JP2012054448A - Electrode material for aluminum electrolytic capacitor and method of manufacturing the same - Google Patents
Electrode material for aluminum electrolytic capacitor and method of manufacturing the same Download PDFInfo
- Publication number
- JP2012054448A JP2012054448A JP2010196591A JP2010196591A JP2012054448A JP 2012054448 A JP2012054448 A JP 2012054448A JP 2010196591 A JP2010196591 A JP 2010196591A JP 2010196591 A JP2010196591 A JP 2010196591A JP 2012054448 A JP2012054448 A JP 2012054448A
- Authority
- JP
- Japan
- Prior art keywords
- sintered
- electrode material
- aluminum
- powder
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 239000007772 electrode material Substances 0.000 title claims abstract description 87
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 86
- 239000003990 capacitor Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 88
- 239000000843 powder Substances 0.000 claims abstract description 83
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 16
- 239000000470 constituent Substances 0.000 claims abstract description 4
- 238000005245 sintering Methods 0.000 claims description 32
- 239000011888 foil Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 238000010030 laminating Methods 0.000 claims description 6
- 238000007743 anodising Methods 0.000 claims description 5
- 238000005452 bending Methods 0.000 abstract description 11
- 238000000576 coating method Methods 0.000 description 29
- 239000011248 coating agent Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 27
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- -1 for example Chemical compound 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
Description
本発明は、アルミニウム電解コンデンサに用いられる電極材、特に中高圧用のアルミニウム電解コンデンサに用いられる陽極用電極材及びその製造方法に関する。 The present invention relates to an electrode material used for an aluminum electrolytic capacitor, and more particularly to an electrode material for an anode used for a medium-high voltage aluminum electrolytic capacitor and a method for producing the same.
一般に、アルミニウム電解コンデンサの電極材にはアルミニウム箔が使用されている。アルミニウム箔は、エッチング処理を施すことによってエッチングピットが形成され、表面積を増大することができる。また、表面に陽極酸化処理を施すことにより、酸化皮膜が形成され、これが誘電体として機能する。このため、アルミニウム箔をエッチング処理し、その表面に使用電圧に応じた種々の電圧で酸化皮膜を形成することにより、用途に応じた各種の電解コンデンサ用アルミニウム陽極用電極材(箔)を製造することができる。 Generally, an aluminum foil is used as an electrode material for an aluminum electrolytic capacitor. When the aluminum foil is subjected to an etching treatment, etching pits are formed, and the surface area can be increased. Moreover, an oxide film is formed by anodizing the surface, and this functions as a dielectric. Therefore, various types of aluminum anode electrode materials (foil) for electrolytic capacitors are manufactured according to applications by etching the aluminum foil and forming oxide films on the surface with various voltages according to the operating voltage. be able to.
しかしながら、エッチング処理では、塩酸中に硫酸、燐酸、硝酸等を含有する塩酸水溶液を使用しなければならない。即ち、塩酸は環境面での負荷が大きく、その処理も工程上又は経済上の負担になる。 However, in the etching process, an aqueous hydrochloric acid solution containing sulfuric acid, phosphoric acid, nitric acid or the like in hydrochloric acid must be used. That is, hydrochloric acid has a large environmental load, and its treatment is also a burden on the process and economy.
そのため、近年、エッチング処理によらずにアルミニウム箔の表面積を増大する方法の開発が望まれている。例えば、引用文献1には、蒸着法によってアルミニウム箔の表面にアルミニウムの微粉末を付着させて焼結することで、表面積を拡大させる方法が提案されている。また、引用文献2には、アルミニウム粒子を、空隙を維持しながら積層して焼結させることで表面積を拡大させる方法が提案されている。 Therefore, in recent years, it has been desired to develop a method for increasing the surface area of the aluminum foil without depending on the etching treatment. For example, Patent Document 1 proposes a method of enlarging the surface area by depositing and sintering aluminum fine powder on the surface of an aluminum foil by vapor deposition. Also, in Patent Document 2, a method is proposed in which the surface area is increased by laminating and sintering aluminum particles while maintaining voids.
しかしながら、本願発明者らは、これらの文献で開示されている方法によって焼結体の製造を試みたところ、容量向上のために積層厚みを大きくするほど、焼結体の折り曲げ強度が低下することが分かった。そのため、このような焼結体を巻回してコンデンサ素子を形成する際に、焼結体が破損するという問題がある。 However, the inventors of the present application tried to manufacture a sintered body by the methods disclosed in these documents, and as the laminated thickness was increased to improve the capacity, the bending strength of the sintered body was lowered. I understood. Therefore, there is a problem that the sintered body is damaged when such a sintered body is wound to form a capacitor element.
本発明は、上述した課題に鑑みてなされたものであり、エッチング処理が不要で、且つ、折り曲げ強度が改善された、アルミニウム電解コンデンサ用電極材及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an electrode material for an aluminum electrolytic capacitor that does not require an etching process and has improved bending strength, and a method for manufacturing the same.
本発明者は、上記目的を達成すべく鋭意研究を進めた結果、アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体を、特定の焼結層から形成する場合には上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of earnest research to achieve the above object, the present inventor can achieve the above object when a sintered body of at least one powder of aluminum and aluminum alloy is formed from a specific sintered layer. As a result, the present invention has been completed.
本発明は、下記のアルミニウム電解コンデンサ用電極材及びその製造方法に関する。
1.アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体からなるアルミニウム電解コンデンサ用電極材であって、
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、3層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)前記焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超える、
ことを特徴とするアルミニウム電解コンデンサ用電極材。
2.アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体及び前記焼結体を支持する基材を構成要素として含むアルミニウム電解コンデンサ用電極材であって、
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、前記基材の片面又は両面に形成されており、各焼結体は2層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)各焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超える、
ことを特徴とするアルミニウム電解コンデンサ用電極材。
3.前記基材は、アルミニウム箔である、上記項2に記載のアルミニウム電解コンデンサ用電極材。
4.前記基材の両面に前記焼結体が形成されており、
(1)各面の前記焼結体の厚さは、それぞれ35μm以上250μm以下であり、
(2)各面の前記焼結体に含まれる各焼結層の厚さは、それぞれ15μm以上である、
上記項2又は3に記載のアルミニウム電解コンデンサ用電極材。
5.アルミニウム電解コンデンサ用電極材を製造する方法であって、
アルミニウム及びアルミニウム合金の少なくとも1種の粉末を含む組成物からなる皮膜を基材の片面に2層以上積層する工程であって、(i)各皮膜に含まれる前記粉末は、平均粒径D50が1μm以上50μm以下であり、(ii)隣接する皮膜に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、(iii)最外層の皮膜に含まれる前記粉末は、平均粒径D50が10μmを超える第1工程と、
前記第1工程の後に前記2層以上の皮膜を560℃以上660℃以下の温度で焼結する第2工程と、を含み、
且つ、エッチング工程を含まない、
ことを特徴とする製造方法。
6.前記2層以上の皮膜を、基材の両面にそれぞれ形成する、上記項5に記載の製造方法。
7.前記焼結した2層以上の皮膜を陽極酸化処理する第3工程を更に含む、上記項5又は6に記載の製造方法。
The present invention relates to the following electrode material for an aluminum electrolytic capacitor and a method for producing the same.
1. An electrode material for an aluminum electrolytic capacitor comprising a sintered body of at least one powder of aluminum and an aluminum alloy,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is composed of three or more sintered layers, and the powder contained in the adjacent sintered layers has an average particle size D 50 different by 1.0 μm or more,
(3) of the sintered layer forming the sintered body, the said powder contained in the sintered layer of the outermost layer, the average particle diameter D 50 is more than 10 [mu] m,
The electrode material for aluminum electrolytic capacitors characterized by the above-mentioned.
