JP2012055845A - Method and apparatus for cleaning tap-water piping - Google Patents

Method and apparatus for cleaning tap-water piping Download PDF

Info

Publication number
JP2012055845A
JP2012055845A JP2010202739A JP2010202739A JP2012055845A JP 2012055845 A JP2012055845 A JP 2012055845A JP 2010202739 A JP2010202739 A JP 2010202739A JP 2010202739 A JP2010202739 A JP 2010202739A JP 2012055845 A JP2012055845 A JP 2012055845A
Authority
JP
Japan
Prior art keywords
tap water
carbon dioxide
pipe
water pipe
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010202739A
Other languages
Japanese (ja)
Other versions
JP5562773B2 (en
Inventor
Yoichi Uchiyama
洋一 内山
Tamotsu Hidaka
保 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Industrial Cleaning Co Ltd
Original Assignee
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Industrial Cleaning Co Ltd filed Critical Ebara Industrial Cleaning Co Ltd
Priority to JP2010202739A priority Critical patent/JP5562773B2/en
Publication of JP2012055845A publication Critical patent/JP2012055845A/en
Application granted granted Critical
Publication of JP5562773B2 publication Critical patent/JP5562773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for cleaning tap-water piping, capable of attaining a sufficient cleaning effect with respect to tap-water piping of a relatively large diameter of, for example, 75 to 150 mm.SOLUTION: The method of cleaning tap-water piping comprises repeating injection and suspending injection of carbon dioxide into tap-water piping 1 wherein tap water is flowing, namely intermittently injecting carbon dioxide thereinto to form spaces S1, S2 comprising carbon dioxide by the injection thereof and to form a sandwich structure constituted of the spaces S1, S2 comprising carbon dioxide and of a water mass (W mass) formed upon suspending the injection of carbon dioxide and sandwiched therebetween, whereby matter sticking to/deposited on the inner wall face of the tap-water piping 1 is removed therefrom by an impact force given thereto by the water mass (W mass) flowing therein and colliding with the sticking/deposited matter.

Description

本発明は、水道水配管(水道管)の内面に付着・堆積している汚れを洗浄除去するための水道水配管の洗浄方法および装置に関する。   The present invention relates to a tap water pipe cleaning method and apparatus for cleaning and removing dirt adhering to and accumulating on the inner surface of a tap water pipe (water pipe).

水道水配管(水道管)は、鋳鉄管、モルタルライニング管および硬質塩化ビニル管などがある。これらの管は、長期にわたる使用で管内壁に水垢や沈殿物が堆積するために洗浄の必要性がある。従来、水道管の内面に付着・堆積している汚れを除去する方法としては、消火栓からの放水により管内流速を上げて付着堆積物を排出する方法、管内に洗浄ブラシを挿入して洗浄ブラシで管内壁面を機械的に擦り配管内面を洗浄する方法、管内にピグと呼ばれる弾性体を挿入してピグの外周面を管内壁面に接触させて配管内面を洗浄する方法等が行われていた。しかし、いずれの方法も洗浄対象長さの問題、洗浄ブラシを管路内に挿入するための管路の部分的な解体および再組立などの配管工事が必要になるという問題(具体的には、洗浄ブラシ、ピグを挿入するためには、消火栓とその下に取付けてある補修弁を取外す必要がある)、管内に挿入された弾性体の詰まり等の問題、また、洗浄ブラシの場合は、高圧ホースを引きずりながら配管内に挿入するため、曲がりの多い配管には対応できないという問題があり、洗浄方法としては必ずしも十分なものではなかった。   Examples of tap water pipes (water pipes) include cast iron pipes, mortar lining pipes, and hard vinyl chloride pipes. These pipes need to be cleaned because of the accumulation of scale and sediment on the inner wall of the pipe after long-term use. Conventionally, as a method of removing dirt adhering to and accumulating on the inner surface of a water pipe, a method of discharging the adhering deposit by increasing the flow velocity in the pipe by discharging water from a fire hydrant, and inserting a cleaning brush into the pipe and using a cleaning brush A method of cleaning the inner surface of the pipe by mechanically rubbing the inner wall surface of the pipe and a method of cleaning the inner surface of the pipe by inserting an elastic body called a pig into the pipe and bringing the outer peripheral surface of the pig into contact with the inner wall surface of the pipe. However, each method has a problem of the length of the object to be cleaned, a problem that piping work such as partial disassembly and reassembly of the pipe for inserting the cleaning brush into the pipe is necessary (specifically, In order to insert the cleaning brush and pig, it is necessary to remove the fire hydrant and the repair valve attached below it), problems such as clogging of the elastic body inserted in the pipe, and in the case of the cleaning brush, high pressure Since the hose is inserted into the pipe while dragging, there is a problem that it cannot be applied to a pipe with many bends, and the washing method is not always sufficient.

また、水道水配管(水道管)の洗浄方法としては、特許文献1に記載されているように、管内に炭酸ガスを間欠的にまたは連続的に打ち込んで、管内の水中に溶存した炭酸ガスの発泡作用により該管内を洗浄する方法もある。この方法では、管内に水を流通させることにより、前記溶存した炭酸ガスを気化させ、気化した炭酸ガスの作用により管内を洗浄することも行われる。   In addition, as described in Patent Document 1, as a method for cleaning tap water pipes (water pipes), carbon dioxide gas is intermittently or continuously driven into the pipes to dissolve carbon dioxide dissolved in the water in the pipes. There is also a method of cleaning the inside of the tube by a foaming action. In this method, the dissolved carbon dioxide gas is vaporized by circulating water through the tube, and the inside of the tube is washed by the action of the vaporized carbon dioxide gas.

特許第3501795号公報Japanese Patent No. 3501795

しかしながら、上述した炭酸ガスを配管内に打ち込んで管内の水中に溶存した炭酸ガスの発泡作用により管内の付着物を除去するには、アパートやマンション等の各戸別に配管されている配管口径15mm〜25mmの範囲の小口径の配管に対しては有効であるが、地中埋設の水道水配管(水道管)のように、配管口径が75mm〜150mmと大きく、また、複雑な分岐を多数有する配管に対しては、単に水中に溶存した炭酸ガスの発泡作用のみで付着堆積物を除去することは困難であった。また、前記配管内の水を流動させ、前記溶存した炭酸ガスを気化させ、その気化した炭酸ガスの作用により付着物を除去することも困難であり、たとえ、発泡作用により付着物が除去されたとしても、除去された付着物を配管内から系外に排出するのに長時間要するという問題もあった。   However, in order to remove the deposits in the pipe by blowing the carbon dioxide gas into the pipe and dissolving the carbon dioxide dissolved in the water in the pipe, the pipe diameter of 15 mm to 25 mm piped separately for each house such as an apartment or an apartment. It is effective for small-diameter pipes in the range of, however, pipes with large pipe diameters of 75 mm to 150 mm and many complicated branches, such as underground water pipes (water pipes) buried underground. On the other hand, it was difficult to remove the deposited deposits only by the foaming action of carbon dioxide dissolved in water. In addition, it is difficult to remove the deposits by the action of the vaporized carbon dioxide gas by flowing the water in the pipe, vaporizing the dissolved carbon dioxide gas, and the deposits are removed by the foaming action. However, there is also a problem that it takes a long time to discharge the removed deposits from the piping to the outside of the system.

本発明は、上述の事情に鑑みなされたもので、比較的大きな口径、例えば、75mm〜150mmの水道水配管に対し、十分な洗浄効果を得ることができる水道水配管の洗浄方法および装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and provides a cleaning method and apparatus for tap water piping that can obtain a sufficient cleaning effect for a tap water piping having a relatively large aperture, for example, 75 mm to 150 mm. It is intended to do.

上述の目的を達成するため、本発明者らは、種々の研究を重ねた結果、圧縮性流体を用いた気液二相流を管内付着物の除去に利用することを着想し、更に、圧縮性流体として人体に対し無害である炭酸ガスを利用することを試みたものである。   In order to achieve the above-mentioned object, the present inventors have made various studies and have conceived that a gas-liquid two-phase flow using a compressible fluid is used for the removal of deposits in the pipe. This is an attempt to use carbon dioxide gas which is harmless to human body as a sexual fluid.

次に、本発明の水道水配管の洗浄方法の基本概念を図1および図2を参照して説明する。
図1(a)に示すように、水道水配管1が設置されており、水道水配管1内には水道水が充満して左側から右側に向かって流れるようになっている。ここで、水道水配管1の断面積をA、配管内を流れる水道水の流量をQとすると、水道水配管1の管内の平均流速はV=Q/Aと表せる。水道水配管1の上流側には、水道水配管1内に炭酸ガスを注入するための炭酸ガス注入口2が設けられている。また、水道水配管1の下流側には、水道水配管1内を流れる液体を排出する排出口3が設けられている。水道水配管1の下流端は閉止板4により閉塞されている。
Next, the basic concept of the tap water pipe cleaning method of the present invention will be described with reference to FIG. 1 and FIG.
As shown in FIG. 1A, a tap water pipe 1 is installed, and the tap water pipe 1 is filled with tap water and flows from the left side to the right side. Here, when the cross-sectional area of the tap water pipe 1 is A and the flow rate of the tap water flowing through the pipe is Q L , the average flow velocity in the pipe of the tap water pipe 1 can be expressed as V L = Q L / A. A carbon dioxide gas inlet 2 for injecting carbon dioxide gas into the tap water pipe 1 is provided on the upstream side of the tap water pipe 1. A discharge port 3 for discharging the liquid flowing in the tap water pipe 1 is provided on the downstream side of the tap water pipe 1. The downstream end of the tap water pipe 1 is closed by a closing plate 4.

