JP2012056809A - Perovskite-type conductive oxide material, and electrode using the same - Google Patents

Perovskite-type conductive oxide material, and electrode using the same Download PDF

Info

Publication number
JP2012056809A
JP2012056809A JP2010202670A JP2010202670A JP2012056809A JP 2012056809 A JP2012056809 A JP 2012056809A JP 2010202670 A JP2010202670 A JP 2010202670A JP 2010202670 A JP2010202670 A JP 2010202670A JP 2012056809 A JP2012056809 A JP 2012056809A
Authority
JP
Japan
Prior art keywords
perovskite
conductive oxide
type conductive
oxide material
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010202670A
Other languages
Japanese (ja)
Inventor
Hisashi Kozuka
久司 小塚
Tomoko Hishida
智子 菱田
Katsuya Yamagiwa
勝也 山際
Kazue Obayashi
和重 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010202670A priority Critical patent/JP2012056809A/en
Publication of JP2012056809A publication Critical patent/JP2012056809A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perovskite-type conductive oxide material containing Co and exhibiting a high conductivity; and to provide an electrode using the same.SOLUTION: The perovskite-type conductive oxide material is represented by (REAE)CoO(RE: a rare earth element, AE: an alkaline earth element, 0<X<1), and has a full width at half maximum of a Co 2p peak by XPS of ≥2.967 eV.

Description

本発明は、Coを含むペロブスカイト型導電性酸化物材料、及びそれを用いた電極に関する。   The present invention relates to a perovskite-type conductive oxide material containing Co and an electrode using the same.

従来から、耐熱性導電酸化物材料として、LaCo系ペロブスカイト型複合酸化物が知られている(特許文献1,2、非特許文献1)。例えば、特許文献1には、(La,Sr)CoO3の比抵抗の変化が室温から1000℃の温度域で少ないことが記載されている。又、非特許文献1には、(La,Sr)CoO3を大気中、1200℃で7日間焼成して製造し、300℃の比抵抗が0.1〜1/1000(Ω・cm)程度(導電率で1000 S/cm程度)となることが記載されている。
(La,Sr)CoO3が高い導電率を示す理由として、Coの異常原子価、酸素Oの欠損又は過剰が考えられている。つまり、Co3+の一部がCo4+となり、酸素が量論組成である3からずれ、伝導を司る電子、ホールに影響していることが考えられる。また、酸素量とCoの価数には相関があり、これらは連動して変化する。なお、高導電率の導電性酸化物材料は導電性材料として利用可能であり、例えば、アルミナ、ジルコニア等のセラミック体上に電極として形成し、物理量センサ、化学量センサ、ヒータ等に適用することができる。
Conventionally, LaCo perovskite complex oxides are known as heat-resistant conductive oxide materials (Patent Documents 1 and 2, Non-Patent Document 1). For example, Patent Document 1 describes that the change in specific resistance of (La, Sr) CoO 3 is small in a temperature range from room temperature to 1000 ° C. Non-Patent Document 1 discloses that (La, Sr) CoO 3 is manufactured by firing at 1200 ° C. for 7 days in the atmosphere, and the specific resistance at 300 ° C. is about 0.1 to 1/1000 (Ω · cm) (conductivity) The rate is about 1000 S / cm).
As the reason why (La, Sr) CoO 3 exhibits high conductivity, Co anomalous valence, oxygen O deficiency or excess are considered. That is, it is considered that a part of Co 3+ becomes Co 4+ , and oxygen deviates from the stoichiometric composition of 3, affecting electrons and holes that control conduction. In addition, there is a correlation between the amount of oxygen and the valence of Co, and these change in conjunction. Note that a conductive oxide material having a high conductivity can be used as a conductive material. For example, it is formed as an electrode on a ceramic body such as alumina or zirconia and applied to a physical quantity sensor, a chemical quantity sensor, a heater, or the like. Can do.