2. An electrode material for an aluminum electrolytic capacitor comprising a sintered body of at least one powder of aluminum and an aluminum alloy and a base material supporting the sintered body as constituent elements,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is formed on one side or both sides of the base material, each sintered body is composed of two or more sintered layers, and the powder contained in the adjacent sintered layers is an average. The particle size D 50 differs by 1.0 μm or more,
(3) of the sintered layers constituting each sintered body, the said powder contained in the sintered layer of the outermost layer, the average particle diameter D 50 is more than 10 [mu] m,
The electrode material for aluminum electrolytic capacitors characterized by the above-mentioned.
3.
4). The sintered body is formed on both surfaces of the base material,
(1) The thickness of the sintered body on each surface is 35 μm or more and 250 μm or less,
(2) Each sintered layer included in the sintered body on each surface has a thickness of 15 μm or more.
Item 4. The electrode material for an aluminum electrolytic capacitor as described in 2 or 3 above.
5). A method for producing an electrode material for an aluminum electrolytic capacitor, comprising:
A step of laminating two or more layers of a film comprising a composition containing at least one powder of aluminum and an aluminum alloy on one side of a substrate, wherein (i) the powder contained in each film has an average particle size D 50 Is not less than 1 μm and not more than 50 μm, and (ii) the powder contained in the adjacent film has an average particle diameter D 50 different by 1.0 μm or more, and (iii) the powder contained in the outermost layer film has an average particle diameter A first step with D 50 exceeding 10 μm;
A second step of sintering the two or more layers at a temperature of 560 ° C. or more and 660 ° C. or less after the first step;
And does not include an etching step,
The manufacturing method characterized by the above-mentioned.
6). Item 6. The manufacturing method according to Item 5, wherein the two or more layers are formed on both surfaces of the substrate.
7). Item 7. The manufacturing method according to Item 5 or 6, further comprising a third step of anodizing the sintered two or more layers.
本発明によれば、アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体を構成要素として含むアルミニウム電解コンデンサ用電極材が提供される。この焼結体は、前記粉末の平均粒径D50が1μm以上50μm以下であり且つ複数の焼結層からなる。また、隣接する焼結層に含まれる前記粉末の平均粒径D50が1.0μm以上異なり且つ最外層の焼結層に含まれる前記粉末の平均粒径D50が10μmを超える。これによって、焼結後の電極材の折り曲げ強度を向上することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electrode material for aluminum electrolytic capacitors which contains the sintered compact of the powder of at least 1 sort (s) of aluminum and aluminum alloy as a component is provided. This sintered body, the average particle diameter D 50 of the powder is at 1μm or more 50μm or less and comprising a plurality of sintered layers. The average particle diameter D 50 of the powder having an average particle diameter D 50 of the powder contained in the adjacent sintered layer is included in the sintered layer of 1.0μm or more different and outermost exceeds 10 [mu] m. Thereby, the bending strength of the electrode material after sintering can be improved.
また、焼結体の厚みが大きい場合でも高い静電容量を確保することができる。更に前記粒子が互いに空隙を維持しながら焼結した特異な構造を有しており、高い静電容量を確保することができる。このため、低圧用のみならず中高圧用のコンデンサ用途にも用いることができる。 Moreover, even when the thickness of the sintered body is large, a high electrostatic capacity can be ensured. Furthermore, the particles have a unique structure in which the particles are sintered while maintaining voids, and a high capacitance can be ensured. For this reason, it can be used not only for low pressure but also for medium and high voltage capacitors.
1.アルミニウム電解コンデンサ用電極材
本発明のアルミニウム電解コンデンサ用電極材は、下記の通り、基材を有さない第1態様の電極材及び基材を有する第2態様の2つに大別することができる。
1. Electrode Material for Aluminum Electrolytic Capacitor The electrode material for aluminum electrolytic capacitor of the present invention can be broadly divided into two types, that is, the electrode material of the first aspect having no base material and the second aspect having the base material as described below. it can.
第1態様の電極材は、アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体からなるアルミニウム電解コンデンサ用電極材であって、
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、3層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)前記焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超えることを特徴とする。
The electrode material of the first aspect is an electrode material for an aluminum electrolytic capacitor comprising a sintered body of at least one powder of aluminum and an aluminum alloy,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is composed of three or more sintered layers, and the powder contained in the adjacent sintered layers has an average particle size D 50 different by 1.0 μm or more,
(3) of the sintered layer forming the sintered body, the said powder contained in the sintered layer of the outermost layer, the average particle diameter D 50 is equal to or more than 10 [mu] m.
第2態様の電極材は、アルミニウム及びアルミニウム合金の少なくとも1種の粉末の焼結体及び前記焼結体を支持する基材を構成要素として含むアルミニウム電解コンデンサ用電極材であって、
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、前記基材の片面又は両面に形成されており、各焼結体は2層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)各焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超えることを特徴とする。
The electrode material of the second aspect is an electrode material for an aluminum electrolytic capacitor including a sintered body of at least one powder of aluminum and an aluminum alloy and a base material supporting the sintered body as constituent elements,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is formed on one side or both sides of the base material, each sintered body is composed of two or more sintered layers, and the powder contained in the adjacent sintered layers is an average. The particle size D 50 differs by 1.0 μm or more,
(3) of the sintered layers constituting each sintered body, the powder contained in the sintered layer of the outermost layer has an average particle diameter D 50 is equal to or more than 10 [mu] m.
上記特徴を有する本発明の電極材は、第1態様及び第2態様ともに、隣接する焼結層に含まれる前記粉末の平均粒径D50が1.0μm以上異なり、最外層(基材を除く大気に露出している層)の焼結層に含まれる前記粉末の平均粒径D50が10μmを超えることにより、高い静電容量を確保しつつ折り曲げ強度を向上させることができる。 Electrode material of the present invention having the above characteristics, excluding both the first and second aspects, different average particle size D 50 of the powder contained in the adjacent sinter layers than 1.0 .mu.m, the outermost layer (substrate by average particle size D 50 of the powder contained in the sintered layer of the layer) that is exposed to the atmosphere is more than 10 [mu] m, it is possible to improve the strength bending while securing high capacitance.
以下、第1態様及び第2態様の電極材について説明する。 Hereinafter, the electrode material of the first aspect and the second aspect will be described.
原料のアルミニウム粉末としては、例えば、アルミニウム純度99.8重量%以上のアルミニウム粉末が好ましい。また、原料のアルミニウム合金粉末としては、例えば、珪素(Si)、鉄(Fe)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、クロム(Cr)、亜鉛(Zn)、チタン(Ti)、バナジウム(V)、ガリウム(Ga)、ニッケル(Ni)、ホウ素(B)及びジルコニウム(Zr)等の元素の1種又は2種以上を含む合金が好ましい。アルミニウム合金中のこれらの元素の含有量は、それぞれ100重量ppm以下、特に50重量ppm以下とすることが好ましい。 As the raw material aluminum powder, for example, aluminum powder having an aluminum purity of 99.8% by weight or more is preferable. Examples of the raw material aluminum alloy powder include silicon (Si), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), chromium (Cr), zinc (Zn), and titanium (Ti). ), Vanadium (V), gallium (Ga), nickel (Ni), boron (B), and an alloy containing one or more elements such as zirconium (Zr). The content of these elements in the aluminum alloy is preferably 100 ppm by weight or less, particularly 50 ppm by weight or less.