次に、流量Qで水道水を流しつつ、図1(b)に示すように、水道水配管1内に炭酸ガスを所定の流量で所定時間注入する。ここで、炭酸ガスの流量はQである。このように、水道水配管1内に炭酸ガスを流量Qで所定時間注入すると、管内平均流速はVL+G=(Q+Q)/Aとなり、管内流速は炭酸ガスを注入した容積分だけ増速される。炭酸ガスを注入することにより水道水配管1の管内には炭酸ガスが充満した炭酸ガス空間S1が形成される。 Then, while flowing tap water at a flow rate Q L, as shown in FIG. 1 (b), a predetermined time injecting carbon dioxide gas at a predetermined flow rate of tap water pipe 1. Here, the flow rate of carbon dioxide gas is Q G. In this way, when carbon dioxide is injected into the tap water pipe 1 at a flow rate Q G for a predetermined time, the average flow velocity in the tube becomes V L + G = (Q L + Q G ) / A, and the flow velocity in the tube is equal to the volume of carbon dioxide injected. Increased speed. By injecting carbon dioxide, a carbon dioxide space S1 filled with carbon dioxide is formed in the pipe of the tap water pipe 1.

次に、図1(c)に示すように、炭酸ガスの注入を所定時間停止する。このときの管内平均流速はV=Q/Aとなる。その後、図1(d)に示すように、炭酸ガスを流量Qで所定時間注入することにより管内平均流速はVL+G=(Q+Q)/Aとなり、管内流速は炭酸ガスを注入した容積分だけ増速される。炭酸ガスを注入することにより水道水配管1の管内には炭酸ガスが充満した炭酸ガス空間S2が形成される。そのため、炭酸ガスの注入を停止していた時に形成された水塊(Wmass)が炭酸ガス空間S1と炭酸ガス空間S2とに挟まれたサンドイッチ構造が形成される。炭酸ガス空間S1および炭酸ガス空間S2は所定量の炭酸ガスが注入されて圧力が高い空間になっているため、水塊(Wmass)は重力で崩れてしまうようなことはなく、管路の内壁面の全周に接触している。すなわち、水塊(Wmass)は水道水配管1の断面積と同等の断面積を有している。炭酸ガス空間S1,S2は、管路の断面積の全面を占めている必要はなく、一部に水道水があってもよい。 Next, as shown in FIG. 1C, the injection of carbon dioxide gas is stopped for a predetermined time. The average flow velocity in the tube at this time is V L = Q L / A. Thereafter, as shown in FIG. 1 (d), by injecting carbon dioxide at a flow rate Q G for a predetermined time, the average flow velocity in the tube becomes V L + G = (Q L + Q G ) / A, and the flow velocity in the tube is injected with carbon dioxide. The speed is increased by the volume. By injecting carbon dioxide, a carbon dioxide space S2 filled with carbon dioxide is formed in the tap water pipe 1. Therefore, a sandwich structure is formed in which a water mass (Wmass) formed when carbon dioxide injection is stopped is sandwiched between the carbon dioxide space S1 and the carbon dioxide space S2. Since the carbon dioxide gas space S1 and the carbon dioxide gas space S2 are spaces where a predetermined amount of carbon dioxide gas is injected and the pressure is high, the water mass (Wmass) does not collapse due to gravity, and the inside of the pipe line It is in contact with the entire circumference of the wall. That is, the water mass (Wmass) has a cross-sectional area equivalent to that of the tap water pipe 1. The carbon dioxide spaces S1 and S2 do not have to occupy the entire cross-sectional area of the pipeline, and tap water may be included in part.

次に、図1(e)に示すように、炭酸ガスの注入を所定時間停止する。このように、水道水が充満して流れている水道水配管1に炭酸ガスを所定時間注入した後に、炭酸ガスの注入を所定時間停止し、その後、炭酸ガスを所定時間注入する炭酸ガスの間欠注入の手順を順次繰返すことにより、炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)のサンドイッチ構造が順次形成され、水塊(Wmass)は前述したように加速された管内流速VL+Gで管内を移動し、また、炭酸ガスが圧縮性の流体であることから、管内を流れる水道水の管内相当流速、炭酸ガスの管内相当流速、炭酸ガスの注入時間や注入停止時間を適正な数値に設定することにより、水塊(Wmass)が2つの炭酸ガス空間S1,S2でサンドイッチされた良好な気液二相流を形成することが出来る。ここで、管内相当流速とは、流量を対象配管の断面積で除した値を云う。 Next, as shown in FIG. 1E, the injection of carbon dioxide gas is stopped for a predetermined time. In this way, after injecting carbon dioxide gas into the tap water pipe 1 filled with tap water for a predetermined time, the carbon dioxide gas injection is stopped for a predetermined time, and then carbon dioxide is intermittently injected for a predetermined time. By sequentially repeating the injection procedure, a sandwich structure of water mass (Wmass) sandwiched between the carbon dioxide space S1 and the carbon dioxide space S2 is sequentially formed, and the water mass (Wmass) is accelerated as described above. V L + G moves through the pipe, and since carbon dioxide is a compressible fluid, the flow rate equivalent to the tap water flowing through the pipe, the flow rate equivalent to the carbon dioxide pipe, the carbon dioxide injection time, and the injection stop time are appropriate. By setting to a small value, a good gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide gas spaces S1 and S2 can be formed. Here, the in-pipe equivalent flow rate is a value obtained by dividing the flow rate by the cross-sectional area of the target pipe.

次に、炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)が管内を移動する際に管路壁面に付着・堆積している付着・堆積物(汚れ)を除去するメカニズムについて説明する。
図2は、図1(d)の要部拡大図であり、水道水配管の半断面図である。図2に示すように、水塊(Wmass)は、管内流速VL+Gで管内を移動する。そして、水塊(Wmass)は、移動中に水道水配管1の内壁面の付着・堆積物Mに衝突して衝撃力を与える。ここで、水塊(Wmass)のごく一部が付着・堆積物Mに衝突するが、この衝突する部分の微小な体積流量をQとし、水塊(Wmass)の密度をρとすると、付着・堆積物Mに加わる衝撃力Fは以下の式で表せる。この場合、付着・堆積物Mに衝突する微小な体積流量Qは、水道水の流れに対して付着・堆積物Mの直角な投影面積に衝突する体積流量に相当する。
F=ρ×Q×VL+G・・・・・(1)
ここで、水塊(Wmass)にはごく少量の炭酸ガスが溶け込んでいるが、ほとんどの成分は水道水であるため、ρ≒1である。
したがって、F≒Q×VL+Gと表せる。
すなわち、水道水配管1の内壁面にある付着・堆積物Mには、付着・堆積物Mに衝突する微小な体積流量Qと水塊(Wmass)の管内流速VL+Gとを乗じた衝撃力が加わることになる。この付着・堆積物Mに加わる衝撃力は、次々に発生する水塊(Wmass)により繰り返されるため、管内壁から付着・堆積物Mを確実に除去することができる。水塊(Wmass)の流速は、炭酸ガスの注入により増速された管内平均流速VL+Gであるため、付着・堆積物Mに加わる衝撃力を大きくすることができる。そして、繰り返し発生する水塊(Wmass)により、配管の内壁面の全体の付着・堆積物(汚れ)をかき取るように物理的な力(剪断力)が作用し、管内を洗浄することができる。
Next, a mechanism for removing adhesion / sediment (dirt) adhering to and accumulating on the pipe wall surface when the water mass (Wmass) sandwiched between the carbon dioxide space S1 and the carbon dioxide space S2 moves in the pipe. explain.
FIG. 2 is an enlarged view of a main part of FIG. 1 (d), and is a half sectional view of a tap water pipe. As shown in FIG. 2, the water mass (Wmass) moves in the pipe at a pipe flow velocity VL + G. And a water mass (Wmass) collides with the adhesion and deposit M of the inner wall surface of the tap water piping 1 during movement, and gives an impact force. Here, a small part of the water mass (Wmass) collides with the deposit / sediment M, and if the minute volume flow rate of the colliding portion is Q and the density of the water mass (Wmass) is ρ, The impact force F applied to the deposit M can be expressed by the following equation. In this case, the minute volume flow Q that collides with the deposit / sediment M corresponds to the volume flow that collides with the projected area of the deposit / sediment M perpendicular to the flow of tap water.
F = ρ × Q × V L + G (1)
Here, although a very small amount of carbon dioxide is dissolved in the water mass (Wmass), ρ≈1 since most of the components are tap water.
Therefore, it can be expressed as F≈Q × V L + G.
That is, the adhering / sediment M on the inner wall surface of the tap water pipe 1 has an impact force obtained by multiplying the minute volume flow rate Q that collides with the adhering / sediment M and the in-pipe flow velocity V L + G of the water mass (Wmass). Will join. Since the impact force applied to the adhesion / deposit M is repeated by the water mass (Wmass) generated one after another, the adhesion / deposition M can be reliably removed from the inner wall of the pipe. Since the flow velocity of the water mass (Wmass) is the average flow velocity V L + G in the pipe increased by the injection of carbon dioxide gas, the impact force applied to the adhesion / deposit M can be increased. And the physical force (shearing force) acts so that the whole adhesion and deposits (dirt) of the inner wall surface of the pipe can be scraped off by the water mass (Wmass) repeatedly generated, and the inside of the pipe can be cleaned. .

上述した基本概念から明らかなように、本発明の水道水配管の洗浄方法は、水道水が流れている水道水配管内に、炭酸ガスの注入と炭酸ガスの注入停止とを繰り返す炭酸ガスの間欠的な注入を行い、前記水道水配管内に炭酸ガスの注入により炭酸ガス空間を形成し、該炭酸ガス空間によって炭酸ガスの注入停止時に形成した水塊(Wmass)挟むサンドイッチ構造を形成し、前記水塊(Wmass)が前記水道水配管内を流れる際に配管の内壁面に付着および堆積した付着・堆積物に衝突して衝撃力を与え前記付着・堆積物を除去するようにしたことを特徴とするものである。   As is apparent from the basic concept described above, the tap water pipe cleaning method of the present invention is an intermittent process of carbon dioxide that repeats the injection of carbon dioxide and the stop of carbon dioxide injection into the tap water pipe through which tap water flows. A carbon dioxide gas space is formed by injecting carbon dioxide gas into the tap water pipe, and a sandwich structure is formed that sandwiches a water mass (Wmass) formed when carbon dioxide gas injection is stopped by the carbon dioxide gas space. When a water mass (Wmass) flows through the tap water pipe, it adheres to the inner wall surface of the pipe and collides with the adhering / depositing matter to apply an impact force to remove the adhering / depositing substance. It is what.

