JP2012052503A - Cooling device of water-cooled internal combustion engine - Google Patents

Cooling device of water-cooled internal combustion engine Download PDF

Info

Publication number
JP2012052503A
JP2012052503A JP2010197488A JP2010197488A JP2012052503A JP 2012052503 A JP2012052503 A JP 2012052503A JP 2010197488 A JP2010197488 A JP 2010197488A JP 2010197488 A JP2010197488 A JP 2010197488A JP 2012052503 A JP2012052503 A JP 2012052503A
Authority
JP
Japan
Prior art keywords
water
internal combustion
combustion engine
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010197488A
Other languages
Japanese (ja)
Other versions
JP5230702B2 (en
Inventor
Masutaka Watanabe
益崇 渡邉
Hideyuki Tanaka
英之 田中
Yohei Akashi
陽平 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010197488A priority Critical patent/JP5230702B2/en
Publication of JP2012052503A publication Critical patent/JP2012052503A/en
Application granted granted Critical
Publication of JP5230702B2 publication Critical patent/JP5230702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a cooling device of a water-cooled internal combustion engine capable of reducing wasteful power consumption by maintaining the temperature of cooling water in an appropriate range to improve the fuel consumption rate by controlling the drive of an electric water pump and an electric cooling fan by taking into consideration the drive state of the water-cooled internal combustion engine and the heat radiation property of a heat exchanger.SOLUTION: The cooling device includes an electric water pump 18 configured to circulate cooling water through a cooling water channel provided in a water-cooled internal combustion engine 2, a heat exchanger 13 configured to radiate heat of the cooling water, an electric cooling fan 19 configured to send air to the heat exchanger 13, a cooling water temperature sensor 16 configured to detect the temperature of cooling water within the water-cooled internal combustion engine 2, a drive state detecting unit configured to detect the drive state of the water-cooled internal combustion engine 2, and a control device 21 configured to calculate an amount of heat requested to be radiated required by the heat exchanger 13 based on the temperature of cooling water and the drive state and to control the rotating speed of the electric water pump 18 and the electric cooling fan 19 based on the amount of heat requested to be radiated and the heat radiation property of the heat exchanger 13 when the temperature of cooling water is higher than a predetermined temperature.

Description

この発明は、水冷式内燃機関と熱交換器との間で冷却水を循環させる電動ウォータポンプ、および熱交換器に送風を行う電動冷却ファンを備えた水冷式内燃機関の冷却装置に関する。   The present invention relates to an electric water pump that circulates cooling water between a water-cooled internal combustion engine and a heat exchanger, and a cooling device for a water-cooled internal combustion engine that includes an electric cooling fan that blows air to the heat exchanger.

従来から、水冷式内燃機関の冷却装置として、水冷式内燃機関の駆動力を用いて機械式ウォータポンプにより冷却水を水冷式内燃機関と熱交換器との間で循環させ、熱交換器で冷却水の放熱を行うものが一般的に知られている。   Conventionally, as a cooling device for a water-cooled internal combustion engine, cooling water is circulated between the water-cooled internal combustion engine and the heat exchanger by a mechanical water pump using the driving force of the water-cooled internal combustion engine and cooled by the heat exchanger. Those that dissipate water are generally known.

しかしながら、機械式ウォータポンプは、水冷式内燃機関の回転と同期して駆動するので、例えば車両の高速走行時において、過剰な流量の冷却水が循環し、水冷式内燃機関の動力損失が増加して燃費が悪化するという問題があった。また、機械式ウォータポンプが水冷式内燃機関の回転と同期して駆動することにより、冷却水温度を適切な範囲に制御することが困難であるという問題もあった。   However, since the mechanical water pump is driven in synchronism with the rotation of the water-cooled internal combustion engine, for example, when the vehicle is traveling at a high speed, an excessive flow of cooling water circulates and the power loss of the water-cooled internal combustion engine increases. There was a problem that fuel consumption deteriorated. In addition, since the mechanical water pump is driven in synchronization with the rotation of the water-cooled internal combustion engine, there is a problem that it is difficult to control the cooling water temperature within an appropriate range.

そこで、上記の問題を解決するために、近年、ウォータポンプに電動モータを取り付けた電動ウォータポンプが提案されている。電動ウォータポンプを用いた水冷式内燃機関の冷却装置では、水冷式内燃機関の駆動状態によらず電動ウォータポンプの回転数を制御することができるので、熱交換器内を流れる冷却水の流量を適切な範囲に調整することができる。   In order to solve the above problems, an electric water pump in which an electric motor is attached to the water pump has been recently proposed. In a cooling system for a water-cooled internal combustion engine using an electric water pump, the number of revolutions of the electric water pump can be controlled regardless of the driving state of the water-cooled internal combustion engine. It can be adjusted to an appropriate range.

このような電動ウォータポンプを用いた水冷式内燃機関の冷却装置として、以下のようなものが知られている。すなわち、従来の水冷式内燃機関の冷却装置において、制御装置は、水冷式内燃機関内の冷却水温度が所定目標温度以上である場合に、熱交換器内を流れる冷却水の状態が、層流域と乱流域との間の遷移域および遷移域に近接する乱流域の範囲に入るように電動ウォータポンプの回転数を制御する。また、制御装置は、熱交換器で所定の放熱熱量を得るために必要な電動ウォータポンプおよび電動冷却ファンの消費電力が最も低くなるように、電動ウォータポンプおよび電動冷却ファンの回転数を制御する(例えば、特許文献1参照)。   As a cooling device for a water-cooled internal combustion engine using such an electric water pump, the following is known. That is, in the conventional cooling device for a water-cooled internal combustion engine, the control device determines that the state of the coolant flowing in the heat exchanger is in a laminar flow area when the coolant temperature in the water-cooled internal combustion engine is equal to or higher than a predetermined target temperature. The rotational speed of the electric water pump is controlled so as to fall within the transition region between the turbulent region and the turbulent region close to the transition region. Further, the control device controls the rotation speeds of the electric water pump and the electric cooling fan so that the power consumption of the electric water pump and the electric cooling fan necessary for obtaining a predetermined heat radiation amount by the heat exchanger is minimized. (For example, refer to Patent Document 1).

また、別の従来の水冷式内燃機関の冷却装置において、制御装置は、水冷式内燃機関の回転数および出力トルクから得られる目標流量に基づいて、電動ウォータポンプの回転数を制御するとともに、冷却水温度に基づいて、電動冷却ファンの駆動を制御する。また、制御装置は、電動冷却ファンの駆動が開始される駆動温度よりも冷却水温度が高い場合に、電動ウォータポンプの回転数を冷却水温度の上昇に応じて増大補正する(例えば、特許文献2参照)。   In another conventional cooling apparatus for a water-cooled internal combustion engine, the control device controls the rotation speed of the electric water pump based on the target flow rate obtained from the rotation speed and the output torque of the water-cooled internal combustion engine, and also performs cooling. The driving of the electric cooling fan is controlled based on the water temperature. Further, when the coolant temperature is higher than the drive temperature at which the drive of the electric cooling fan is started, the control device corrects the number of rotations of the electric water pump to be increased according to the increase in the coolant temperature (for example, Patent Documents). 2).

特開2002−332842号公報JP 2002-332842 A 特開2008−215094号公報JP 2008-215094 A

しかしながら、従来技術には、以下のような課題がある。
特許文献1に示された水冷式内燃機関の冷却装置では、制御装置が、水冷式内燃機関の駆動状態を考慮せず、水冷式内燃機関内の冷却水温度のみに基づいて、電動ウォータポンプおよび電動冷却ファンの回転数を制御している。
However, the prior art has the following problems.
In the cooling device for a water-cooled internal combustion engine disclosed in Patent Document 1, the control device does not consider the driving state of the water-cooled internal combustion engine, and based only on the coolant temperature in the water-cooled internal combustion engine, The number of rotations of the electric cooling fan is controlled.