前記粉末としては、焼結前の平均粒径D50が1μm以上50μm以下のものを用いる。特に前記粉末の平均粒径D50が3μm以上15μm以下の場合には、中高容量のアルミ電解コンデンサの電極材として好適に利用することができる。なお、本明細書における平均粒径D50は、レーザー回折法により粒径とその粒径に該当する粒子の数を求めて得られる粒度分布曲線において全粒子数の50%目に該当する粒子の粒子径である。また、焼結後の前記粉末の平均粒径D50は、前記焼結体の断面を、走査型電子顕微鏡によって観察することによって測定する。例えば、焼結後の前記粉末は、一部が溶融又は粉末同士が繋がった状態となっているが、略円形状を有する部分は近似的に粒子とみなせる。即ち、これらの粒径とその粒径に該当する粒子の数を求めて得られる粒度分布曲線において全粒子数の50%目に該当する粒子の粒子径を焼結後の粉末の平均粒径D50とする。なお、上記で求められる焼結前の平均粒径D50と焼結後の平均粒径D50はほぼ同じである。 As the powder, one having an average particle diameter D 50 before sintering of 1 μm or more and 50 μm or less is used. Especially when the average particle diameter D 50 of 3μm or more 15μm or less of the powder can be suitably used as an electrode material for aluminum electrolytic capacitors of middle and high capacity. The average particle size D 50 in the present specification, the particles corresponding to 50% th of the total number of particles in the particle size distribution curve obtained by seeking the number of particles corresponding to the particle size and particle size by laser diffraction method The particle size. The average particle diameter D 50 of the powder after sintering, the cross-section of the sintered body is measured by observing by a scanning electron microscope. For example, the powder after sintering is partially melted or in a state where the powders are connected to each other, but the portion having a substantially circular shape can be regarded as a particle approximately. That is, in the particle size distribution curve obtained by obtaining these particle sizes and the number of particles corresponding to the particle size, the particle size of the particles corresponding to the 50% of the total number of particles is the average particle size D of the powder after sintering. 50 . The average particle diameter D 50 after sintering and an average particle diameter D 50 before sintering obtained in the above is substantially the same.
前記粉末の形状は、特に限定されず、球状、不定形状、鱗片状、繊維状等のいずれも好適に使用できる。特に、球状粒子からなる粉末が好ましい。 The shape of the powder is not particularly limited, and any of a spherical shape, an indeterminate shape, a scale shape, a fiber shape, and the like can be suitably used. In particular, powder made of spherical particles is preferable.
前記粉末は、公知の方法によって製造されるものを使用することができる。例えば、アトマイズ法、メルトスピニング法、回転円盤法、回転電極法、急冷凝固法等が挙げられるが、工業的生産にはアトマイズ法、特にガスアトマイズ法が好ましい。即ち、溶湯をアトマイズすることにより得られる粉末を用いることが望ましい。 What is manufactured by a well-known method can be used for the said powder. For example, an atomizing method, a melt spinning method, a rotating disk method, a rotating electrode method, a rapid solidification method, and the like can be mentioned. For industrial production, the atomizing method, particularly the gas atomizing method is preferable. That is, it is desirable to use a powder obtained by atomizing a molten metal.
第1態様の電極材では、前記粉末の焼結体は3層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上(好ましくは1.0μm以上12.0μm以下)異なり、前記焼結体の最外層(両端の2層)の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超える。このように最外層の焼結層に含まれる前記粉末の平均粒径D50が10μmを超え、それに隣接する内側の焼結層に含まれる前記粉末の平均粒径D50が1.0μm以上異なることにより、焼結体の折り曲げ強度を向上させることができる。 The electrode material of the first aspect, the sintered body of the powder consists of three layers or more sintered layer, the powder contained in the adjacent sintered layer has an average particle diameter D 50 more than 1.0 .mu.m (preferably 1.0 μm or more and 12.0 μm or less), the powder contained in the sintered layer of the outermost layer (two layers at both ends) of the sintered body has an average particle diameter D 50 exceeding 10 μm. Thus exceed an average particle diameter D 50 of 10μm of the powder contained in the sintered layer of the outermost layer, different the average particle diameter D 50 of the powder contained inside the sintered layer adjacent thereto 1.0μm more Thereby, the bending strength of the sintered body can be improved.
アルミニウム電解コンデンサは、折り曲げ強度は少なくとも10回以上であることが好ましい。折り曲げ強度が10回に満たない場合には、アルミニウム電解コンデンサの製造時に焼結体に破損が生じるおそれがある。より好適には、折り曲げ回数が20回以上であることが好ましい。更に内層側に含まれる前記粉末の平均粒径D50が小さくなるほど、高い静電容量を確保することができる。 The aluminum electrolytic capacitor preferably has a bending strength of at least 10 times. If the bending strength is less than 10 times, the sintered body may be damaged during the production of the aluminum electrolytic capacitor. More preferably, the number of bendings is preferably 20 times or more. As further has an average particle diameter D 50 of the powder contained in the inner layer side is smaller, it is possible to secure a high electrostatic capacitance.
第1態様の電極材の焼結体の構成としては、例えば、平均粒径D50が1〜7μm(好ましくは1〜5μm)の内層とそれを挟む平均粒径D50が10〜50の最外層(両端の2層、好ましくは10〜25μm)とからなる3層構成が挙げられる。 The structure of the sintered body of the electrode material of the first aspect, for example, the average particle diameter D 50 of 1 to 7 [mu] m (preferably 1 to 5 [mu] m) inner layer and the average particle size D 50 sandwiching the of 10 to 50 most A three-layer structure consisting of an outer layer (two layers at both ends, preferably 10 to 25 μm) is mentioned.
各焼結層は、前記粉末どうしが互いに空隙を維持しながら焼結したものであることが好ましい。具体的には、各粉末どうしが空隙を維持しながら焼結によって繋がり、例えば、図3又は図4の各画像に示されるように三次元網目構造を有していることが好ましい。このように多孔質焼結体とすることにより、エッチング処理を施さなくても、所望の静電容量を得ることが可能となる。 Each sintered layer is preferably one in which the powders are sintered while maintaining gaps therebetween. Specifically, it is preferable that the powders are connected by sintering while maintaining voids, and have, for example, a three-dimensional network structure as shown in each image of FIG. 3 or FIG. Thus, by setting it as a porous sintered compact, it becomes possible to obtain a desired electrostatic capacitance, without performing an etching process.
各焼結層の気孔率は、通常30%以上の範囲内で所望の静電容量等に応じて適宜設定することができる。また、気孔率は、例えば出発材料のアルミニウム又はアルミニウム合金の粉末の粒径、その粉末を含むペースト組成物の組成(樹脂バインダ)等により制御することもできる。 The porosity of each sintered layer can be appropriately set according to the desired capacitance or the like, usually within a range of 30% or more. The porosity can also be controlled by, for example, the particle diameter of the starting aluminum or aluminum alloy powder, the composition of the paste composition containing the powder (resin binder), and the like.
第2態様では、当該焼結体を支持する基材を含む。基材の材質は特に限定されないが、焼結時に劣化又は揮発しない金属箔が好ましい。 In a 2nd aspect, the base material which supports the said sintered compact is included. The material of the substrate is not particularly limited, but a metal foil that does not deteriorate or volatilize during sintering is preferable.
金属箔としては、特にアルミニウム箔が好適に使用される。この場合、前記焼結体と実質的に同じ組成のアルミニウム箔を用いても良いし、異なる組成の箔を使用しても良い。また、前記焼結体を形成するに先立って、予めアルミニウム箔の表面を粗面化しても良い。粗面化方法は、特に限定されず、洗浄、エッチング、ブラスト等の公知の技術を用いることができる。 As the metal foil, aluminum foil is particularly preferably used. In this case, an aluminum foil having substantially the same composition as the sintered body may be used, or a foil having a different composition may be used. Prior to forming the sintered body, the surface of the aluminum foil may be roughened in advance. The surface roughening method is not particularly limited, and known techniques such as cleaning, etching, blasting and the like can be used.