特開昭51-52409号公報JP-A-51-52409 特開2000-252104号公報JP 2000-252104 A 大谷ら、" Electrical resistivity and thermopower of (La1-xSrx)MnO3 and (La1-xSrx)CoO3 at elevated temperatures ",Journal of the European Ceramic Society 20, p2721-2726(2000),(Fig.5)Otani et al. "Electrical electrically and thermopower of (La1-xSrx) MnO3 and (La1-xSrx) CoO3 at elevated temperatures", Journal of the European Ceramic Society 20, p2721-2726 (2000), (Fig.5)

上記したように、一般式(RE,AE)CoO3(RE:希土類元素,AE:アルカリ土類元素)で表されるペロブスカイト型酸化物の導電率は酸素量とCoの価数によって大きく変化するため、その作製(合成)条件の影響を受け、仮に同一の組成であっても作製条件が異なれば所望の導電率が得られないという問題がある。
又、このペロブスカイト型酸化物の組成や作製条件を調整して、1500 S/cm以上の高い導電率を得ようとする際には、条件変更の度に試料を作製して導電率を測定する必要があり、多大の労力及びコストを要している。従って、当該酸化物の導電率に影響を与えるCoの価数を直接見積もることが出来る指標があれば有利である。
そこで、本発明は、(RE1-xAEx)CoO3(RE:希土類元素、AE:アルカリ土類元素、0<x<1)で表され、高導電率を示すペロブスカイト型導電性酸化物材料及びそれを用いた電極を提供することを目的とする。
As described above, the conductivity of the perovskite oxide represented by the general formula (RE, AE) CoO 3 (RE: rare earth element, AE: alkaline earth element) varies greatly depending on the amount of oxygen and the valence of Co. Therefore, under the influence of the production (synthesis) conditions, there is a problem that even if the composition is the same, a desired conductivity cannot be obtained if the production conditions are different.
Also, when trying to obtain a high conductivity of 1500 S / cm or more by adjusting the composition and manufacturing conditions of this perovskite oxide, a sample is prepared and the conductivity is measured each time the conditions are changed. It is necessary and requires a great deal of labor and cost. Therefore, it is advantageous to have an index that can directly estimate the Co valence that affects the conductivity of the oxide.
Accordingly, the present invention relates to a perovskite-type conductive oxide represented by (RE 1-x AE x ) CoO 3 (RE: rare earth element, AE: alkaline earth element, 0 <x <1) and exhibiting high conductivity. An object is to provide a material and an electrode using the material.

上記課題を解決するため、本発明のペロブスカイト型導電性酸化物材料は、(RE1-xAEx)CoO3(RE:希土類元素、AE:アルカリ土類元素、0<x<1)で表され、XPSによるCo2pピークの半値全幅が2.967eV以上であることを特徴とする。
このような酸化物材料によれば、Co2pピークの半値全幅によって導電率に影響を与えるCoの価数を直接見積もることができ、多大の試行錯誤を経なくとも高導電率を示すペロブスカイト型導電性酸化物材料の組成や製造条件を見出すことができる。そして、Co2pピークの半値全幅を管理することにより、高導電率を示すペロブスカイト型導電性酸化物材料を容易かつ安定して得ることができる。
In order to solve the above problems, the perovskite-type conductive oxide material of the present invention is represented by (RE 1-x AE x ) CoO 3 (RE: rare earth element, AE: alkaline earth element, 0 <x <1). The full width at half maximum of the Co2p peak by XPS is 2.967 eV or more.
According to such an oxide material, it is possible to directly estimate the Co valence which affects the conductivity by the full width at half maximum of the Co2p peak, and the perovskite type conductivity exhibiting high conductivity without much trial and error. The composition and manufacturing conditions of the oxide material can be found. By managing the full width at half maximum of the Co2p peak, a perovskite-type conductive oxide material exhibiting high conductivity can be obtained easily and stably.

本発明のペロブスカイト型導電性酸化物材料において、直流4端子法にて測定した20℃における導電率が1500 S/cm以上であることが好ましい。
このような酸化物材料によれば、より高い導電率を示すペロブスカイト型導電性酸化物材料が得られる。
In the perovskite-type conductive oxide material of the present invention, the conductivity at 20 ° C. measured by a direct current four-terminal method is preferably 1500 S / cm or more.
According to such an oxide material, a perovskite type conductive oxide material exhibiting higher conductivity can be obtained.