ここで、水冷式内燃機関の駆動状態を考慮しない場合には、現在の駆動状態が今後どのように変化するかが明確でないので、冷却水温度を適切な範囲に保持することが困難になる恐れがある。そのため、水冷式内燃機関のフリクション(動力損失)が増加し、燃費が悪化するという問題がある。   Here, if the driving state of the water-cooled internal combustion engine is not taken into account, it is not clear how the current driving state will change in the future, and it may be difficult to maintain the cooling water temperature in an appropriate range. There is. For this reason, there is a problem that the friction (power loss) of the water-cooled internal combustion engine increases and fuel consumption deteriorates.

また、特許文献2に示された水冷式内燃機関の冷却装置では、制御装置が、熱交換器の放熱性能を考慮せず、水冷式内燃機関内の冷却水温度のみに基づいて、電動ウォータポンプの回転数を増大補正している。   Further, in the cooling device for a water-cooled internal combustion engine disclosed in Patent Document 2, the control device does not consider the heat dissipation performance of the heat exchanger, and based only on the coolant temperature in the water-cooled internal combustion engine, the electric water pump The number of revolutions is increased and corrected.

ここで、熱交換器には、風量が一定の場合に、熱交換器内を流れる冷却水の流量を増加させても、放熱熱量が飽和する最大放熱熱量が存在する。また、熱交換器の放熱性能を考慮しない場合には、熱交換器の放熱性能を上回る過剰な流量の冷却水が循環するように、電動ウォータポンプの回転数が増大補正される恐れがある。そのため、無駄に電動ウォータポンプの消費電力が増加するという問題もある。   Here, in the heat exchanger, when the air volume is constant, even if the flow rate of the cooling water flowing in the heat exchanger is increased, there is a maximum heat radiation amount that saturates the heat radiation amount. Further, when the heat dissipation performance of the heat exchanger is not taken into account, there is a possibility that the rotational speed of the electric water pump is corrected to increase so that an excessive flow of cooling water exceeding the heat dissipation performance of the heat exchanger circulates. Therefore, there is also a problem that the power consumption of the electric water pump increases unnecessarily.

この発明は、上記のような課題を解決するためになされたものであり、水冷式内燃機関の駆動状態および熱交換器の放熱性能を考慮して電動ウォータポンプおよび電動冷却ファンの駆動を制御することにより、冷却水温度を適切な範囲に保持して燃費を向上させるとともに、無駄な消費電力を削減することができる水冷式内燃機関の冷却装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and controls the driving of the electric water pump and the electric cooling fan in consideration of the driving state of the water-cooled internal combustion engine and the heat dissipation performance of the heat exchanger. Accordingly, an object of the present invention is to obtain a cooling device for a water-cooled internal combustion engine that can maintain the cooling water temperature in an appropriate range to improve fuel efficiency and reduce wasteful power consumption.

この発明に係る水冷式内燃機関の冷却装置は、水冷式内燃機関に設けられた冷却水路内の冷却水を循環させる電動ウォータポンプと、冷却水の放熱を行う熱交換器と、熱交換器に送風を行う電動冷却ファンと、水冷式内燃機関内の冷却水温度を検出する冷却水温度検出手段と、水冷式内燃機関の駆動状態を検出する駆動状態検出手段と、冷却水温度が所定温度よりも高い場合に、冷却水温度および駆動状態に基づいて熱交換器に要求される放熱要求熱量を算出し、放熱要求熱量および熱交換器の放熱性能に基づいて、電動ウォータポンプおよび電動冷却ファンの回転数を制御する制御手段と、を備えたものである。   A cooling device for a water-cooled internal combustion engine according to the present invention includes an electric water pump that circulates cooling water in a cooling water passage provided in the water-cooled internal combustion engine, a heat exchanger that radiates cooling water, and a heat exchanger. An electric cooling fan for blowing air, a cooling water temperature detecting means for detecting a cooling water temperature in the water-cooled internal combustion engine, a driving state detecting means for detecting a driving state of the water-cooled internal combustion engine, and the cooling water temperature from a predetermined temperature If it is too high, calculate the required heat dissipation required for the heat exchanger based on the cooling water temperature and the driving state, and based on the required heat dissipation and the heat dissipation performance of the heat exchanger, the electric water pump and the electric cooling fan And a control means for controlling the rotational speed.

この発明に係る水冷式内燃機関の冷却装置によれば、制御手段は、冷却水温度が所定温度よりも高い場合に、冷却水温度および駆動状態に基づいて熱交換器に要求される放熱要求熱量を算出し、放熱要求熱量および熱交換器の放熱性能に基づいて、電動ウォータポンプおよび電動冷却ファンの回転数を制御する。
これにより、電動ウォータポンプおよび電動冷却ファンの駆動を適切に制御することができ、冷却水温度を適切な範囲に保持して燃費を向上させるとともに、無駄な消費電力を削減することができる。
According to the cooling apparatus for a water-cooled internal combustion engine according to the present invention, the control means includes the heat radiation required heat amount required for the heat exchanger based on the cooling water temperature and the driving state when the cooling water temperature is higher than a predetermined temperature. Is calculated, and the number of revolutions of the electric water pump and the electric cooling fan is controlled based on the required heat dissipation and the heat dissipation performance of the heat exchanger.
As a result, the drive of the electric water pump and the electric cooling fan can be appropriately controlled, and the cooling water temperature can be maintained in an appropriate range to improve the fuel efficiency, and wasteful power consumption can be reduced.

この発明の実施の形態1に係る水冷式内燃機関の冷却装置を、水冷式内燃機関とともに示す構成図である。It is a block diagram which shows the cooling device of the water-cooled internal combustion engine which concerns on Embodiment 1 of this invention with a water-cooled internal combustion engine. この発明の実施の形態1に係る水冷式内燃機関の冷却装置において、制御装置が有する熱交換器の放熱性能マップを示す説明図である。In the cooling device for a water-cooled internal combustion engine according to Embodiment 1 of the present invention, it is an explanatory diagram showing a heat radiation performance map of a heat exchanger included in a control device. この発明の実施の形態1に係る水冷式内燃機関の冷却装置において、制御装置が電動ウォータポンプの駆動を制御する処理を示すフローチャートである。In the cooling device for a water-cooled internal combustion engine according to the first embodiment of the present invention, it is a flowchart showing a process in which the control device controls the driving of the electric water pump. この発明の実施の形態1に係る水冷式内燃機関の冷却装置において、制御装置が電動冷却ファンの駆動を制御する処理を示すフローチャートである。In the cooling device for a water-cooled internal combustion engine according to the first embodiment of the present invention, it is a flowchart showing a process in which the control device controls the driving of the electric cooling fan.

以下、この発明に係る水冷式内燃機関の冷却装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。なお、以下の実施の形態では、この水冷式内燃機関の冷却装置が車両に搭載されている場合について説明するが、これに限定されず、水冷式内燃機関の冷却装置は、水冷式内燃機関を備えた移動体であれば、他の乗り物等に搭載されてもよい。   Hereinafter, preferred embodiments of a cooling device for a water-cooled internal combustion engine according to the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts will be described with the same reference numerals. In the following embodiments, the case where the cooling device for the water-cooled internal combustion engine is mounted on a vehicle will be described. However, the present invention is not limited to this, and the cooling device for the water-cooled internal combustion engine includes a water-cooled internal combustion engine. As long as the mobile body is provided, it may be mounted on another vehicle or the like.

実施の形態1.
図1は、この発明の実施の形態1に係る水冷式内燃機関の冷却装置1を、水冷式内燃機関2とともに示す構成図である。図1において、水冷式内燃機関2では、それぞれ図示しないエアインテークから吸入され、エアクリーナで塵等が除去された空気が、インテークマニホールドから各シリンダに供給される。各シリンダに供給された空気は、シリンダ内でインジェクタから噴射された燃料と混合されて混合気となり、スパークプラグの点火によって燃焼される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a cooling apparatus 1 for a water-cooled internal combustion engine according to Embodiment 1 of the present invention, together with a water-cooled internal combustion engine 2. In FIG. 1, in the water-cooled internal combustion engine 2, air that is sucked from an air intake (not shown) and from which dust and the like are removed by an air cleaner is supplied to each cylinder from the intake manifold. The air supplied to each cylinder is mixed with the fuel injected from the injector in the cylinder to become an air-fuel mixture, and burned by ignition of the spark plug.