基材としてのアルミニウム箔は、特に限定されず、純アルミニウム又はアルミニウム合金を用いることができる。本発明で用いられるアルミニウム箔は、その組成として、珪素(Si)、鉄(Fe)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、クロム(Cr)、亜鉛(Zn)、チタン(Ti)、バナジウム(V)、ガリウム(Ga)、ニッケル(Ni)及びホウ素(B)の少なくとも1種の合金元素を必要範囲内において添加したアルミニウム合金あるいは上記の不可避的不純物元素の含有量を限定したアルミニウムも含む。 The aluminum foil as the substrate is not particularly limited, and pure aluminum or an aluminum alloy can be used. The aluminum foil used in the present invention is composed of silicon (Si), iron (Fe), copper (Cu), manganese (Mn), magnesium (Mg), chromium (Cr), zinc (Zn), titanium ( Limiting the content of aluminum alloy or the above unavoidable impurity elements to which at least one alloy element of Ti), vanadium (V), gallium (Ga), nickel (Ni) and boron (B) is added within the required range Also included aluminum.
アルミニウム箔の厚みは、特に限定されないが、5μm以上50μm以下、特に、10μm以上50μm以下の範囲内とするのが好ましい。 The thickness of the aluminum foil is not particularly limited, but is preferably in the range of 5 μm to 50 μm, particularly 10 μm to 50 μm.
上記のアルミニウム箔は、公知の方法によって製造されるものを使用することができる。例えば、上記の所定の組成を有するアルミニウム又はアルミニウム合金の溶湯を調製し、これを鋳造して得られた鋳塊を適切に均質化処理する。その後、この鋳塊に熱間圧延と冷間圧延を施すことにより、アルミニウム箔を得ることができる。 What was manufactured by a well-known method can be used for said aluminum foil. For example, a molten aluminum or aluminum alloy having the above predetermined composition is prepared, and an ingot obtained by casting the molten metal is appropriately homogenized. Thereafter, an aluminum foil can be obtained by subjecting the ingot to hot rolling and cold rolling.
なお、上記の冷間圧延工程の途中で、50℃以上500℃以下、特に150℃以上400℃以下の範囲内で中間焼鈍処理を施しても良い。また、上記の冷間圧延工程の後に、150℃以上650℃以下、特に350℃以上550℃以下の範囲内で焼鈍処理を施して軟質箔としても良い。 In the middle of the cold rolling step, an intermediate annealing treatment may be performed in the range of 50 ° C. to 500 ° C., particularly 150 ° C. to 400 ° C. Further, after the cold rolling step, a soft foil may be obtained by performing an annealing treatment within a range of 150 ° C. to 650 ° C., particularly 350 ° C. to 550 ° C.
第2態様では、焼結体は基材の片面又は両面に形成する。両面に形成する場合には、基材を挟んで焼結体(及びそれに含まれる焼結層)を、図1に示されるように対称に配置することが好ましい。各焼結体の平均厚みは35〜250μmが好ましく、焼結体に含まれる各焼結層の平均厚みは15μm以上が好ましい。これらの数値は、基材の片面又は両面に形成するどちらの場合にも当てはまるが、両面に形成する場合には、片面の焼結体の厚さは全体厚み(基材厚みも含む)の1/3以上であることが好ましい。 In the second aspect, the sintered body is formed on one side or both sides of the substrate. When forming on both surfaces, it is preferable to arrange symmetrically the sintered body (and the sintered layer contained therein) sandwiching the base material as shown in FIG. The average thickness of each sintered body is preferably 35 to 250 μm, and the average thickness of each sintered layer contained in the sintered body is preferably 15 μm or more. These values apply to both cases where the substrate is formed on one side or both sides of the substrate, but when formed on both sides, the thickness of the sintered body on one side is 1 of the total thickness (including the substrate thickness). / 3 or more is preferable.
なお、上記焼結体の平均厚みは、マイクロメーターで7点測定し、最大値と最小値を除いた5点の平均値である。また、各焼結層の平均厚みは、焼結体が全て撮影範囲に収まる200倍程度の走査型電子顕微鏡写真(3枚)において各焼結層の界面に目視判断により直線を引いて各層の厚みの比率を求め、マイクロメーターで求めた焼結体全体の平均厚みから各焼結層の厚みを算出し、3枚分の平均値を求めた値である。 The average thickness of the sintered body is an average value of 5 points excluding the maximum value and the minimum value measured at 7 points with a micrometer. In addition, the average thickness of each sintered layer was determined by visually drawing a straight line at the interface of each sintered layer in a scanning electron micrograph (three sheets) of about 200 times that the sintered body was all within the photographing range. It is the value which calculated | required the ratio of thickness, calculated the thickness of each sintered layer from the average thickness of the whole sintered compact calculated | required with the micrometer, and calculated | required the average value for 3 sheets.
具体的には、第2態様の電極材の焼結体の構成としては、例えば、実施例1に示されるように、平均粒径D50が1〜7μm(好ましくは1〜5μm)の粉末の焼結層(内層)及び平均粒径D50が10〜50μm(好ましくは10〜25μm)の粉末の焼結層(外層との2層からなる構成が挙げられる。 Specifically, the structure of the sintered body of the electrode material of the second aspect, for example, as shown in Example 1, the average particle diameter D 50 of the powder 1 to 7 [mu] m (preferably 1 to 5 [mu] m) Examples include a sintered layer (inner layer) and a powder sintered layer (outer layer and two layers) having an average particle diameter D50 of 10 to 50 μm (preferably 10 to 25 μm).
また、例えば、平均粒径D50が1〜7μm(好ましくは1〜5μm)の粉末の焼結層(内層)、平均粒径D50が6〜50μm(好ましくは6〜25μm)の粉末の焼結層(中間層)、及び平均粒径D50が10〜50μm(好ましくは10〜25μm)の粉末の焼結層(外層)が、3層積層してなる構成が挙げられる。 Further, for example, a sintered layer of the powder of an average particle size D 50 1 to 7 [mu] m (preferably 1 to 5 [mu] m) (inner layer), the average particle diameter D 50 of the powder 6~50Myuemu (preferably 6~25Myuemu) baked A structure in which three layers of a sintered layer (outer layer) of a binder layer (intermediate layer) and a powder having an average particle diameter D 50 of 10 to 50 μm (preferably 10 to 25 μm) is laminated.
本発明の電極材は、低圧用、中圧用又は高圧用のいずれのアルミニウム電解コンデンサにも使用することができる。特に中圧又は高圧用(中高圧用)アルミニウム電解コンデンサとして好適である。 The electrode material of the present invention can be used for any aluminum electrolytic capacitor for low pressure, medium pressure or high pressure. It is particularly suitable as an intermediate or high pressure (medium / high pressure) aluminum electrolytic capacitor.
本発明の電極材は、アルミニウム電解コンデンサ用電極として使用するに当たり、当該電極材をエッチング処理せずに使用することができる。即ち、本発明の電極材は、エッチング処理することなく、そのまま又は陽極酸化処理することにより電極(電極箔)として使用することができる。 When the electrode material of the present invention is used as an electrode for an aluminum electrolytic capacitor, the electrode material can be used without etching treatment. That is, the electrode material of the present invention can be used as an electrode (electrode foil) as it is or without being subjected to etching treatment or by anodizing treatment.
本発明の電極材を用いた陽極箔と、陰極箔とをセパレータを介在させて積層し、巻回してコンデンサ素子を形成し、このコンデンサ素子を電解液に含浸させ、電解液を含んだコンデンサ素子を外装ケースに収納し、封口体でケースを封口することによって電解コンデンサが得られる。 An anode foil using the electrode material of the present invention and a cathode foil are laminated with a separator interposed therebetween, and wound to form a capacitor element. The capacitor element is impregnated with an electrolytic solution, and the capacitor element includes the electrolytic solution. Is stored in an exterior case, and the case is sealed with a sealing body to obtain an electrolytic capacitor.