本発明のペロブスカイト型導電性酸化物材料は、大気雰囲気下又は酸素雰囲気下で、1250〜1450℃で1〜5時間焼成してなることが好ましい。
このような酸化物材料によれば、高導電率を示すペロブスカイト型導電性酸化物材料を容易かつ安定して製造することができる。
The perovskite-type conductive oxide material of the present invention is preferably formed by firing at 1250 to 1450 ° C. for 1 to 5 hours in an air atmosphere or an oxygen atmosphere.
According to such an oxide material, a perovskite-type conductive oxide material exhibiting high conductivity can be easily and stably produced.

本発明の電極は、前記ペロブスカイト型導電性酸化物材料が用いられ、セラミック体上に形成されたものである。   The electrode of the present invention is formed on a ceramic body using the perovskite type conductive oxide material.

この発明によれば、(RE1-xAEx)CoO3(RE:希土類元素、AE:アルカリ土類元素、0<x<1)で表され、高導電率を示すペロブスカイト型導電性酸化物材料が得られる。 According to the present invention, a perovskite-type conductive oxide represented by (RE 1-x AE x ) CoO 3 (RE: rare earth element, AE: alkaline earth element, 0 <x <1) and exhibiting high conductivity A material is obtained.

実施例1の試料のXPSによるCo2pピークを示す図である。3 is a diagram showing a Co2p peak by XPS of a sample of Example 1. FIG. 各実施例の試料のCo2pピークの半値全幅と導電率との関係を示す図である。It is a figure which shows the relationship between the full width at half maximum of the Co2p peak of the sample of each Example, and electrical conductivity.

以下、本発明の実施形態について説明する。
本発明の実施形態に係るペロブスカイト型導電性酸化物材料は、(RE1-xAEx)CoO3(RE:希土類元素、AE:アルカリ土類元素、0<x<1)で表される基本組成を有している。(RE1-xAEx)CoO3は、Coの異常原子価、酸素Oの欠損又は過剰により、高い導電率を示す組成(材料)である。つまり、Co3+の一部がCo4+となり、酸素が量論組成である3からずれ、伝導を司る電子、ホールに影響していることが考えられる。また、酸素量とCoの価数には相関があり、これらは連動して変化する。つまり、上記ペロブスカイト型酸化物の導電率は酸素量とCoの価数によって大きく変化するため、その作製(合成)条件の影響を受け、仮に同一の組成であっても作製条件が異なれば所望の導電率が得られない。
このようなことから、本発明者は、上記ペロブスカイト型酸化物の導電率に影響を与えるCoの価数を直接見積もることが出来る指標として、XPSによる電子状態解析によって得られたCo2pピークの半値全幅を見出した。ここで、Co2pピークは、Coの2p電子軌道に由来するXPSのピークである。
Hereinafter, embodiments of the present invention will be described.
The perovskite-type conductive oxide material according to the embodiment of the present invention has a basic structure represented by (RE 1-x AE x ) CoO 3 (RE: rare earth element, AE: alkaline earth element, 0 <x <1) Has a composition. (RE 1-x AE x ) CoO 3 is a composition (material) exhibiting high conductivity due to the abnormal valence of Co and the deficiency or excess of oxygen O. That is, it is considered that a part of Co 3+ becomes Co 4+ , and oxygen deviates from the stoichiometric composition of 3, affecting electrons and holes that control conduction. In addition, there is a correlation between the amount of oxygen and the valence of Co, and these change in conjunction. In other words, the conductivity of the perovskite oxide varies greatly depending on the amount of oxygen and the valence of Co. Therefore, it is affected by its production (synthesis) conditions. The conductivity cannot be obtained.
For this reason, the present inventor used the full width at half maximum of the Co2p peak obtained by XPS electronic state analysis as an index that can directly estimate the Co valence that affects the conductivity of the perovskite oxide. I found. Here, the Co2p peak is an XPS peak derived from the Co 2p electron orbit.

上記したCo2pピークの半値全幅(FWHM)が広いほどCo4+が多く、狭いほどCo3+が多くなるため、Coの価数を反映し、Co価数の変化挙動を直接評価することができる。そして、上記ペロブスカイト型酸化物のCo2pピークの半値全幅が2.967eV以上となると、直流4端子法にて測定した20℃における導電率1500 S/cm以上となり、導電率に優れる。 The larger the full width at half maximum (FWHM) of the Co2p peak is, the more Co 4+ is, and the smaller the Co2p peak is, the more Co 3+ is. Therefore, it is possible to directly evaluate the Co valence change behavior reflecting the Co valence. . When the full width at half maximum of the Co2p peak of the perovskite oxide is 2.967 eV or more, the conductivity at 20 ° C. measured by the direct current four-terminal method is 1500 S / cm or more, and the conductivity is excellent.

なお、実際のCo2pピークの半値全幅の測定は次のようにして行うことができる。まず、試料のXPS(X線光電子分光)を測定する。XPSでは、構成元素の価数を結合エネルギーのシフトにより評価することができる。Co2pピークの3+/4+の結合エネルギー差は、構成元素に関わらず一定値をとる。従って、Coの価数がホールドープにより3+(3価)→4+(4価)と変化すれば、Co2pピークは、それぞれの価数に帰属される複数の異なる結合エネルギーのピークが複合したブロードなピークとして観察される。又、Co2pピークは、2つの分光学的準位(2p3/2,2p1/2)とそれに付随するサテライトピークを有している(図1参照、2つのピークA,Bのうち、ピークAがCo2p3/2に由来するピーク、ピークBがCo2p1/2に由来するピークであり、ピークC,Dがそれに付随するサテライトピークに該当)。なお、図1は、後述する実施例1の試料のXPSによるCo2pピークである。
従って、サテライトピークを含むCo2pピーク領域(結合エネルギー)として、775eV〜810eVの範囲のXPSスペクトルを、公知のShirley法によってバックグランド補正した後、Co2p3/2の半値全幅(FWHM)を求めてCo2pピークの半値全幅とする。なお、Co2p1/2ピークは、ピーク強度が小さく(Co3/2の1/2)、精度に欠けるため、半値全幅の測定に用いない。半値全幅の値は小数点以下3桁まで有効である。
なお、結合エネルギー補正(図1の横軸の補正)はC1s C-C結合 284.8eVで補正を行う。XPSの測定条件は、試料の100μmφの破断面を測定エリアとし、X線源をモノクロAlKα線 25W 15KV、光電子取り出し角度45°とする。XPS装置としては、アルバック・ファイ(ULVAC-PHI)社製の型番PHI Quantera SXMTMが例示される。
The actual full width at half maximum of the Co2p peak can be measured as follows. First, XPS (X-ray photoelectron spectroscopy) of the sample is measured. In XPS, the valence of a constituent element can be evaluated by a shift in bond energy. The 3 + / 4 + bond energy difference of the Co2p peak takes a constant value regardless of the constituent elements. Therefore, if the valence of Co changes from 3+ (trivalent) to 4+ (tetravalent) due to hole doping, the Co2p peak is a broad combination of multiple different binding energy peaks attributed to each valence. Observed as a peak. The Co2p peak has two spectroscopic levels (2p3 / 2,2p1 / 2) and satellite peaks associated therewith (see FIG. 1). Peaks derived from Co2p3 / 2, peak B is a peak derived from Co2p1 / 2, and peaks C and D correspond to satellite peaks associated therewith). In addition, FIG. 1 is a Co2p peak by XPS of the sample of Example 1 described later.
Therefore, as a Co2p peak region (binding energy) including satellite peaks, XPS spectrum in the range of 775 eV to 810 eV is corrected for background by the well-known Shirley method, and then the full width at half maximum (FWHM) of Co2p3 / 2 is obtained to obtain the Co2p peak. The full width at half maximum. Note that the Co2p1 / 2 peak has a small peak intensity (1/2 of Co3 / 2) and lacks accuracy, so it is not used for measuring the full width at half maximum. The full width at half maximum is valid up to 3 digits after the decimal point.
The bond energy correction (correction on the horizontal axis in FIG. 1) is performed with C1s CC coupling 284.8 eV. The measurement conditions for XPS are that the 100 μmφ fracture surface of the sample is the measurement area, the X-ray source is a monochrome AlKα ray 25 W 15 KV, and the photoelectron extraction angle is 45 °. As an XPS apparatus, model number PHI Quantera SXM manufactured by ULVAC-PHI is exemplified.

このように、ペロブスカイト型導電性酸化物材料のCo2pピークの半値全幅を2.967eV以上とすることにより、1500 S/cm以上の高い導電率が得られる。
特に、Co2pピークの半値全幅を3.412eV以上とすると、2500 S/cm以上の高い導電率が得られる。
Thus, by setting the full width at half maximum of the Co2p peak of the perovskite type conductive oxide material to 2.967 eV or more, a high conductivity of 1500 S / cm or more can be obtained.
In particular, when the full width at half maximum of the Co2p peak is 3.412 eV or more, a high conductivity of 2500 S / cm or more can be obtained.

本発明の実施形態に係るペロブスカイト型導電性酸化物材料において、RE(希土類元素)としては、La,Pr,Ce及びGdから選ばれる1種以上が挙げられ、AE(アルカリ土類元素)としては、Sr,Caから選ばれる1種以上が挙げられる。又、xは0<x<1であればよいが、0.20≦x≦0.80の範囲内とすることが好ましい。
又、本発明のペロブスカイト型導電性酸化物材料は、大気雰囲気下又は酸素雰囲気下で、1250〜1450℃で1〜5時間焼成して製造することが好ましい。焼成温度が1250℃未満であると、緻密化しないことがあるため、1500 S/cm以上の導電率が得られないことがある。焼成温度が1450℃を超えると、過焼結となり緻密性が低下するため、1500 S/m以上の導電率が得られないことがある。
In the perovskite-type conductive oxide material according to the embodiment of the present invention, RE (rare earth element) includes at least one selected from La, Pr, Ce and Gd, and AE (alkaline earth element) , One or more selected from Sr and Ca. Further, x may be 0 <x <1, but is preferably in the range of 0.20 ≦ x ≦ 0.80.
Further, the perovskite type conductive oxide material of the present invention is preferably produced by firing at 1250 to 1450 ° C. for 1 to 5 hours in an air atmosphere or an oxygen atmosphere. When the firing temperature is less than 1250 ° C., the material may not be densified, and thus a conductivity of 1500 S / cm or more may not be obtained. When the firing temperature exceeds 1450 ° C., oversintering occurs and the denseness decreases, so that a conductivity of 1500 S / m or more may not be obtained.

本発明の電極は、上記したペロブスカイト型導電性酸化物材料を用い、アルミナ、ジルコニア等のセラミック体上に形成させることができる。具体的には、電極としては、物理量センサ、化学量センサ、ヒータ等に適用することができる。   The electrode of the present invention can be formed on a ceramic body such as alumina or zirconia using the perovskite type conductive oxide material described above. Specifically, the electrodes can be applied to physical quantity sensors, chemical quantity sensors, heaters, and the like.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.

まず、原料粉末として、RE2O3、AECO3、Co3O4(全て純度99%以上の市販品を用いた。)を用い、表1に示す組成の(RE1-xAEx)CoO3となるように、これら原料粉末をそれぞれ秤量した後、湿式混合して乾燥することにより、原料粉末混合物を調整した。次いで、この原料粉末混合物を大気雰囲気下、1000〜1200℃で1〜5時間仮焼して仮焼粉末を得た。次に、この仮焼粉末と適量の有機バインダとを加え、これを分散媒のエタノールと共に樹脂ポットに投入し、ジルコニア玉石を用いて湿式混合粉砕してスラリーを得た。得られたスラリーを80℃で2時間ほど乾燥し、さらに、250μmメッシュの篩を通して造粒し、造粒粉末を得た。
次いで、得られた造粒粉末をプレス機(成形圧力;98MPa)によって、4.0mm×4.0mm×高さ20mmの角柱状の成形体に成形し、その後、大気雰囲気下または酸素雰囲気下(酸素100%の雰囲気下)で、1250〜1450℃の温度で1〜5時間焼成した。さらに得られた焼結体を平面研磨し、3.0mm×3.0mm×高さ15mmのペロブスカイト型導電性酸化物焼結体を得た。
First, RE 2 O 3 , AECO 3 , Co 3 O 4 (all commercially available products with a purity of 99% or more) were used as raw powders, and (RE 1-x AE x ) CoO having the composition shown in Table 1 was used. These raw material powders were weighed so as to be 3 , then wet mixed and dried to prepare a raw material powder mixture. Subsequently, this raw material powder mixture was calcined at 1000 to 1200 ° C. for 1 to 5 hours in an air atmosphere to obtain a calcined powder. Next, this calcined powder and an appropriate amount of an organic binder were added, and this was put into a resin pot together with ethanol as a dispersion medium, and wet-mixed and pulverized using zirconia cobblestone to obtain a slurry. The obtained slurry was dried at 80 ° C. for about 2 hours, and further granulated through a 250 μm mesh sieve to obtain a granulated powder.
Next, the obtained granulated powder was molded into a 4.0 mm × 4.0 mm × height 20 mm prismatic shaped body by a press (molding pressure; 98 MPa), and then in an air atmosphere or an oxygen atmosphere ( In an atmosphere of 100% oxygen), firing was performed at a temperature of 1250 to 1450 ° C. for 1 to 5 hours. Further, the obtained sintered body was subjected to planar polishing to obtain a perovskite type conductive oxide sintered body having a size of 3.0 mm × 3.0 mm × height 15 mm.

得られたペロブスカイト型導電性酸化物焼結体について、直流4端子法により導電率を測定した。測定に用いる電極及び電極線にはPtを用いた。また導電率測定は、電圧・電流発生器(エーディーシー社製のモニタ6242型)を用いた。
又、得られたペロブスカイト型導電性酸化物焼結体を破断し、破断面の100μmφを測定エリアとして光電子分光(XPS)測定を行った。XPS装置としては、アルバック・ファイ(ULVAC-PHI)社製の型番PHI Quantera SXMTMを用い、X線源をモノクロAlKα線 25W 15KV、光電子取り出し角度45°とした。775eV〜810eVの範囲のXPSスペクトルを測定し、公知のShirley法によってバックグランド補正した後、Co2p3/2の半値全幅(FWHM)を求めてCo2pピークの半値全幅とした。半値全幅の値は小数点以下3桁まで有効である。なお、結合エネルギー補正はC1s C-C結合 284.8eVで補正を行った。
The conductivity of the obtained perovskite-type conductive oxide sintered body was measured by a direct current four-terminal method. Pt was used for the electrodes and electrode wires used for the measurement. The electrical conductivity was measured using a voltage / current generator (Monitor 6242 manufactured by ADC).
Further, the obtained perovskite-type conductive oxide sintered body was fractured, and photoelectron spectroscopy (XPS) measurement was performed using 100 μmφ of the fracture surface as a measurement area. As the XPS apparatus, model number PHI Quantera SXM TM manufactured by ULVAC-PHI was used, and the X-ray source was a monochrome AlKα line 25 W 15 KV, and the photoelectron extraction angle was 45 °. An XPS spectrum in the range of 775 eV to 810 eV was measured, and after background correction by the known Shirley method, the full width at half maximum (FWHM) of Co2p3 / 2 was determined and used as the full width at half maximum of the Co2p peak. The full width at half maximum is valid up to 3 digits after the decimal point. The binding energy was corrected with C1s CC coupling 284.8 eV.

得られた結果を表1、図1、図2に示す。   The obtained results are shown in Table 1, FIG. 1 and FIG.

表1、図1、図2から明らかなように、Co2pピークの半値全幅が2.967eV以上である各実施例の場合、1500 S/cm以上の高い導電率が得られた。特に、Co2pピークの半値全幅が3.412eV以上である実施例1〜15の場合、2500 S/cm以上の高い導電率が得られた。
一方、導電性酸化物中にドーパントとなるSrを含まない比較例1の場合、及び導電性酸化物中のSrドーピング量(x)が0.2mol%未満である比較例2,3の場合、半値全幅が2.967eV未満となり、導電率が著しく低下した。これは、キャリア濃度が低い(伝導の媒体であるホールの生成量が少ない)ため、半値全幅が狭くなり、導電率の低下を招いたものと考えられる。
導電性酸化物中のAE(ドーパント)元素としてSrの代わりにCaを用いた比較例4の場合、ドーピング量(x)が0.2mol%であるにも関わらず、半値全幅が2.967eV未満となり、導電率が著しく低下した。これは、CaがSrに比べて高導電率化に対する効果が小さいためと考えられる。
なお、表1の参考例1は、特許文献1の実施例3の試料((La0.6Sr0.4)CoO3の室温における導電率である。
As is apparent from Table 1, FIG. 1 and FIG. 2, in each example in which the full width at half maximum of the Co2p peak was 2.967 eV or higher, a high conductivity of 1500 S / cm or higher was obtained. In particular, in Examples 1 to 15 in which the full width at half maximum of the Co2p peak was 3.412 eV or higher, a high conductivity of 2500 S / cm or higher was obtained.
On the other hand, in Comparative Example 1 where the conductive oxide does not contain Sr as a dopant, and in Comparative Examples 2 and 3 where the Sr doping amount (x) in the conductive oxide is less than 0.2 mol%, half the value The total width was less than 2.967 eV and the conductivity was significantly reduced. This is presumably because the full width at half maximum was narrowed due to the low carrier concentration (the amount of holes generated as a conductive medium was small), leading to a decrease in conductivity.
In the case of Comparative Example 4 in which Ca is used as the AE (dopant) element in the conductive oxide instead of Sr, the full width at half maximum is less than 2.967 eV even though the doping amount (x) is 0.2 mol%. The conductivity decreased significantly. This is presumably because Ca is less effective for increasing the conductivity than Sr.
Reference Example 1 in Table 1 is the electrical conductivity at room temperature of the sample ((La 0.6 Sr 0.4 ) CoO 3 of Example 3 of Patent Document 1).

Claims (4)

(RE1-xAEx)CoO3(RE:希土類元素、AE:アルカリ土類元素、0<x<1)で表されるペロブスカイト型導電性酸化物材料であって、
XPSによるCo2pピークの半値全幅が2.967eV以上であることを特徴とするペロブスカイト型導電性酸化物材料。
(RE 1-x AE x ) CoO 3 (RE: rare earth element, AE: alkaline earth element, 0 <x <1), a perovskite-type conductive oxide material,
A perovskite-type conductive oxide material characterized in that the full width at half maximum of the Co2p peak by XPS is 2.967 eV or more.
直流4端子法にて測定した20℃における導電率が1500 S/cm以上であることを特徴とする請求項1に記載のペロブスカイト型導電性酸化物材料。   The perovskite-type conductive oxide material according to claim 1, wherein the conductivity at 20 ° C measured by a direct current four-terminal method is 1500 S / cm or more. 大気雰囲気下又は酸素雰囲気下で、1250〜1450℃で1〜5時間焼成してなることを特徴とする請求項1又は2に記載のペロブスカイト型導電性酸化物材料。   The perovskite-type conductive oxide material according to claim 1 or 2, which is fired at 1250 to 1450 ° C for 1 to 5 hours in an air atmosphere or an oxygen atmosphere. 請求項1〜3のいずれか記載のペロブスカイト型導電性酸化物材料が用いられ、セラミック体上に形成された電極。 An electrode formed on a ceramic body using the perovskite type conductive oxide material according to claim 1.
JP2010202670A 2010-09-10 2010-09-10 Perovskite-type conductive oxide material, and electrode using the same Withdrawn JP2012056809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202670A JP2012056809A (en) 2010-09-10 2010-09-10 Perovskite-type conductive oxide material, and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202670A JP2012056809A (en) 2010-09-10 2010-09-10 Perovskite-type conductive oxide material, and electrode using the same