続いて、混合気の燃焼に伴って生じる膨張力によりシリンダ内のピストンが往復運動され、ピストンの往復運動は、クランクシャフトの回転運動に変換される。クランクシャフトの回転運動は、変速機等を介して車輪に伝達され、車両の駆動力となる。このとき、水冷式内燃機関2のシリンダが混合気の燃焼によって高温になると、ノッキング等が生じる恐れがある。そこで、水冷式内燃機関2のシリンダを冷却するために、水冷式内燃機関の冷却装置1が設けられている。   Subsequently, the piston in the cylinder is reciprocated by the expansion force generated by the combustion of the air-fuel mixture, and the reciprocating motion of the piston is converted into the rotational motion of the crankshaft. The rotational movement of the crankshaft is transmitted to the wheels via a transmission or the like, and becomes a driving force for the vehicle. At this time, if the cylinder of the water-cooled internal combustion engine 2 becomes high temperature due to the combustion of the air-fuel mixture, knocking or the like may occur. In order to cool the cylinder of the water-cooled internal combustion engine 2, a cooling device 1 for the water-cooled internal combustion engine is provided.

水冷式内燃機関の冷却装置1は、ウォータジャケット11、第1冷却水路12、熱交換器13、第2冷却水路14、バイパス水路15、冷却水温センサ16(冷却水温度検出手段)、サーモスタット17、電動ウォータポンプ18、電動冷却ファン19、外気温センサ20(外気温検出手段)および制御装置21(制御手段)から構成されている。ここで、ウォータジャケット11、第1冷却水路12、熱交換器13、第2冷却水路14およびバイパス水路15の内部は、冷却水で満たされている。   A cooling device 1 for a water-cooled internal combustion engine includes a water jacket 11, a first cooling water channel 12, a heat exchanger 13, a second cooling water channel 14, a bypass water channel 15, a cooling water temperature sensor 16 (cooling water temperature detecting means), a thermostat 17, An electric water pump 18, an electric cooling fan 19, an outside air temperature sensor 20 (outside air temperature detecting means) and a control device 21 (control means) are included. Here, the insides of the water jacket 11, the first cooling water channel 12, the heat exchanger 13, the second cooling water channel 14, and the bypass water channel 15 are filled with cooling water.

ウォータジャケット11は、水冷式内燃機関2のシリンダの周囲に設けられた冷却水路である。ウォータジャケット11は、内部を流れる冷却水により、燃焼によって高温になったシリンダを冷却する。   The water jacket 11 is a cooling water channel provided around the cylinder of the water-cooled internal combustion engine 2. The water jacket 11 cools the cylinder which became high temperature by combustion with the cooling water which flows through the inside.

第1冷却水路12は、ウォータジャケット11の出口と熱交換器13の入口とを接続するように設けられている。また、第2冷却水路14は、熱交換器13の出口とウォータジャケット11の入口とを接続するように設けられている。   The first cooling water channel 12 is provided so as to connect the outlet of the water jacket 11 and the inlet of the heat exchanger 13. The second cooling water channel 14 is provided so as to connect the outlet of the heat exchanger 13 and the inlet of the water jacket 11.

熱交換器13は、ラジエータであり、ウォータジャケット11内を流れて温められ、第1冷却水路12を介して流入された冷却水を、熱交換により放熱して冷却し、第2冷却水路14を介してウォータジャケット11に流出させる。なお、熱交換器13の放熱熱量は、熱交換器13周辺(エンジンルーム内)の雰囲気温度、熱交換器13を通過する風量および熱交換器13内を流れる冷却水の流量によって決定される。   The heat exchanger 13 is a radiator, is heated by flowing through the water jacket 11, and cools the cooling water that has flowed in through the first cooling water passage 12 by heat exchange to cool the second cooling water passage 14. To the water jacket 11. The amount of heat released from the heat exchanger 13 is determined by the ambient temperature around the heat exchanger 13 (in the engine room), the amount of air passing through the heat exchanger 13, and the flow rate of cooling water flowing through the heat exchanger 13.

バイパス水路15は、第1冷却水路12と第2冷却水路14とを、熱交換器13を迂回して接続するように設けられている。例えば、冷却水温度が低すぎる場合には、水冷式内燃機関2のフリクション(動力損失)が増加して燃費が悪化する。そのため、このような場合には、熱交換器13内に冷却水を流すことなく、バイパス水路15を流して冷却水を循環させることにより、冷却水温度の低下と電動ウォータポンプ18の駆動損失を低減させることができる。   The bypass water channel 15 is provided to connect the first cooling water channel 12 and the second cooling water channel 14 so as to bypass the heat exchanger 13. For example, when the cooling water temperature is too low, the friction (power loss) of the water-cooled internal combustion engine 2 increases and the fuel consumption deteriorates. Therefore, in such a case, the cooling water is circulated through the bypass water channel 15 without flowing the cooling water in the heat exchanger 13, thereby reducing the cooling water temperature and driving loss of the electric water pump 18. Can be reduced.

冷却水温センサ16は、第1冷却水路12におけるウォータジャケット11の出口近傍に設けられている。冷却水温センサ16は、ウォータジャケット11内を流れて温められた冷却水の温度を検出して、制御装置21に冷却水温度を信号として出力する。   The cooling water temperature sensor 16 is provided in the vicinity of the outlet of the water jacket 11 in the first cooling water channel 12. The cooling water temperature sensor 16 detects the temperature of the cooling water heated through the water jacket 11 and outputs the cooling water temperature as a signal to the control device 21.

サーモスタット17は、第2冷却水路14とバイパス水路15との接続箇所に設けられている。サーモスタット17は、内部を流れる冷却水温度に応じて、内部に設けられた弁が開閉し、冷却水の循環経路を、熱交換器13を流れる経路またはバイパス水路15を流れる(熱交換器13を流れない)経路に切り替える。   The thermostat 17 is provided at a connection location between the second cooling water channel 14 and the bypass water channel 15. The thermostat 17 opens and closes a valve provided inside according to the temperature of the cooling water flowing through the thermostat 17, and flows through the cooling water circulation path through the heat exchanger 13 or the bypass water path 15 (the heat exchanger 13 Switch to a route that does not flow.

具体的には、冷却水温度が所定値未満の場合には、サーモスタット17内部の弁が閉じられて、熱交換器13と第2冷却水路14との連通が遮断されるとともに、バイパス水路15と第2冷却水路14とが連通される。これにより、ウォータジャケット11から第1冷却水路12に流出された冷却水は、熱交換器13を迂回して再度ウォータジャケット11に流入される。こうした冷却水の循環により、冷却水が徐々に温められて、水冷式内燃機関2の暖機が促進される。   Specifically, when the cooling water temperature is less than a predetermined value, the valve inside the thermostat 17 is closed, the communication between the heat exchanger 13 and the second cooling water channel 14 is blocked, and the bypass water channel 15 The 2nd cooling water channel 14 is connected. Thereby, the cooling water that has flowed out from the water jacket 11 to the first cooling water passage 12 bypasses the heat exchanger 13 and flows into the water jacket 11 again. Due to such circulation of the cooling water, the cooling water is gradually warmed and the warm-up of the water-cooled internal combustion engine 2 is promoted.

