JP2012052491A - Turbine stage, and steam turbine using the same - Google Patents

Turbine stage, and steam turbine using the same Download PDF

Info

Publication number
JP2012052491A
JP2012052491A JP2010197252A JP2010197252A JP2012052491A JP 2012052491 A JP2012052491 A JP 2012052491A JP 2010197252 A JP2010197252 A JP 2010197252A JP 2010197252 A JP2010197252 A JP 2010197252A JP 2012052491 A JP2012052491 A JP 2012052491A
Authority
JP
Japan
Prior art keywords
blade
turbine
dimensionless
length
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197252A
Other languages
Japanese (ja)
Inventor
Seiichi Kimura
誠一 木村
Kiyoshi Segawa
清 瀬川
Tadaharu Kishibe
忠晴 岸部
Yoshio Kano
芳雄 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010197252A priority Critical patent/JP2012052491A/en
Publication of JP2012052491A publication Critical patent/JP2012052491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve turbine stage efficiency by reduction in a sidewall loss in a turbine stage and optimization of the blade height directional flow rate distribution of a working fluid of passing through between turbine blades.SOLUTION: This turbine stage is provided by forming an inter-blade flow passage 20 for flowing the working fluid between the adjacent turbine blades 10. A recessed part 21 recessed toward the inside of a sidewall is arranged in a position on the downstream side in the working fluid flow direction more than an inlet part of the inter-blade flow passage 20 and on the upstream side in the working fluid flow direction more than a throat of becoming minimum in a distance between the mutual adjacent turbine blades, on the sidewall for constituting a wall surface on the radial direction side of the inter-blade flow passage 20, and is characterized in that the recessed part 21 has a bottom part of a rectangular cross-sectional shape having a bottom surface having an equal radial distance from the turbine axis along an equal value line of connecting a blade pressure surface 18 and a blade suction side 19, between the mutually opposed blade pressure surface 18 and blade negative pressure surface 19, for constituting the wall surface on the peripheral directional side of the inter-blade flow passage 20, and the recessed part 21 has continuously the bottom part toward the throat part side from the inlet part side of the inter-blade flow passage 20.

Description

本発明は、軸流タービン、特に蒸気タービンのタービン段落の構造に関する。   The present invention relates to the structure of a turbine stage of an axial flow turbine, particularly a steam turbine.

軸流タービンにおいては、性能向上を目的とした種々の技術が採用されており、高い効率を実現している。タービンの性能向上を実現するためには、タービン内部の圧力,段落,排気,機械等の各損失を低減させることが必要不可欠となる。   In the axial turbine, various technologies for improving performance are adopted, and high efficiency is realized. In order to improve the performance of the turbine, it is indispensable to reduce each loss such as pressure, paragraph, exhaust, and machine inside the turbine.

中でも、段落損失の一つである側壁損失は、タービンの各段落に共通する損失である。
この側壁損失を低減する方法の一つとして、タービン翼間の圧力差により生じる二次流れの抑制がある。
Especially, the side wall loss which is one of the paragraph losses is a loss common to each paragraph of the turbine.
One method for reducing this side wall loss is to suppress the secondary flow caused by the pressure difference between the turbine blades.

二次流れの抑制のために、タービン翼の先端部および根元部に据え付けられている内周側側壁および外周側側壁の表面に凹凸を設けることで翼間内の作動流体の流れを改善し、それにより側壁損失を低減する方法が知られている。その一例として、特開2009−209745号公報(特許文献1)に記載された方法が提案されている。   To suppress the secondary flow, improve the flow of the working fluid between the blades by providing irregularities on the surfaces of the inner peripheral side wall and outer peripheral side wall installed at the tip and root of the turbine blade, A method for reducing the side wall loss is known. As an example, a method described in Japanese Patent Application Laid-Open No. 2009-209745 (Patent Document 1) has been proposed.

特開2009−209745号公報JP 2009-209745 A

ところで、側壁損失の低減の他に、タービン翼間を通過する作動流体の翼高さ方向流量配分も最適化することで段落性能をより一層向上させることができる。   By the way, in addition to the reduction of the side wall loss, the stage performance can be further improved by optimizing the blade height direction flow distribution of the working fluid passing between the turbine blades.

しかしながら、特許文献1の技術では、作動流体の翼高さ方向流量配分の適正化については考慮されていない。   However, in the technique of Patent Document 1, no consideration is given to the optimization of the flow rate distribution of the working fluid in the blade height direction.

そこで、本発明では、蒸気タービンをはじめとする軸流タービンにおいて、タービン翼間を通過する作動流体の翼高さ方向流量配分の適正化により、段落効率の向上を達成できるタービン段落の構造を提供することを目的とする。   Therefore, the present invention provides a turbine stage structure that can achieve improvement in paragraph efficiency by optimizing the blade height direction flow rate distribution of the working fluid passing between the turbine blades in an axial flow turbine such as a steam turbine. The purpose is to do.