2.アルミニウム電解コンデンサ用電極材の製造方法
本発明のアルミニウム電解コンデンサ用電極材を製造する方法は限定的ではないが、例えば、第1態様の電極材であれば、
アルミニウム及びアルミニウム合金の少なくとも1種の粉末を含む組成物からなる皮膜を3層以上積層する第1工程であって、(i)各皮膜に含まれる前記粉末は、平均粒径D50が1μm以上50μm以下であり、(ii)隣接する皮膜に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、(iii)最外層の皮膜に含まれる前記粉末は、平均粒径D50が10μmを超える第1工程と、
前記第1工程の後に前記3層以上の皮膜を560℃以上660℃以下の温度で焼結する第2工程と、を含み、
且つ、エッチング工程を含まない製造方法を採用することができる。
2. Method for producing electrode material for aluminum electrolytic capacitor The method for producing the electrode material for aluminum electrolytic capacitor of the present invention is not limited. For example, if the electrode material of the first aspect,
A first step of laminating aluminum and a coating comprising a composition comprising at least one powder of an
A second step of sintering the three or more layers at a temperature of 560 ° C. or more and 660 ° C. or less after the first step,
And the manufacturing method which does not include an etching process is employable.
なお、第1態様の電極材は基材を含まないが、前記3層以上の皮膜を積層するに際して、焼結時に揮発する樹脂(樹脂フィルム)を基材として用いることができる。樹脂フィルムは焼結時に揮発して無くなるため電極材には基材は含まれない。 In addition, although the electrode material of a 1st aspect does not contain a base material, when laminating | stacking the said 3 or more layer film | membrane, resin (resin film) which volatilizes at the time of sintering can be used as a base material. Since the resin film volatilizes and disappears during sintering, the electrode material does not include a base material.
また、第2態様の電極材であれば、
アルミニウム及びアルミニウム合金の少なくとも1種の粉末を含む組成物からなる皮膜を基材に2層以上積層する工程であって、(i)各皮膜に含まれる前記粉末は、平均粒径D50が1μm以上50μm以下であり、(ii)隣接する皮膜に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、(iii)最外層の皮膜に含まれる前記粉末は、平均粒径D50が10μmを超える第1工程と、
前記第1工程の後に前記2層以上の皮膜を560℃以上660℃以下の温度で焼結する第2工程と、を含み、
且つ、エッチング工程を含まない製造方法を採用することができる。
Moreover, if it is the electrode material of a 2nd aspect,
A laminating aluminum and aluminum alloys of at least one of a film made from a composition comprising a powder base two or more layers, wherein the powder contained in (i) each coating, the average particle diameter D 50 1 [mu] m (Ii) The powder contained in the adjacent coating has an average particle size D 50 different by 1.0 μm or more, and (iii) the powder contained in the outermost coating has an average particle size D 50. A first step exceeding 10 μm;
A second step of sintering the two or more layers at a temperature of 560 ° C. or more and 660 ° C. or less after the first step;
And the manufacturing method which does not include an etching process is employable.
以下、第2態様の電極材の製造方法を例に挙げて説明する。
(第1工程)
第1工程では、アルミニウム及びアルミニウム合金の少なくとも1種の粉末を含む組成物からなる2層以上の皮膜を基材に形成する。ここで、(i)各皮膜に含まれる前記粉末は、平均粒径D50が1μm以上50μm以下であり、(ii)隣接する皮膜に含まれる前記粉末は、平均粒径D50が1.0μm以上(好ましくは1.0μm以上12.0μm以下)異なり、(iii)最外層の皮膜に含まれる前記粉末は、平均粒径D50が10μmを超える。
Hereinafter, the manufacturing method of the electrode material of the second aspect will be described as an example.
(First step)
In the first step, two or more layers of a film comprising a composition containing at least one powder of aluminum and an aluminum alloy are formed on the substrate. Here, (i) the powder contained in each coating, the average particle diameter D 50 is at 1μm or more 50μm or less, (ii) the powder contained in the adjacent film, the average particle diameter D 50 1.0μm or more (preferably 1.0μm or 12.0μm or less) different, the powder contained in (iii) the outermost layer of the coating, the average particle size D 50 is greater than 10 [mu] m.
アルミニウム及びアルミニウム合金の組成(成分)としては、前記で掲げたものを用いることができる。前記粉末として、例えば、アルミニウム純度99.8重量%以上の純アルミニウム粉末を用いることが好ましい。 As the composition (component) of aluminum and aluminum alloy, those listed above can be used. As the powder, for example, pure aluminum powder having an aluminum purity of 99.8% by weight or more is preferably used.
前記組成物は、必要に応じて樹脂バインダ、溶剤、焼結助剤、界面活性剤等が含まれていても良い。これらはいずれも公知又は市販のものを使用することができる。特に、本発明では、樹脂バインダ及び溶剤の少なくとも1種を含有させてペースト状組成物として用いることが好ましい。これにより効率よく皮膜を形成することができる。 The composition may contain a resin binder, a solvent, a sintering aid, a surfactant and the like as necessary. Any of these may be known or commercially available. In particular, in the present invention, it is preferable to use at least one of a resin binder and a solvent as a paste composition. Thereby, a film can be formed efficiently.
樹脂バインダは限定的でなく、例えば、カルボキシ変性ポリオレフィン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩酢ビ共重合樹脂、ビニルアルコール樹脂、ブチラール樹脂、フッ化ビニル樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、アクリロニトリル樹脂、セルロース樹脂、パラフィンワックス、ポリエチレンワックス等の合成樹脂又はワックス、タール、にかわ、ウルシ、松脂、ミツロウ等の天然樹脂又はワックスが好適に使用できる。これらのバインダは、分子量、樹脂の種類等により、加熱時に揮発するものと、熱分解によりその残渣がアルミニウム粉末とともに残存するものとがあり、所望の静電特性等に応じて使い分けすることができる。 The resin binder is not limited. For example, carboxy-modified polyolefin resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride copolymer resin, vinyl alcohol resin, butyral resin, vinyl fluoride resin, acrylic resin, polyester resin, urethane resin A synthetic resin such as epoxy resin, urea resin, phenol resin, acrylonitrile resin, cellulose resin, paraffin wax, polyethylene wax, or natural resin such as wax, tar, glue, urushi, pine resin, beeswax, or wax can be preferably used. These binders are classified into those that volatilize when heated depending on the molecular weight, the type of resin, etc., and those that remain together with the aluminum powder due to thermal decomposition, and can be properly used depending on the desired electrostatic properties and the like. .
また、溶媒も公知のものが使用できる。例えば、水のほか、エタノール、トルエン、ケトン類、エステル類等の有機溶剤を使用することができる。 Also, known solvents can be used. For example, in addition to water, organic solvents such as ethanol, toluene, ketones, and esters can be used.
皮膜の形成は、ペースト組成物を、例えばローラー、刷毛、スプレー、ディッピング等の塗布方法を用いて皮膜形成できるほか、シルクスクリーン印刷等の公知の印刷方法により形成することもできる。 For forming the film, the paste composition can be formed by using a coating method such as roller, brush, spray, dipping or the like, or can be formed by a known printing method such as silk screen printing.
2層以上の皮膜は基材の片面又は両面に形成する。両面に形成する場合には、基材を挟んで2層以上の皮膜を対称に配置することが好ましい。 Two or more layers are formed on one or both sides of the substrate. When forming on both surfaces, it is preferable to arrange two or more layers symmetrically across the substrate.
2層以上の皮膜の平均厚みは、35〜250μmが好ましく、2層以上の皮膜に含まれる各皮膜の平均厚みは15μm以上が好ましい。これらの数値は、基材の片面又は両面に形成するどちらの場合にも当てはまるが、両面に形成する場合には、基材の片面に形成される皮膜の厚さは、全体厚み(基材厚みも含む)の1/3以上であることが好ましい。 The average thickness of the two or more layers is preferably 35 to 250 μm, and the average thickness of each layer included in the two or more layers is preferably 15 μm or more. These figures apply to both cases where the substrate is formed on one side or both sides, but when formed on both sides, the thickness of the film formed on one side of the substrate is the total thickness (substrate thickness). 1) or more).