一方、冷却水温度が所定値以上の場合には、サーモスタット17内部の弁が開かれて、バイパス水路15と第2冷却水路14との連通が遮断されるとともに、熱交換器13と第2冷却水路14とが連通される。これにより、ウォータジャケット11から第1冷却水路12に流出された冷却水は、熱交換器13に流入されて冷却された後、第2冷却水路14を介してウォータジャケット11に流出される。こうした冷却水の循環により、水冷式内燃機関2のシリンダが冷却される。   On the other hand, when the cooling water temperature is equal to or higher than a predetermined value, the valve inside the thermostat 17 is opened to cut off the communication between the bypass water passage 15 and the second cooling water passage 14 and the heat exchanger 13 and the second cooling water. The water channel 14 is communicated. As a result, the cooling water flowing out from the water jacket 11 to the first cooling water passage 12 flows into the heat exchanger 13 and is cooled, and then flows out to the water jacket 11 through the second cooling water passage 14. The cylinder of the water-cooled internal combustion engine 2 is cooled by the circulation of the cooling water.

電動ウォータポンプ18は、第2冷却水路14におけるウォータジャケット11の入口に設けられている。電動ウォータポンプ18は、電動モータおよびインペラによって構成され、水冷式内燃機関2と熱交換器13との間で冷却水を循環させる。また、電動ウォータポンプ18は、制御装置21からの駆動指令によってインペラの回転数が制御され、循環される冷却水の流量が制御される。なお、電動ウォータポンプ18は、車両に搭載されたバッテリから電力が供給されている。   The electric water pump 18 is provided at the inlet of the water jacket 11 in the second cooling water channel 14. The electric water pump 18 includes an electric motor and an impeller, and circulates cooling water between the water-cooled internal combustion engine 2 and the heat exchanger 13. Further, the electric water pump 18 is controlled by the drive command from the control device 21 so that the rotation speed of the impeller is controlled and the flow rate of the circulating cooling water is controlled. The electric water pump 18 is supplied with electric power from a battery mounted on the vehicle.

電動冷却ファン19は、熱交換器13の背面に設けられている。電動冷却ファン19は、電動モータおよびインペラによって構成され、熱交換器13に送風を行って熱交換器13を冷却する。また、電動冷却ファン19は、制御装置21からの駆動指令によってインペラの回転数が制御され、熱交換器13を通過する風量が制御される。なお、電動冷却ファン19は、車両に搭載されたバッテリから電力が供給されている。   The electric cooling fan 19 is provided on the back surface of the heat exchanger 13. The electric cooling fan 19 is constituted by an electric motor and an impeller, and cools the heat exchanger 13 by sending air to the heat exchanger 13. In addition, the electric cooling fan 19 is controlled by the drive command from the control device 21 to control the rotation speed of the impeller, and the amount of air passing through the heat exchanger 13 is controlled. The electric cooling fan 19 is supplied with electric power from a battery mounted on the vehicle.

外気温センサ20は、エンジンルーム内に設置された熱交換器13の近傍に設けられている。外気温センサ20は、熱交換器13周辺の雰囲気温度を検出して、制御装置21に雰囲気温度を信号として出力する。   The outside air temperature sensor 20 is provided in the vicinity of the heat exchanger 13 installed in the engine room. The outside air temperature sensor 20 detects the ambient temperature around the heat exchanger 13 and outputs the ambient temperature to the control device 21 as a signal.

制御装置21は、冷却水温センサ16で検出された冷却水温度が暖機温度(所定温度)よりも高い場合に、冷却水温度および水冷式内燃機関2の駆動状態に基づいて熱交換器13に要求される放熱要求熱量を算出する。また、制御装置21は、算出された放熱要求熱量および熱交換器13の放熱性能に基づいて、冷却水温度を適切な範囲に制御するために、電動ウォータポンプ18および電動冷却ファン19の回転数を制御する。   When the coolant temperature detected by the coolant temperature sensor 16 is higher than the warm-up temperature (predetermined temperature), the control device 21 controls the heat exchanger 13 based on the coolant temperature and the driving state of the water-cooled internal combustion engine 2. Calculate the required heat dissipation heat quantity. Further, the control device 21 rotates the rotational speeds of the electric water pump 18 and the electric cooling fan 19 in order to control the cooling water temperature within an appropriate range based on the calculated heat radiation required heat amount and the heat radiation performance of the heat exchanger 13. To control.

ここで、制御装置21は、CPUとプログラムを格納したメモリとを有するマイクロプロセッサ(図示せず)で構成されており、制御装置21の各機能は、メモリにソフトウェアとして記憶されている。なお、制御装置21は、水冷式内燃機関2の駆動状態を簡便に取得するために、車両のエンジンコントロールユニットを用いてもよい。   Here, the control device 21 includes a microprocessor (not shown) having a CPU and a memory storing a program, and each function of the control device 21 is stored in the memory as software. Note that the control device 21 may use an engine control unit of the vehicle in order to easily obtain the driving state of the water-cooled internal combustion engine 2.

制御装置21は、具体的には、熱交換器13を通過する風量に応じた熱交換器13の放熱性能のマップを複数有し、冷却水温度が暖機温度よりも高い場合に、算出された放熱要求熱量と熱交換器13を通過する風量に応じて選択された放熱性能マップとに基づいて、電動ウォータポンプ18および電動冷却ファン19の回転数を制御する。これにより、冷却水温度を適切な範囲に保持することができるので、燃費を向上させることができる。なお、制御装置21は、冷却水温度が暖機温度以下である場合には、電動ウォータポンプ18の回転数を低回転に制御し、水冷式内燃機関2の暖機を促進させる。   Specifically, the control device 21 has a plurality of maps of the heat dissipation performance of the heat exchanger 13 according to the amount of air passing through the heat exchanger 13, and is calculated when the coolant temperature is higher than the warm-up temperature. The rotational speeds of the electric water pump 18 and the electric cooling fan 19 are controlled based on the required heat dissipation heat amount and the heat dissipation performance map selected according to the airflow passing through the heat exchanger 13. Thereby, since a cooling water temperature can be hold | maintained in an appropriate range, a fuel consumption can be improved. In addition, when the coolant temperature is equal to or lower than the warm-up temperature, the control device 21 controls the rotational speed of the electric water pump 18 to a low speed to promote warm-up of the water-cooled internal combustion engine 2.

ここで、制御装置21は、冷却水温センサ16で検出された冷却水温度と、水冷式内燃機関2の回転数および出力トルクとに基づいて、熱交換器13に要求される放熱要求熱量を算出する。このとき、水冷式内燃機関2の回転数は、例えばクランクシャフトの回転角を検出するクランク角センサ(駆動状態検出手段)から求められる。また、水冷式内燃機関2の出力トルクは、例えばインテークマニホールド内の吸気圧力とインジェクタからの燃料噴射量とに基づいて求められる。   Here, the control device 21 calculates the required heat radiation amount required for the heat exchanger 13 based on the coolant temperature detected by the coolant temperature sensor 16 and the rotational speed and output torque of the water-cooled internal combustion engine 2. To do. At this time, the rotational speed of the water-cooled internal combustion engine 2 is obtained from, for example, a crank angle sensor (driving state detecting means) that detects the rotational angle of the crankshaft. Further, the output torque of the water-cooled internal combustion engine 2 is obtained based on, for example, the intake pressure in the intake manifold and the fuel injection amount from the injector.

また、制御装置21は、放熱性能マップを選択するために、車速風と電動冷却ファン19の風量とに基づいて、熱交換器13を通過する風量を算出する。このとき、車速風は、例えば車両の車輪に取り付けられた速度センサによって車両の速度が検出され、検出された速度から推定される。また、電動冷却ファン19の風量は、電動冷却ファン19のインペラの回転数から推定される。   Further, the control device 21 calculates the air volume passing through the heat exchanger 13 based on the vehicle speed wind and the air volume of the electric cooling fan 19 in order to select the heat dissipation performance map. At this time, the vehicle speed wind is estimated from, for example, the speed of the vehicle detected by a speed sensor attached to the wheel of the vehicle. The air volume of the electric cooling fan 19 is estimated from the rotational speed of the impeller of the electric cooling fan 19.