上記目的を達成するため、本発明では、軸流タービンに使用され、周方向に延伸する外周側および内周側の側壁の間に、タービン翼が複数枚、周方向に設けられ、隣り合うタービン翼の間に、作動流体が流れる翼間流路が形成されるタービン段落において、隣り合うタービン翼の翼前縁部先端を結ぶ直線を翼間流路の入口部と定義した場合に、翼間流路の半径方向側の壁面を構成する、外周側および内周側の少なくともいずれか一方の側壁に、翼間流路の、翼間流路の入口部より作動流体流れ方向下流側、かつ隣り合うタービン翼同士の距離が最小となるスロート部より作動流体流れ方向上流側の位置に、側壁の内側に向かって凹む凹部を設け、凹部は、翼間流路の周方向側の壁面を構成する隣り合うタービン翼の、互いに対向する翼圧力面と翼負圧面との間で、翼圧力面と翼負圧面とを結ぶ仮想の直線に沿ってタービン中心軸から等しい半径距離を有する底面を備えた矩形断面形状の底部を有し、前記凹部は、矩形断面形状の底部を翼間流路の入口部側からスロート部側に向かって連続して有するように構成した。   In order to achieve the above object, in the present invention, a plurality of turbine blades are provided in the circumferential direction between the outer peripheral side wall and the inner peripheral side wall that are used in the axial flow turbine and extend in the circumferential direction. In the turbine stage where the inter-blade flow path where the working fluid flows between the blades, when the straight line connecting the leading edges of the adjacent blades of the turbine blade is defined as the inlet of the inter-blade flow path, At least one side wall of the outer peripheral side and the inner peripheral side constituting the wall surface on the radial direction side of the flow path, and adjacent to the downstream side in the working fluid flow direction of the inter-blade flow path from the inlet of the inter-blade flow path A concave portion that is recessed toward the inner side of the side wall is provided at a position upstream of the throat portion where the distance between the matching turbine blades is the minimum in the working fluid flow direction, and the concave portion constitutes a wall surface on the circumferential direction side of the flow path between the blades. Opposed blade pressure surfaces of adjacent turbine blades A bottom portion having a rectangular cross-sectional shape with a bottom surface having an equal radial distance from the turbine central axis along an imaginary straight line connecting the blade pressure surface and the blade suction surface between the blade suction surface and the recess; The bottom part of the rectangular cross-sectional shape was continuously provided from the inlet part side of the inter-blade channel toward the throat part side.

本発明によれば、タービン翼間を通過する作動流体の翼高さ方向流量配分の適正化が可能であり、これにより段落効率の向上を達成できる。   ADVANTAGE OF THE INVENTION According to this invention, optimization of the blade | wing height direction flow rate distribution of the working fluid which passes between turbine blades is possible, and, thereby, improvement of a paragraph efficiency can be achieved.

実施例1に係る軸流タービンのタービン段落の主要部構造を示した断面図である。1 is a cross-sectional view illustrating a main part structure of a turbine stage of an axial flow turbine according to Embodiment 1. FIG. タービン半径方向から見た実施例1に係るタービン段落の側壁の形状を説明した説明図である。It is explanatory drawing explaining the shape of the side wall of the turbine stage which concerns on Example 1 seen from the turbine radial direction. 図3に示したA−A′断面を表す断面図である。It is sectional drawing showing the AA 'cross section shown in FIG. 図2に示した翼間流路を周方向の翼負圧面側および翼圧力面側からみた子午面断面図である。FIG. 3 is a meridional cross-sectional view of the inter-blade channel shown in FIG. 2 as viewed from the blade suction surface side and the blade pressure surface side in the circumferential direction. 凹部の無次元長さと無次元深さとの関係を示したグラフである。It is the graph which showed the relationship between the dimensionless length of a recessed part, and dimensionless depth. 実施例1に係るタービン翼の翼高さ方向の翼出口流量分布を表すグラフである。4 is a graph showing a blade outlet flow rate distribution in the blade height direction of the turbine blade according to the first embodiment. 実施例1に係るタービン翼の翼高さ方向の損失分布を表すグラフである。3 is a graph showing a loss distribution in the blade height direction of the turbine blade according to the first embodiment. 一般的なタービン段落の翼間流路を示した斜視図である。It is the perspective view which showed the flow path between blades of a general turbine stage. 図8に示した翼列構造をタービン半径方向から見た図である。It is the figure which looked at the cascade structure shown in FIG. 8 from the turbine radial direction. タービン半径方向から見た実施例2に係るタービン段落の側壁形状を説明した説明図である。It is explanatory drawing explaining the side wall shape of the turbine stage which concerns on Example 2 seen from the turbine radial direction. 図10に表記したB−B′断面を表す断面図である。It is sectional drawing showing the BB 'cross section described in FIG. 実施例2に係るタービン段落の翼高さ方向の翼出口流量分布を表すグラフである。It is a graph showing the blade | wing exit flow volume distribution of the blade height direction of the turbine stage which concerns on Example 2. FIG. 実施例2に係るタービン段落の翼高さ方向の損失分布を表すグラフである。It is a graph showing the loss distribution of the blade height direction of the turbine stage which concerns on Example 2. FIG.

以下、本発明を実施するための形態について、適宜図を参照して詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate.

以下、本発明の第1の実施例に係る軸流タービンのタービン段落の構造について図1乃至図9を用いて説明する。図1は、実施例1に係る軸流タービンのタービン段落の主要部構造を示した断面図である。図2は、タービン半径方向から見た実施例1に係るタービン段落の側壁の形状を示す図である。図3は、図2に示したA−A′断面を表す断面図である。図4は、図2に示した翼間流路を周方向翼負圧面側および翼圧力面側からみた子午面断面図である。図5は、図2に示した凹部の無次元長さと無次元深さとの関係を示したグラフである。図6は、実施例1に係るタービン翼の翼高さ方向の翼出口流量分布を表すグラフである。図7は、実施例1に係るタービン翼の翼高さ方向の損失分布を表すグラフである。図8は、一般的なタービン段落の翼間流路を示した斜視図である。図9は、図8に示した翼列構造をタービン半径方向から見た図である。   Hereinafter, the structure of the turbine stage of the axial flow turbine according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view illustrating a main structure of a turbine stage of an axial turbine according to a first embodiment. FIG. 2 is a diagram illustrating the shape of the side wall of the turbine stage according to the first embodiment viewed from the radial direction of the turbine. FIG. 3 is a cross-sectional view showing the AA ′ cross section shown in FIG. 2. FIG. 4 is a meridional cross-sectional view of the inter-blade channel shown in FIG. 2 as viewed from the circumferential blade suction surface side and the blade pressure surface side. FIG. 5 is a graph showing the relationship between the dimensionless length and dimensionless depth of the recess shown in FIG. FIG. 6 is a graph showing the blade outlet flow distribution in the blade height direction of the turbine blade according to the first embodiment. FIG. 7 is a graph showing a loss distribution in the blade height direction of the turbine blade according to the first embodiment. FIG. 8 is a perspective view showing a flow path between blades of a general turbine stage. FIG. 9 is a view of the blade row structure shown in FIG. 8 as viewed from the turbine radial direction.