本発明の好ましい態様は、前記水塊(Wmass)は、前記水道水配管の内壁面の全周に接触していることを特徴とするものである。
本発明によれば、水塊(Wmass)が水道水配管の内壁面の全周に接触しているため、水塊(Wmass)の高速流によって、配管の内壁面の全周の汚れをかき取ることができる。
In a preferred aspect of the present invention, the water mass (Wmass) is in contact with the entire circumference of the inner wall surface of the tap water pipe.
According to the present invention, since the water mass (Wmass) is in contact with the entire circumference of the inner wall surface of the tap water pipe, the dirt on the entire inner wall surface of the pipe is scraped off by the high-speed flow of the water mass (Wmass). be able to.

本発明の好ましい態様は、前記水道水配管の断面積をA、前記水道水配管内を流れている水道水の流量をQ、前記水道水配管内に注入される炭酸ガスの流量をQとすると、炭酸ガスの注入停止時の管内平均流速は、V=Q/Aであり、炭酸ガスを注入することにより管内平均流速は、VL+G=(Q+Q)/Aに増速されることを特徴とする。
本発明によれば、炭酸ガスを注入しない場合には、管内平均流速は、V=Q/Aであるのに対し、炭酸ガスを注入することにより管内平均流速は、VL+G=(Q+Q)/Aとなり、炭酸ガスの注入により管内平均流速を増速することができる。したがって、水塊(Wmass)から管内壁面の付着・堆積物に与える衝撃力を大きくすることができる。
In a preferred aspect of the present invention, the cross-sectional area of the tap water pipe is A, the flow rate of tap water flowing through the tap water pipe is Q L , and the flow rate of carbon dioxide gas injected into the tap water pipe is Q G. Then, the average flow velocity in the pipe when carbon dioxide injection is stopped is V L = Q L / A, and the average flow speed in the pipe is increased to V L + G = (Q L + Q G ) / A by injecting the carbon dioxide gas. It is speeded.
According to the present invention, when the carbon dioxide gas is not injected, the average flow velocity in the pipe is V L = Q L / A, whereas the average flow velocity in the pipe is V L + G = (Q L + Q G) / a, and the can be accelerated in the tube average flow velocity by the injection of carbon dioxide. Therefore, it is possible to increase the impact force applied from the water mass (Wmass) to the adhesion / deposit on the inner wall surface of the pipe.

さらに発明者らは、所定範囲の炭酸ガスの供給流速、所定範囲の水道水の流速、および炭酸ガスを所定の注入頻度で管内に供給して洗浄を行うことにより、効果的に管内の付着・堆積物を除去することができるという知見を得るに至った。すなわち、本発明者らは、管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定することにより、水塊(Wmass)が2つの炭酸ガス空間によりサンドイッチされた高速の気液二相流を効率的に発生させ、この気液二相流が管路の内壁面に対して衝撃力を与えることによって管内壁面の付着・堆積物を除去することが可能であるという知見を得た。   Furthermore, the inventors have effectively supplied the carbon dioxide gas at a predetermined flow rate, supplied a predetermined range of tap water flow rate, and supplied carbon dioxide gas into the pipe at a predetermined injection frequency for cleaning. It came to the knowledge that the deposit could be removed. That is, the present inventors set the equivalent flow velocity of tap water flowing in the pipe to 0.3 m / sec or more, the equivalent flow velocity of carbon dioxide gas to 3 m / sec or more, and intermittent injection of carbon dioxide gas. By setting the stop to 1 to 2 seconds at ~ 5 seconds, a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched by two carbon dioxide spaces is efficiently generated. It was found that adhesion and deposits on the inner wall surface of the pipe can be removed by applying an impact force to the inner wall surface of the pipe.

本発明の好ましい態様は、このような知見に基づいてなされたものであって、前記水道水配管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定することを特徴とするものである。   A preferred embodiment of the present invention has been made on the basis of such findings, and the equivalent flow velocity in the tap water flowing in the tap water pipe is 0.3 m / sec or more, and the equivalent flow velocity in the pipe of carbon dioxide gas. Is set to 3 m / sec or more, the intermittent injection of carbon dioxide gas is set to 4 to 5 seconds, and the stop is set to 1 to 2 seconds.

なお、上記管路の洗浄をより効率的に行うには、管内を流れる水道水の管内相当流速を0.3〜0.7m/secに、かつ炭酸ガスの管内相当流速を3〜8m/secに、かつ炭酸ガスの間欠注入を、注入4秒に、停止を2秒に設定することが望ましい。   In order to more efficiently clean the pipeline, the equivalent flow rate of tap water flowing through the pipe is set to 0.3 to 0.7 m / sec, and the equivalent flow rate of carbon dioxide gas is set to 3 to 8 m / sec. In addition, it is desirable to set intermittent injection of carbon dioxide gas to 4 seconds for injection and stop for 2 seconds.

さらに、本発明者らは、炭酸ガスは通水中の水道水配管に間欠的に注入されるため、通水中の水道水の炭酸ガスの溶解量に濃淡の差がでるため、水塊(Wmass)が2つの炭酸ガス空間でサンドイッチされた気液二相流をより安定させ、さらに高速の気液二相流を得るため、水道水配管に飽和炭酸水を連続的に注入し、水道水の炭酸ガス溶解濃度を均一に保つことが必要であるという知見を得るに至った。
本発明の好ましい態様は、このような知見に基づいてなされたもので、前記水道水配管内に炭酸水を連続的に供給することを特徴とするものである。
Furthermore, since the present inventors intermittently inject carbon dioxide into the tap water piping of the running water, there is a difference in density in the amount of carbon dioxide dissolved in the running water, so that the water mass (Wmass) In order to obtain a more stable gas-liquid two-phase flow sandwiched between two carbon dioxide spaces and to obtain a higher-speed gas-liquid two-phase flow, saturated carbonated water is continuously injected into the tap water pipe, It came to the knowledge that it was necessary to keep gas dissolution concentration uniform.
A preferred embodiment of the present invention is made based on such knowledge, and is characterized in that carbonated water is continuously supplied into the tap water pipe.

また、本発明者らは、前記水塊(Wmass)が2つの炭酸ガス空間でサンドイッチされた気液二相流をより安定させ、さらに高速の気液二相流を得るため、水道水配管の排水口から該配管内を負圧で吸引することにより、より高速の安定した気液二相流を得ることができるという知見を得た。
本発明の好ましい態様は、このような知見に基づいてなされたもので、前記水道水配管の排水口から前記水道水配管内を負圧で吸引することを特徴とするものである。
In addition, the present inventors further stabilize the gas-liquid two-phase flow in which the water mass (Wmass) is sandwiched between two carbon dioxide spaces, and obtain a high-speed gas-liquid two-phase flow. It has been found that a high-speed and stable gas-liquid two-phase flow can be obtained by suctioning the inside of the pipe from the drain port with a negative pressure.
A preferred aspect of the present invention is made based on such knowledge, and is characterized in that the inside of the tap water pipe is sucked from the drain port of the tap water pipe with a negative pressure.

本発明者らは、水道水配管内への炭酸ガスの間欠注入に加えて、水道水配管内への炭酸水の供給および水道水配管内を負圧で吸引する実験を繰返し行うことにより、所定範囲の飽和炭酸水の供給流量、所定範囲の炭酸ガスの供給流速、所定範囲の水道水の流速、および炭酸ガスを所定の注入頻度で管内に供給して洗浄を行うことにより、効果的に管内の付着・堆積物を除去することができるという知見を得るに至った。すなわち、本発明者らは、管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ連続的に供給する飽和炭酸水の供給量を管内相当流速が0.05m/sec以上になるように、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に、かつ配管内を吸引する吸引流量を管内相当流速が5m/sec以上になるように設定することにより、水塊(Wmass)が2つの炭酸ガス空間によりサンドイッチされた高速の気液二相流を効率的に発生させ、この気液二相流が管路の内壁面に対して衝撃力を与えることによって管内壁面の付着・堆積物を除去することが可能であるという知見を得た。   In addition to intermittent injection of carbon dioxide gas into the tap water pipe, the present inventors have repeatedly conducted an experiment of supplying carbonated water into the tap water pipe and sucking the tap water pipe at a negative pressure. Supplying a flow rate of saturated carbonated water in a range, a supply flow rate of carbon dioxide gas in a predetermined range, a flow rate of tap water in a predetermined range, and supplying carbon dioxide gas into the tube at a predetermined injection frequency to perform cleaning effectively It has come to the knowledge that it is possible to remove the deposits and deposits. That is, the present inventors set the pipe equivalent flow rate of tap water flowing in the pipe to 0.3 m / sec or more and the supply amount of saturated carbonated water to be continuously supplied to the pipe equivalent flow rate of 0.05 m / sec or more. And the equivalent flow rate of carbon dioxide in the pipe is 3 m / sec or more, the intermittent injection of carbon dioxide is 4 to 5 seconds, the stop is 1 to 2 seconds, and the suction flow rate for sucking the inside of the pipe is By setting the flow velocity in the pipe to be 5 m / sec or more, a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide spaces is efficiently generated. It was found that adhesion and deposits on the inner wall surface of the pipe can be removed by applying an impact force to the inner wall surface of the pipe.