さらに、制御装置21は、外気温センサ20で検出された雰囲気温度に基づいて、熱交換器13の放熱性能マップの放熱熱量を補正する。すなわち、制御装置21は、雰囲気温度が低い場合には、熱交換器13の放熱熱量を高くなる方向に補正し、雰囲気温度が高い場合には、熱交換器13の放熱性能を低くなる方向に補正する。これにより、正確な熱交換器13の放熱性能を得ることができるので、電動ウォータポンプ18の消費電力を低減することができる。なお、制御装置21は、車両外の気温から、熱交換器13周辺の雰囲気温度を推定してもよい。   Further, the control device 21 corrects the heat radiation amount in the heat radiation performance map of the heat exchanger 13 based on the ambient temperature detected by the outside air temperature sensor 20. That is, when the ambient temperature is low, the control device 21 corrects the amount of heat radiated from the heat exchanger 13 so as to increase. When the ambient temperature is high, the control device 21 decreases the heat dissipation performance of the heat exchanger 13. to correct. Thereby, since the exact heat dissipation performance of the heat exchanger 13 can be obtained, the power consumption of the electric water pump 18 can be reduced. Note that the control device 21 may estimate the ambient temperature around the heat exchanger 13 from the temperature outside the vehicle.

また、制御装置21は、熱交換器13を通過する風量に応じて選択された放熱性能マップにおいて、放熱熱量が飽和する最大放熱熱量に対応する電動ウォータポンプ18の回転数を、電動ウォータポンプ18の上限回転数とする。これにより、熱交換器13の放熱性能を上回る過剰な流量の冷却水を抑制することができるので、電動ウォータポンプ18の消費電力を低減することができる。   Further, the control device 21 determines the number of rotations of the electric water pump 18 corresponding to the maximum heat radiation heat amount at which the heat radiation heat is saturated in the heat radiation performance map selected according to the air volume passing through the heat exchanger 13. The upper limit number of rotations. Thereby, since the cooling water of the excess flow volume exceeding the heat dissipation performance of the heat exchanger 13 can be suppressed, the power consumption of the electric water pump 18 can be reduced.

また、制御装置21は、放熱要求熱量が熱交換器13の放熱性能における最大放熱熱量よりも大きく、かつ放熱要求熱量が所定熱量よりも大きい場合に、放熱要求熱量を満たすように電動冷却ファン19を駆動させ、熱交換器13の放熱熱量を増加させる。これにより、熱交換器13の放熱性能が低い状態となる高負荷低速走行時におけるオーバーヒートを抑制することができる。また、熱交換器13の放熱性能が高い状態となる低負荷高速走行時における過剰な電動冷却ファン19の駆動を抑制し、電動冷却ファン19の消費電力を低減することができる。   The control device 21 also has the electric cooling fan 19 so as to satisfy the required heat dissipation amount when the required heat dissipation amount is larger than the maximum heat dissipation amount in the heat dissipation performance of the heat exchanger 13 and the required heat dissipation amount is larger than the predetermined heat amount. To increase the amount of heat radiated from the heat exchanger 13. Thereby, the overheating at the time of the high load low speed driving | running | working in which the heat dissipation performance of the heat exchanger 13 will be in a low state can be suppressed. In addition, it is possible to suppress excessive driving of the electric cooling fan 19 during low-load high-speed traveling where the heat dissipation performance of the heat exchanger 13 is high, and to reduce the power consumption of the electric cooling fan 19.

ここで、図2を参照しながら、熱交換器13の放熱性能マップについて説明する。図2は、この発明の実施の形態1に係る水冷式内燃機関の冷却装置において、制御装置21が有する熱交換器13の放熱性能マップを示す説明図である。制御装置21は、熱交換器13を通過する風量毎に、複数の放熱性能マップを有している。また、放熱性能マップの放熱熱量は、外気温センサ20で検出された雰囲気温度に基づいて補正される。   Here, a heat dissipation performance map of the heat exchanger 13 will be described with reference to FIG. FIG. 2 is an explanatory diagram showing a heat dissipation performance map of the heat exchanger 13 included in the control device 21 in the cooling apparatus for a water-cooled internal combustion engine according to Embodiment 1 of the present invention. The control device 21 has a plurality of heat dissipation performance maps for each air volume passing through the heat exchanger 13. Further, the heat radiation amount in the heat radiation performance map is corrected based on the ambient temperature detected by the outside air temperature sensor 20.

図2において、横軸は熱交換器13が放熱する放熱熱量を示し、縦軸は電動ウォータポンプ18の回転数を示している。放熱要求熱量が高い場合、電動ウォータポンプ18の回転数は必然的に高くなるが、放熱熱量は、放熱性能の限界によってある値で飽和する。そのため、放熱性能を考慮しなければ電動ウォータポンプ18の回転数が過剰となり、無駄な電力が消費されることとなる。そこで、制御装置21は、線形的に放熱熱量が上昇する範囲における最大の放熱熱量を最大放熱熱量Qmaxと設定し、このときの電動ウォータポンプ18の回転数を回転上限値Rwmaxと設定する。   In FIG. 2, the horizontal axis indicates the amount of heat dissipated by the heat exchanger 13, and the vertical axis indicates the rotational speed of the electric water pump 18. When the required heat dissipation amount is high, the rotational speed of the electric water pump 18 is inevitably high, but the heat dissipation amount is saturated at a certain value due to the limit of the heat dissipation performance. Therefore, if the heat dissipation performance is not taken into account, the number of rotations of the electric water pump 18 becomes excessive, and wasteful power is consumed. Therefore, the control device 21 sets the maximum radiated heat amount in a range in which the radiated heat amount rises linearly as the maximum radiated heat amount Qmax, and sets the rotation speed of the electric water pump 18 at this time as the rotation upper limit value Rwmax.

続いて、図3、4のフローチャートを参照しながら、この発明の実施の形態1に係る水冷式内燃機関の冷却装置1において、制御装置21が電動ウォータポンプ18および電動冷却ファン19の駆動を制御する処理について詳細に説明する。
最初に、図3を参照しながら、制御装置21が電動ウォータポンプ18の駆動を制御する処理について説明する。
3 and 4, in the cooling device 1 for a water-cooled internal combustion engine according to the first embodiment of the present invention, the control device 21 controls the driving of the electric water pump 18 and the electric cooling fan 19. The processing to be performed will be described in detail.
First, a process in which the control device 21 controls the driving of the electric water pump 18 will be described with reference to FIG.

まず、制御装置21は、水冷式内燃機関2の回転数NEおよび出力トルクNと、冷却水温センサ16で検出された冷却水温度Tとに基づいて、放熱要求熱量Qrを算出する(ステップS1)。
続いて、制御装置21は、熱交換器13の放熱性能マップを選択するために、熱交換器13を通過する風量Vを算出する(ステップS2)。
First, the control device 21 calculates the required heat dissipation amount Qr based on the rotational speed NE and output torque N of the water-cooled internal combustion engine 2 and the coolant temperature T detected by the coolant temperature sensor 16 (step S1). .
Subsequently, the control device 21 calculates the air volume V passing through the heat exchanger 13 in order to select the heat dissipation performance map of the heat exchanger 13 (step S2).

次に、制御装置21は、外気温センサ20で検出された雰囲気温度Toに基づいて、熱交換器13の放熱性能マップの放熱熱量を補正する(ステップS3)。
続いて、制御装置21は、熱交換器13を通過する風量Vにおける熱交換器13の放熱性能マップから、電動ウォータポンプ18の回転上限値Rwmaxを設定する(ステップS4)。
Next, the control device 21 corrects the heat radiation amount in the heat radiation performance map of the heat exchanger 13 based on the ambient temperature To detected by the outside air temperature sensor 20 (step S3).
Subsequently, the control device 21 sets the rotation upper limit value Rwmax of the electric water pump 18 from the heat dissipation performance map of the heat exchanger 13 at the air volume V passing through the heat exchanger 13 (step S4).

次に、制御装置21は、冷却水温度Tが暖機温度Twよりも大きいか否かを判定する(ステップS5)。   Next, the control device 21 determines whether or not the cooling water temperature T is higher than the warm-up temperature Tw (step S5).

ステップS5において、冷却水温度Tが暖機温度Tw以下である(すなわち、No)と判定された場合には、制御装置21は、水冷式内燃機関2の暖機が必要であると判断し、電動ウォータポンプ18の回転数Rwを低回転であるRwminに設定する(ステップS6)。
続いて、制御装置21は、電動ウォータポンプ18を設定された回転数Rwで駆動させ(ステップS7)、図3の処理を終了する。
When it is determined in step S5 that the cooling water temperature T is equal to or lower than the warm-up temperature Tw (that is, No), the control device 21 determines that the water-cooled internal combustion engine 2 needs to be warmed up, The rotation speed Rw of the electric water pump 18 is set to Rwmin, which is a low rotation (step S6).
Subsequently, the control device 21 drives the electric water pump 18 at the set rotation speed Rw (step S7), and ends the process of FIG.

一方、ステップS5において、冷却水温度Tが暖機温度Twよりも大きい(すなわち、Yes)と判定された場合には、制御装置21は、熱交換器13での冷却水の放熱が必要であると判断し、熱交換器13の放熱性能マップから、放熱要求熱量Qrに応じた電動ウォータポンプ18の回転数Rwを設定する(ステップS8)。   On the other hand, when it is determined in step S5 that the cooling water temperature T is higher than the warm-up temperature Tw (that is, Yes), the control device 21 needs to dissipate the cooling water in the heat exchanger 13. From the heat dissipation performance map of the heat exchanger 13, the rotational speed Rw of the electric water pump 18 corresponding to the heat dissipation required heat quantity Qr is set (step S8).

次に、制御装置21は、ステップS8で設定された電動ウォータポンプ18の回転数Rwが、熱交換器13の放熱性能を上回る過剰な流量の冷却水を循環させるものでないかを判断するために、回転数Rwが回転上限値Rwmax以下であるか否かを判定する(ステップS9)。   Next, the control device 21 determines whether or not the rotational speed Rw of the electric water pump 18 set in step S8 circulates an excessive amount of cooling water exceeding the heat dissipation performance of the heat exchanger 13. Then, it is determined whether or not the rotation speed Rw is equal to or less than the rotation upper limit value Rwmax (step S9).

ステップS9において、電動ウォータポンプ18の回転数Rwが回転上限値Rwmax以下である(すなわち、Yes)と判定された場合には、制御装置21は、熱交換器13内を流れる冷却水の流量が適切であると判断し、電動ウォータポンプ18を設定された回転数Rwで駆動させ(ステップS7)、図3の処理を終了する。   In step S9, when it is determined that the rotation speed Rw of the electric water pump 18 is equal to or less than the rotation upper limit value Rwmax (that is, Yes), the control device 21 determines the flow rate of the cooling water flowing in the heat exchanger 13. It is determined that the electric water pump 18 is appropriate, and the electric water pump 18 is driven at the set rotational speed Rw (step S7), and the process of FIG.

一方、ステップS9において、電動ウォータポンプ18の回転数Rwが回転上限値Rwmaxよりも大きい(すなわち、No)と判定された場合には、制御装置21は、熱交換器13の放熱性能を上回る電動ウォータポンプ18の回転数Rwが設定されていると判断し、電動ウォータポンプ18の回転数Rwを回転上限値Rwmaxに設定する(ステップS10)。
続いて、制御装置21は、電動ウォータポンプ18を設定された回転数Rwで駆動させ(ステップS7)、図3の処理を終了する。
On the other hand, if it is determined in step S9 that the rotational speed Rw of the electric water pump 18 is greater than the rotation upper limit value Rwmax (that is, No), the control device 21 is an electric motor that exceeds the heat dissipation performance of the heat exchanger 13. It is determined that the rotation speed Rw of the water pump 18 is set, and the rotation speed Rw of the electric water pump 18 is set to the rotation upper limit value Rwmax (step S10).
Subsequently, the control device 21 drives the electric water pump 18 at the set rotation speed Rw (step S7), and ends the process of FIG.

このような電動ウォータポンプ18の駆動制御を行うことにより、冷却水温度が低い場合には、電動ウォータポンプ18が低回転で駆動されるので、水冷式内燃機関2の暖機に要する時間を短縮することができる。そのため、水冷式内燃機関2が暖機する際に使用される燃料噴射量を抑制することができ、車両の燃費を向上させることができる。また、冷却水の放熱が必要であると判断された場合であっても、電動ウォータポンプ18の上限回転数を設定することにより、熱交換器13の放熱性能を上回る電動ウォータポンプ18の回転数が抑制され、無駄な消費電力を低減することができる。   By performing the drive control of the electric water pump 18 as described above, when the cooling water temperature is low, the electric water pump 18 is driven at a low speed, so that the time required for warming up the water-cooled internal combustion engine 2 is shortened. can do. Therefore, the fuel injection amount used when the water-cooled internal combustion engine 2 warms up can be suppressed, and the fuel efficiency of the vehicle can be improved. Even if it is determined that the cooling water needs to be radiated, by setting the upper limit number of rotations of the electric water pump 18, the number of rotations of the electric water pump 18 that exceeds the heat dissipation performance of the heat exchanger 13 is set. Is suppressed, and wasteful power consumption can be reduced.

次に、図4を参照しながら、制御装置21が電動冷却ファン19の駆動を制御する処理について説明する。   Next, a process in which the control device 21 controls the driving of the electric cooling fan 19 will be described with reference to FIG.

まず、制御装置21は、水冷式内燃機関2の回転数NEおよび出力トルクNと、冷却水温センサ16で検出された冷却水温度Tとに基づいて、放熱要求熱量Qrを算出する(ステップS11)。
続いて、制御装置21は、熱交換器13の放熱性能マップを選択するために、熱交換器13を通過する風量Vを算出する(ステップS12)。
First, the control device 21 calculates the heat release required heat amount Qr based on the rotational speed NE and output torque N of the water-cooled internal combustion engine 2 and the coolant temperature T detected by the coolant temperature sensor 16 (step S11). .
Subsequently, the control device 21 calculates the air volume V passing through the heat exchanger 13 in order to select the heat dissipation performance map of the heat exchanger 13 (step S12).

次に、制御装置21は、外気温センサ20で検出された雰囲気温度Toに基づいて、熱交換器13の放熱性能マップの放熱熱量を補正する(ステップS13)。
続いて、制御装置21は、熱交換器13を通過する風量Vにおける熱交換器13の放熱性能マップから、熱交換器13の最大放熱熱量Qmaxを設定する(ステップS14)。
Next, the control device 21 corrects the heat radiation amount in the heat radiation performance map of the heat exchanger 13 based on the ambient temperature To detected by the outside air temperature sensor 20 (step S13).
Subsequently, the control device 21 sets the maximum heat radiation amount Qmax of the heat exchanger 13 from the heat radiation performance map of the heat exchanger 13 at the air volume V passing through the heat exchanger 13 (step S14).

次に、制御装置21は、算出された放熱要求熱量Qrが最大放熱熱量Qmaxよりも大きいか否かを判定する(ステップS15)。   Next, the control device 21 determines whether or not the calculated heat release required heat amount Qr is larger than the maximum heat release heat amount Qmax (step S15).

ステップS15において、放熱要求熱量Qrが最大放熱熱量Qmax以下である(すなわち、No)と判定された場合には、制御装置21は、熱交換器13の放熱性能に余裕があり、電動ウォータポンプ18の駆動単体で冷却水を放熱できると判断し、電動冷却ファン19の駆動を停止して(ステップS16)、図4の処理を終了する。   If it is determined in step S15 that the required heat dissipation amount Qr is equal to or less than the maximum heat dissipation amount Qmax (ie, No), the control device 21 has a sufficient heat dissipation performance of the heat exchanger 13 and the electric water pump 18 It is determined that the cooling water can be dissipated by the drive alone, the drive of the electric cooling fan 19 is stopped (step S16), and the processing of FIG.

一方、ステップS15において、放熱要求熱量Qrが最大放熱熱量Qmaxよりも大きい(すなわち、Yes)と判定された場合には、制御装置21は、放熱要求熱量Qrが電動冷却ファン19の駆動を要するほど高い値であるかを判断するために、放熱要求熱量Qrが電動冷却ファン駆動熱量値Qf(所定熱量)よりも大きいか否かを判定する(ステップS17)。   On the other hand, when it is determined in step S15 that the required heat dissipation amount Qr is larger than the maximum heat dissipation amount Qmax (that is, Yes), the control device 21 requires the electric cooling fan 19 to drive the required heat dissipation amount Qr. In order to determine whether the value is high, it is determined whether the required heat dissipation amount Qr is larger than the electric cooling fan drive heat amount value Qf (predetermined amount of heat) (step S17).

ステップS17において、放熱要求熱量Qrが電動冷却ファン駆動熱量値Qf以下である(すなわち、No)と判定された場合には、制御装置21は、冷却水温度等に余裕があると判断し、電動冷却ファン19の駆動を停止して(ステップS16)、図4の処理を終了する。   If it is determined in step S17 that the required heat dissipation amount Qr is equal to or less than the electric cooling fan drive heat amount value Qf (that is, No), the control device 21 determines that there is a margin in the cooling water temperature and the like. The driving of the cooling fan 19 is stopped (step S16), and the process of FIG.

一方、ステップS17において、放熱要求熱量Qrが電動冷却ファン駆動熱量値Qfよりも大きい(すなわち、Yes)と判定された場合には、制御装置21は、電動冷却ファン19を駆動して熱交換器13の放熱性能を向上させる必要があると判断し、放熱要求熱量Qrを満たすように電動冷却ファン19を駆動させ(ステップS18)、図4の処理を終了する。   On the other hand, if it is determined in step S17 that the required heat dissipation amount Qr is larger than the electric cooling fan drive heat amount value Qf (that is, Yes), the control device 21 drives the electric cooling fan 19 to heat exchanger. 13 is determined to be improved, the electric cooling fan 19 is driven to satisfy the required heat dissipation amount Qr (step S18), and the process of FIG.

このような電動冷却ファン19の駆動制御を行うことにより、放熱要求熱量Qrに応じて電動冷却ファン19が駆動されるので、高負荷低速走行時において、早期に電動冷却ファン19を駆動させて、オーバーヒートを抑制することができる。また、冷却水温度は高いものの、車両の速度が十分にあって熱交換器13の放熱性能が確保されている場合には、電動冷却ファン19の駆動を停止させることにより、無駄な消費電力を低減することができる。   By performing the drive control of the electric cooling fan 19 as described above, the electric cooling fan 19 is driven according to the heat dissipation required heat amount Qr. Overheating can be suppressed. In addition, although the cooling water temperature is high but the vehicle speed is sufficient and the heat dissipation performance of the heat exchanger 13 is ensured, the drive of the electric cooling fan 19 is stopped to reduce wasteful power consumption. Can be reduced.

以上のように、実施の形態1によれば、制御手段は、冷却水温度が所定温度よりも高い場合に、冷却水温度および駆動状態に基づいて熱交換器に要求される放熱要求熱量を算出し、放熱要求熱量および熱交換器の放熱性能に基づいて、電動ウォータポンプおよび電動冷却ファンの回転数を制御する。
これにより、電動ウォータポンプおよび電動冷却ファンの駆動を適切に制御することができ、冷却水温度を適切な範囲に保持して燃費を向上させるとともに、無駄な消費電力を削減することができる。
As described above, according to the first embodiment, when the cooling water temperature is higher than the predetermined temperature, the control unit calculates the required heat radiation amount required for the heat exchanger based on the cooling water temperature and the driving state. Then, the rotational speeds of the electric water pump and the electric cooling fan are controlled based on the required heat dissipation amount and the heat dissipation performance of the heat exchanger.
As a result, the drive of the electric water pump and the electric cooling fan can be appropriately controlled, and the cooling water temperature can be maintained in an appropriate range to improve the fuel efficiency, and wasteful power consumption can be reduced.

1 水冷式内燃機関の冷却装置、2 水冷式内燃機関、11 ウォータジャケット、12 第1冷却水路、13 熱交換器、14 第2冷却水路、15 バイパス水路、16 冷却水温センサ、17 サーモスタット、18 電動ウォータポンプ、19 電動冷却ファン、20 外気温センサ、21 制御装置。   DESCRIPTION OF SYMBOLS 1 Cooling device of water-cooled internal combustion engine, 2 Water-cooled internal combustion engine, 11 Water jacket, 12 1st cooling water channel, 13 Heat exchanger, 14 2nd cooling water channel, 15 Bypass water channel, 16 Cooling water temperature sensor, 17 Thermostat, 18 Electric Water pump, 19 electric cooling fan, 20 outside air temperature sensor, 21 control device.

Claims (7)

水冷式内燃機関に設けられた冷却水路内の冷却水を循環させる電動ウォータポンプと、
前記冷却水の放熱を行う熱交換器と、
前記熱交換器に送風を行う電動冷却ファンと、
前記水冷式内燃機関内の冷却水温度を検出する冷却水温度検出手段と、
前記水冷式内燃機関の駆動状態を検出する駆動状態検出手段と、
前記冷却水温度が所定温度よりも高い場合に、前記冷却水温度および前記駆動状態に基づいて前記熱交換器に要求される放熱要求熱量を算出し、前記放熱要求熱量および前記熱交換器の放熱性能に基づいて、前記電動ウォータポンプおよび前記電動冷却ファンの回転数を制御する制御手段と、
を備えたことを特徴とする水冷式内燃機関の冷却装置。
An electric water pump for circulating cooling water in a cooling water passage provided in the water-cooled internal combustion engine;
A heat exchanger that dissipates the cooling water;
An electric cooling fan for blowing air to the heat exchanger;
Cooling water temperature detecting means for detecting a cooling water temperature in the water-cooled internal combustion engine;
Drive state detection means for detecting the drive state of the water-cooled internal combustion engine;
When the cooling water temperature is higher than a predetermined temperature, a required heat dissipation amount of heat required for the heat exchanger is calculated based on the cooling water temperature and the driving state, and the required heat dissipation amount and the heat dissipation of the heat exchanger are calculated. Control means for controlling the number of rotations of the electric water pump and the electric cooling fan based on performance;
A cooling device for a water-cooled internal combustion engine, comprising:
前記制御手段は、前記熱交換器を通過する風量に応じた前記熱交換器の放熱性能のマップを複数有し、前記放熱要求熱量と前記熱交換器を通過する風量に応じて選択された放熱性能マップとに基づいて、前記電動ウォータポンプの回転数を制御する
ことを特徴とする請求項1に記載の水冷式内燃機関の冷却装置。
The control means has a plurality of maps of heat dissipation performance of the heat exchanger according to the amount of air passing through the heat exchanger, and the heat dissipation selected according to the amount of heat required for heat dissipation and the amount of air passing through the heat exchanger. The cooling device for a water-cooled internal combustion engine according to claim 1, wherein the number of revolutions of the electric water pump is controlled based on a performance map.
前記制御手段は、前記冷却水温度と、前記駆動状態のうち、少なくとも前記水冷式内燃機関の回転数および前記水冷式内燃機関の出力トルクとに基づいて、前記放熱要求熱量を算出する
ことを特徴とする請求項1または請求項2に記載の水冷式内燃機関の冷却装置。
The control means calculates the heat release required heat amount based on the cooling water temperature and at least the rotational speed of the water-cooled internal combustion engine and the output torque of the water-cooled internal combustion engine among the driving states. The cooling device for a water-cooled internal combustion engine according to claim 1 or 2.
前記制御手段は、前記水冷式内燃機関が搭載された車両の速度と、前記電動冷却ファンの回転数とに基づいて、前記熱交換器を通過する風量を算出する
ことを特徴とする請求項1から請求項3までのいずれか1項に記載の水冷式内燃機関の冷却装置。
2. The air flow passing through the heat exchanger is calculated based on the speed of a vehicle on which the water-cooled internal combustion engine is mounted and the rotational speed of the electric cooling fan. The cooling device for a water-cooled internal combustion engine according to any one of claims 1 to 3.
前記熱交換器周辺の雰囲気温度を検出する外気温検出手段をさらに備え、
前記制御手段は、前記雰囲気温度に基づいて、前記熱交換器の放熱性能を補正する
ことを特徴とする請求項1から請求項4までのいずれか1項に記載の水冷式内燃機関の冷却装置。
It further comprises outside air temperature detecting means for detecting the ambient temperature around the heat exchanger,
The cooling device for a water-cooled internal combustion engine according to any one of claims 1 to 4, wherein the control means corrects the heat radiation performance of the heat exchanger based on the ambient temperature. .
前記制御手段は、前記熱交換器の放熱性能において、放熱熱量が飽和する最大放熱熱量に対応する前記電動ウォータポンプの回転数を、前記電動ウォータポンプの上限回転数とする
ことを特徴とする請求項1から請求項5までのいずれか1項に記載の水冷式内燃機関の冷却装置。
The said control means makes the rotation speed of the said electric water pump corresponding to the maximum heat radiation heat amount which the heat radiation heat | fever saturates in the heat radiation performance of the said heat exchanger the upper limit rotation speed of the said electric water pump. The cooling device for a water-cooled internal combustion engine according to any one of claims 1 to 5.
前記制御手段は、前記放熱要求熱量が前記熱交換器の放熱性能における最大放熱熱量よりも大きく、かつ前記放熱要求熱量が所定熱量よりも大きい場合に、前記放熱要求熱量を満たすように前記電動冷却ファンを駆動させる
ことを特徴とする請求項1から請求項6までのいずれか1項に記載の水冷式内燃機関の冷却装置。
The control means includes the electric cooling so as to satisfy the required heat dissipation when the required heat dissipation is greater than the maximum heat dissipation in the heat dissipation performance of the heat exchanger and the required heat dissipation is greater than a predetermined heat amount. The cooling device for a water-cooled internal combustion engine according to any one of claims 1 to 6, wherein a fan is driven.
JP2010197488A 2010-09-03 2010-09-03 Cooling device for water-cooled internal combustion engine Active JP5230702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197488A JP5230702B2 (en) 2010-09-03 2010-09-03 Cooling device for water-cooled internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197488A JP5230702B2 (en) 2010-09-03 2010-09-03 Cooling device for water-cooled internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012052503A true JP2012052503A (en) 2012-03-15
JP5230702B2 JP5230702B2 (en) 2013-07-10

Family

ID=45906093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197488A Active JP5230702B2 (en) 2010-09-03 2010-09-03 Cooling device for water-cooled internal combustion engine

Country Status (1)

Country Link
JP (1) JP5230702B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718358A (en) * 2012-10-11 2015-06-17 丰田自动车株式会社 Cooling water control device
JP6002347B1 (en) * 2016-05-17 2016-10-05 善隆 中山 Vehicle engine control device
CN114046200A (en) * 2021-11-09 2022-02-15 上海柴油机股份有限公司 Anti-overheating cooling system of hybrid power engine and control method thereof
CN114198193A (en) * 2020-09-02 2022-03-18 上海汽车集团股份有限公司 Data processing method and device for temperature of cooling liquid of water-air cooling system
CN114439594A (en) * 2022-03-01 2022-05-06 联合汽车电子有限公司 Temperature control method and device, storage medium, thermal management module and vehicle
KR20230072937A (en) * 2021-11-18 2023-05-25 현대모비스 주식회사 Fuel cell system and contorl method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332842A (en) * 2001-03-06 2002-11-22 Calsonic Kansei Corp Water-cooled engine cooling device and control method therefor
JP2005248903A (en) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp Cooling system control method of vehicle power source
JP2008215094A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Cooling device of internal combustion engine
JP2010096042A (en) * 2008-10-15 2010-04-30 Denso Corp Engine cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332842A (en) * 2001-03-06 2002-11-22 Calsonic Kansei Corp Water-cooled engine cooling device and control method therefor
JP2005248903A (en) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp Cooling system control method of vehicle power source
JP2008215094A (en) * 2007-02-28 2008-09-18 Toyota Motor Corp Cooling device of internal combustion engine
JP2010096042A (en) * 2008-10-15 2010-04-30 Denso Corp Engine cooling device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718358A (en) * 2012-10-11 2015-06-17 丰田自动车株式会社 Cooling water control device
JP6002347B1 (en) * 2016-05-17 2016-10-05 善隆 中山 Vehicle engine control device
JP2017206979A (en) * 2016-05-17 2017-11-24 善隆 中山 Vehicle engine control device
CN114198193A (en) * 2020-09-02 2022-03-18 上海汽车集团股份有限公司 Data processing method and device for temperature of cooling liquid of water-air cooling system
CN114198193B (en) * 2020-09-02 2023-02-03 上海汽车集团股份有限公司 Data processing method and device for temperature of cooling liquid of water-air cooling system
CN114046200A (en) * 2021-11-09 2022-02-15 上海柴油机股份有限公司 Anti-overheating cooling system of hybrid power engine and control method thereof
CN114046200B (en) * 2021-11-09 2023-02-17 上海新动力汽车科技股份有限公司 Anti-overheating cooling system of hybrid power engine and control method thereof
KR20230072937A (en) * 2021-11-18 2023-05-25 현대모비스 주식회사 Fuel cell system and contorl method using the same
KR102585300B1 (en) * 2021-11-18 2023-10-05 현대모비스 주식회사 Fuel cell system and contorl method using the same
US11942667B2 (en) 2021-11-18 2024-03-26 Hyundai Mobis Co., Ltd. Fuel cell system and control method using same
CN114439594A (en) * 2022-03-01 2022-05-06 联合汽车电子有限公司 Temperature control method and device, storage medium, thermal management module and vehicle

Also Published As

Publication number Publication date
JP5230702B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5230702B2 (en) Cooling device for water-cooled internal combustion engine
KR101241213B1 (en) Electric water pump control system and method thereof
US10450941B2 (en) Engine cooling system and method
JP5945306B2 (en) Thermal management system for vehicles
JP5887109B2 (en) Vehicle thermal management system
CN108278172B (en) Automobile engine cooling system and cooling method
CN106240341A (en) A kind of Over Electric Motor with PMSM cooling system and control method thereof
JP6096492B2 (en) Engine cooling system
JP2006342680A (en) Cooling system of internal combustion engine
KR101294424B1 (en) Water Cooling type Turbo Charger System and Operation Method thereof
JP2008232031A (en) Exhaust heat recovery device
JP4975153B2 (en) Cooling device for internal combustion engine
JP2011169237A (en) Cooling control system of internal combustion engine
JP2008184996A (en) Cooling control device
JP5121899B2 (en) Electric water pump control device
JP5879940B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
JP2005113719A (en) Power device provided with internal combustion engine and stirling engine
JP5321315B2 (en) Internal combustion engine oil circulation control system
JP2005248903A (en) Cooling system control method of vehicle power source
JP5027289B2 (en) Engine cooling system
JP2017025887A (en) Electronic control device
JP2005090376A (en) Power unit equipped with internal combustion engine and sterling engine
JP5637047B2 (en) Cooling water temperature control device for internal combustion engine
JP2012031811A (en) Device for controlling electric water pump
JP2010190050A (en) Cooling control device of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250