皮膜は、必要に応じて、20℃以上300℃以下の範囲内の温度で乾燥させても良い。
(第2工程)
第2工程では、前記皮膜を560℃以上660℃以下の温度で焼結する。焼結温度は、560℃以上660℃以下とし、好ましくは560℃以上660℃未満、より好ましくは570℃以上659℃以下とする。焼結時間は、焼結温度等により異なるが、通常は5〜24時間程度の範囲内で適宜決定することができる。焼結雰囲気は、特に制限されず、例えば真空雰囲気、不活性ガス雰囲気、酸化性ガス雰囲気(大気)、還元性雰囲気等のいずれであっても良いが、特に真空雰囲気又は還元性雰囲気とすることが好ましい。また、圧力条件についても、常圧、減圧又は加圧のいずれでも良い。
The film may be dried at a temperature in the range of 20 ° C. or more and 300 ° C. or less as necessary.
(Second step)
In the second step, the film is sintered at a temperature of 560 ° C. or higher and 660 ° C. or lower. The sintering temperature is 560 ° C. or higher and 660 ° C. or lower, preferably 560 ° C. or higher and lower than 660 ° C., more preferably 570 ° C. or higher and 659 ° C. or lower. The sintering time varies depending on the sintering temperature and the like, but can usually be appropriately determined within a range of about 5 to 24 hours. The sintering atmosphere is not particularly limited, and may be any one of a vacuum atmosphere, an inert gas atmosphere, an oxidizing gas atmosphere (air), a reducing atmosphere, etc., and particularly a vacuum atmosphere or a reducing atmosphere. Is preferred. Also, the pressure condition may be normal pressure, reduced pressure or increased pressure.
なお、第1工程後、第2工程に先立って予め100℃以上600℃以下の温度範囲で保持時間が5時間以上の加熱処理(脱脂処理)を行なうことが好ましい。加熱処理雰囲気は特に限定されず、例えば真空雰囲気、不活性ガス雰囲気又は酸化性ガス雰囲気中のいずれでも良い。また、圧力条件も、常圧、減圧又は加圧のいずれでも良い。
(第3工程)
前記の第2工程において、本発明の電極材が得られる。これは、エッチング処理を施すことなく、そのままアルミニウム電解コンデンサ用電極(電極箔)として用いることが可能である。一方、前記電極材は、必要に応じて第3工程として陽極酸化処理を施すことにより誘電体を形成させることができ、これを電極とすることができる。陽極酸化処理条件は特に限定されないが、通常は濃度0.01モル以上5モル以下、温度30℃以上100℃以下のホウ酸溶液中で、10mA/cm2以上400mA/cm2程度の電流を5分以上印加すれば良い。
In addition, it is preferable to perform the heat processing (degreasing process) for 5 hours or more in a temperature range of 100 degreeC or more and 600 degrees C or less beforehand after a 1st process prior to a 2nd process. The heat treatment atmosphere is not particularly limited, and may be any of a vacuum atmosphere, an inert gas atmosphere, or an oxidizing gas atmosphere, for example. The pressure condition may be normal pressure, reduced pressure, or increased pressure.
(Third step)
In the second step, the electrode material of the present invention is obtained. This can be used as it is as an electrode for an aluminum electrolytic capacitor (electrode foil) without etching. On the other hand, the electrode material can be formed as an electrode by subjecting it to an anodization treatment as a third step as necessary, thereby forming a dielectric. The anodizing conditions are not particularly limited. Usually, a current of about 10 mA / cm 2 to 400 mA / cm 2 is applied in a boric acid solution having a concentration of 0.01 mol to 5 mol and a temperature of 30 ° C. to 100 ° C. It may be applied for more than a minute.
以下、比較例及び実施例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to comparative examples and examples. However, the present invention is not limited to the examples.
下記手順に従って、比較例及び実施例の電極材を作製し、得られた電極材の静電容量をそれぞれ測定した。静電容量は、ホウ酸水溶液(50g/L)中で電極材に対し250Vの化成処理を施した後、ホウ酸アンモニウム水溶液(3g/L)中で測定した。測定投影面積は10cm2とした。 According to the following procedure, the electrode material of a comparative example and an Example was produced, and the electrostatic capacitance of the obtained electrode material was measured, respectively. The capacitance was measured in an aqueous solution of ammonium borate (3 g / L) after performing a chemical conversion treatment of 250 V on the electrode material in an aqueous boric acid solution (50 g / L). The measurement projected area was 10 cm 2 .
また、得られた電極材(JIS 1N30−H18、500mm×500mm)を、耐折試験機(東洋精機製MIT−S)を用いて、面方向に90度(R=3.5±0.35mm)に折り曲げ、更に反対方向に90度に折り曲げる操作を電極材が破断するまで繰り返し行い、破断に耐えた折り曲げ回数を測定した。 Further, the obtained electrode material (JIS 1N30-H18, 500 mm × 500 mm) was 90 degrees (R = 3.5 ± 0.35 mm) in the plane direction using a folding tester (MIT-S manufactured by Toyo Seiki Co., Ltd.). The electrode material was repeatedly bent until the electrode material was broken, and the number of times of bending withstanding the fracture was measured.
比較例1
平均粒径D50が3μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ58FN)60重量部をセルロース系バインダ40重量部(7重量%が樹脂分)と混合し、溶剤(エチルセロソロブ)に分散させて固形分60重量%の塗工液Aを得た。図2に示すように、塗工液Aを、厚みが30μmのアルミニウム箔(JIS 1N30−H18、500mm×500mm)の両面にコンマコーターを用いて塗工した後、乾燥した。塗工方法は、片面に塗工液Aを50μm塗工した後、100℃の炉内で2分乾燥し、反対側の面に同様に塗工し乾燥する工程を、2回繰り返した。
Comparative Example 1
60 parts by weight of aluminum powder (JIS A1080, manufactured by Toyo Aluminum Co., Ltd., product number AHUZ58FN) having an average particle diameter D 50 of 3 μm is mixed with 40 parts by weight of a cellulose binder (7% by weight is a resin component), and a solvent (ethyl cellosorb) To obtain a coating liquid A having a solid content of 60% by weight. As shown in FIG. 2, the coating liquid A was coated on both sides of an aluminum foil (JIS 1N30-H18, 500 mm × 500 mm) having a thickness of 30 μm using a comma coater, and then dried. In the coating method, after coating 50 μm of the coating liquid A on one side, drying in a furnace at 100 ° C. for 2 minutes, coating on the opposite side and drying in the same manner were repeated twice.
次に、アルゴンガス雰囲気中にて温度650℃で7時間焼結することにより、電極材を作製した。焼結後の電極材の厚みは約230μmであった。 Next, the electrode material was produced by sintering at 650 degreeC for 7 hours in argon gas atmosphere. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は0回、静電容量は51.8μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 0 times and the capacitance was 51.8 μF / 10 cm 2 .
比較例2
平均粒径D50が4μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ580F)を用いた以外は、比較例1と同様にして、塗工液Bを得た。図2に示すように、アルミニウム箔の両面に塗工液Bを塗工した以外は比較例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Comparative Example 2
Aluminum powder having an average particle diameter D 50 of 4 [mu] m (JIS A1080, Toyo Aluminum Co., Ltd., No. AHUZ580F) except for using, in the same manner as in Comparative Example 1 to obtain a coating solution B. As shown in FIG. 2, an electrode material was prepared in the same manner as in Comparative Example 1 except that the coating liquid B was applied to both surfaces of the aluminum foil. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は0回、静電容量は48.3μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 0 times and the capacitance was 48.3 μF / 10 cm 2 .