本発明の好ましい態様は、このような知見に基づいてなされたものであって、前記水道水配管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定し、さらに、飽和炭酸水を連続的に加え、その供給量を管内相当流速が0.05m/sec以上となるように、さらに、配管内を吸引する吸引流量を管内相当流速が5m/sec以上となるように設定することを特徴とするものである。   A preferred embodiment of the present invention has been made on the basis of such findings, and the equivalent flow velocity in the tap water flowing in the tap water pipe is 0.3 m / sec or more, and the equivalent flow velocity in the pipe of carbon dioxide gas. Is set to 3 m / sec or more, intermittent injection of carbon dioxide gas is set to 4 to 5 seconds, and stop is set to 1 to 2 seconds. Further, saturated carbonated water is continuously added, and the supply amount is equivalent to the flow rate in the pipe. Further, the suction flow rate for sucking the inside of the pipe is set so that the in-pipe equivalent flow rate becomes 5 m / sec or more so that the pressure becomes 0.05 m / sec or more.

なお、上記管路の洗浄をより効率的に行うには、管内を流れる水道水の管内相当流速を0.3〜0.7m/secに、かつ連続的に供給する飽和炭酸水の管内相当流速を0.05m/sec〜0.25m/sec、かつ炭酸ガスの管内相当流速を3〜8m/secに、かつ炭酸ガスの間欠注入を、注入4秒に、停止を2秒、かつ配管内を吸引する吸引流量を管内相当流速が5m/sec〜12m/secになるように設定することが望ましい。   In addition, in order to perform washing | cleaning of the said pipe line more efficiently, the pipe | tube equivalent flow speed in the pipe | tube of the tap water which flows in the pipe | tube in 0.3-0.7m / sec and the saturated carbonated water which supplies continuously is equivalent. 0.05 m / sec to 0.25 m / sec, the equivalent flow rate of carbon dioxide in the pipe to 3 to 8 m / sec, intermittent injection of carbon dioxide in 4 seconds, stop for 2 seconds, and in the pipe It is desirable to set the suction flow rate to be sucked so that the equivalent flow velocity in the tube is 5 m / sec to 12 m / sec.

本発明の水道水配管の洗浄装置は、水道水が流れている水道水配管内に、炭酸ガスの注入と炭酸ガスの注入停止とを繰り返す炭酸ガスの間欠的な注入を行う炭酸ガス注入装置を設け、前記炭酸ガス注入装置を前記水道水配管に接続し、前記水道水配管内に炭酸ガスの注入により炭酸ガス空間を形成し、該炭酸ガス空間によって炭酸ガスの注入停止時に形成した水塊(Wmass)を挟むサンドイッチ構造を形成し、前記水塊(Wmass)が前記水道水配管内を流れる際に配管の内壁面に付着および堆積した付着・堆積物に衝突して衝撃力を与え前記付着・堆積物を除去するようにしたことを特徴とするものである。
本発明の好ましい態様は、前記水道水配管内に炭酸水を連続的に供給する炭酸水製造装置を備えたことを特徴とするものである。
本発明の好ましい態様は、前記水道水配管の排出口から前記水道水配管内を負圧で吸引する真空発生装置を備えたことを特徴とするものである。
The tap water pipe cleaning device according to the present invention is a carbon dioxide gas injection device that intermittently injects carbon dioxide gas into the tap water pipe through which tap water flows and repeatedly injects carbon dioxide gas and stops injection of carbon dioxide gas. The carbon dioxide gas injection device is connected to the tap water pipe, and a carbon dioxide gas space is formed by injecting carbon dioxide gas into the tap water pipe, and a water mass formed when the carbon dioxide gas injection is stopped by the carbon dioxide gas space ( A sandwich structure sandwiching (Wmass), and when the water mass (Wmass) flows through the tap water pipe, it adheres to the inner wall surface of the pipe and collides with the deposit / deposit that gives impact force and gives The deposit is removed.
A preferred embodiment of the present invention is characterized by comprising a carbonated water production apparatus that continuously supplies carbonated water into the tap water pipe.
A preferred embodiment of the present invention is characterized by comprising a vacuum generator that sucks the inside of the tap water pipe with a negative pressure from the outlet of the tap water pipe.

本発明によれば、通水中の水道水配管内に間欠的に炭酸ガスを注入することにより、水塊(Wmass)が2つの炭酸ガス空間によりサンドイッチされた高速の気液二相流を効率的に発生させ、この気液二相流が管路の内壁面に対して衝撃力を与えることによって管内壁面の付着・堆積物を除去することができる。したがって、強力な洗浄効果が得られるとともに洗浄時間の短縮が図れ、洗浄効率を大幅に向上させることができる。   According to the present invention, by intermittently injecting carbon dioxide gas into the tap water piping through water, a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide spaces is efficiently produced. When the gas-liquid two-phase flow generates an impact force on the inner wall surface of the pipe, adhesion / deposit on the inner wall surface of the pipe can be removed. Therefore, a strong cleaning effect can be obtained and the cleaning time can be shortened, and the cleaning efficiency can be greatly improved.

図1は、水道水配管内に炭酸ガスを間欠的に注入する場合の配管内の流体の流れ状態を示す模式図である。FIG. 1 is a schematic diagram showing a flow state of fluid in a pipe when carbon dioxide gas is intermittently injected into a tap water pipe. 図2は、図1(d)の要部拡大図であり、水道水配管の半断面図である。FIG. 2 is an enlarged view of a main part of FIG. 1 (d), and is a half sectional view of a tap water pipe. 図3は、本発明に係る水道水配管の洗浄方法および装置の第1の実施形態を示す概略図である。FIG. 3 is a schematic view showing a first embodiment of a tap water pipe cleaning method and apparatus according to the present invention. 図4は、水道水配管内に炭酸ガスを間欠的に注入することにより、水塊(Wmass)が2つの炭酸ガス空間によりサンドイッチされた高速の気液二相流が形成された状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide spaces is formed by intermittently injecting carbon dioxide into a tap water pipe. FIG. 図5は、本発明に係る水道水配管の洗浄方法および装置の第2の実施形態を示す概略図である。FIG. 5 is a schematic view showing a second embodiment of the tap water pipe cleaning method and apparatus according to the present invention. 図6は、水道水配管内に炭酸ガスを間欠的に注入することにより、水塊(Wmass)が2つの炭酸ガス空間によりサンドイッチされた高速の気液二相流が形成された状態を示す模式図である。FIG. 6 is a schematic view showing a state in which a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide spaces is formed by intermittently injecting carbon dioxide into a tap water pipe. FIG.

以下、本発明に係る水道水配管の洗浄方法および装置の実施形態について図3乃至図6を参照して説明する。なお、図3乃至図6において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図3は、本発明に係る水道水配管の洗浄方法および装置の第1の実施形態を示す概略図である。図3において、洗浄対象配管10は、実際の水道水配管(水道管)を模擬したもので、口径100mmの配管11と、口径150mmの配管12と、配管内の流体の流れの状態を確認するための透明アクリル製の口径100mmの配管13および口径150mmの配管14と、炭酸ガス注入の為の消火栓を模擬した炭酸ガス注入座15と、洗浄排水排出口として使用する消火栓を模擬した排出口16と、水道水配管の洗浄対象範囲を仕切る仕切弁を模擬した閉止板17とから構成されている。
Embodiments of a tap water pipe cleaning method and apparatus according to the present invention will be described below with reference to FIGS. 3 to 6, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 3 is a schematic view showing a first embodiment of a tap water pipe cleaning method and apparatus according to the present invention. In FIG. 3, the pipe 10 to be cleaned simulates an actual tap water pipe (water pipe), and confirms the state of the fluid flow in the pipe 11, the pipe 11 having a diameter of 100 mm, the pipe 12 having a diameter of 150 mm. A transparent acrylic pipe having a diameter of 100 mm and a pipe having a diameter of 150 mm, a carbon dioxide injection seat 15 simulating a fire hydrant for injecting carbon dioxide gas, and a discharge port 16 simulating a fire hydrant used as a washing drain discharge port And a closing plate 17 that simulates a gate valve that partitions the area to be cleaned of tap water piping.

洗浄対象配管10内に、炭酸ガスを間欠的に注入するための炭酸ガス注入装置20は、炭酸ガスボンベ21と、炭酸ガスボンベ21から供給された炭酸ガスを気化させる気化器22と、気化器22において気化された炭酸ガスを洗浄対象配管10に間欠的に注入するための電磁弁23と、電磁弁23を開閉するためのタイマ24とから構成されている。炭酸ガス注入装置20と洗浄対象配管10の炭酸ガス注入座15とは、ホース26により接続されており、ホース26には炭酸ガス注入装置20から供給される炭酸ガスの供給流量を測定する流量計27が設置されている。洗浄対象配管10内に注入される炭酸ガスは、安全面、衛生面から食品用炭酸ガスを使用する。また、水道水配管の複雑な分岐管、枝管等の理由から構造上エアポケットとなり、洗浄後の水道水使用に際し問題となるエアバーストを防止するためにも水道水に容易に溶解する炭酸ガスを使用する。   A carbon dioxide gas injection device 20 for intermittently injecting carbon dioxide gas into the cleaning target pipe 10 includes a carbon dioxide gas cylinder 21, a vaporizer 22 that vaporizes carbon dioxide gas supplied from the carbon dioxide gas cylinder 21, and a vaporizer 22. An electromagnetic valve 23 for intermittently injecting the vaporized carbon dioxide gas into the cleaning target pipe 10 and a timer 24 for opening and closing the electromagnetic valve 23 are configured. The carbon dioxide injection device 20 and the carbon dioxide injection seat 15 of the pipe 10 to be cleaned are connected by a hose 26, and the hose 26 measures a supply flow rate of carbon dioxide supplied from the carbon dioxide injection device 20. 27 is installed. The carbon dioxide gas injected into the cleaning target pipe 10 uses carbon dioxide for food from the viewpoint of safety and hygiene. Carbon dioxide gas that dissolves easily in tap water in order to prevent air burst, which is a problem when using tap water after washing, due to the complicated branch pipes and branch pipes of tap water piping. Is used.