本発明が適用される軸流タービンのタービン段落の主要構造について図1を用いて説明する。図1において、1はダイヤフラム外輪、2はダイヤフラム内輪、3は静翼、4はタービンロータ、5は動翼、6はシュラウドをそれぞれ表す。本実施例に係る軸流タービンのタービン段落は、ダイヤフラム外輪1とダイヤフラム内輪2との間にタービン周方向に複数枚固定された静翼3と、静翼3の作動流体主流7(以下、主流と記載する)の流れ方向下流側(以下、単に下流側と記載する)に対向して、タービンロータ4に周方向に複数枚固定された動翼5とから構成される。動翼5のタービン半径方向外周側の先端には、隣り合う動翼同士を固定するシュラウド6が設けられている。軸流タービンは前述したタービン段落を複数段、軸方向に設けて構成されている。   A main structure of a turbine stage of an axial flow turbine to which the present invention is applied will be described with reference to FIG. In FIG. 1, 1 is a diaphragm outer ring, 2 is a diaphragm inner ring, 3 is a stationary blade, 4 is a turbine rotor, 5 is a moving blade, and 6 is a shroud. The turbine stage of the axial turbine according to the present embodiment includes a plurality of stationary blades 3 fixed in the circumferential direction of the turbine between a diaphragm outer ring 1 and a diaphragm inner ring 2, and a working fluid main flow 7 of the stationary blade 3 (hereinafter referred to as main flow). And a plurality of blades 5 fixed to the turbine rotor 4 in the circumferential direction so as to face the downstream side in the flow direction (hereinafter simply referred to as the downstream side). A shroud 6 for fixing adjacent blades is provided at the tip of the blade 5 in the turbine radial direction outer peripheral side. The axial turbine is configured by providing the above-described turbine stages in a plurality of stages in the axial direction.

主流7は、静翼3の前縁部8より、周方向に隣り合う静翼間に形成された翼間流路を通過し、静翼の後縁部9から流出する。静翼の後縁部9から流出した主流7は、下流側の動翼間に形成された翼間流路に流入する。軸流タービンは、静翼3から流出した主流7を下流側の動翼5に衝突させることで、タービンロータ4を回転させ、タービンロータ4の端部に接続する発電機(図示せず)によって回転エネルギーを電気エネルギーに変換して発電を行う。   The main flow 7 passes from the front edge 8 of the stationary blade 3 through the inter-blade channel formed between the stationary blades adjacent in the circumferential direction, and flows out from the trailing edge 9 of the stationary blade. The main flow 7 flowing out from the trailing edge 9 of the stationary blade flows into the inter-blade channel formed between the downstream moving blades. The axial flow turbine causes the main flow 7 flowing out from the stationary blade 3 to collide with the moving blade 5 on the downstream side, thereby rotating the turbine rotor 4 and using a generator (not shown) connected to the end of the turbine rotor 4. It generates electricity by converting rotational energy into electrical energy.

ここで、本実施例の特徴部を説明するための比較例として、一般的な軸流タービンにおけるタービン段落の翼間流路について図8,図9に基づいて説明する。   Here, as a comparative example for explaining the characterizing portion of the present embodiment, a flow path between blades in a turbine stage in a general axial turbine will be described with reference to FIGS.

図8は、一般的なタービン段落の翼間流路を示した斜視図である。図8において、10はタービン翼、11は外周側側壁、12は内周側側壁、20は翼間流路をそれぞれ表す。タービン翼10は、静翼、または動翼である。また、外周側側壁11は、タービン翼10が静翼の場合、ダイヤフラム外輪に該当し、タービン翼10が動翼の場合、シュラウドに該当する。内周側側壁12は、タービン翼10が静翼の場合、ダイヤフラム内輪に該当し、タービン翼10が動翼の場合、動翼のプラットフォーム部に該当する。   FIG. 8 is a perspective view showing a flow path between blades of a general turbine stage. In FIG. 8, 10 is a turbine blade, 11 is an outer peripheral side wall, 12 is an inner peripheral side wall, and 20 is a flow path between blades. The turbine blade 10 is a stationary blade or a moving blade. The outer peripheral side wall 11 corresponds to a diaphragm outer ring when the turbine blade 10 is a stationary blade, and corresponds to a shroud when the turbine blade 10 is a moving blade. The inner peripheral side wall 12 corresponds to a diaphragm inner ring when the turbine blade 10 is a stationary blade, and corresponds to a platform portion of the moving blade when the turbine blade 10 is a moving blade.