比較例3
平均粒径D50が5μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ58CN)を用いた以外は、比較例1と同様にして、塗工液Cを得た。図2に示すように、アルミニウム箔の両面に塗工液Cを塗工した以外は比較例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Comparative Example 3
Aluminum powder having an average particle diameter D 50 of 5 [mu] m (JIS A1080, Toyo Aluminum Co., Ltd., No. AHUZ58CN) except for using, in the same manner as in Comparative Example 1 to obtain a coating liquid C. As shown in FIG. 2, an electrode material was prepared in the same manner as in Comparative Example 1 except that the coating liquid C was applied to both surfaces of the aluminum foil. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は7回、静電容量は37.2μF/10cm2であった。 As shown in Table 1, the obtained electrode material was folded seven times and the capacitance was 37.2 μF / 10 cm 2 .
実施例1
図1に示すように、比較例1で調製した塗工液Aを、厚みが30μmのアルミニウム箔(JIS 1N30−H18、500mm×500mm)の両面にコンマコーターを用いて厚さ50μm塗工し、乾燥した。
Example 1
As shown in FIG. 1, the coating liquid A prepared in Comparative Example 1 was applied to a thickness of 50 μm using a comma coater on both sides of an aluminum foil (JIS 1N30-H18, 500 mm × 500 mm) having a thickness of 30 μm. Dried.
更に、平均粒径D50が15μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ530C)60重量部をセルロース系バインダ40重量部(7重量%が樹脂分)と混合し、固形分60重量%の塗工液Dを得た。 Furthermore, 60 parts by weight of an aluminum powder (JIS A1080, manufactured by Toyo Aluminum Co., Ltd., product number AHUZ530C) having an average particle diameter D 50 of 15 μm is mixed with 40 parts by weight of a cellulose-based binder (7% by weight is a resin component) to obtain a solid content. A 60 wt% coating solution D was obtained.
皮膜が形成されたアルミニウム箔の両面に、塗工液Dをコンマコーターを用いて厚さ50μm塗工し、乾燥した。 The coating liquid D was applied to both sides of the aluminum foil on which the film was formed using a comma coater to a thickness of 50 μm and dried.
次に、アルゴンガス雰囲気中にて温度635℃で7時間焼結することにより、電極材を作製した。焼結後の電極材の厚みは約230μmであった。 Next, the electrode material was produced by sintering at 635 degreeC for 7 hours in argon gas atmosphere. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は35回、静電容量は35.7μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 35 times and the capacitance was 35.7 μF / 10 cm 2 .
実施例2
図1に示すように、内側の皮膜に比較例2で調製した塗工液Bを使用した以外は実施例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Example 2
As shown in FIG. 1, an electrode material was prepared in the same manner as in Example 1 except that the coating liquid B prepared in Comparative Example 2 was used for the inner film. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は40回、静電容量は33.6μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 40 times and the capacitance was 33.6 μF / 10 cm 2 .
実施例3
図1に示すように、内側の皮膜に比較例3で調製した塗工液Cを使用した以外は実施例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Example 3
As shown in FIG. 1, an electrode material was produced in the same manner as in Example 1 except that the coating liquid C prepared in Comparative Example 3 was used for the inner film. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は67回、静電容量は27.9μF/10cm2であった。 As shown in Table 1, the obtained electrode material had a folding number of 67 times and an electrostatic capacity of 27.9 μF / 10 cm 2 .
実施例4
平均粒径D50が9μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ560F)60重量部をセルロース系バインダ40重量部(7重量%が樹脂分)と混合し、固形分60重量%の塗工液Eを得た。図1に示すように、内側の皮膜に塗工液Eを使用した以外は実施例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Example 4
60 parts by weight of aluminum powder (JIS A1080, manufactured by Toyo Aluminum Co., Ltd., product number AHUZ560F) having an average particle diameter D 50 of 9 μm is mixed with 40 parts by weight of a cellulose-based binder (7% by weight is the resin content), and the solid content is 60% by weight. % Coating liquid E was obtained. As shown in FIG. 1, an electrode material was prepared in the same manner as in Example 1 except that the coating liquid E was used for the inner film. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は164回、静電容量は23.3μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 164 times and the capacitance was 23.3 μF / 10 cm 2 .
実施例5
平均粒径D50が48μmのアルミニウム粉末(JIS A1080、東洋アルミニウム(株)製、品番AHUZ520F)60重量部をセルロース系バインダ40重量部(7重量%が樹脂分)と混合し、固形分60重量%の塗工液Fを得た。
図1に示すように、内側の皮膜に塗工液A、外側の皮膜に塗工液Fを使用した以外は実施例1と同様にして電極材を作製した。焼結後の電極材の厚みは約230μmであった。
Example 5
60 parts by weight of aluminum powder (JIS A1080, manufactured by Toyo Aluminum Co., Ltd., product number AHUZ520F) having an average particle diameter D 50 of 48 μm is mixed with 40 parts by weight of a cellulose-based binder (7% by weight is the resin content), and the solid content is 60 weights. % Coating liquid F was obtained.
As shown in FIG. 1, an electrode material was prepared in the same manner as in Example 1 except that the coating liquid A was used for the inner film and the coating liquid F was used for the outer film. The thickness of the electrode material after sintering was about 230 μm.
表1に示すように、得られた電極材の折り曲げ回数は75回、静電容量は28.0μF/10cm2であった。 As shown in Table 1, the obtained electrode material was bent 75 times and the capacitance was 28.0 μF / 10 cm 2 .
表1の結果から明らかなように、平均粒径D50が3〜5μmのアルミニウム粉末を用いて1層の焼結層からなる焼結体を形成した場合(比較例1〜3)よりも、最外層の平均粒径D50が10μm以上で、且つ平均粒径D50が1.0μm以上異なる2層以上の焼結層からなる焼結体を形成した場合(実施例1〜5)の方が、高い静電容量を確保すると共に、曲げ強度が向上することが分かる。
Table 1 As is apparent from the results, than when the average particle diameter D 50 was formed a sintered body made of a sintered layer of one layer using
Claims (7)
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、3層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)前記焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超える、
ことを特徴とするアルミニウム電解コンデンサ用電極材。 An electrode material for an aluminum electrolytic capacitor comprising a sintered body of at least one powder of aluminum and an aluminum alloy,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is composed of three or more sintered layers, and the powder contained in the adjacent sintered layers has an average particle size D 50 different by 1.0 μm or more,
(3) of the sintered layer forming the sintered body, the said powder contained in the sintered layer of the outermost layer, the average particle diameter D 50 is more than 10 [mu] m,
The electrode material for aluminum electrolytic capacitors characterized by the above-mentioned.
(1)前記粉末は、平均粒径D50が1μm以上50μm以下であり、
(2)前記焼結体は、前記基材の片面又は両面に形成されており、各焼結体は2層以上の焼結層からなり、隣接する焼結層に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、
(3)各焼結体を構成する焼結層のうち、最外層の焼結層に含まれる前記粉末は、平均粒径D50が10μmを超える、
ことを特徴とするアルミニウム電解コンデンサ用電極材。 An electrode material for an aluminum electrolytic capacitor comprising a sintered body of at least one powder of aluminum and an aluminum alloy and a base material supporting the sintered body as constituent elements,
(1) the powder has an average particle diameter D 50 is at 1μm or more 50μm or less,
(2) The sintered body is formed on one side or both sides of the base material, each sintered body is composed of two or more sintered layers, and the powder contained in the adjacent sintered layers is an average. The particle size D 50 differs by 1.0 μm or more,
(3) of the sintered layers constituting each sintered body, the said powder contained in the sintered layer of the outermost layer, the average particle diameter D 50 is more than 10 [mu] m,
The electrode material for aluminum electrolytic capacitors characterized by the above-mentioned.
(1)各面の前記焼結体の厚さは、それぞれ35μm以上250μm以下であり、
(2)各面の前記焼結体に含まれる各焼結層の厚さは、それぞれ15μm以上である、
請求項2又は3に記載のアルミニウム電解コンデンサ用電極材。 The sintered body is formed on both surfaces of the base material,
(1) The thickness of the sintered body on each surface is 35 μm or more and 250 μm or less,
(2) Each sintered layer included in the sintered body on each surface has a thickness of 15 μm or more.