洗浄対象配管10に水道水を供給する模擬の設備は、給水タンク30と、給水タンク30に貯水された水道水を圧送する給水ポンプ31と、給水ポンプ31から吐出された水道水の流量を調節する流量調節弁32と、流量調節弁32により調節された後の水道水の流量を測定する流量計33と、これらの各機器と洗浄対象配管10の入口端とを接続するホース34とから構成されている。   The simulated facility for supplying tap water to the pipe 10 to be cleaned adjusts the flow rate of tap water discharged from the feed water tank 30, the feed water pump 31 that pumps the tap water stored in the feed water tank 30, and the feed water pump 31. And a flow meter 33 for measuring the flow rate of tap water after being adjusted by the flow rate control valve 32, and a hose 34 for connecting these devices and the inlet end of the pipe 10 to be cleaned. Has been.

また、洗浄対象配管10の排出口16から排出された洗浄排水を処理するための排水処理装置40は、洗浄排水を受入れ炭酸ガスを分離するための排水受けタンク41と、洗浄排水中の除去異物を回収するためのフィルタ42と、洗浄排水を中和処理するための中和タンク43と、洗浄排水を排水受けタンク41から中和タンク43に移送するための水中ポンプ44およびホース45と、中和タンク43内の中和後の洗浄排水を外部に移送するための水中ポンプ46およびホース47とから構成されている。   Moreover, the waste water treatment apparatus 40 for processing the cleaning waste water discharged from the discharge port 16 of the pipe 10 to be cleaned receives a waste water receiving tank 41 for receiving the cleaning waste water and separating carbon dioxide, and a removed foreign matter in the cleaning waste water. , A neutralization tank 43 for neutralizing the washing waste water, a submersible pump 44 and a hose 45 for transferring the washing waste water from the drain receiving tank 41 to the neutralization tank 43, It consists of a submersible pump 46 and a hose 47 for transferring the washed waste water after neutralization in the sum tank 43 to the outside.

図3に示すように構成された洗浄装置を用いて、炭酸ガス注入装置20から洗浄対象配管10内に炭酸ガスを間欠的に注入することにより、図4に示すように、炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)のサンドイッチ構造が順次形成される。図4に示す流体の状態は、透明アクリル製配管13,14において確認することができる。そして、炭酸ガスの容積増により加速された水塊(Wmass)の内壁面に与える衝撃力によって管内の付着・堆積物の剥離除去が促進される。炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)が管内を移動する際に管内壁面に付着・堆積している付着・堆積物(汚れ)を除去するメカニズムは、図2に示した通りである。   By using the cleaning device configured as shown in FIG. 3 and intermittently injecting carbon dioxide from the carbon dioxide injection device 20 into the cleaning target pipe 10, as shown in FIG. A sandwich structure of water mass (Wmass) sandwiched between the carbon dioxide gas spaces S2 is sequentially formed. The state of the fluid shown in FIG. 4 can be confirmed in the transparent acrylic pipes 13 and 14. Then, the impact force applied to the inner wall surface of the water mass (Wmass) accelerated by the increase in the volume of carbon dioxide gas promotes the separation and removal of deposits and deposits in the pipe. FIG. 2 shows a mechanism for removing adhesion / sediment (dirt) adhering to and accumulating on the inner wall of the pipe when the water mass (Wmass) sandwiched between the carbon dioxide space S1 and the carbon dioxide space S2 moves in the pipe. As shown.

図3に示すように構成された洗浄装置を用い、水道水の管内相当流速、炭酸ガスの管内相当流速、および炭酸ガスの間欠注入頻度をパラメータとして試験を行い、洗浄対象配管10の中に組込まれた透明アクリル製配管13,14にて配管内面の付着・堆積物除去に必要な衝撃力を与える高速の気液二相流を発生させる諸条件について検討した。その結果、管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定することにより、水塊(Wmass)が2つの炭酸ガス空間S1,S2でサンドイッチされた高速の気液二相流を効率的に発生させることができ、高速の気液二相流が管路の内壁面に対して衝撃力を与えることによって管内壁面の付着・堆積物を除去することが可能であることを検証することができた。   Using the cleaning device configured as shown in FIG. 3, the test is performed using parameters corresponding to the pipe equivalent flow velocity of tap water, the equivalent flow velocity of carbon dioxide gas, and the intermittent injection frequency of carbon dioxide gas as parameters. Various conditions for generating a high-speed gas-liquid two-phase flow that gives impact force necessary for adhesion and deposit removal on the inner surface of the pipes were examined. As a result, the tap water equivalent flow rate of tap water flowing in the pipe is 0.3 m / sec or more, the carbon dioxide equivalent flow rate is 3 m / sec or more, and intermittent injection of carbon dioxide gas is performed for 4 to 5 seconds. By setting the stop to 1 to 2 seconds, a high-speed gas-liquid two-phase flow in which a water mass (Wmass) is sandwiched between two carbon dioxide gas spaces S1 and S2 can be generated efficiently. It was verified that the liquid two-phase flow can remove the deposits and deposits on the inner wall of the pipe by applying an impact force to the inner wall of the pipe.

ここで、上記気液二相流における水道水の管内相当流速が0.3m/secを下回ったり、炭酸ガスの管内相当流速が3m/secを下回ったり、炭酸ガスの間欠注入が、注入4〜5秒、停止1〜2秒の範囲を逸脱すると、配管内面の付着物を除去するのに十分な高速の気液二相流を発生させることが困難となり、十分な管内洗浄が出来なくなることも判明した。また、上記水道水の管内相当流速を極端に高めても洗浄効果の著しい向上は見られず、例えば、上記水道水の管内相当流速を0.7m/secよりも大きな範囲に設定したり、あるいは炭酸ガスの管内相当流速を8m/secよりも大きな範囲に設定しても著しい気液二相流の向上は見られず、逆に水道水および炭酸ガスの無駄な消費の増大に繋がりコストアップになる恐れがある。また、単に上記水道水の管内相当流速を0.7m/secよりも大きな範囲に設定したりすると炭酸ガスの水への溶解量が増大し良好な気液二相流が発生しなかった。これらの実験結果から洗浄条件としては、管内を流れる水道水の管内相当流速を0.3〜0.7m/secに、かつ炭酸ガスの管内相当流速を3〜8m/secに、かつ炭酸ガスの間欠注入頻度を、注入4秒、停止を2秒に設定することが望ましい。   Here, in the gas-liquid two-phase flow, the tap water equivalent flow rate in the pipe is less than 0.3 m / sec, the equivalent flow rate in the pipe of carbon dioxide gas is less than 3 m / sec, or intermittent injection of carbon dioxide is the injection 4 to 4 If it deviates from the range of 5 seconds and stop 1 to 2 seconds, it becomes difficult to generate a high-speed gas-liquid two-phase flow sufficient to remove deposits on the inner surface of the pipe, and sufficient pipe cleaning cannot be performed. found. Further, even if the equivalent flow rate in the tap water pipe is extremely increased, the cleaning effect is not significantly improved. For example, the equivalent flow speed in the tap water pipe is set to a range larger than 0.7 m / sec, or Even if the equivalent flow rate of carbon dioxide in the pipe is set to a range larger than 8 m / sec, there is no significant improvement in gas-liquid two-phase flow, and conversely, wasteful consumption of tap water and carbon dioxide is increased, leading to an increase in cost. There is a fear. Moreover, when the flow rate corresponding to the tap water in the pipe was simply set in a range larger than 0.7 m / sec, the amount of carbon dioxide dissolved in water increased, and a good gas-liquid two-phase flow did not occur. From these experimental results, the cleaning conditions are as follows: tap water equivalent flow rate of tap water flowing in the pipe is 0.3 to 0.7 m / sec, carbon dioxide equivalent flow rate of 3 to 8 m / sec, and carbon dioxide gas flow rate. It is desirable to set the intermittent injection frequency to 4 seconds for injection and 2 seconds for stoppage.

次に、水道水の管内相当流速、炭酸ガスの管内相当流速、および炭酸ガスの間欠注入頻度をパラメータとして試験を行った結果を表1に示す。   Next, Table 1 shows the results of tests conducted using parameters corresponding to the pipe water equivalent flow velocity, the carbon dioxide equivalent flow velocity, and the intermittent injection frequency of carbon dioxide.

Figure 2012055845
Figure 2012055845

図5は、本発明に係る水道水配管の洗浄方法および装置の第2の実施形態を示す概略図である。図5に示す第2の実施形態の洗浄装置は図3に示す第1の実施形態の洗浄装置に炭酸水製造装置50および真空発生装置60等を追加した構成を有している。すなわち、炭酸ガス注入装置20の気化器22の出口から分岐した配管28は、炭酸水製造装置50に接続されている。炭酸水製造装置50は、炭酸水製造用水タンク51、炭酸水製造用ポンプ52、炭酸水流量計53、炭酸水製造ユニット54とから構成されている。炭酸水製造装置50は、炭酸ガス注入装置20の気化器22から供給される炭酸ガスを水道水に溶解させて飽和炭酸水を製造するようになっている。炭酸水製造装置50の炭酸水製造ユニット54は、ホース29によって炭酸ガス注入座15に接続されており、洗浄対象配管10に飽和炭酸水が連続的に供給できるようになっている。   FIG. 5 is a schematic view showing a second embodiment of the tap water pipe cleaning method and apparatus according to the present invention. The cleaning device of the second embodiment shown in FIG. 5 has a configuration in which a carbonated water production device 50, a vacuum generator 60, and the like are added to the cleaning device of the first embodiment shown in FIG. That is, the pipe 28 branched from the outlet of the vaporizer 22 of the carbon dioxide injection device 20 is connected to the carbonated water production device 50. The carbonated water production apparatus 50 includes a carbonated water production water tank 51, a carbonated water production pump 52, a carbonated water flow meter 53, and a carbonated water production unit 54. The carbonated water production device 50 produces saturated carbonated water by dissolving the carbon dioxide gas supplied from the vaporizer 22 of the carbon dioxide gas injection device 20 in tap water. The carbonated water production unit 54 of the carbonated water production apparatus 50 is connected to the carbon dioxide gas injection seat 15 by a hose 29 so that saturated carbonated water can be continuously supplied to the pipe 10 to be cleaned.

