emits fluorescence when irradiated with reproduction light, three-dimensional optical recording, near-field optical recording, and holographic optical recording are possible.

本発明のフォトクロミック化合物のいくつかの実施例の化学構造を示す図。The figure which shows the chemical structure of the several Example of the photochromic compound of this invention. フォトクロミック化合物A1の合成経路の一部を示す図。The figure which shows a part of synthetic route of the photochromic compound A1. フォトクロミック化合物A2の合成経路の一部を示す図。The figure which shows a part of synthetic route of the photochromic compound A2. フォトクロミック化合物A3の合成経路の一部を示す図。The figure which shows a part of synthetic route of the photochromic compound A3. フォトクロミック化合物A1の吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum of the photochromic compound A1. フォトクロミック化合物A1の閉環体の発光スペクトルを示す図。The figure which shows the emission spectrum of the ring-closure body of photochromic compound A1. フォトクロミック化合物A1を追記型光記録分子材料として用いたときのフォトクロミック反応の例を示す図。The figure which shows the example of a photochromic reaction when using the photochromic compound A1 as a write-once type optical recording molecular material. フォトクロミック化合物A2の吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum of the photochromic compound A2. フォトクロミック化合物A2の閉環体の吸収スペクトルを示す図。The figure which shows the absorption spectrum of the ring-closure body of photochromic compound A2. フォトクロミック化合物A3の吸収スペクトルの変化を示す図。The figure which shows the change of the absorption spectrum of the photochromic compound A3. フォトクロミック化合物A3の閉環体の発光スペクトルを示す図。The figure which shows the emission spectrum of the ring-closure body of photochromic compound A3. 実施例に係るフォトクロミック化合物のフォトクロミック特性を示す表。The table | surface which shows the photochromic characteristic of the photochromic compound which concerns on an Example. フォトクロミック化合物を用いた追記型光記録デバイスの構造を示す図。The figure which shows the structure of the write-once type optical recording device using a photochromic compound. 本発明のフォトクロミック化合物の閉環量子収率が非常に高く、且つ、閉環量子収率に比べて開環量子収率が低いことを説明するための図。The figure for demonstrating that the ring-closing quantum yield of the photochromic compound of this invention is very high, and a ring-opening quantum yield is low compared with a ring-closing quantum yield. 比較例のフォトクロミック化合物の構造を示す図。The figure which shows the structure of the photochromic compound of a comparative example.

図1に本発明のフォトクロミック化合物の具体的な実施例をその化学式(A1)〜(A5)で示す。図1中、Meはメチル基を示すが、以下に示す図では一部、Meを省略している。
化学式(A1)〜(A5)で示されるいずれのフォトクロミック化合物(以下、フォトクロミック化合物A1〜A5と呼ぶ)も紫外光の照射により閉環体に変化する。
FIG. 1 shows specific examples of the photochromic compound of the present invention by chemical formulas (A1) to (A5). In FIG. 1, Me represents a methyl group, but Me is partially omitted in the following drawings.
Any of the photochromic compounds represented by the chemical formulas (A1) to (A5) (hereinafter referred to as photochromic compounds A1 to A5) changes to a ring-closed body by irradiation with ultraviolet light.

1.合成方法
フォトクロミック化合物A1〜A5はさまざまな方法により合成可能である。下記に、化合物A1〜A3の合成方法の例を示す。
(1)フォトクロミック化合物A1〈TaTO4-Ph3〉の合成(図2)
褐色ナスフラスコに、4,5-Bis(2,4-dimethyl-5-phenylthiophen-3-yl)-2-phenylthiazole 42mg(78μmol, 1.0eq.)を入れてCH2Cl2 8mlに溶かし、撹拌しながら70% m-Chloroperbenzoic acid(m-CPBA) (東京化成工業株式会社(TCI)製)0.116g(0.470mmol, 6.0eq. )を加え、室温で25時間撹拌した。続いて、反応溶液を水でクエンチし、CH2Cl2で抽出して淡黄色固体を得た。暗室中でカラムクロマトグラフィ[Hexane/EtOAc(4:1)次いでEtOAc]でラフに分け、その8割ほどを順相HPLC[Hexane/EtOAc(75:25)]×7回で単離精製し、その精製物を1H NMR(300MHz; CDCl3),DART-MSで同定した。目的物の収量は36mg、収率は76%であった。
1. Synthesis Method Photochromic compounds A1 to A5 can be synthesized by various methods. Below, the example of the synthesis | combining method of compound A1-A3 is shown.
(1) Synthesis of photochromic compound A1 <TaTO4-Ph3> (Figure 2)
In a brown eggplant flask, add 4,5-Bis (2,4-dimethyl-5-phenylthiophen-3-yl) -2-phenylthiazole 42 mg (78 μmol, 1.0 eq.) In 8 ml of CH 2 Cl 2 and stir. Then, 0.116 g (0.470 mmol, 6.0 eq.) Of 70% m-Chloroperbenzoic acid (m-CPBA) (manufactured by Tokyo Chemical Industry Co., Ltd. (TCI)) was added and stirred at room temperature for 25 hours. Subsequently, the reaction solution was quenched with water and extracted with CH 2 Cl 2 to give a pale yellow solid. Roughly divided by column chromatography [Hexane / EtOAc (4: 1) and then EtOAc] in the dark, about 80% was isolated and purified by normal phase HPLC [Hexane / EtOAc (75:25)] x 7 times. The purified product was identified by 1H NMR (300 MHz; CDCl 3 ), DART-MS. The yield of the desired product was 36 mg, and the yield was 76%.

(2)フォトクロミック化合物A2〈BDMTFO4-Ph〉の合成(図3)
褐色ナスフラスコに、1,2-Bis(2,4-dimethyl-5-phenylthiophen-3-yl)3,3,4,4,5,5-hexafluorocyclopentene(TCI製)49.55mg(90.32μmol, 1.0eq.)を入れてCH2Cl2 10mlに溶かし、撹拌しながら70% m-Chloroperbenzoic acid(m-CPBA)(TCI製)0.135g(0.547mmol, 6.05eq. )を加え、室温で約2日間撹拌した。続いて、反応溶液を水でクエンチし、CH2Cl2で抽出して淡黄色固体を得た。(暗室中で)カラムクロマトグラフィ[Hexane/EtOAc(4:1)]で2つの成分に分け、それぞれHPLC[Hexane/EtOAc(90:10)]で精製した。得られた2成分をFAB-MS測定した結果、ジオキシド体(580)とテトラオキシド体(612)であることが分かった。ジオキシド体は赤色固体、テトラオキシド体は黄色発光固体であった。
(2) Synthesis of photochromic compound A2 <BDMTFO4-Ph> (Figure 3)
In a brown eggplant flask, 1,2-Bis (2,4-dimethyl-5-phenylthiophen-3-yl) 3,3,4,4,5,5-hexafluorocyclopentene (manufactured by TCI) 49.55 mg (90.32 μmol, 1.0 eq) .) And dissolved in 10 ml of CH 2 Cl 2 , add 0.135 g (0.547 mmol, 6.05 eq.) Of 70% m-Chloroperbenzoic acid (m-CPBA) (manufactured by TCI) with stirring, and stir at room temperature for about 2 days did. Subsequently, the reaction solution was quenched with water and extracted with CH 2 Cl 2 to give a pale yellow solid. It was separated into two components by column chromatography [Hexane / EtOAc (4: 1)] (in the dark) and purified by HPLC [Hexane / EtOAc (90:10)]. As a result of FAB-MS measurement of the obtained two components, it was found that they were a dioxide form (580) and a tetraoxide form (612). The dioxide was a red solid and the tetraoxide was a yellow luminescent solid.

(3)フォトクロミック化合物A3〈BDMTFO4-TerPh〉の合成(図4)
褐色ナスフラスコに、1,2-Bis[2,4-dimethy-5-(2,4-diphenylphenyl)thiophen-3-yl]perfluorocyclopentene 50.96mg(59.74μmol, 1.0eq.)を入れてCH2Cl2 2mlに溶かし、撹拌しながら70% m-Chloroperbenzoic acid(m-CPBA)(TCI製)0.151g(0.613mmol, 10.02eq. )を加え、室温で約4日間撹拌した。TCLで原料消失し、ジオキシド体(赤色)とテトラオキシド体(黄色)の生成を確認した。反応溶液を水でクエンチし、CH2Cl2で抽出して黄色のcrude 0.111gを得た。これをカラムクロマトグラフィ[Hexane/EtOAc(4:1)からグラデュエード]でラフに分取し、順相HPLC[Hexane/EtOAc(4:1)]で精製した。
(3) Synthesis of photochromic compound A3 <BDMTFO4-TerPh> (Figure 4)
In a brown eggplant flask, add 1,2-Bis [2,4-dimethy-5- (2,4-diphenylphenyl) thiophen-3-yl] perfluorocyclopentene 50.96 mg (59.74 μmol, 1.0 eq.) And CH 2 Cl 2 After dissolving in 2 ml, 0.151 g (0.613 mmol, 10.02 eq.) Of 70% m-Chloroperbenzoic acid (m-CPBA) (manufactured by TCI) was added with stirring, and the mixture was stirred at room temperature for about 4 days. The raw material disappeared with TCL, and the formation of a dioxide (red) and tetraoxide (yellow) was confirmed. The reaction solution was quenched with water and extracted with CH 2 Cl 2 to give yellow crude 0.111 g. This was roughly separated by column chromatography [from Hexane / EtOAc (4: 1) to graded] and purified by normal phase HPLC [Hexane / EtOAc (4: 1)].

2.フォトクロミック特性
上記したフォトクロミック化合物A1〜A3について、種々のフォトクロミック特性を調べた結果を以下に示す。
2. Photochromic characteristics The results of examining various photochromic characteristics of the above-described photochromic compounds A1 to A3 are shown below.

(1)フォトクロミック化合物A1のフォトクロミック特性
図5は2M-THF溶液中におけるフォトクロミック化合物A1の開環体から閉環体への変化に伴う吸収スペクトルの変化を示す。具体的には、化合物A1の開環体に313nmの紫外光を照射し続けた場合の30秒毎の吸収スペクトルの変化を示しており、破線5aは開環体の吸収スペクトルを、太い実線5bは閉環体の吸収スペクトルを示す。その他の細い実線は、化合物A1が開環体から閉環体に変化する過程における吸収スペクトルを示す。図5より、化合物A1は313nmの紫外光を360秒間(30秒×12)照射し続けることにより開環体から閉環体に変化することがわかる。また、フォトクロミック化合物A1は開環体から閉環体に変化することにより吸収スペクトルが長波長側に100nm以上変化していることがわかる。
(1) Photochromic characteristics of photochromic compound A1 FIG. 5 shows the change in absorption spectrum associated with the change of the photochromic compound A1 from a ring-opened body to a ring-closed body in a 2M-THF solution. Specifically, it shows the change in absorption spectrum every 30 seconds when the ring-opened compound A1 is continuously irradiated with ultraviolet light of 313 nm, the broken line 5a shows the absorption spectrum of the ring-opened substance, and the thick solid line 5b Indicates the absorption spectrum of a closed ring. The other thin solid line shows the absorption spectrum in the process in which compound A1 changes from an open ring to a closed ring. FIG. 5 shows that Compound A1 changes from a ring-opened body to a ring-closed body by continuing to irradiate 313 nm ultraviolet light for 360 seconds (30 seconds × 12). In addition, it can be seen that the absorption spectrum of the photochromic compound A1 is changed by 100 nm or more on the long wavelength side by changing from an open ring to a closed ring.

図6はフォトクロミック化合物A1の閉環体の発光スペクトルを示す。図5及び図6から、フォトクロミック化合物A1は、波長300〜400nmの紫外光照射により開環体から閉環体に変化し、波長490nm付近の青緑色光で閉環体を励起することにより波長576nm付近の橙色の光を発することがわかる。   FIG. 6 shows the emission spectrum of the ring-closed product of photochromic compound A1. From FIG. 5 and FIG. 6, the photochromic compound A1 changes from an open ring to a closed ring by irradiation with ultraviolet light having a wavelength of 300 to 400 nm, and excites the closed ring with blue-green light having a wavelength of about 490 nm. It turns out to emit orange light.

従って、化合物A1を追記型光記録分子材料に用いた場合、記録書き込み光として波長300nm〜400nmの紫外光を、記録読み出し光として波長490nmの青緑色光を、検出光として波長576nmの光を用いることができる。しかも、開環体は波長490nmの光を吸収しないことから、記録読み出し光を照射しても開環体が閉環体に変化することがなく、追記型光記録分子材料として有用である。すなわち追記型光記録材料分子として化合物A1は光反応後のスペクトルシフトが大きく、記録書き込み光と記録読み出し光のクロストークを容易に抑制できるという優位性を有している。
なお、化合物A1の閉環体に436nmの光照射を12時間行って蛍光観測を続けた結果、蛍光強度の低下率は1%以下であった。これは436nmの光照射では閉環体が開環体に戻る開環反応が進行しないことを示しており、追記型光記録材料として利用可能であることがわかる。
図7にフォトクロミック化合物A1を追記型光記録分子材料として用いたときのフォトクロミック反応を示す。
Therefore, when compound A1 is used for a write-once optical recording molecular material, ultraviolet light having a wavelength of 300 nm to 400 nm is used as recording / writing light, blue-green light having a wavelength of 490 nm is used as recording / reading light, and light having a wavelength of 576 nm is used as detection light. be able to. In addition, since the ring-opened body does not absorb light having a wavelength of 490 nm, the ring-opened body does not change to a closed ring even when irradiated with recording readout light, and is useful as a write-once type optical recording molecular material. That is, the compound A1 as a write-once type optical recording material molecule has a superior spectral shift after photoreaction and can easily suppress crosstalk between the recording / writing light and the recording / reading light.
As a result of continuing the fluorescence observation by irradiating the cyclized compound A1 with light at 436 nm for 12 hours, the decrease rate of the fluorescence intensity was 1% or less. This indicates that the ring-opening reaction in which the ring-closed body returns to the ring-opened body does not proceed under irradiation with light of 436 nm, and it can be seen that it can be used as a write-once type optical recording material.
FIG. 7 shows a photochromic reaction when the photochromic compound A1 is used as a write-once optical recording molecular material.

(2)フォトクロミック化合物A2
図8は2M-THF中におけるフォトクロミック化合物A2の開環体から閉環体への変化に伴う吸収スペクトルの変化を示す。具体的には、化合物A2の開環体に313nmの紫外光を照射し続けた場合の9分毎の吸収スペクトルの変化を示しており、破線8aは開環体の吸収スペクトルを、太い実線8bは閉環体の吸収スペクトルを示す。その他の細い実線は、化合物A2が開環体から閉環体に変化する過程における吸収スペクトルを示す。図8より、化合物A2は313nmの紫外光を81分間(9分×9)照射し続けることにより開環体から閉環体に変化することがわかる。
(2) Photochromic compound A2
FIG. 8 shows the change in the absorption spectrum of the photochromic compound A2 in 2M-THF accompanying the change from the ring-opened form to the ring-closed form. Specifically, it shows the change in absorption spectrum every 9 minutes when the ring-opened compound A2 is continuously irradiated with ultraviolet light of 313 nm, the broken line 8a shows the absorption spectrum of the ring-opened substance, and the thick solid line 8b Indicates the absorption spectrum of a closed ring. The other thin solid line shows the absorption spectrum in the process in which compound A2 changes from an open ring to a closed ring. FIG. 8 shows that Compound A2 changes from a ring-opened body to a ring-closed body by continuing to irradiate ultraviolet light at 313 nm for 81 minutes (9 minutes × 9).

また、フォトクロミック化合物A1と同様、化合物A2も開環体から閉環体に変化することにより吸収スペクトルが長波長側に100nmほど変化していることがわかる。フォトクロミック化合物A2は、波長280〜300nmの紫外光照射により開環体から閉環体に変化し、青紫色光(波長423nm)で閉環体を励起することにより緑色光(波長550nm)の光を発する。しかも、開環体は青紫色光(波長423nm)を吸収しないことから、フォトクロミック化合物A2も追記型光記録分子材料として有用である。   Further, it can be seen that, similarly to the photochromic compound A1, the absorption spectrum of the compound A2 also changes by about 100 nm on the long wavelength side by changing from the ring-opened body to the ring-closed body. The photochromic compound A2 changes from an open ring to a closed ring by irradiation with ultraviolet light having a wavelength of 280 to 300 nm, and emits green light (wavelength 550 nm) by exciting the closed ring with blue-violet light (wavelength 423 nm). In addition, since the ring-opened body does not absorb blue-violet light (wavelength 423 nm), the photochromic compound A2 is also useful as a write-once optical recording molecular material.

図9は化合物A2の閉環体に436nmの光を46時間照射し続けた後、313nmの紫外光を照射した場合の吸収スペクトル変化を示している。図9中、実線9aは化合物A2の閉環体に光を照射する前の吸収スペクトルを、破線9bは436nmの光を46時間照射し続けた場合の吸収スペクトルを示す。また、実線9cは、436nmの光を46時間照射し続けた後、さらに313nmの紫外光を80分間照射した場合の吸収スペクトルを示す。
図9から、化合物A2の閉環体に46時間の光照射を行った後でもおよそ90%の閉環体が残留していることがわかる。また、436nmの光照射に続いて313nmの紫外光を80分間照射した結果、閉環体の吸収スペクトルがほぼ回復していることがわかる。このことから、化合物A2は、436nmの光照射によって光開環反応が進行し、313nmの紫外光照射によって光閉環反応が進行する。光閉環反応の進行速度に比べて光開環反応の進行速度は非常に遅いことから、化合物A2の光開環反応は十分に抑制されていることがわかる。
FIG. 9 shows the change in absorption spectrum when the ring-closed compound A2 is irradiated with 436 nm light for 46 hours and then irradiated with 313 nm ultraviolet light. In FIG. 9, the solid line 9a shows the absorption spectrum before irradiating the closed ring of compound A2 with light, and the broken line 9b shows the absorption spectrum when 436 nm light is continuously applied for 46 hours. A solid line 9c shows an absorption spectrum in the case where irradiation with 436 nm light is continued for 46 hours and then irradiation with 313 nm ultraviolet light for 80 minutes.
From FIG. 9, it can be seen that approximately 90% of the closed ring remains even after 46 hours of light irradiation of the closed ring of compound A2. Further, as a result of irradiating with 313 nm ultraviolet light for 80 minutes following irradiation with 436 nm light, it can be seen that the absorption spectrum of the closed ring is almost recovered. From this, compound A2 undergoes a photo-ring-opening reaction upon irradiation with 436 nm light, and proceeds with a photo-ring-closing reaction upon irradiation with ultraviolet light at 313 nm. Since the rate of progress of the photo-ring opening reaction is very slow compared to the rate of progress of the photo-ring closure reaction, it can be seen that the photo-ring-opening reaction of Compound A2 is sufficiently suppressed.

たとえば既存の音楽CD(700MB=8×7×108bit、74分=4440秒)においては1bitの再生に約80×10-8秒(=4440秒÷(56×108bit))を所要することになる。図9の実験結果をみると、化合物A2は46時間の光照射を行っても90%の閉環体が残留していることから、46時間の光記録再生が可能な化合物といえる。従って、1bitあたり46時間の光記録再生が可能な化合物A2を利用した仮想的な光ディスクでは約2×1011回(=46×3600秒÷(80×10-8秒))の記録再生が可能と期待される。これは74分の音楽ディスクを約3千万年間にわたって再生し続けることに対応することから、このような仮想的な音楽ディスクでは記録の再生可能回数に実用上の制限がほぼなくなる。なお、上述の化合物A1の場合には、これを上回る情報保持性能、非破壊記録再生能を有している。 For example, an existing music CD (700MB = 8 x 7 x 10 8 bits, 74 minutes = 4440 seconds) requires approximately 80 x 10-8 seconds (= 4440 seconds ÷ (56 x 10 8 bits)) for 1-bit playback. Will do. From the experimental results shown in FIG. 9, it can be said that Compound A2 is a compound capable of optical recording and reproduction for 46 hours because 90% of the ring-closure remains even after light irradiation for 46 hours. Therefore, a virtual optical disk using Compound A2 capable of optical recording / reproducing for 46 hours per bit can record / reproduce approximately 2 × 10 11 times (= 46 × 3600 seconds ÷ (80 × 10 −8 seconds)). It is expected. This corresponds to the fact that a 74-minute music disc is played back for about 30 million years, and such a virtual music disc has almost no practical limit on the number of reproducible recordings. Note that the compound A1 described above has information retention performance and nondestructive recording / reproduction capability that exceed these.

(3)フォトクロミック化合物A3
図10は2M-THF中におけるフォトクロミック化合物A3の開環体から閉環体への変化に伴う吸収スペクトルの変化を示す。具体的には、化合物A3の開環体に340nmの紫外光を照射し続けた場合の5秒毎の吸収スペクトルの変化を示しており、破線10aは開環体の吸収スペクトルを、太い実線10bは閉環体の吸収スペクトルを示す。その他の細い実線は、化合物A3が開環体から閉環体に変化する過程における吸収スペクトルを示す。図10より、化合物A3は340nmの紫外光を5秒間照射し続けることにより開環体から閉環体に変化することがわかる。吸収スペクトルの変化を示し、図11はフォトクロミック化合物A3の閉環体の発光スペクトルを示す。フォトクロミック化合物A1と同様、化合物A3も開環体から閉環体に変化することにより吸収スペクトルが長波長側に100nm以上変化していることがわかる。また、フォトクロミック化合物A3は、波長300〜350nmの紫外光照射により開環体から閉環体に変化し、波長445nm付近の青紫色光で閉環体を励起することにより波長550〜560nmの緑色光を発することがわかる。
(3) Photochromic compound A3
FIG. 10 shows the change in the absorption spectrum of the photochromic compound A3 in 2M-THF accompanying the change from the ring-opened form to the ring-closed form. Specifically, the change in the absorption spectrum every 5 seconds when the ring-opened compound A3 is continuously irradiated with ultraviolet light of 340 nm shows the absorption spectrum of the ring-opened product and the thick solid line 10b. Indicates the absorption spectrum of a closed ring. The other thin solid line shows the absorption spectrum in the process in which compound A3 changes from an open ring to a closed ring. From FIG. 10, it can be seen that Compound A3 changes from a ring-opened product to a ring-closed product by continuing to irradiate UV light of 340 nm for 5 seconds. FIG. 11 shows the emission spectrum of the closed ring of photochromic compound A3. Similar to the photochromic compound A1, it can be seen that the absorption spectrum of the compound A3 is changed to 100 nm or more on the long wavelength side by changing from the ring-opened form to the closed-form. Photochromic compound A3 changes from an open ring to a closed ring by irradiation with ultraviolet light having a wavelength of 300 to 350 nm, and emits green light having a wavelength of 550 to 560 nm by exciting the closed ring with blue-violet light near a wavelength of 445 nm. I understand that.

従って、化合物A3を追記型光記録分子材料に用いた場合、記録書き込み光として波長300〜350nmの紫外光を、記録読み出し光として波長445nmの青紫色光を、検出光として波長550〜560nmの緑色光を用いることができる。しかも、開環体は波長445nmの青紫色光を吸収しないことから、フォトクロミック化合物A3も追記型光記録分子材料として有用である。   Therefore, when compound A3 is used as a write-once optical recording molecular material, ultraviolet light having a wavelength of 300 to 350 nm is used as recording / writing light, blue-violet light having a wavelength of 445 nm is used as recording / reading light, and green light having a wavelength of 550 to 560 nm is used as detection light. Light can be used. Moreover, since the ring-opened body does not absorb blue-violet light having a wavelength of 445 nm, the photochromic compound A3 is also useful as a write-once optical recording molecular material.

図12にフォトクロミック化合物A1〜A3の閉環体、開環体のモル吸光係数、発光量子収率、反応量子収率をまとめて示す。図12中、閉環体の発光量子収率、開環体の発光量子収率とは、光照射により閉環体から開環体へ変化する割合(収率)、開環体から閉環体に変化する割合(収率)をそれぞれ意味し、開環反応量子収率、閉環反応量子収率と同義である。
なお、図12中、「光反応量子収率」が「測定不能」とあるのは1×10-5以下であることを、着色体の発光波長と量子収率」が「−」とあるのは発光が見られないことを示している。また、「未測定」は、当該化合物についての発光特性の測定を未だ行っていないことを示している。
FIG. 12 summarizes the molar absorption coefficient, emission quantum yield, and reaction quantum yield of the ring-closed and ring-opened photochromic compounds A1 to A3. In FIG. 12, the emission quantum yield of the ring-closed product and the emission quantum yield of the ring-opened product are the ratio (yield) of change from the ring-opened product to the ring-opened product by light irradiation, and change from the ring-opened product to the ring-closed product. It means a ratio (yield), and is synonymous with a ring-opening reaction quantum yield and a ring-closing reaction quantum yield.
In FIG. 12, the “photoreaction quantum yield” is “not measurable” is 1 × 10 −5 or less, and the emission wavelength and quantum yield of the colored product is “−”. Indicates that no luminescence is observed. “Unmeasured” indicates that the light emission characteristics of the compound have not been measured yet.

図12から明らかなように、いずれのフォトクロミック化合物A1〜A3も、閉環体の光反応量子収率(開環量子収率)は、開環体の光反応量子収率(閉環量子収率)よりも非常に低く、且つ、2×10-5以下であり、開環体から閉環体に非可逆で変化することがわかる。
また、化合物A1、A3は閉環体の発光量子収率が高いため、追記型光記録分子材料として用いたときに、検出光(閉環体を励起したときの発光)を高感度で検出することができる。
As is clear from FIG. 12, the photoreaction quantum yield (ring-opening quantum yield) of the ring-closed product of any photochromic compound A1 to A3 is more than the photoreaction quantum yield (ring-closed quantum yield) of the ring-opened product. It is also very low and 2 × 10 −5 or less, and it can be seen that irreversibly changes from the open ring to the closed ring.
In addition, since compound A1 and A3 have a high emission quantum yield of ring-closed compounds, they can detect detection light (light emission when ring-closed bodies are excited) with high sensitivity when used as write-once optical recording molecular materials. it can.

3.その他の特性
フォトクロミック化合物A1及びA3は、アモルファスであり、バインダ樹脂材料に分散させなくても薄膜を形成することができる。このような性質により、フォトクロミック化合物A1及びA3は、他の材料を加えることなく単独で追記型光記録デバイスを製造することができる。これに対して、フォトクロミック化合物A2、A4及びA5は、図13に示すように、バインダ樹脂材料1中に分散させて光記録分子材料10とし、これを薄膜成形することで追記型光記録デバイスを製造することができる。
なお、フォトクロミック化合物A1及びA3のみがアモルファス分子となる理由は、これら化合物はフォトクロミック化合物A2及びA4よりもベンゼン環の数が多いためと考えられるが、詳細は不明である。
3. Other Properties The photochromic compounds A1 and A3 are amorphous, and a thin film can be formed without being dispersed in the binder resin material. Due to such properties, the photochromic compounds A1 and A3 can produce a write-once optical recording device independently without adding other materials. On the other hand, as shown in FIG. 13, the photochromic compounds A2, A4, and A5 are dispersed in the binder resin material 1 to form an optical recording molecular material 10, which is formed into a thin film to form a write-once type optical recording device. Can be manufactured.
The reason why only the photochromic compounds A1 and A3 are amorphous molecules is thought to be because these compounds have more benzene rings than the photochromic compounds A2 and A4, but the details are unknown.

本発明に係るフォトクロミック化合物はいずれも閉環量子収率が非常に高い。その理由を図14を参照しつつ説明する。なお、図14にはフォトクロミック化合物A4のスルホン化前の構造(後述の比較例B5の構造)を示しているが、高い閉環量子収率はスルホン化する前後で変化しない。
図14に示すように、X線構造解析結果から得られたフォトクロミック化合物の開環状態の分子構造では、破線P1及びP2で示した原子間距離はそれぞれ2.95Å、2.69Åであり、ファンデルワールス半径よりも短く、吸引的な相互作用が働いていることがわかる。この相互作用は、開環体のコンフォメーションをフォトクロミック反応に適した構造に固定化する役割を果たす。その結果、破線P3で示す原子間距離は3.5Å程度になり、非常に短い(これは、グラファイトの面間距離3.45Åと同程度である。)。このため、開環状態から閉環状態に変化しやすいと思われる。
All the photochromic compounds according to the present invention have a very high ring closure quantum yield. The reason will be described with reference to FIG. FIG. 14 shows the structure before sulfonation of photochromic compound A4 (the structure of Comparative Example B5 described later), but the high ring closure quantum yield does not change before and after sulfonation.
As shown in FIG. 14, in the molecular structure in the ring-opened state of the photochromic compound obtained from the X-ray structural analysis results, the interatomic distances indicated by broken lines P1 and P2 are 2.95 mm and 2.69 mm, respectively, and van der Waals. It can be seen that suction interaction is working, which is shorter than the radius. This interaction serves to immobilize the ring-opened conformation in a structure suitable for photochromic reactions. As a result, the interatomic distance indicated by the broken line P3 is about 3.5 mm, which is very short (this is about the same as the distance between graphite planes of 3.45 mm). For this reason, it seems that it is easy to change from a ring-opening state to a ring-closing state.

比較例Comparative example

上記した実施例に係るフォトクロミック化合物A1〜A5との比較のため、既に知られているフォトクロミック化合物の分子構造を開環量子収率及び閉環量子収率と共に図15に示す。いずれの比較例も学術論文等の非特許文献で既に報告されている。そこで、発明者が実際に開環量子収率及び閉環量子収率を測定した化合物B5、B6と区別するために、非特許文献から引用した開環量子収率及び閉環量子収率については、当該非特許文献の名称と共に示した。なお、図15に示す分子構造中、単なる線で示す箇所はメチル基(Me)が結合していることを示す。   For comparison with the photochromic compounds A1 to A5 according to the above-described examples, the molecular structure of the already known photochromic compound is shown in FIG. 15 together with the ring opening quantum yield and the ring closure quantum yield. Both comparative examples have already been reported in non-patent literature such as academic papers. Therefore, in order to distinguish the compounds B5 and B6 from which the inventor actually measured the ring-opening quantum yield and the ring-closing quantum yield, the ring-opening quantum yield and the ring-closing quantum yield cited from the non-patent literature are Shown with the name of the non-patent literature. Note that, in the molecular structure shown in FIG. 15, a portion indicated by a simple line indicates that a methyl group (Me) is bonded.

図15中、式(B1)で示す比較例のフォトクロミック化合物をスルホン化することにより式(B2)で示す比較例のフォトクロミック化合物が得られる。これら比較例の開環量子収率から明らかなように、スルホン化することにより開環量子収率が大きく低下している。一方、スルホン化により閉環量子収率も低下したが、開環量子収率に比べるとその低下率は小さい。   In FIG. 15, the photochromic compound of the comparative example shown by the formula (B2) is obtained by sulfonating the photochromic compound of the comparative example shown by the formula (B1). As is apparent from the ring-opening quantum yields of these comparative examples, the ring-opening quantum yield is greatly reduced by sulfonation. On the other hand, the ring closure quantum yield also decreased due to sulfonation, but the decrease rate is small compared to the ring opening quantum yield.

式(B3)で示す比較例のフォトクロミック化合物をスルホン化すると実施例のフォトクロミック化合物A1が得られる。このフォトクロミック化合物B3の開環量子収率は0.07であり、一方、実施例のフォトクロミック化合物A1の開環量子収率は1×10-5以下である。従って、この場合もスルホン化により開環量子収率が大きく低下した。 When the photochromic compound of the comparative example represented by the formula (B3) is sulfonated, the photochromic compound A1 of the example is obtained. The photochromic compound B3 has a ring-opening quantum yield of 0.07, while the photochromic compound A1 of the example has a ring-opening quantum yield of 1 × 10 −5 or less. Therefore, also in this case, the ring-opening quantum yield was greatly reduced by sulfonation.

式(B4)で示す比較例のフォトクロミック化合物をスルホン化すると実施例のフォトクロミック化合物A2が得られる。このフォトクロミック化合物B4の開環量子収率は0.015であり、一方、実施例のフォトクロミック化合物A2の開環量子収率は2×10-5以下である。従って、この場合もスルホン化により開環量子収率が大きく低下した。 When the photochromic compound of the comparative example represented by the formula (B4) is sulfonated, the photochromic compound A2 of the example is obtained. The photochromic compound B4 has a ring-opening quantum yield of 0.015, while the photochromic compound A2 of the example has a ring-opening quantum yield of 2 × 10 −5 or less. Therefore, also in this case, the ring-opening quantum yield was greatly reduced by sulfonation.

式(B5)で示す比較例のフォトクロミック化合物をスルホン化すると実施例のフォトクロミック化合物A4が得られ、式(B6)で示す比較例のフォトクロミック化合物をスルホン化すると実施例のフォトクロミック化合物A5が得られる。これら実施例のフォトクロミック化合物A4及びA5も開環量子収率は未測定であるが、比較例B5及びB6の開環量子収率が0.008、0.007であること、スルホン化により開環量子収率が低下することから、実施例のフォトクロミック化合物A4及びA5の開環量子収率も非常に小さい値を示すことが予想された。   When the photochromic compound of the comparative example represented by the formula (B5) is sulfonated, the photochromic compound A4 of the example is obtained, and when the photochromic compound of the comparative example represented by the formula (B6) is sulfonated, the photochromic compound A5 of the example is obtained. The photochromic compounds A4 and A5 of these examples also have unmeasured ring-opening quantum yields, but the ring-opening quantum yields of Comparative Examples B5 and B6 are 0.008 and 0.007, and the ring-opening quantum yield by sulfonation is From the decrease, it was expected that the ring-opening quantum yields of the photochromic compounds A4 and A5 of the examples also showed very small values.

1…バインダ樹脂材料
10…光記録分子材料
DESCRIPTION OF SYMBOLS 1 ... Binder resin material 10 ... Optical recording molecular material

Claims (9)

下記の一般式(1)で表されることを特徴とするフォトクロミック化合物。
Figure 2012056861
(上記した骨格構造(1)において、Xは、水素、ハロゲン、シアノ基、炭素数が1〜5の直鎖もしくは分岐型アルキル基、炭素数が1〜5のアルコキシ基、又はCHCOO−から成るグループの中から選択される置換基、Zは五員環(環上に炭素以外の原子を含んでも良い)の脂環式化合物、又は複素芳香族五員環、R、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基もしくはアルコキシ基、ハロゲン元素、シアノ基、又はホルミル基を表す。また、Phはフェニル基を表す。)
The photochromic compound represented by following General formula (1).
Figure 2012056861
(In the above skeleton structure (1), X is hydrogen, halogen, cyano group, linear or branched alkyl group having 1 to 5 carbon atoms, alkoxy group having 1 to 5 carbon atoms, or CH 3 COO— A substituent selected from the group consisting of: Z is a five-membered ring (which may contain atoms other than carbon on the ring), or a heteroaromatic five-membered ring, R 1 and R 2 are Each independently represents a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, a halogen element, a cyano group, or a formyl group, and Ph represents a phenyl group.)
一般式(1)において、Zはインドール、アザインドール、チアゾール、ベンゾチオフェンから成る複素芳香族五員環から選択されることを特徴とする請求項1に記載のフォトクロミック化合物。   2. The photochromic compound according to claim 1, wherein, in the general formula (1), Z is selected from a heteroaromatic five-membered ring composed of indole, azaindole, thiazole, and benzothiophene. 所定波長の光を照射することによって下記の一般式(1’)
Figure 2012056861
で表される閉環体に非可逆で変化することを特徴とする請求項1または2に記載のフォトクロミック化合物。
By irradiating light of a predetermined wavelength, the following general formula (1 ′)
Figure 2012056861
The photochromic compound according to claim 1, wherein the photochromic compound is irreversibly changed to a closed ring represented by formula (1).
一般式(1’)で表される閉環状態から一般式(1)で表される開環状態への変化について光反応量子収率が 1×10-4 以下であることを特徴とする請求項3に記載のフォトクロミック化合物。 The photoreaction quantum yield is 1 × 10 −4 or less with respect to the change from the ring-closed state represented by the general formula (1 ′) to the ring-opened state represented by the general formula (1). 3. The photochromic compound according to 3. 一般式(1’)で表される閉環状態の吸収スペクトルが、一般式(1)で表される開環状態の吸収スペクトルよりも長波長側に変位していることを特徴とする請求項3または4に記載のフォトクロミック化合物。   The ring-absorption state absorption spectrum represented by the general formula (1 ') is displaced to a longer wavelength side than the ring-opening state absorption spectrum represented by the general formula (1). Or the photochromic compound of 4. 一般式(1)で表される開環状態を、一般式(1’)で表される閉環状態へ変化させる光の波長と、一般式(1’)で表される閉環状態に蛍光発光を与える光の波長とが、少なくとも100nm以上の変位があることを特徴とする請求項3〜5のいずれかに記載のフォトクロミック化合物。   The wavelength of light that changes the ring-opened state represented by the general formula (1) to the ring-closed state represented by the general formula (1 ′) and fluorescence emission to the ring-closed state represented by the general formula (1 ′) The photochromic compound according to any one of claims 3 to 5, wherein the wavelength of light to be applied is at least 100 nm or more. 記録光の照射により情報が記録され、再生光の照射により前記情報が再生される追記型光記録媒体の記録材料として用いられる追記型光記録分子材料であって、
下記一般式(1)で表される開環体もしくはその閉環体(1’)
Figure 2012056861
(上記した骨格構造(1)及び(1’)において、Xは、水素、ハロゲン、シアノ基、炭素数が1〜5の直鎖もしくは分岐型アルキル基、炭素数が1〜5のアルコキシ基、又はCHCOO−から成るグループの中から選択される置換基、Zは五員環(環上に炭素以外の原子を含んでも良い)の脂環式化合物、又は複素芳香族五員環、R、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基もしくはアルコキシ基、ハロゲン元素、シアノ基、又はホルミル基を表す。また、Phはフェニル基を表す。)
で表され、且つ、前記記録光の照射によって開環体(1)から閉環体(1’)に非可逆で変化し、前記再生光の照射により前記閉環体(1’)が発光するフォトクロミック化合物を含むことを特徴とする追記型光記録分子材料。
A recordable optical recording molecular material used as a recording material of a recordable optical recording medium in which information is recorded by irradiation of recording light and the information is reproduced by irradiation of reproduction light,
Ring-opened or closed ring (1 ′) represented by the following general formula (1)
Figure 2012056861
(In the above skeletal structures (1) and (1 ′), X is hydrogen, halogen, a cyano group, a linear or branched alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Or a substituent selected from the group consisting of CH 3 COO—, Z is a five-membered ring (which may contain atoms other than carbon on the ring), or a heteroaromatic five-membered ring, R 1 and R 2 each independently represents a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, a halogen element, a cyano group, or a formyl group, and Ph represents a phenyl group.
And a photochromic compound that changes irreversibly from the ring-opened body (1) to the ring-closed body (1 ′) by irradiation of the recording light and emits light from the ring-closed body (1 ′) by irradiation of the reproduction light. A write-once optical recording molecular material comprising:
記録光の照射により情報が記録され、再生光の照射により前記情報が再生される表示材料であって、
下記一般式(1)で表される開環体もしくはその閉環体(1’)
Figure 2012056861
(上記した骨格構造(1)及び(1’)において、Xは、水素、ハロゲン、シアノ基、炭素数が1〜5の直鎖もしくは分岐型アルキル基、炭素数が1〜5のアルコキシ基、又はCHCOO−から成るグループの中から選択される置換基、Zは五員環(環上に炭素以外の原子を含んでも良い)の脂環式化合物、又は複素芳香族五員環、R、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基もしくはアルコキシ基、ハロゲン元素、シアノ基、又はホルミル基を表す。また、Phはフェニル基を表す。)
で表され、且つ、前記記録光の照射によって開環体(1)から閉環体(1’)に非可逆で変化し、前記再生光の照射により前記閉環体(1’)が発光するフォトクロミック化合物および樹脂材料を含む表示材料。
Information is recorded by irradiation of recording light, and the information is reproduced by irradiation of reproduction light,
Ring-opened or closed ring (1 ′) represented by the following general formula (1)
Figure 2012056861
(In the above skeletal structures (1) and (1 ′), X is hydrogen, halogen, a cyano group, a linear or branched alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Or a substituent selected from the group consisting of CH 3 COO—, Z is a five-membered ring (which may contain atoms other than carbon on the ring), or a heteroaromatic five-membered ring, R 1 and R 2 each independently represents a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, a halogen element, a cyano group, or a formyl group, and Ph represents a phenyl group.
And a photochromic compound that changes irreversibly from the ring-opened body (1) to the ring-closed body (1 ′) by irradiation of the recording light and emits light from the ring-closed body (1 ′) by irradiation of the reproduction light. And a display material including a resin material.
記録光の照射により情報が記録され、再生光の照射により前記情報が再生される蛍光ラベル材料であって、
下記一般式(1)で表される開環体もしくはその閉環体(1’)
Figure 2012056861
(上記した骨格構造(1)及び(1’)において、Xは、水素、ハロゲン、シアノ基、炭素数が1〜5の直鎖もしくは分岐型アルキル基、炭素数が1〜5のアルコキシ基、又はCHCOO−から成るグループの中から選択される置換基、Zは五員環(環上に炭素以外の原子を含んでも良い)の脂環式化合物、又は複素芳香族五員環、R、Rはそれぞれ独立して水素原子、炭素数1〜3のアルキル基もしくはアルコキシ基、ハロゲン元素、シアノ基、又はホルミル基を表す。また、Phはフェニル基を表す。)
で表され、且つ、前記記録光の照射によって開環体(1)から閉環体(1’)に非可逆で変化し、前記再生光の照射により前記閉環体(1’)が発光するフォトクロミック化合物を含むことを特徴とする蛍光ラベル材料。
A fluorescent label material in which information is recorded by irradiation of recording light and the information is reproduced by irradiation of reproduction light,
Ring-opened or closed ring (1 ′) represented by the following general formula (1)
Figure 2012056861
(In the above skeletal structures (1) and (1 ′), X is hydrogen, halogen, a cyano group, a linear or branched alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Or a substituent selected from the group consisting of CH 3 COO—, Z is a five-membered ring (which may contain atoms other than carbon on the ring), or a heteroaromatic five-membered ring, R 1 and R 2 each independently represents a hydrogen atom, an alkyl or alkoxy group having 1 to 3 carbon atoms, a halogen element, a cyano group, or a formyl group, and Ph represents a phenyl group.
And a photochromic compound that changes irreversibly from the ring-opened body (1) to the ring-closed body (1 ′) by irradiation of the recording light and emits light from the ring-closed body (1 ′) by irradiation of the reproduction light. A fluorescent label material comprising:
JP2010200091A 2010-09-07 2010-09-07 Photochromic compound, write-once optical recording molecular material, display material and fluorescent label material Active JP5700400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200091A JP5700400B2 (en) 2010-09-07 2010-09-07 Photochromic compound, write-once optical recording molecular material, display material and fluorescent label material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200091A JP5700400B2 (en) 2010-09-07 2010-09-07 Photochromic compound, write-once optical recording molecular material, display material and fluorescent label material

Publications (2)

Publication Number Publication Date
JP2012056861A true JP2012056861A (en) 2012-03-22
JP5700400B2 JP5700400B2 (en) 2015-04-15

Family

ID=46054390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200091A Active JP5700400B2 (en) 2010-09-07 2010-09-07 Photochromic compound, write-once optical recording molecular material, display material and fluorescent label material

Country Status (1)

Country Link
JP (1) JP5700400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159796A1 (en) * 2017-03-02 2018-09-07 公立大学法人大阪市立大学 Diarylethene compound, photochromic material and ultraviolet light sensor
CN113045597A (en) * 2021-03-25 2021-06-29 湖南大学 Visible light driven boron-doped thick photochromic material and preparation and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245579A (en) * 1995-03-10 1996-09-24 Masahiro Irie Diarylethene photochromic compound and optically recording material using the compound
JP2003064353A (en) * 2001-06-15 2003-03-05 Mitsubishi Chemicals Corp Photochromic material and color dosimeter using the same
KR20080038026A (en) * 2006-10-27 2008-05-02 (주)아이블포토닉스 Photochromic photopolymer composition and use thereof
JP2009062344A (en) * 2007-09-10 2009-03-26 Kyushu Univ Thermo-irreversible/reverse photochromic molecule material
JP2010064968A (en) * 2008-09-09 2010-03-25 Nara Institute Of Science & Technology Photochromic compound and write-once type optical recording molecule material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245579A (en) * 1995-03-10 1996-09-24 Masahiro Irie Diarylethene photochromic compound and optically recording material using the compound
JP2003064353A (en) * 2001-06-15 2003-03-05 Mitsubishi Chemicals Corp Photochromic material and color dosimeter using the same
KR20080038026A (en) * 2006-10-27 2008-05-02 (주)아이블포토닉스 Photochromic photopolymer composition and use thereof
JP2009062344A (en) * 2007-09-10 2009-03-26 Kyushu Univ Thermo-irreversible/reverse photochromic molecule material
JP2010064968A (en) * 2008-09-09 2010-03-25 Nara Institute Of Science & Technology Photochromic compound and write-once type optical recording molecule material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7014001988; ODO,Y. et al.: 'Photoswitching of fluorescence based on intramolecular electron transfer' Chemistry Letters 36(2), 2007, 240-241 *
JPN7014001989; JEONG,Y-C. et al.: 'Fatigue property of oxidized photochromic dithienylethene derivative for permanent optical recording' Bulletin of the Korean Chemical Society 26(11), 2005, 1675-1676 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159796A1 (en) * 2017-03-02 2018-09-07 公立大学法人大阪市立大学 Diarylethene compound, photochromic material and ultraviolet light sensor
JPWO2018159796A1 (en) * 2017-03-02 2020-02-06 公立大学法人大阪 Diarylethene compound, photochromic material, and ultraviolet sensor
JP7136466B2 (en) 2017-03-02 2022-09-13 公立大学法人大阪 Diarylethene compounds, photochromic materials, and ultraviolet sensors
CN113045597A (en) * 2021-03-25 2021-06-29 湖南大学 Visible light driven boron-doped thick photochromic material and preparation and application thereof

Also Published As

Publication number Publication date
JP5700400B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
ES2330566T3 (en) COLORS OF BASIC YELLOW AS COLORING COMPONENT FOR OPTICAL MEASUREMENT OF DATA RECORDING.
JP5738554B2 (en) Composition, optical data storage medium and method of using optical data storage medium
CN101031544B (en) Heterocyclic compounds and optical recording materials
JP5700400B2 (en) Photochromic compound, write-once optical recording molecular material, display material and fluorescent label material
JP5219076B2 (en) Photochromic compound and write-once optical recording molecular material
JP2002501497A (en) Writable and erasable high-density optical storage medium
JP2005520835A5 (en)
JPH0977767A (en) Chiral photochromic material
JP4488963B2 (en) Optical recording material
CN101415780B (en) Indolium compound and optical recording material
CN101410373A (en) Bridged cyanine compounds and optical recording materials containing the same
WO2006103254A1 (en) Betaines of squaric acid for use in optical layers for optical data recording
JPH07268227A (en) Phthalocyanine dye and optical recording medium made using the same
ES2302219T3 (en) COLORS OF METAL COMPLEX AZO, BASED ON ANTIPIRINE AND ITS USE IN OPTICAL LAYERS FOR THE RECORDING OF OPTICAL DATA.
JP5273640B2 (en) Thermal irreversible reverse photochromic molecular material
JPWO2005095521A1 (en) Monomethine dye compound, optical information recording medium thereof, and production method thereof
JP2008012884A (en) Optical information recording medium and its manufacturing method
JP4255230B2 (en) Photochromic material
JP5352986B2 (en) Metal complex compound, optical recording medium and optical recording material
JP2018020988A (en) Photochromic compound, temperature sensor material, temperature probe material, oxygen concentration sensor material and oxygen concentration probe material
JPH0596861A (en) Write-only read many optical disk for cd or cd-rom
JP2007035222A (en) Information recording medium, reproducing method and recording method
WO2007136051A1 (en) Optical recording material, optical recording medium using the optical recording material, and method for reproducing optical recording medium
JP2007168423A (en) Optical recording material
JP2006110877A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5700400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250