The electrode material for aluminum electrolytic capacitors according to claim 2 or 3.
アルミニウム及びアルミニウム合金の少なくとも1種の粉末を含む組成物からなる皮膜を基材の片面に2層以上積層する工程であって、(i)各皮膜に含まれる前記粉末は、平均粒径D50が1μm以上50μm以下であり、(ii)隣接する皮膜に含まれる前記粉末は、平均粒径D50が1.0μm以上異なり、(iii)最外層の皮膜に含まれる前記粉末は、平均粒径D50が10μmを超える第1工程と、
前記第1工程の後に前記2層以上の皮膜を560℃以上660℃以下の温度で焼結する第2工程と、を含み、
且つ、エッチング工程を含まない、
ことを特徴とする製造方法。 A method for producing an electrode material for an aluminum electrolytic capacitor, comprising:
A step of laminating two or more layers of a film comprising a composition containing at least one powder of aluminum and an aluminum alloy on one side of a substrate, wherein (i) the powder contained in each film has an average particle size D 50 Is not less than 1 μm and not more than 50 μm, and (ii) the powder contained in the adjacent film has an average particle diameter D 50 different by 1.0 μm or more, and (iii) the powder contained in the outermost layer film has an average particle diameter A first step with D 50 exceeding 10 μm;
A second step of sintering the two or more layers at a temperature of 560 ° C. or more and 660 ° C. or less after the first step;
And does not include an etching step,
The manufacturing method characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196591A JP5618714B2 (en) | 2010-09-02 | 2010-09-02 | Electrode material for aluminum electrolytic capacitor and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196591A JP5618714B2 (en) | 2010-09-02 | 2010-09-02 | Electrode material for aluminum electrolytic capacitor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012054448A true JP2012054448A (en) | 2012-03-15 |
JP5618714B2 JP5618714B2 (en) | 2014-11-05 |
Family
ID=45907459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010196591A Active JP5618714B2 (en) | 2010-09-02 | 2010-09-02 | Electrode material for aluminum electrolytic capacitor and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5618714B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219456A (en) * | 2013-04-02 | 2013-07-24 | 武汉理工大学 | Electrode matched with Mg-Si-Sn-based thermoelectric element and connecting process thereof |
JP2014135481A (en) * | 2012-12-11 | 2014-07-24 | Nippon Chemicon Corp | Capacitor |
WO2014112499A1 (en) * | 2013-01-18 | 2014-07-24 | 東洋アルミニウム株式会社 | Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors |
WO2016158492A1 (en) * | 2015-03-31 | 2016-10-06 | 東洋アルミニウム株式会社 | Electrode material for aluminum electrolytic capacitor and method for manufacturing same |
CN110552955A (en) * | 2018-05-31 | 2019-12-10 | 美蓓亚三美株式会社 | Bearing device |
CN110718393A (en) * | 2019-10-31 | 2020-01-21 | 湖南艾华集团股份有限公司 | Preparation method of anode foil of medium-high voltage aluminum electrolytic capacitor and capacitor |
CN110828179A (en) * | 2019-10-31 | 2020-02-21 | 湖南艾华集团股份有限公司 | Aluminum electrolytic capacitor with strong ripple current resistance and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338433A (en) * | 2002-05-22 | 2003-11-28 | Nec Tokin Corp | Solid electrolytic capacitor, anode body therefor and its manufacturing method |
JP2004247550A (en) * | 2003-02-14 | 2004-09-02 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitor |
JP2008098279A (en) * | 2006-10-10 | 2008-04-24 | Toyo Aluminium Kk | Electrode material for aluminum electrolytic capacitor, and its manufacturing method |
JP2008270754A (en) * | 2007-03-28 | 2008-11-06 | Sanyo Electric Co Ltd | Solid electrolytic capacitor and manufacturing method thereof |
-
2010
- 2010-09-02 JP JP2010196591A patent/JP5618714B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003338433A (en) * | 2002-05-22 | 2003-11-28 | Nec Tokin Corp | Solid electrolytic capacitor, anode body therefor and its manufacturing method |
JP2004247550A (en) * | 2003-02-14 | 2004-09-02 | Matsushita Electric Ind Co Ltd | Solid electrolytic capacitor |
JP2008098279A (en) * | 2006-10-10 | 2008-04-24 | Toyo Aluminium Kk | Electrode material for aluminum electrolytic capacitor, and its manufacturing method |
JP2008270754A (en) * | 2007-03-28 | 2008-11-06 | Sanyo Electric Co Ltd | Solid electrolytic capacitor and manufacturing method thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014135481A (en) * | 2012-12-11 | 2014-07-24 | Nippon Chemicon Corp | Capacitor |
WO2014112499A1 (en) * | 2013-01-18 | 2014-07-24 | 東洋アルミニウム株式会社 | Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors |
US10079111B2 (en) | 2013-01-18 | 2018-09-18 | Toyo Aluminium Kabushiki Kaisha | Method for producing electrode material for aluminum electrolytic capacitors, and electrode material for aluminum electrolytic capacitors |
CN103219456A (en) * | 2013-04-02 | 2013-07-24 | 武汉理工大学 | Electrode matched with Mg-Si-Sn-based thermoelectric element and connecting process thereof |
CN103219456B (en) * | 2013-04-02 | 2016-09-14 | 武汉理工大学 | A kind of electrode matched with Mg-Si-Sn base thermoelement and Joining Technology thereof |
WO2016158492A1 (en) * | 2015-03-31 | 2016-10-06 | 東洋アルミニウム株式会社 | Electrode material for aluminum electrolytic capacitor and method for manufacturing same |
JPWO2016158492A1 (en) * | 2015-03-31 | 2018-01-25 | 東洋アルミニウム株式会社 | Electrode material for aluminum electrolytic capacitor and method for producing the same |
CN110552955A (en) * | 2018-05-31 | 2019-12-10 | 美蓓亚三美株式会社 | Bearing device |
CN110552955B (en) * | 2018-05-31 | 2022-08-12 | 美蓓亚三美株式会社 | Bearing device |
CN110718393A (en) * | 2019-10-31 | 2020-01-21 | 湖南艾华集团股份有限公司 | Preparation method of anode foil of medium-high voltage aluminum electrolytic capacitor and capacitor |
CN110828179A (en) * | 2019-10-31 | 2020-02-21 | 湖南艾华集团股份有限公司 | Aluminum electrolytic capacitor with strong ripple current resistance and preparation method thereof |
CN110718393B (en) * | 2019-10-31 | 2021-11-30 | 湖南艾华集团股份有限公司 | Preparation method of anode foil of medium-high voltage aluminum electrolytic capacitor and capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP5618714B2 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5769528B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP4958510B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP5511630B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
WO2009130765A1 (en) | Electrode material for aluminum electrolytic capacitor and process for producing the electrode material | |
JP6461794B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
WO2012161158A1 (en) | Electrode material for aluminum electrolytic capacitor, and process for producing same | |
JP5618714B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP6073255B2 (en) | Method for producing electrode material for aluminum electrolytic capacitor | |
KR20120028376A (en) | Electrode material for aluminum electrolytic capacitor and method for manufacturing the material | |
JP6629288B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP2018206910A (en) | Electrode material for aluminum electrolytic capacitor, and method for manufacturing the same | |
WO2019073616A1 (en) | Electrode material for aluminum electrolytic capacitors and method for producing same | |
WO2020075733A1 (en) | Method of manufacturing electrode material for aluminum electrolytic capacitor | |
JPWO2016158492A1 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP2022121214A (en) | Electrode material for aluminum electrolytic capacitor and manufacturing method thereof | |
JP2022143009A (en) | Electrode material for aluminum electrolytic capacitor, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5618714 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |