JP2012056856A - Production method of n-vinyl formamide - Google Patents

Production method of n-vinyl formamide Download PDF

Info

Publication number
JP2012056856A
JP2012056856A JP2010198824A JP2010198824A JP2012056856A JP 2012056856 A JP2012056856 A JP 2012056856A JP 2010198824 A JP2010198824 A JP 2010198824A JP 2010198824 A JP2010198824 A JP 2010198824A JP 2012056856 A JP2012056856 A JP 2012056856A
Authority
JP
Japan
Prior art keywords
formamide
evaporator
ethyl
substituted
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010198824A
Other languages
Japanese (ja)
Other versions
JP5621420B2 (en
Inventor
Koji Mori
康治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2010198824A priority Critical patent/JP5621420B2/en
Publication of JP2012056856A publication Critical patent/JP2012056856A/en
Application granted granted Critical
Publication of JP5621420B2 publication Critical patent/JP5621420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve productivity in a production method of N-vinyl formamide by thermal decomposition of N-(α-substituted-ethyl)formamide by reducing contamination of an evaporator for a raw material and reducing the frequency of washing.SOLUTION: The production method of N-vinyl formamide comprises evaporating N-(α-substituted-ethyl)formamide under reduced pressure in an evaporator and introducing the obtained vapor to a heated reaction tube to thermally decompose, wherein the N-(α-substituted-ethyl)formamide is mixed with formamide and evaporated in the evaporator.

Description

本発明は、N−ビニルホルムアミドの製造方法に関し、詳しくは、N−(α−置換−エチル)ホルムアミドの熱分解によるN−ビニルホルムアミドの製造方法に関する。   The present invention relates to a method for producing N-vinylformamide, and more particularly to a method for producing N-vinylformamide by thermal decomposition of N- (α-substituted-ethyl) formamide.

N−ビニルホルムアミドは、凝集剤、製紙用薬剤、繊維処理剤、塗料添加剤などとして広く利用されているポリビニルアミン及びポリアミジンの原料として有用な物質であり、N−(α−置換−エチル)ホルムアミドの熱分解によって製造される。   N-vinylformamide is a substance useful as a raw material for polyvinylamine and polyamidine, which are widely used as flocculants, papermaking agents, fiber treatment agents, paint additives, and the like. N- (α-substituted-ethyl) formamide Manufactured by thermal decomposition.

上記の熱分解は、減圧下、蒸発器でN−(α−置換−エチル)ホルムアミドを蒸発させ、得られた蒸気を加熱した反応管に導いて熱分解し、得られたガスを凝縮させる方法によって行われるが、この際、蒸発器や反応管が生成するハルツによって汚染され易いため、製造を中断して洗浄しなければならないという問題がある。   The above pyrolysis is a method in which N- (α-substituted-ethyl) formamide is evaporated with an evaporator under reduced pressure, the resulting vapor is led to a heated reaction tube, and pyrolyzed, and the resulting gas is condensed. However, at this time, since it is easily contaminated by Harz produced by the evaporator and the reaction tube, there is a problem that the production must be interrupted and cleaned.

従来、反応管の汚染を回避する技術については幾つかの提案がなされているが(特許文献1及び2)、蒸発器の汚染を回避する技術については未だ提案されていない。   Conventionally, some proposals have been made on techniques for avoiding contamination of the reaction tube (Patent Documents 1 and 2), but techniques for avoiding contamination of the evaporator have not yet been proposed.

特開平3−181451号公報JP-A-3-181451 特開平3−181452号公報Japanese Patent Laid-Open No. 3-181452

本発明は、上記実情に鑑みなされたものであり、その目的は、N−(α−置換−エチル)ホルムアミドの熱分解によるN−ビニルホルムアミドの製造方法において、原料の蒸発器の汚染を少なくして洗浄回数を減らすことにより、生産性を向上させることにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce contamination of a raw material evaporator in a method for producing N-vinylformamide by thermal decomposition of N- (α-substituted-ethyl) formamide. The purpose of this is to improve productivity by reducing the number of washings.

本発明者らは、鋭意検討した結果、原料のN−(α−置換−エチル)ホルムアミドに少量のホルムアミドを混合することにより、蒸発器の伝熱面の汚染を抑えることが出来ることを見出し本発明に到達した。   As a result of intensive studies, the present inventors have found that contamination of the heat transfer surface of the evaporator can be suppressed by mixing a small amount of formamide with the raw material N- (α-substituted-ethyl) formamide. The invention has been reached.

すなわち、本発明の要旨は、減圧下、蒸発器でN−(α−置換−エチル)ホルムアミドを蒸発させ、得られた蒸気を加熱した反応管に導いて熱分解するN−ビニルホルムアミドの製造方法において、N−(α−置換−エチル)ホルムアミドにホルムアミドを混合して蒸発器で蒸発させることを特徴とするN−ビニルホルムアミドの製造方法に存する。   That is, the gist of the present invention is to produce N-vinylformamide by evaporating N- (α-substituted-ethyl) formamide with an evaporator under reduced pressure, and introducing the resulting vapor into a heated reaction tube to thermally decompose. In N- (α-substituted-ethyl) formamide mixed with formamide and evaporated in an evaporator.

本発明によれば原料の蒸発器の汚染を抑えることが可能になる。   According to the present invention, contamination of the raw material evaporator can be suppressed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、出発原料として使用されるN−(α−置換−エチル)ホルムアミドのエチル基のα−置換基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、s−ブトキシ基、t−ブトキシ基などの低級アルコキシ基又はシアノ基などが挙げられる。これらの中では、メトキシ基またはシアノ基が好ましい、すなわち、出発原料としては、N−(α−メトキシエチル)ホルムアミド又はN−(α−シアノエチル)ホルムアミドが好ましい。特に、N−(α−メトキシエチル)ホルムアミドが好ましい。   In the present invention, examples of the α-substituent of the ethyl group of N- (α-substituted-ethyl) formamide used as a starting material include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n- Examples thereof include lower alkoxy groups such as butoxy group, s-butoxy group and t-butoxy group, or cyano group. Among these, a methoxy group or a cyano group is preferable, that is, N- (α-methoxyethyl) formamide or N- (α-cyanoethyl) formamide is preferable as a starting material. In particular, N- (α-methoxyethyl) formamide is preferable.

熱分解は、公知の方法に従って、減圧下、蒸発器でN−(α−置換−エチル)ホルムアミドを蒸発させ、得られた蒸気を加熱した反応管に導いて熱分解し、得られたガスを凝縮させる方法によって行われる。   In the thermal decomposition, N- (α-substituted-ethyl) formamide is evaporated in an evaporator under a reduced pressure according to a known method, and the resulting vapor is led to a heated reaction tube to be thermally decomposed. This is done by the method of condensation.

蒸発器としては、濡れ壁式蒸発器、回転式薄膜蒸発器、蒸発釜、内部にコイル等を有する蒸発釜、シェル&チューブ対応の熱交換器などが例示される。これらの中では、蒸発率が高く、滞留時間の短い形式のものが好ましく、流下式の濡れ壁式蒸発器や回転式薄膜蒸発器が好ましい。蒸発器の運転圧力は、通常3〜600mmHg、好ましくは50〜500mmHg、運転温度(内壁温度)は、通常80〜210℃、好ましくは100〜200℃である。   Examples of the evaporator include a wet wall evaporator, a rotary thin film evaporator, an evaporator, an evaporator having a coil and the like, a shell and tube compatible heat exchanger, and the like. Among these, a type having a high evaporation rate and a short residence time is preferable, and a flow-down type wet wall evaporator and a rotary thin film evaporator are preferable. The operating pressure of the evaporator is usually 3 to 600 mmHg, preferably 50 to 500 mmHg, and the operating temperature (inner wall temperature) is usually 80 to 210 ° C, preferably 100 to 200 ° C.

反応管としては、例えば、加熱手段を備えた空塔または充填塔が使用される。反応器の温度(内壁温度)は、通常200〜600℃、好ましくは300〜500℃である。また、滞留時間は通常0.01〜20秒、好ましくは0.1〜4秒である。   As the reaction tube, for example, an empty tower or a packed tower equipped with heating means is used. The temperature (inner wall temperature) of the reactor is usually 200 to 600 ° C, preferably 300 to 500 ° C. The residence time is usually 0.01 to 20 seconds, preferably 0.1 to 4 seconds.

本発明の最大の特徴は、N−(α−置換−エチル)ホルムアミドにホルムアミドを混合して蒸発器で蒸発させる点にある。   The greatest feature of the present invention is that N- (α-substituted-ethyl) formamide is mixed with formamide and evaporated in an evaporator.

N−(α−置換−エチル)ホルムアミドに混合するホルムアミドの量は、通常0.1重量%以上、好ましくは0.5重量%以上、更に好ましくは1重量%以上である。ホルムアミドの量が0.1重量%未満の場合は蒸発器の伝熱面の汚染を抑える効果が小さい。ホルムアミドの混合量の上限は、特に制限されないが、余りにも多い場合は、蒸発器でホルムアミドも蒸発させることに伴ってN−ビニルホルムアミドの生産性が低下し、熱分解後のN−ビニルホルムアミドの純度が低下し、N−ビニルホルムアミドの精製の負荷が増大するため、通常30重量%である。   The amount of formamide to be mixed with N- (α-substituted-ethyl) formamide is usually 0.1% by weight or more, preferably 0.5% by weight or more, and more preferably 1% by weight or more. When the amount of formamide is less than 0.1% by weight, the effect of suppressing contamination of the heat transfer surface of the evaporator is small. The upper limit of the mixing amount of formamide is not particularly limited, but if it is too large, the productivity of N-vinylformamide decreases as the formamide is evaporated in the evaporator, and the N-vinylformamide after pyrolysis is reduced. The purity is usually 30% by weight because the purity decreases and the purification load of N-vinylformamide increases.

N−(α−置換−エチル)ホルムアミドにホルムアミドを混合することにより、蒸発器の伝熱面の汚染が抑制される理由は、必ずしも明確ではないが、汚染物質(ハルツ)の溶解度がホルムアミド存在により向上するためであろうと考えられる。   The reason why contamination of the heat transfer surface of the evaporator is suppressed by mixing formamide with N- (α-substituted-ethyl) formamide is not necessarily clear, but the solubility of the contaminant (Hartz) is due to the presence of formamide. It is thought to be for improvement.

また、N−(α−置換−エチル)ホルムアミドとしてN−(α−メトキシエチル)ホルムアミドを使用した場合、ホルムアミドはN−(α−メトキシエチル)ホルムアミドと沸点が近く蒸発挙動が近いため伝熱面の下端でも洗浄効果があるメリットがある。この場合、伝熱面の蒸発率をあまり高くしすぎると、ホルムアミドを添加しても伝熱面下端に汚染が生ずる。従って、蒸発率(フィード量に対する蒸発量の比率)は、通常99%以下、好ましくは95%以下に抑えるのがよい。なお、N−(α−置換−エチル)ホルムアミドに混合されたホルムアミドは、熱分解後にN−ビニルホルムアミドから容易に分離することが出来る。なお、上記の蒸発率は、以下の式で求められる。   In addition, when N- (α-methoxyethyl) formamide is used as N- (α-substituted-ethyl) formamide, the formamide has a boiling point close to that of N- (α-methoxyethyl) formamide, so that the heat transfer surface is close. There is an advantage that there is a cleaning effect even at the lower end of. In this case, if the evaporation rate of the heat transfer surface is too high, contamination occurs at the lower end of the heat transfer surface even if formamide is added. Therefore, the evaporation rate (ratio of the evaporation amount to the feed amount) is usually 99% or less, preferably 95% or less. The formamide mixed with N- (α-substituted-ethyl) formamide can be easily separated from N-vinylformamide after thermal decomposition. In addition, said evaporation rate is calculated | required with the following formula | equation.

[数1]
蒸発率(%)=(1−未蒸発量/フィード量)×100
[Equation 1]
Evaporation rate (%) = (1−non-evaporated amount / feed amount) × 100

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

(蒸発器および反応管)
蒸発器は、3本の垂直管(内径25mm、長さ1m)の外部に160〜190℃のシリコンオイルが循環して加熱する垂直濡れ壁式蒸発器を使用した。反応管は、外部に電気ヒーターを備えた空塔(内径50mm、長さ1.5m)を使用した。蒸発器の出口と反応管の入口とは、外部に電気ヒーターを備えた連結管(内径50mm)により接続した。
(Evaporator and reaction tube)
The evaporator used was a vertical wet wall evaporator in which silicon oil of 160 to 190 ° C. was circulated and heated outside three vertical tubes (inner diameter 25 mm, length 1 m). As the reaction tube, an empty column (inner diameter: 50 mm, length: 1.5 m) equipped with an electric heater was used. The outlet of the evaporator and the inlet of the reaction tube were connected to each other by a connecting tube (inner diameter: 50 mm) equipped with an electric heater.

(成分分析)
N−(α−メトキシエチル)ホルムアミド、N−ビニルホルムアミド、ホルムアミドは液体クロマトグラフィーで絶対検量線法にて定量した。条件は以下の通りである。
(Component analysis)
N- (α-methoxyethyl) formamide, N-vinylformamide, and formamide were quantified by an absolute calibration curve method using liquid chromatography. The conditions are as follows.

カラム:「MCIGEL ODS」(1HU 5μ)(4.6mmφ×150mm)
溶離液:0.01M−NaHPO水溶液(脱気して使用)
検出器:UV200nm及び220nm
Column: “MCIGEL ODS” (1HU 5 μ) (4.6 mmφ × 150 mm)
Eluent: 0.01M-Na 2 HPO 4 aqueous solution (degassed by using)
Detector: UV 200nm and 220nm

実施例1:
蒸発器の運転温度(内壁温度)は160〜190℃、反応管の温度(内壁温度)は450℃、連結管の温度(内壁温度)は220℃とした。液状のN−(α−メトキシエチル)ホルムアミドに1.5重量%のホルムアミドを添加し、蒸発器の上部から2Kg/hrの供給速度で供給し、蒸発器の内壁を流下させて蒸発させ、反応管へ導いて熱分解させ、生成した熱分解ガスを急冷液化し、熱分解液を取得した。蒸発器から反応管の全体は反応管で120mmHgとなるように内部を減圧にし、2週間の連続運転を行った。蒸発器でのワンパスの蒸発率は90%であった。2週間の連続運転の後、蒸発器を解体してチェックした結果、3本の垂直管の内部はきれいなままで付着物はみられなかった。
Example 1:
The operating temperature (inner wall temperature) of the evaporator was 160 to 190 ° C, the temperature of the reaction tube (inner wall temperature) was 450 ° C, and the temperature of the connecting tube (inner wall temperature) was 220 ° C. 1.5% by weight of formamide is added to liquid N- (α-methoxyethyl) formamide and fed from the top of the evaporator at a feeding rate of 2 Kg / hr, and the inner wall of the evaporator is allowed to flow down to evaporate. It was led to a tube and thermally decomposed, and the generated pyrolysis gas was rapidly liquefied to obtain a pyrolysis solution. The inside of the reaction tube from the evaporator was decompressed so that the entire reaction tube would be 120 mmHg, and continuous operation was performed for 2 weeks. The one-pass evaporation rate in the evaporator was 90%. After two weeks of continuous operation, the evaporator was disassembled and checked. As a result, the inside of the three vertical tubes remained clean and no deposits were observed.

実施例2:
実施例1において、ホルムアミドの添加量を3重量%に変更した以外は、実施例1と同一条件で2週間の連続運転を行った。ワンパスの蒸発率は90%であった。また、2週間の連続運転の後、蒸発器を解体してチェックした結果、3本の垂直管の内部はきれいなままで付着物はみられなかった。
Example 2:
In Example 1, continuous operation was performed for 2 weeks under the same conditions as in Example 1 except that the amount of formamide added was changed to 3% by weight. The one-pass evaporation rate was 90%. Also, after two weeks of continuous operation, the evaporator was disassembled and checked. As a result, the inside of the three vertical tubes remained clean and no deposits were seen.

実施例3:
実施例1において、ホルムアミドの添加量を15重量%に変更した以外は、実施例1と同一条件で2週間の連続運転を行った。ワンパスの蒸発率は90%であった。また、2週間の連続運転の後、蒸発器を解体してチェックした結果、3本の垂直管の内部はきれいなままで付着物はみられなかった。
Example 3:
In Example 1, continuous operation was performed for 2 weeks under the same conditions as in Example 1 except that the amount of formamide added was changed to 15% by weight. The one-pass evaporation rate was 90%. Also, after two weeks of continuous operation, the evaporator was disassembled and checked. As a result, the inside of the three vertical tubes remained clean and no deposits were seen.

上記で得られた熱分解液の軽沸分を除去した後、薄膜蒸発器にて蒸発させ、N−ビニルホルムアミド67重量%、ホルムアミド31重量%、N−(α−メトキシエチル)ホルムアミド2重量%の混合液を得た。更に、この混合液を、精留塔(10段)で3mmHg、還流比2の条件で連続精留し、純度98重量%のN−ビニルホルムアミドを得た。   After removing the light boiling component of the pyrolysis solution obtained above, it was evaporated in a thin film evaporator, N-vinylformamide 67% by weight, formamide 31% by weight, N- (α-methoxyethyl) formamide 2% by weight. To obtain a mixed solution. Further, this mixed solution was continuously rectified in a rectification column (10 stages) under the conditions of 3 mmHg and a reflux ratio of 2 to obtain N-vinylformamide having a purity of 98% by weight.

比較例1:
実施例1において、N−(α−メトキシエチル)ホルムアミドへのホルムアミドの添加を止めた以外は、、実施例1と同一条件で2週間の連続運転を行った。ワンパスの蒸発率は90%であった。また、2週間の連続運転の後、蒸発器を解体してチェックした結果、3本の垂直管の内部の主に下端から30cm部分に茶褐色のタール状物質が付着していると共に、中間部にも一部褐色の塊状物がみられた。これらの附着物を掻き取って重量を測定したところ15gであった。
Comparative Example 1:
In Example 1, continuous operation for 2 weeks was performed under the same conditions as in Example 1 except that the addition of formamide to N- (α-methoxyethyl) formamide was stopped. The one-pass evaporation rate was 90%. In addition, after two weeks of continuous operation, the evaporator was disassembled and checked. As a result, brown tar-like substances adhered to the 30 cm portion mainly from the lower end inside the three vertical tubes, and in the middle portion. Some of them were brown lumps. These attachments were scraped off and weighed to find 15 g.

Claims (3)

減圧下、蒸発器でN−(α−置換−エチル)ホルムアミドを蒸発させ、得られた蒸気を加熱した反応管に導いて熱分解するN−ビニルホルムアミドの製造方法において、N−(α−置換−エチル)ホルムアミドにホルムアミドを混合して蒸発器で蒸発させることを特徴とするN−ビニルホルムアミドの製造方法。   In a method for producing N-vinylformamide, N- (α-substituted-ethyl) formamide is evaporated in an evaporator under reduced pressure, and the resulting vapor is introduced into a heated reaction tube and thermally decomposed. A method for producing N-vinylformamide, comprising mixing formamide with ethyl) formamide and evaporating with an evaporator. N−(α−置換−エチル)ホルムアミドがN−(α−メトキシエチル)ホルムアミドである請求項1に記載の製造方法。   The production method according to claim 1, wherein the N- (α-substituted-ethyl) formamide is N- (α-methoxyethyl) formamide. 蒸発器における蒸発率が99重量%以下である請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the evaporation rate in the evaporator is 99% by weight or less.
JP2010198824A 2010-09-06 2010-09-06 Method for producing N-vinylformamide Active JP5621420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198824A JP5621420B2 (en) 2010-09-06 2010-09-06 Method for producing N-vinylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198824A JP5621420B2 (en) 2010-09-06 2010-09-06 Method for producing N-vinylformamide

Publications (2)

Publication Number Publication Date
JP2012056856A true JP2012056856A (en) 2012-03-22
JP5621420B2 JP5621420B2 (en) 2014-11-12

Family

ID=46054385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198824A Active JP5621420B2 (en) 2010-09-06 2010-09-06 Method for producing N-vinylformamide

Country Status (1)

Country Link
JP (1) JP5621420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019528324A (en) * 2016-08-29 2019-10-10 タミンコ・ビー・ヴイ・ビー・エイ Synthesis of 1-hydroxyethylformamide and N-vinylformamide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231901A2 (en) * 1986-02-05 1987-08-12 BASF Aktiengesellschaft Process for the purification of N-vinyl formamide and poly-N-vinyl formamide prepared therefrom
JPH05301851A (en) * 1992-04-22 1993-11-16 Mitsubishi Kasei Corp Production of n-vinyl formamide
JPH0641034A (en) * 1992-06-03 1994-02-15 Basf Ag Method for stabilizing n-vinylformamide
JPH06122660A (en) * 1992-09-01 1994-05-06 Mitsubishi Kasei Corp N-vinylformamide composition
JPH101462A (en) * 1996-06-14 1998-01-06 Mitsubishi Chem Corp Preservation and purification of n-vinylcarboxylic acid amide
JPH10175932A (en) * 1996-10-16 1998-06-30 Mitsubishi Chem Corp Purification of n-vinylcarb0xylic acid amide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231901A2 (en) * 1986-02-05 1987-08-12 BASF Aktiengesellschaft Process for the purification of N-vinyl formamide and poly-N-vinyl formamide prepared therefrom
JPH1081654A (en) * 1986-02-05 1998-03-31 Basf Ag Distillate of n-vinylformamide
JPH05301851A (en) * 1992-04-22 1993-11-16 Mitsubishi Kasei Corp Production of n-vinyl formamide
JPH0641034A (en) * 1992-06-03 1994-02-15 Basf Ag Method for stabilizing n-vinylformamide
US5326909A (en) * 1992-06-03 1994-07-05 Basf Aktiengesellschaft Stabilization of monomeric N-vinylformamide
JPH06122660A (en) * 1992-09-01 1994-05-06 Mitsubishi Kasei Corp N-vinylformamide composition
US5554792A (en) * 1992-09-01 1996-09-10 Mitsubishi Kasei Corporation N-vinylformamide compositions
JPH101462A (en) * 1996-06-14 1998-01-06 Mitsubishi Chem Corp Preservation and purification of n-vinylcarboxylic acid amide
JPH10175932A (en) * 1996-10-16 1998-06-30 Mitsubishi Chem Corp Purification of n-vinylcarb0xylic acid amide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019528324A (en) * 2016-08-29 2019-10-10 タミンコ・ビー・ヴイ・ビー・エイ Synthesis of 1-hydroxyethylformamide and N-vinylformamide
JP7055138B2 (en) 2016-08-29 2022-04-15 タミンコ・ビー・ヴイ Synthesis of 1-hydroxyethylformamide and N-vinylformamide

Also Published As

Publication number Publication date
JP5621420B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
TWI802566B (en) Method for distilling dimethyl sulfoxide, and multistage distillation column
US20100069662A1 (en) Integrated process and apparatus for preparing esters of methacrylic acid from acetone and hydrocyanic acid
BRPI0714995A2 (en) process for the recovery of (meth) acrylic acid without use of an azeotropic solvent
AU2007331688B2 (en) Method for producing acetone cyanhydrin and the subsequent products thereof by specific cooling
US10081590B2 (en) Device and process for producing undecylenic acid methyl ester using methyl ricinoleate as raw material
US20150232964A1 (en) Method of purifying sodium metal
AU2007327787B2 (en) Process and apparatus for preparing alkyl esters of methacrylic acid
CN1914166A (en) Method for hydrocyanation
CN103193672B (en) Distillation method of oxime
BR112014028261B1 (en) method for controlling the water content in a pyrolysis liquid, and apparatus for carrying out the process
JP5621420B2 (en) Method for producing N-vinylformamide
TWI488834B (en) Purification of acetonitrile
JP6124374B2 (en) Method for producing isopropyl alcohol
AU2007327789B2 (en) Process for preparing cyanohydrins and their use in the preparation of alkyl esters of methacrylic acid
US20190039986A1 (en) Method Of Industrially Producing Monochloroacetic Acid
CN106892840B (en) A method of purification para-Phthalonitrile
JP5530516B2 (en) Chemical equipment
CN103922891B (en) Energy integration method for producing benzyl chloride through series connection of two stages of reactive distillation
CN106831338B (en) Preparation method of high-purity difluoroethanol
WO2018084177A1 (en) Method for producing n-vinylformamide
CN106748875A (en) A kind of acethydrazide production technology
CN202898016U (en) Equipment for reducing impurity content in iodine pentafluoride
CN110922322A (en) Clean production method for improving reaction yield of 2, 4-dichloroacetophenone
JP2017190287A (en) Method for producing N-vinylformamide
CN110256291A (en) The separation method of benzene dicarbonitrile in the high-temperature mixed gas that a kind of ammoxidation reaction generates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250