Publications (1)

Publication Number Publication Date
JP2012056809A true JP2012056809A (en) 2012-03-22

Family

ID=46054350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202670A Withdrawn JP2012056809A (en) 2010-09-10 2010-09-10 Perovskite-type conductive oxide material, and electrode using the same

Country Status (1)

Country Link
JP (1) JP2012056809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136033B2 (en) 2012-04-06 2015-09-15 Ngk Spark Plug Co., Ltd. Sintered oxide compact and circuit board using same
JP2017049189A (en) * 2015-09-03 2017-03-09 住友金属鉱山株式会社 Evaluation method for cobalt valence

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136033B2 (en) 2012-04-06 2015-09-15 Ngk Spark Plug Co., Ltd. Sintered oxide compact and circuit board using same
JP2017049189A (en) * 2015-09-03 2017-03-09 住友金属鉱山株式会社 Evaluation method for cobalt valence

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced bulk conductivity of A-site divalent acceptor-doped non-stoichiometric sodium bismuth titanate
Hung et al. Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode
Zhao et al. Effects of Cu and Zn co-doping on the electrical properties of Ni0. 5Mn2. 5O4 NTC ceramics
Li et al. Enhanced aging and thermal shock performance of Mn 1.95− x Co 0.21 Ni 0.84 Sr x O 4 NTC ceramics
EP2835363B1 (en) Circuit board using a sintered oxide compact
Chockalingam et al. Praseodymium and gadolinium doped ceria as a cathode material for low temperature solid oxide fuel cells
Jung et al. The electronic conductivity of Ba 0.5 Sr 0.5 Co x Fe 1− x O 3− δ (BSCF: x= 0∼ 1.0) under different oxygen partial pressures
JPWO2008152976A1 (en) Semiconductor ceramic material
CN105753474A (en) Strontium-doped lanthanum chromite thermistor material
CN105967674A (en) Chromium-doped magnesium aluminate high temperature thermistor material and preparation method thereof
Satapathy et al. Conduction and relaxation phenomena in barium zirconate ceramic in wet N2 environment
Yang et al. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors
Singh et al. Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells
CN104692802B (en) A kind of warm area thermistor material wide of yttria doping and preparation method thereof
Liu et al. Improvement of electrical conductivity of trivalent rare‐earth cation‐doped neodymium zirconate by co‐doping gadolinium and ytterbium
Stojmenović et al. Electrical characterization of multidoped ceria ceramics
Zhao et al. Beneficial effects of Mg-excess in La1-xSrxGa1-yMgy+ zO3-δ as solid electrolyte
Bucevac et al. Effect of preparation route on the microstructure and electrical conductivity of co-doped ceria
Singh et al. Ionic conductivity of Mn2+ doped dense tin pyrophosphate electrolytes synthesized by a new co-precipitation method
Wang et al. Bismuth and zinc co-modified Mn1· 1Co1· 5Fe0· 4O4 negative temperature coefficient sensitive ceramics: structural and electrical characterization
JP2012056809A (en) Perovskite-type conductive oxide material, and electrode using the same
Lay et al. Synthesis and characterization of CexSr1-xCr0. 5Mn0. 5O3-δ perovskites as anode materials for solid oxide fuel cells (SOFC)
Singh et al. Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7
Tateishi et al. Fabrication of lead-free semiconducting ceramics using a BaTiO3–(Bi1/2Na1/2) TiO3 system by adding CaO
Singh et al. Fabrication of dense Ce0. 9Mg0. 1P2O7-PmOn composites by microwave heating for application as electrolyte in intermediate-temperature fuel cells

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203