また、図5に示す第2の実施形態の洗浄装置においては、洗浄対象配管10の排出口16から排出された洗浄排水を処理するための排水処理装置40は、負圧タンク37を備えている。洗浄対象配管10の排出口16は耐圧ホース38を介して負圧タンク37に接続されている。また、負圧タンク37は吸引ホース39を介して真空発生装置60に接続されており、真空発生装置60によって負圧タンク37を負圧することで、耐圧ホース38を介して洗浄対象配管10の洗浄排水、炭酸ガス等を吸引できるようにしている。また、排水処理装置40は、洗浄排水を受入れ炭酸ガスを分離するための前記負圧タンク37と、洗浄排水中の除去異物を回収するためのフィルタ42と、洗浄排水を中和処理するための中和タンク43と、洗浄排水を負圧タンク37から中和タンク43に移送するための水中ポンプ44およびホース45と、中和タンク43内の中和後の洗浄排水を外部に移送するための水中ポンプ46およびホース47とから構成されている。   Further, in the cleaning device of the second embodiment shown in FIG. 5, the waste water treatment device 40 for processing the cleaning waste water discharged from the discharge port 16 of the cleaning target pipe 10 includes a negative pressure tank 37. . The discharge port 16 of the cleaning target pipe 10 is connected to a negative pressure tank 37 through a pressure hose 38. Further, the negative pressure tank 37 is connected to the vacuum generation device 60 via the suction hose 39, and the negative pressure tank 37 is negatively pressurized by the vacuum generation device 60, whereby the cleaning target pipe 10 is cleaned via the pressure resistance hose 38. Drainage, carbon dioxide, etc. can be sucked. Further, the waste water treatment device 40 receives the washing waste water and separates the negative pressure tank 37 for separating carbon dioxide, the filter 42 for collecting the removed foreign matter in the washing waste water, and the neutralizing treatment for the washing waste water. Neutralization tank 43, submersible pump 44 and hose 45 for transferring cleaning wastewater from negative pressure tank 37 to neutralization tank 43, and for transferring cleaning wastewater after neutralization in neutralization tank 43 to the outside A submersible pump 46 and a hose 47 are included.

図5に示すように構成された洗浄装置を用いて、炭酸ガス注入装置20から洗浄対象配管10内に炭酸ガスを間欠的に注入することにより、図6に示すように、炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)のサンドイッチ構造が順次形成される。図6に示す流体の状態は、透明アクリル製配管13,14において確認することができる。そして、炭酸ガスの容積増により加速された水塊(Wmass)の内壁面に与える衝撃力によって管内の付着・堆積物の剥離除去が促進される。炭酸ガス空間S1と炭酸ガス空間S2に挟まれた水塊(Wmass)が管内を移動する際に管内壁面に付着・堆積している付着・堆積物(汚れ)を除去するメカニズムは、図2に示した通りである。   By using the cleaning device configured as shown in FIG. 5 and intermittently injecting carbon dioxide gas from the carbon dioxide injection device 20 into the pipe 10 to be cleaned, as shown in FIG. A sandwich structure of water mass (Wmass) sandwiched between the carbon dioxide gas spaces S2 is sequentially formed. The state of the fluid shown in FIG. 6 can be confirmed in the transparent acrylic pipes 13 and 14. Then, the impact force applied to the inner wall surface of the water mass (Wmass) accelerated by the increase in the volume of carbon dioxide gas promotes the separation and removal of deposits and deposits in the pipe. FIG. 2 shows a mechanism for removing adhesion / sediment (dirt) adhering to and accumulating on the inner wall of the pipe when the water mass (Wmass) sandwiched between the carbon dioxide space S1 and the carbon dioxide space S2 moves in the pipe. As shown.

炭酸ガスは通水中の水道水配管に間欠的に注入されるため、通水中の水道水の炭酸ガスの溶解量に濃淡の差がでるため、水塊(Wmass)が2つの炭酸ガス空間S1,S2でサンドイッチされた高速の気液二相流を安定して得るために飽和炭酸水を連続して供給する。これにより、間欠的に炭酸ガスが供給される水道水の炭酸ガス濃度はほぼ均一となり、安定した高速の気液二相流を得ることができ、管内に付着・堆積した付着・堆積物を剥離・除去する洗浄作用を促進することができる。   Since carbon dioxide gas is intermittently injected into the tap water piping of the running water, a difference in density occurs in the amount of dissolved carbon dioxide in the running water, so that the water mass (Wmass) has two carbon dioxide gas spaces S1, In order to stably obtain a high-speed gas-liquid two-phase flow sandwiched in S2, saturated carbonated water is continuously supplied. As a result, the concentration of carbon dioxide in tap water to which carbon dioxide is intermittently supplied becomes almost uniform, and a stable and high-speed gas-liquid two-phase flow can be obtained. -The cleaning action to be removed can be promoted.

また、洗浄対象配管10の排出口16に接続された負圧タンク37に真空発生装置60を連結することにより、洗浄対象配管10の配管内を負圧で吸引することができ、配管内の系統圧力差が増大し、高速の気液二相流が飛躍的に増大し、管内の付着・堆積物を剥離・除去する洗浄作用を促進することができる。   Further, by connecting the vacuum generator 60 to the negative pressure tank 37 connected to the discharge port 16 of the pipe 10 to be cleaned, the pipe of the pipe 10 to be cleaned can be sucked with negative pressure, and the system in the pipe The pressure difference increases, the high-speed gas-liquid two-phase flow increases dramatically, and the cleaning action for peeling and removing the deposits and deposits in the pipe can be promoted.

図5に示すように構成された洗浄装置を用い、水道水の管内相当流速、飽和炭酸水の管内相当流速、炭酸ガスの管内相当流速、および炭酸ガスの間欠注入頻度をパラメータとして試験を行い、洗浄対象配管10の中に組込まれた透明アクリル製配管13,14にて配管内面の付着・堆積物除去に必要な衝撃力を与える高速の気液二相流を発生させる諸条件について検討した。その結果、管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ連続的に供給する飽和炭酸水の供給量を管内相当流速が0.05m/sec以上になるように、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定することにより、水塊(Wmass)が2つの炭酸ガス空間S1,S2でサンドイッチされた高速の気液二相流を効率的に発生させることができ、高速の気液二相流が管路の内壁面に対して衝撃力を与えることによって管内壁面の付着・堆積物を除去することが可能であることを検証することができた。   Using the cleaning device configured as shown in FIG. 5, the test was performed using parameters corresponding to the pipe equivalent flow rate of tap water, the equivalent flow rate of saturated carbonated water in the pipe, the equivalent flow rate of carbon dioxide in the pipe, and the intermittent injection frequency of carbon dioxide. Various conditions for generating a high-speed gas-liquid two-phase flow that gives an impact force necessary for adhesion and deposit removal on the inner surface of the pipe in the transparent acrylic pipes 13 and 14 incorporated in the pipe 10 to be cleaned were examined. As a result, the equivalent flow rate of tap water flowing through the pipe is 0.3 m / sec or more, and the supply amount of saturated carbonated water to be continuously supplied is 0.05 m / sec or more, and By setting the equivalent flow rate of carbon dioxide in the pipe to 3 m / sec or higher, intermittent injection of carbon dioxide to 4 to 5 seconds, and stopping to 1 to 2 seconds, the water mass (Wmass) is two carbon dioxide. It is possible to efficiently generate a high-speed gas-liquid two-phase flow sandwiched between the spaces S1 and S2, and the high-speed gas-liquid two-phase flow gives an impact force to the inner wall surface of the pipe line. It was verified that it was possible to remove adhesion and deposits.

ここで、上記気液二相流における水道水の管内相当流速が0.3m/secを下回ったり、炭酸ガスの管内相当流速が3m/secを下回ったり、炭酸ガスの間欠注入が、注入4〜5秒、停止1〜2秒の範囲を逸脱すると、配管内面の付着物を除去するのに十分な高速の気液二相流を発生させることが困難となり、十分な管内洗浄が出来なくなることも判明した。また、上記水道水の管内相当流速を極端に高めても洗浄効果の著しい向上は見られず、例えば、上記水道水の管内相当流速を0.7m/secよりも大きな範囲に設定したり、あるいは炭酸ガスの管内相当流速を8m/secよりも大きな範囲に設定しても著しい気液二相流の向上は見られず、逆に水道水および炭酸ガスの無駄な消費の増大に繋がりコストアップになる恐れがある。また、連続的に供給する飽和炭酸水の供給量を管内相当流速が0.25m/sec以上になるようにし、配管内を吸引する吸引流量を管内相当流速が12m/sec以上になるようにしても、供給設備が過大となり効果的ではなかった。また、単に上記水道水の管内相当流速を0.7m/secよりも大きな範囲に設定したりすると炭酸ガスの水への溶解量が増大し良好な気液二相流が発生しなかった。これらの実験結果から洗浄条件としては、管内を流れる水道水の管内相当流速を0.3〜0.7m/secに、かつ連続的に供給する飽和炭酸水の供給量を管内相当流速が0.05m/sec〜0.25m/secになるように、かつ炭酸ガスの管内相当流速を3〜8m/secに、かつ炭酸ガスの間欠注入頻度を、注入4秒、停止を2秒に、かつ配管内を吸引する吸引流量を管内相当流速が5m/sec〜12m/secになるように設定することが望ましい。   Here, in the gas-liquid two-phase flow, the tap water equivalent flow rate in the pipe is less than 0.3 m / sec, the equivalent flow rate in the pipe of carbon dioxide gas is less than 3 m / sec, or intermittent injection of carbon dioxide is the injection 4 to 4 If it deviates from the range of 5 seconds and stop 1 to 2 seconds, it becomes difficult to generate a high-speed gas-liquid two-phase flow sufficient to remove deposits on the inner surface of the pipe, and sufficient pipe cleaning cannot be performed. found. Further, even if the equivalent flow rate in the tap water pipe is extremely increased, the cleaning effect is not significantly improved. For example, the equivalent flow speed in the tap water pipe is set to a range larger than 0.7 m / sec, or Even if the equivalent flow rate of carbon dioxide in the pipe is set to a range larger than 8 m / sec, there is no significant improvement in gas-liquid two-phase flow, and conversely, wasteful consumption of tap water and carbon dioxide is increased, leading to an increase in cost. There is a fear. In addition, the saturated carbonated water supplied continuously is supplied at a flow rate equivalent to 0.25 m / sec or more in the pipe, and the suction flow rate for sucking the inside of the pipe is set to 12 m / sec or more in the pipe. However, the supply facilities were excessive and not effective. Moreover, when the flow rate corresponding to the tap water in the pipe was simply set in a range larger than 0.7 m / sec, the amount of carbon dioxide dissolved in water increased, and a good gas-liquid two-phase flow did not occur. From these experimental results, the cleaning conditions are as follows: the equivalent flow rate of tap water flowing in the pipe is 0.3 to 0.7 m / sec, and the supply amount of saturated carbonated water to be continuously supplied is 0. 05m / sec to 0.25m / sec, the equivalent flow rate of carbon dioxide in the pipe is 3 to 8m / sec, the intermittent injection frequency of carbon dioxide is 4 seconds, the stop is 2 seconds, and piping It is desirable to set the suction flow rate for sucking the inside so that the flow velocity corresponding to the inside of the tube is 5 m / sec to 12 m / sec.

次に、水道水の管内相当流速、飽和炭酸水の管内相当流速、炭酸ガスの管内相当流速、負圧による吸引時の管内相当流速、および炭酸ガスの間欠注入頻度をパラメータとして試験を行った結果を表2に示す。   Next, as a result of testing, the equivalent flow rate in tap water, the equivalent flow rate in saturated carbonated water, the equivalent flow rate in carbon dioxide, the equivalent flow rate in suction during negative pressure suction, and the intermittent injection frequency of carbon dioxide were used as parameters. Is shown in Table 2.

Figure 2012055845
Figure 2012055845

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 水道水配管
2 炭酸ガス注入口
3 排出口
4 閉止板
10 洗浄対象配管
11〜14 配管
15 炭酸ガス注入座
16 排出口
17 閉止板
20 炭酸ガス注入装置
21 炭酸ガスボンベ
22 気化器
23 電磁弁
24 タイマ
26 ホース
27 流量計
28 配管
29 ホース
30 給水タンク
31 給水ポンプ
32 流量調節弁
33 流量計
34 ホース
37 負圧タンク
38 耐圧ホース
39 吸引ホース
40 排水処理装置
41 排水受けタンク
42 フィルタ
43 中和タンク
44 水中ポンプ
45 ホース
46 水中ポンプ
47 ホース
50 炭酸水製造装置
51 炭酸水製造用タンク
52 炭酸水製造用ポンプ
53 炭酸水流量計
54 炭酸水製造ユニット
60 真空発生装置
S1,S2 炭酸ガス空間
Wmass 水塊
DESCRIPTION OF SYMBOLS 1 Tap water piping 2 Carbon dioxide injection port 3 Outlet 4 Closure plate 10 Pipe to be cleaned 11-14 Piping 15 Carbon dioxide injection seat 16 Discharge port 17 Closure plate 20 Carbon dioxide injection device 21 Carbon dioxide cylinder 22 Vaporizer 23 Solenoid valve 24 Timer 26 Hose 27 Flow meter 28 Piping 29 Hose 30 Water tank 31 Water pump 32 Flow control valve 33 Flow meter 34 Hose 37 Negative pressure tank 38 Pressure hose 39 Suction hose 40 Waste water treatment device 41 Drainage receiving tank 42 Filter 43 Neutralization tank 44 Underwater Pump 45 Hose 46 Submersible pump 47 Hose 50 Carbonated water production equipment 51 Carbonated water production tank 52 Carbonated water production pump 53 Carbonated water flow meter 54 Carbonated water production unit 60 Vacuum generator S1, S2 Carbon dioxide space Wmass Water mass

Claims (18)

水道水が流れている水道水配管内に、炭酸ガスの注入と炭酸ガスの注入停止とを繰り返す炭酸ガスの間欠的な注入を行い、
前記水道水配管内に炭酸ガスの注入により炭酸ガス空間を形成し、該炭酸ガス空間によって炭酸ガスの注入停止時に形成した水塊を挟むサンドイッチ構造を形成し、
前記水塊が前記水道水配管内を流れる際に配管の内壁面に付着および堆積した付着・堆積物に衝突して衝撃力を与え前記付着・堆積物を除去するようにしたことを特徴とする水道水配管の洗浄方法。
In the tap water pipe through which tap water is flowing, intermittent injection of carbon dioxide gas that repeats injection of carbon dioxide gas and carbon dioxide injection stop,
Forming a carbon dioxide gas space by injecting carbon dioxide gas into the tap water pipe, forming a sandwich structure sandwiching a water mass formed when carbon dioxide gas injection is stopped by the carbon dioxide gas space,
When the water mass flows through the tap water pipe, it adheres to and adheres to the deposit / deposit deposited on the inner wall surface of the pipe, and an impact force is applied to remove the deposit / deposit. How to clean tap water piping.
前記水塊は、前記水道水配管の内壁面の全周に接触していることを特徴とする請求項1記載の水道水配管の洗浄方法。   The method of cleaning a tap water pipe according to claim 1, wherein the water mass is in contact with the entire circumference of the inner wall surface of the tap water pipe. 前記水道水配管の断面積をA、前記水道水配管内を流れている水道水の流量をQ、前記水道水配管内に注入される炭酸ガスの流量をQとすると、炭酸ガスの注入停止時の管内平均流速は、V=Q/Aであり、炭酸ガスを注入することにより管内平均流速は、VL+G=(Q+Q)/Aに増速されることを特徴とする請求項1または2記載の水道水配管の洗浄方法。 When the cross-sectional area of the tap water pipe is A, the flow rate of tap water flowing through the tap water pipe is Q L , and the flow rate of carbon dioxide gas injected into the tap water pipe is Q G , the injection of carbon dioxide gas The average flow velocity in the pipe at the time of stopping is V L = Q L / A, and the average flow velocity in the pipe is increased to V L + G = (Q L + Q G ) / A by injecting carbon dioxide gas. The method for cleaning tap water piping according to claim 1 or 2. 前記水道水配管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入を、注入4〜5秒に、停止を1〜2秒に設定することを特徴とする請求項1乃至3のいずれか1項に記載の水道水配管の洗浄方法。   The equivalent flow velocity in the tap water pipe flowing in the tap water pipe is 0.3 m / sec or more, the equivalent flow velocity of the carbon dioxide gas pipe is 3 m / sec or more, and the intermittent injection of carbon dioxide gas is 4 to 5 seconds. The method for cleaning tap water piping according to any one of claims 1 to 3, wherein the stop is set to 1 to 2 seconds. 前記水道水配管内を流れる水道水の管内相当流速を0.3〜0.7m/secに設定することを特徴とする請求項4記載の水道水配管の洗浄方法。   5. The tap water pipe cleaning method according to claim 4, wherein an equivalent flow speed in the tap water flowing in the tap water pipe is set to 0.3 to 0.7 m / sec. 前記水道水配管内を流れる炭酸ガスの管内相当流速を3〜8m/secに設定することを特徴とする請求項4または請求項5記載の水道水配管の洗浄方法。   The method for cleaning tap water piping according to claim 4 or 5, wherein an equivalent flow velocity of carbon dioxide flowing in the tap water piping is set to 3 to 8 m / sec. 前記水道水配管内に注入する炭酸ガスの間欠注入時間を、注入4秒に、停止を2秒に設定することを特徴とする請求項4乃至6のいずれか1項に記載の水道水配管の洗浄方法。   The intermittent injection time of carbon dioxide gas injected into the tap water pipe is set to 4 seconds for injection and to 2 seconds for stoppage. The tap water pipe according to any one of claims 4 to 6, Cleaning method. 前記水道水配管内に炭酸水を連続的に供給することを特徴とする請求項1乃至7のいずれか1項に記載の水道水配管の洗浄方法。   The method for cleaning tap water piping according to any one of claims 1 to 7, wherein carbonated water is continuously supplied into the tap water piping. 前記水道水配管の排出口から前記水道水配管内を負圧で吸引することを特徴とする請求項8記載の水道水配管の洗浄方法。   The method of cleaning a tap water pipe according to claim 8, wherein the tap water pipe is sucked with a negative pressure from an outlet of the tap water pipe. 前記水道水配管内を流れる水道水の管内相当流速を0.3m/sec以上に、かつ、連続的に注入する飽和炭酸水の管内相当流速を0.05m/sec以上に、かつ炭酸ガスの管内相当流速を3m/sec以上に、かつ炭酸ガスの間欠注入頻度を、注入4〜5秒に、停止を1〜2秒に、かつ水道水配管内を吸引する吸引流量を管内相当流速が5m/sec以上になるように設定することを特徴とする請求項9記載の水道水配管の洗浄方法。   The equivalent flow velocity in the tap water pipe flowing through the tap water pipe is 0.3 m / sec or more, the equivalent flow velocity in the saturated carbonated water continuously injected is 0.05 m / sec or more, and the carbon dioxide gas pipe. The equivalent flow rate is 3 m / sec or more, the intermittent injection frequency of carbon dioxide gas is 4 to 5 seconds, the stop is 1 to 2 seconds, and the suction flow rate for sucking in the tap water pipe is 5 m / sec. It sets so that it may become sec or more, The cleaning method of the tap water piping of Claim 9 characterized by the above-mentioned. 前記水道水配管内を流れる水道水の管内相当流速を0.3〜0.7m/secに設定することを特徴とする請求項10記載の水道水配管の洗浄方法。   11. The tap water pipe cleaning method according to claim 10, wherein the tap water pipe corresponding flow velocity in the tap water pipe is set to 0.3 to 0.7 m / sec. 前記水道水配管内を流れる炭酸ガスの管内相当流速を3〜8m/secに設定することを特徴とする請求項10または11記載の水道水配管の洗浄方法。   The method for cleaning tap water pipes according to claim 10 or 11, wherein an in-pipe equivalent flow rate of carbon dioxide gas flowing in the tap water pipes is set to 3 to 8 m / sec. 前記水道水配管内に注入する炭酸ガスの間欠注入時間を、注入4秒に、停止を2秒に設定することを特徴とする請求項10乃至12のいずれか1項に記載の水道水配管の洗浄方法。   13. The tap water pipe according to claim 10, wherein the intermittent injection time of the carbon dioxide gas to be injected into the tap water pipe is set to 4 seconds for injection and to 2 seconds for stoppage. Cleaning method. 前記水道水配管内を流れる飽和炭酸水の管内相当流速を0.05〜0.25m/secに設定することを特徴とする請求項10乃至13のいずれか1項に記載の水道水配管の洗浄方法。   The tap water pipe cleaning according to any one of claims 10 to 13, wherein a flow rate corresponding to the saturated carbonated water flowing in the tap water pipe is set to 0.05 to 0.25 m / sec. Method. 前記水道水配管内を吸引する吸引流量を管内相当流速が5〜12m/secになるように設定することを特徴とする請求項10乃至14のいずれか1項に記載の水道水配管の洗浄方法。   The method for cleaning a tap water pipe according to any one of claims 10 to 14, wherein a suction flow rate for sucking the tap water pipe is set so that an equivalent flow velocity in the pipe is 5 to 12 m / sec. . 水道水が流れている水道水配管内に、炭酸ガスの注入と炭酸ガスの注入停止とを繰り返す炭酸ガスの間欠的な注入を行う炭酸ガス注入装置を設け、
前記炭酸ガス注入装置を前記水道水配管に接続し、前記水道水配管内に炭酸ガスの注入により炭酸ガス空間を形成し、該炭酸ガス空間によって炭酸ガスの注入停止時に形成した水塊を挟むサンドイッチ構造を形成し、
前記水塊が前記水道水配管内を流れる際に配管の内壁面に付着および堆積した付着・堆積物に衝突して衝撃力を与え前記付着・堆積物を除去するようにしたことを特徴とする水道水配管の洗浄装置。
In the tap water pipe through which tap water is flowing, a carbon dioxide gas injection device is provided that intermittently injects carbon dioxide that repeats the injection of carbon dioxide and the stop of carbon dioxide injection,
Sandwich that connects the carbon dioxide gas injection device to the tap water pipe, forms a carbon dioxide space by injecting carbon dioxide gas into the tap water pipe, and sandwiches a water mass formed when carbon dioxide injection is stopped by the carbon dioxide gas space Forming structure,
When the water mass flows through the tap water pipe, it adheres to and adheres to the deposit / deposit deposited on the inner wall surface of the pipe, and an impact force is applied to remove the deposit / deposit. Tap water pipe cleaning equipment.
前記水道水配管内に炭酸水を連続的に供給する炭酸水製造装置を備えたことを特徴とする請求項16記載の水道水配管の洗浄装置。   The cleaning device for tap water piping according to claim 16, further comprising a carbonated water producing device for continuously supplying carbonated water into the tap water piping. 前記水道水配管の排出口から前記水道水配管内を負圧で吸引する真空発生装置を備えたことを特徴とする請求項16または17記載の水道水配管の洗浄装置。   18. The tap water pipe cleaning device according to claim 16, further comprising a vacuum generator that sucks the tap water pipe from the discharge port of the tap water pipe with a negative pressure.
JP2010202739A 2010-09-10 2010-09-10 Method and apparatus for cleaning tap water piping Active JP5562773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202739A JP5562773B2 (en) 2010-09-10 2010-09-10 Method and apparatus for cleaning tap water piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202739A JP5562773B2 (en) 2010-09-10 2010-09-10 Method and apparatus for cleaning tap water piping

Publications (2)

Publication Number Publication Date
JP2012055845A true JP2012055845A (en) 2012-03-22
JP5562773B2 JP5562773B2 (en) 2014-07-30

Family

ID=46053598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202739A Active JP5562773B2 (en) 2010-09-10 2010-09-10 Method and apparatus for cleaning tap water piping

Country Status (1)

Country Link
JP (1) JP5562773B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435986B1 (en) 2013-02-15 2014-09-02 박종석 Pipe cleaning apparatus using shock wave
JP2016205657A (en) * 2015-04-17 2016-12-08 オリオン機械株式会社 Cleaning method and device of chiller
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide
CN114769203A (en) * 2022-06-20 2022-07-22 沈阳和研科技有限公司 Workpiece developing device for scribing machine and scribing machine
KR102569179B1 (en) * 2023-01-19 2023-08-22 주식회사 다한기술 Pipe cleaning device using air compression wave

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409299B1 (en) * 2020-06-11 2022-06-15 주식회사 아세아프로텍 Pipe cleaning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031098A (en) * 1983-07-29 1985-02-16 三菱重工業株式会社 Method of washing piping
JPH0796998A (en) * 1993-09-24 1995-04-11 Tokyo Koka Cola Botoringu Kk Method and device for washing in drink supply device
US5941257A (en) * 1997-09-12 1999-08-24 Eastman Kodak Company Method for two-phase flow hydrodynamic cleaning for piping systems
JP2002136939A (en) * 2000-11-06 2002-05-14 Toshimi Honda Washing car for water supply pipe of general building and apartment house or the like
JP3501795B2 (en) * 2001-01-05 2004-03-02 利美 本多 Tube cleaning method and apparatus
JP2006035110A (en) * 2004-07-28 2006-02-09 Shoori:Kk Apparatus for cleaning pipe
JP2008174954A (en) * 2007-01-18 2008-07-31 Berutekkusu:Kk Method for cleaning inside of drain pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031098A (en) * 1983-07-29 1985-02-16 三菱重工業株式会社 Method of washing piping
JPH0796998A (en) * 1993-09-24 1995-04-11 Tokyo Koka Cola Botoringu Kk Method and device for washing in drink supply device
US5941257A (en) * 1997-09-12 1999-08-24 Eastman Kodak Company Method for two-phase flow hydrodynamic cleaning for piping systems
JP2002136939A (en) * 2000-11-06 2002-05-14 Toshimi Honda Washing car for water supply pipe of general building and apartment house or the like
JP3501795B2 (en) * 2001-01-05 2004-03-02 利美 本多 Tube cleaning method and apparatus
JP2006035110A (en) * 2004-07-28 2006-02-09 Shoori:Kk Apparatus for cleaning pipe
JP2008174954A (en) * 2007-01-18 2008-07-31 Berutekkusu:Kk Method for cleaning inside of drain pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435986B1 (en) 2013-02-15 2014-09-02 박종석 Pipe cleaning apparatus using shock wave
JP2016205657A (en) * 2015-04-17 2016-12-08 オリオン機械株式会社 Cleaning method and device of chiller
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide
JP6192881B1 (en) * 2016-02-12 2017-09-06 三菱電機株式会社 Circulation piping system and carbon dioxide-containing water supply system
CN114769203A (en) * 2022-06-20 2022-07-22 沈阳和研科技有限公司 Workpiece developing device for scribing machine and scribing machine
CN114769203B (en) * 2022-06-20 2022-10-14 沈阳和研科技有限公司 Workpiece flushing device for dicing saw and dicing saw
KR102569179B1 (en) * 2023-01-19 2023-08-22 주식회사 다한기술 Pipe cleaning device using air compression wave

Also Published As

Publication number Publication date
JP5562773B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5562773B2 (en) Method and apparatus for cleaning tap water piping
JP2011230106A (en) Method of cleaning conduit line
KR101894875B1 (en) Pipe cleaning apparatus and pipe cleaning method
KR20120094586A (en) Pipe cleaning apparatus using shock wave
KR101073842B1 (en) Scale removal device for water pipes
WO2009004725A1 (en) Method of cleaning air diffuser apparatus
JP2015013282A (en) Pipeline cleaning method and system
JP5191243B2 (en) How to clean piping using ice blocks
JP2013056326A (en) Method for washing pipe
CN202061850U (en) Secondary cold water pipeline washing device of continuous casting machine
JP2014064961A (en) Cleaning pig for waterwork pipe
KR200389135Y1 (en) Apparatus for cleaning a pipe using ozone and air bubbles
JP2003024892A (en) Method and apparatus for cleaning cooling water pipe
JP2017013038A (en) Cleaning device using air jet and nano-bubble
JP2019209227A (en) Piping washing device and piping washing method
KR20090111089A (en) Pipe cleaning device and method
US9687891B2 (en) Intake pipe cleaning system and method
CN111451224B (en) Oil and gas field pipeline pipe cleaning and descaling device and method
JP2015080745A (en) Pipeline cleaning method
JP2012115730A (en) Method of cleaning piping
JPH081119A (en) Intratube cleaning of existing piping
JP7021731B2 (en) Piping cleaning equipment and piping cleaning method
JP2012055830A (en) Method for cleaning piping and cleaning apparatus therefor
JP2005262149A (en) Washing apparatus and washing method of water supply pipe
RU2643986C1 (en) Method for cleaning filter part of pressure inset piezometer of non-linear shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250