外周側側壁11および内周側側壁12は、それぞれ、タービン中心軸回りに周方向に延伸する部材であるが、図8においては説明の便宜上、直線状に展開して表している(後述する図2も同様とする)。タービン翼10は、外周側側壁11と内周側側壁12との間に周方向に複数枚設けられており、翼の先端部15を外周側側壁11に固定され、翼の根元部16を内周側側壁12に固定されている。外周側側壁11と内周側側壁12との間にタービン翼10を周方向に複数枚設けることで、タービン翼列が形成されており、隣り合うタービン翼10の間に作動流体が通過する翼間流路20が形成される。主流は、タービン翼10の前縁部(以下、翼前縁部と記載する)13側から流入し、タービン翼10の後縁部(以下、翼後縁部と記載する)14に向って翼間流路20を流下する。   Each of the outer peripheral side wall 11 and the inner peripheral side wall 12 is a member that extends in the circumferential direction around the turbine central axis. In FIG. 2 is the same). A plurality of turbine blades 10 are provided in the circumferential direction between the outer peripheral side wall 11 and the inner peripheral side wall 12, the blade tip 15 is fixed to the outer peripheral side wall 11, and the blade root portion 16 is disposed inside. It is fixed to the peripheral side wall 12. By providing a plurality of turbine blades 10 in the circumferential direction between the outer peripheral side wall 11 and the inner peripheral side wall 12, a turbine blade row is formed, and a blade through which a working fluid passes between adjacent turbine blades 10. An interchannel 20 is formed. The main stream flows from the front edge portion (hereinafter referred to as blade front edge portion) 13 side of the turbine blade 10 and moves toward the rear edge portion (hereinafter referred to as blade rear edge portion) 14 of the turbine blade 10. The interflow path 20 flows down.

図8に示したタービン翼列構造について図9を用いて説明する。図9は、タービン翼列をタービン半径方向から見た図である。タービン翼10の、翼腹側に形成される面を翼圧力面18(以下、圧力面と記載する)と言い、および翼背側に形成される面を翼負圧面19(以下、負圧面と記載する)と言う。翼間流路20のタービン周方向側の壁面は、隣り合うタービン翼10の、互いに対向する圧力面18と負圧面19とで構成される。また、図8に示すように、翼間流路20のタービン半径方向側の壁面は、外周側側壁11と内周側側壁12とで構成される。   The turbine cascade structure shown in FIG. 8 will be described with reference to FIG. FIG. 9 is a view of the turbine cascade as viewed from the turbine radial direction. The surface of the turbine blade 10 formed on the blade belly side is referred to as a blade pressure surface 18 (hereinafter referred to as a pressure surface), and the surface formed on the blade back side is referred to as a blade suction surface 19 (hereinafter referred to as a suction surface). Describe). A wall surface on the turbine circumferential direction side of the inter-blade channel 20 is constituted by a pressure surface 18 and a negative pressure surface 19 of the adjacent turbine blades 10 facing each other. Further, as shown in FIG. 8, the wall surface on the turbine radial direction side of the inter-blade channel 20 includes an outer peripheral side wall 11 and an inner peripheral side wall 12.

図8および図9に示すように、タービン翼10は、タービン翼列内に設置される翼枚数から決定される、タービン周方向に隣り合う翼の間隔t(ピッチ長)を用いて、周方向に等間隔に設置される。隣り合うタービン翼10の間の距離が最小となる線をスロートsと言い、スロートsとタービン翼10の負圧面19の輪郭曲線との交点をスロート点17と言う。主流7は翼前縁部13を通過し、翼間流路20を流下して最小流路幅となるスロートsまで絞られて加速され、スロートsを通過した後は、ほぼ慣性運動によって翼後縁部14を通過する。   As shown in FIG. 8 and FIG. 9, the turbine blade 10 is arranged in the circumferential direction using the interval t (pitch length) between adjacent blades in the turbine circumferential direction, which is determined from the number of blades installed in the turbine blade row. Installed at regular intervals. A line that minimizes the distance between adjacent turbine blades 10 is referred to as a throat s, and an intersection between the throat s and the contour curve of the suction surface 19 of the turbine blade 10 is referred to as a throat point 17. The main flow 7 passes through the blade leading edge portion 13, flows down the blade flow path 20, is throttled to the throat s that has the minimum flow width, and is accelerated after passing through the throat s. Pass through the edge 14.

従来のタービン段落では、主流7が、翼前縁部13から流入し、翼間流路20を流下する際、翼間流路内に圧力勾配が生じ、タービン翼10の圧力面18から、タービン翼10の負圧面19に向う流れが生じる。いわゆる二次流れである。この二次流れの発生により、二次流れ損失が生じ、側壁損失が生じる。また、側壁より発達する速度境界層と、二次流れの影響により、翼前縁より発生する流路渦(図示せず)が翼間にて発達することで損失が生じる。側壁損失は、二次流れおよび流路渦による影響を含めた損失である。   In the conventional turbine stage, when the main flow 7 flows in from the blade leading edge portion 13 and flows down the inter-blade channel 20, a pressure gradient is generated in the inter-blade channel, and from the pressure surface 18 of the turbine blade 10, the turbine A flow toward the suction surface 19 of the blade 10 is generated. This is a so-called secondary flow. Due to the generation of the secondary flow, a secondary flow loss occurs and a side wall loss occurs. Further, due to the velocity boundary layer developed from the side wall and the influence of the secondary flow, a flow vortex (not shown) generated from the blade leading edge develops between the blades to cause a loss. The side wall loss is a loss including the influence of the secondary flow and the flow path vortex.

本実施例の説明に戻る。図2に、タービン半径方向から見た本実施例の内周側側壁12の形状を示す。周方向にタービン翼10が複数枚設けられており、隣り合うタービン翼10の互いに対向する負圧面19と圧力面18との間に翼間流路が形成されている。主流は、翼前縁部13から翼間流路に流入し、加速しつつ翼後縁部14へ流下する。   Returning to the description of the present embodiment. FIG. 2 shows the shape of the inner peripheral side wall 12 of this embodiment viewed from the turbine radial direction. A plurality of turbine blades 10 are provided in the circumferential direction, and an inter-blade channel is formed between the negative pressure surface 19 and the pressure surface 18 of the adjacent turbine blades 10 facing each other. The main stream flows into the inter-blade channel from the blade leading edge 13 and flows down to the blade trailing edge 14 while accelerating.

本実施例では、タービン翼列内に形成された全ての翼間流路において、翼間流路のタービン半径方向の壁面を構成する内周側側壁12および外周側側壁11の翼間流路側壁面22に、側壁内側に向って凹む凹部21を設けている。   In the present embodiment, in all the inter-blade channels formed in the turbine blade row, the inter-blade channel side wall surfaces of the inner peripheral side wall 12 and the outer peripheral side wall 11 constituting the wall surface in the turbine radial direction of the inter-blade channel. 22 is provided with a recess 21 that is recessed toward the inside of the side wall.

凹部21の形状について以下に説明する。以下、タービン翼10の軸方向最上流点を翼前縁部の先端と定義し、隣り合うタービン翼10の翼前縁部13の先端同士を結んだ直線(L)を、翼間流路の入口部と定義して説明する。   The shape of the recess 21 will be described below. Hereinafter, the most upstream point in the axial direction of the turbine blade 10 is defined as the tip of the blade leading edge, and a straight line (L) connecting the tips of the blade leading edges 13 of the adjacent turbine blades 10 is defined as the flow path between the blades. The description will be given by defining it as an entrance.

図2において、24は、タービン翼10と側壁との接続部(翼根元部)における圧力面18の輪郭曲線を表す。25は、タービン翼10と側壁との接続部(翼根元部)における負圧面19の輪郭曲線を表す。点Xは、圧力面18の輪郭曲線24上の任意の位置の点であり、輪郭曲線24の翼前縁部13の先端から点Xまでの輪郭曲線24の長さ(X1)を、輪郭曲線24の翼前縁部13の先端から翼後縁部14の先端までの輪郭曲線24の長さ(α1)で割った値を、圧力面18側の輪郭曲線24における無次元長さ(X1/α1)と定義する。無次元長さ(X1/α1)は、輪郭曲線24の翼前縁部13から翼後縁部14までの間における点Xの相対的な位置を表す値で、以下の(1)式で表した範囲を取る値である。   In FIG. 2, reference numeral 24 denotes a contour curve of the pressure surface 18 at the connection portion (blade root portion) between the turbine blade 10 and the side wall. Reference numeral 25 denotes a contour curve of the suction surface 19 at the connection portion (blade root portion) between the turbine blade 10 and the side wall. The point X is a point at an arbitrary position on the contour curve 24 of the pressure surface 18, and the length (X1) of the contour curve 24 from the tip of the blade leading edge 13 to the point X of the contour curve 24 is represented by the contour curve. A value obtained by dividing the length (α1) of the contour curve 24 from the tip of the blade leading edge 13 to the tip of the blade trailing edge 14 is a dimensionless length (X1 /) in the contour curve 24 on the pressure surface 18 side. α1). The dimensionless length (X1 / α1) is a value representing the relative position of the point X between the blade leading edge 13 and the blade trailing edge 14 of the contour curve 24, and is represented by the following equation (1). It is a value that takes the range.

0.0≦X1/α1≦1.0 …(1)
次に、点Yは、負圧面19の輪郭曲線25上の任意の位置の点であり、輪郭曲線25の翼前縁部13の先端から点Yまでの輪郭曲線25の長さ(Y1)を、輪郭曲線25の翼前縁部13の先端からスロート点17までの輪郭曲線25の長さ(β1)で割った値を、負圧面19側の輪郭曲線25における無次元長さ(Y1/β1)と定義する。無次元長さ(Y1/β1)は、輪郭曲線25の翼前縁部13からスロート点17までの間における点Yの相対的な位置を表す値で、以下の(2)式で表した範囲を取る値である。
0.0 ≦ X1 / α1 ≦ 1.0 (1)
Next, the point Y is a point at an arbitrary position on the contour curve 25 of the suction surface 19, and the length (Y1) of the contour curve 25 from the tip of the blade leading edge portion 13 to the point Y of the contour curve 25 is determined. The value obtained by dividing the contour curve 25 by the length (β1) of the contour curve 25 from the tip of the blade leading edge 13 to the throat point 17 is the dimensionless length (Y1 / β1) in the contour curve 25 on the suction surface 19 side. ). The dimensionless length (Y1 / β1) is a value representing the relative position of the point Y between the blade leading edge 13 and the throat point 17 of the contour curve 25, and is a range represented by the following equation (2). It is a value that takes

0.0≦Y1/β1≦1.0 …(2)
図2において、0〜4までの数値を付した直線は、前述した無次元長さ(X1/α1)と無次元長さ(Y1/β1)とが等値となる輪郭曲線24,25上の位置を結んだ仮想の直線であり、これらの仮想直線を等値線と定義する。
0.0 ≦ Y1 / β1 ≦ 1.0 (2)
In FIG. 2, the straight lines with numerical values from 0 to 4 are on the contour curves 24 and 25 where the dimensionless length (X1 / α1) and the dimensionless length (Y1 / β1) are equal. These are virtual straight lines that connect positions, and these virtual straight lines are defined as isolines.

本実施例の凹部21は、側壁の翼間流路20の入口部より下流側、かつスロートsより上流側に設けられている。また、凹部21は、圧力面18と負圧面19との間で、等値線に沿ってタービン中心軸からの半径方向距離が等しい底面を備えた底部を有していることを特徴とする。   The concave portion 21 of the present embodiment is provided on the downstream side of the inlet portion of the inter-blade channel 20 on the side wall and on the upstream side of the throat s. Further, the recess 21 is characterized in that it has a bottom portion having a bottom surface having an equal radial distance from the turbine central axis along an isoline between the pressure surface 18 and the suction surface 19.

図3は、図2に示したA−A′断面図であり、数値3を付した等値線に沿った凹部21の底部の断面図である。図3に示したように、凹部21の底部は、等値線に沿ってタービン中心軸からの半径方向距離が等しい底面(内周側側壁12)を備えており、この底面(内周側側壁12)とその両端の圧力面18,負圧面19とで形成される矩形断面形状を有する。   FIG. 3 is a cross-sectional view taken along the line AA ′ shown in FIG. 2, and is a cross-sectional view of the bottom of the recess 21 along the isoline with the numerical value 3. As shown in FIG. 3, the bottom of the recess 21 has a bottom surface (inner peripheral side wall 12) having the same radial distance from the turbine central axis along the isoline, and this bottom surface (inner peripheral side wall). 12) and a rectangular cross section formed by the pressure surface 18 and the negative pressure surface 19 at both ends thereof.

なお、図2においては、説明の便宜上9本のみ等値線を引いている。各等値線に付された0〜4までの数値は、その位置における凹部21の深さの程度を表しており、数値が大きい程、凹部21の凹みが深いことを意味する。   In FIG. 2, only nine isolines are drawn for convenience of explanation. The numerical value from 0 to 4 attached to each isoline represents the degree of the depth of the recess 21 at that position, and the larger the value, the deeper the recess 21 is.

本実施例では、翼間流路の入口部(L)側からスロートs側に向かって、等値線に合わせて矩形断面形状の底部を連続して有するように凹部21の形状が形成されていることを特徴とする。つまり、図2においては、説明の便宜上、等値線は9本のみ表されているが、実際には、無次元長さ0.0から1.0の範囲で、各無次元長さに対応する等値線が引かれ、この等値線に沿って矩形断面形状が形成される。よって、凹部21は、翼間流路20の入口側からスロートs側に向かって、等値線に合わせて矩形断面形状の底部を連続して有するように形成されている。   In the present embodiment, the shape of the concave portion 21 is formed so as to continuously have a bottom of a rectangular cross-sectional shape in conformity with the isoline from the inlet portion (L) side of the inter-blade channel toward the throat s side. It is characterized by being. That is, in FIG. 2, for convenience of explanation, only nine isolines are shown, but in reality, each dimensionless length corresponds to a dimensionless length in the range of 0.0 to 1.0. An isoline is drawn, and a rectangular cross-sectional shape is formed along the isoline. Therefore, the recess 21 is formed so as to continuously have a bottom having a rectangular cross-sectional shape in conformity with the isoline from the inlet side of the inter-blade channel 20 toward the throat s side.

図4は、本実施例の翼間流路をタービン周方向から見た子午面断面図である。(a)は、タービン翼10を圧力面18側から見た図であり、(b)は、タービン翼10の圧力面18側から負圧面19側を見た図である。図8で説明した従来の側壁を破線で示し、本実施例の側壁を実線で示す。本実施例の凹部21の底部は、図4(a)に示したように圧力面18側では、翼前縁部13から翼後縁部14に向って、側壁内側に向って凸するように凹んでいる一方、図4(b)に示したように負圧面19側では、側壁の凹部21は翼前縁部13からスロート点17に向って側壁内側に向って凸するように凹んでおり、その下流側は側壁の翼間流路側壁面22と同じタービン半径方向高さに形成されている。なお、本実施例では、外周側側壁11にも、内周側側壁12の凹部21と同じ形状の凹部21を形成する。   FIG. 4 is a meridional cross-sectional view of the inter-blade channel of this embodiment as viewed from the turbine circumferential direction. (A) is the figure which looked at the turbine blade 10 from the pressure surface 18 side, (b) is the figure which looked at the negative pressure surface 19 side from the pressure surface 18 side of the turbine blade 10. FIG. The conventional side wall described in FIG. 8 is indicated by a broken line, and the side wall of the present embodiment is indicated by a solid line. As shown in FIG. 4A, the bottom of the concave portion 21 of the present embodiment protrudes from the blade leading edge 13 toward the blade trailing edge 14 toward the blade inner side on the pressure surface 18 side. On the other hand, as shown in FIG. 4B, on the suction surface 19 side, the concave portion 21 on the side wall is recessed from the blade leading edge 13 toward the throat point 17 toward the inner side of the side wall. The downstream side is formed at the same height in the turbine radial direction as the inter-blade channel side wall surface 22 of the side wall. In the present embodiment, the concave portion 21 having the same shape as the concave portion 21 of the inner peripheral side wall 12 is also formed in the outer peripheral side wall 11.

図5に、本実施例に係る凹部21の、無次元長さと無次元深さとの関係を示したグラフを示す。横軸に無次元長さ、縦軸に無次元深さを示す。ここで、側壁の翼間流路側壁面22を基準面と定義し、無次元長さが任意の値の等値線位置における、基準面から凹部21の底面までのタービン半径方向距離(λ)を、基準面から凹部の底面までの半径方向距離の最大値δで割った値を、無次元深さ(λ/δ)と定義する。また、無次元深さ(λ/δ)が1.0となる無次元長さを、最大無次元深さ位置と定義する。なお、図5において、数値がマイナスの場合は、側壁側に凹んでいることを表し、数値がプラスの場合は、翼間流路側に突出していることを表わす。   FIG. 5 shows a graph showing the relationship between the dimensionless length and the dimensionless depth of the recess 21 according to the present embodiment. The horizontal axis indicates the dimensionless length, and the vertical axis indicates the dimensionless depth. Here, the side wall surface 22 between the blades in the side wall is defined as a reference surface, and the turbine radial direction distance (λ) from the reference surface to the bottom surface of the recess 21 at the isoline position where the dimensionless length is an arbitrary value. The value obtained by dividing the maximum distance δ in the radial direction from the reference surface to the bottom surface of the recess is defined as the dimensionless depth (λ / δ). A dimensionless length at which the dimensionless depth (λ / δ) is 1.0 is defined as a maximum dimensionless depth position. In FIG. 5, when the numerical value is negative, it indicates that it is recessed on the side wall side, and when the numerical value is positive, it indicates that it protrudes toward the inter-blade channel side.

本実施例では、図5に示したように、無次元長さが0.0〜1.0の範囲内における各無次元深さ(λ/δ)の値の分布を表すグラフが、最大無次元深さ位置にて1つの変曲点を持つ曲線で構成される。また、最大無次元深さ位置は、後述するように前記無次元長0.5以上,0.9以下の位置の間に1点だけ存在するのが望ましい。   In the present embodiment, as shown in FIG. 5, a graph showing the distribution of values of each dimensionless depth (λ / δ) within the range of dimensionless length of 0.0 to 1.0 is maximum. It consists of a curve with one inflection point at the dimension depth position. Further, it is desirable that the maximum dimensionless depth position is only one point between the dimensionless lengths of 0.5 or more and 0.9 or less, as will be described later.

次に本実施例の作用効果について説明する。   Next, the function and effect of this embodiment will be described.

図6に、解析によって得られた本実施例に係るタービン段落の翼高さ方向の翼出口流量分布を表すグラフを示す。縦軸にタービン翼高さ位置を、横軸にタービン翼出口部における翼出口流量を示す。従来の非凹面側壁を有するタービン段落の翼出口流量を点線で示し、本実施例のタービン段落の翼出口流量を実線で示す。解析結果によれば、本実施例は、従来に比べて翼中央部に流量が多く配分されていることが分かる。これは、図5に示した最大無次元深さ位置から無次元長さ1.0までの無次元深さの変化により、即ち、凹部21を設け、最大深さ位置から下流側に向って徐々に深さが浅くなることにより、翼間を通過した作動流体が翼高さ方向の中央部に多く流量配分される縮流効果に基づく。   FIG. 6 is a graph showing the blade outlet flow distribution in the blade height direction of the turbine stage according to the present embodiment obtained by analysis. The vertical axis represents the turbine blade height position, and the horizontal axis represents the blade outlet flow rate at the turbine blade outlet. A blade outlet flow rate of a turbine stage having a conventional non-concave side wall is indicated by a dotted line, and a blade outlet flow rate of the turbine stage of the present embodiment is indicated by a solid line. According to the analysis result, it can be seen that in this embodiment, a larger flow rate is distributed to the blade center than in the conventional case. This is due to the change in the dimensionless depth from the maximum dimensionless depth position shown in FIG. 5 to the dimensionless length 1.0, that is, the concave portion 21 is provided, and gradually from the maximum depth position toward the downstream side. This is based on the contraction effect in which the working fluid that has passed between the blades is distributed in a large amount at the center in the blade height direction.

また、翼高さ方向への作動流体の流量配分効果を効かせるためには、翼間流路を通過する作動流体の速度ベクトルは、スロート部を通過する際にスロートsに対し垂直であることが望ましい。本実施例の構成によれば、凹部21の底部を、翼間流路に沿って等値線を配置し、この等値線に合わせて矩形断面形状としていることで、翼間流路を通過する速度ベクトルは、スロート部sで、スロート線に対して垂直に近い方向に作用するため、より効果的に翼高さ方向に流量配分される効果が得られる。   In order to make the flow distribution effect of the working fluid in the blade height direction effective, the velocity vector of the working fluid passing through the inter-blade channel must be perpendicular to the throat s when passing through the throat portion. Is desirable. According to the configuration of this embodiment, the bottom of the concave portion 21 is arranged along the flow path between the blades, and the cross section passes through the flow path between the blades by making a rectangular cross-sectional shape according to the isoline. Since the velocity vector to be applied acts in a direction near the throat line at the throat portion s, the effect of distributing the flow rate more effectively in the blade height direction can be obtained.

翼中央部での流量を多く配分することは、その翼高さにおける作動流体の軸流速度を増加させることに等しい。すなわち、軸流速度の増加は、翼中央部における翼負荷低減につながり、タービン翼の段落効率は向上する。   Distributing a large flow rate at the blade center portion is equivalent to increasing the axial flow velocity of the working fluid at the blade height. That is, the increase in the axial flow velocity leads to a reduction in blade load at the blade center, and the paragraph efficiency of the turbine blade is improved.

なお、図5に示したように、最大無次元深さ位置を一ヶ所とすることで、凹面を設けたことによる側壁部の表面積増加を抑制することができ、その結果、凹部により生じる摩擦損失の増加も抑制できる。   In addition, as shown in FIG. 5, by setting the maximum dimensionless depth position at one place, it is possible to suppress an increase in the surface area of the side wall due to the provision of the concave surface, and as a result, friction loss caused by the concave portion Can also be suppressed.

図7は、実施例1に係るタービン段落の翼高さ方向の損失分布を表すグラフである。縦軸にタービン翼高さ位置を、横軸にタービン翼損失を示す。従来の非凹面側壁を有するタービン段落の損失分布グラフを点線で示し、本実施例に係るタービン段落の損失分布グラフを実線で示す。本実施例によれば、翼中央部付近では翼中央部に作動流体の流量を多く配分した効果により、翼中央部でのタービン翼損失は低減される。また、翼先端部および翼根元部付近では、従来と比べてタービン翼損失が低減されることが分かる。これは本実施例の流量配分により、側壁損失の大きい翼先端部および翼根元部付近への作動流体の流量が減少することで、翼先端部および翼根元部にて発達する流路渦と作動流体との干渉を抑えることができ、その結果、側壁損失が低減されたためである。   FIG. 7 is a graph showing a loss distribution in the blade height direction of the turbine stage according to the first embodiment. The vertical axis represents the turbine blade height position, and the horizontal axis represents the turbine blade loss. The loss distribution graph of the turbine stage which has the conventional non-concave side wall is shown with a dotted line, and the loss distribution graph of the turbine stage which concerns on a present Example is shown with a continuous line. According to the present embodiment, the turbine blade loss at the blade central portion is reduced by the effect of distributing the flow rate of the working fluid to the blade central portion in the vicinity of the blade central portion. It can also be seen that the turbine blade loss is reduced in the vicinity of the blade tip and the blade root compared to the conventional one. This is because the flow distribution of this embodiment reduces the flow rate of the working fluid to the blade tip and the blade root near the blade tip where the side wall loss is large. This is because the interference with the fluid can be suppressed, and as a result, the side wall loss is reduced.

従って、本実施例の構成によれば、タービン翼間を通過する作動流体の翼高さ方向流量配分の適正化と、タービン段落内の側壁損失低減とが可能である。解析結果によれば、タービン翼の効率は効率向上量として従来比の約0.2%向上する。   Therefore, according to the configuration of the present embodiment, it is possible to optimize the blade height direction flow rate distribution of the working fluid passing between the turbine blades and reduce the side wall loss in the turbine stage. According to the analysis results, the efficiency of the turbine blade is improved by about 0.2% as compared with the conventional efficiency.

なお、本実施例による縮流効果が効果的にスロート部に流入する必要があり、この点を考慮すると、最大深さを持つ無次元長さ位置は0.5以上,0.9以下の間に存在することが望ましい。   Note that the contraction effect according to the present embodiment needs to effectively flow into the throat portion, and considering this point, the dimensionless length position having the maximum depth is between 0.5 and 0.9. It is desirable to exist.

また、凹部21の位置はタービン翼が作動流体より仕事を取り出すことを考慮し、隣接するタービン翼前縁を結んだ位置より作動流体が流れる下流側、タービン翼間スロート長より上流側に設けることでより効果がある。   In consideration of the fact that the turbine blade takes out work from the working fluid, the recess 21 is provided on the downstream side where the working fluid flows from the position where the leading edges of the adjacent turbine blades are connected, and on the upstream side from the throat length between the turbine blades. It is more effective.

本実施例は、軸流タービンのタービン段落に適用した場合の一例として説明したが、これに限定されるものではない。軸流タービン翼の静翼,動翼、の一方、またはその両方に適用することでも効果を得ることができるし、タービン外周壁のみ、あるいはタービン内周壁のみに凹面側壁を適用した場合でも、本発明と同様の効果を得ることができるものである。また、本実施例は、蒸気タービン、およびガスタービンの何れでも適用可能である。   Although this embodiment has been described as an example when applied to a turbine stage of an axial flow turbine, it is not limited to this. The effect can also be obtained by applying it to one or both of the stationary blades and moving blades of an axial flow turbine blade, or even if a concave sidewall is applied only to the turbine outer peripheral wall or only to the turbine inner peripheral wall. The same effect as the invention can be obtained. In addition, the present embodiment can be applied to either a steam turbine or a gas turbine.

次に本発明の第2の実施例について図10乃至図13を用いて説明する。図10は、タービン半径方向から見た本実施例に係るタービン段落の内周側側壁12の形状を示した図である。図11は、図10に表記したB−B′断面図である。図12は、本実施例に係るタービン段落の翼高さ方向の翼出口流量分布を表すグラフである。図13は、本実施例に係るタービン段落の翼高さ方向の損失分布を表すグラフである。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a view showing the shape of the inner peripheral side wall 12 of the turbine stage according to the present embodiment as viewed from the turbine radial direction. 11 is a cross-sectional view taken along the line BB ′ shown in FIG. FIG. 12 is a graph showing the blade outlet flow rate distribution in the blade height direction of the turbine stage according to the present embodiment. FIG. 13 is a graph showing the loss distribution in the blade height direction of the turbine stage according to the present embodiment.

本実施例が、第1の実施例と異なるのは、凹部21の底部の形状である。本実施例では、図10に示すように、等値線が、翼間流路の入口部(L)と平行に延びており、本実施例の凹部21の底部は、この等値線に沿ってタービン中心軸からの半径方向距離が等しい底面を備えた矩形断面形状を有する。その他の要素は、第1の実施例と同じであり、説明を省略する。なお、実施例1と同一の構成要素には同一の符号を付してある。   This embodiment is different from the first embodiment in the shape of the bottom of the recess 21. In this embodiment, as shown in FIG. 10, the isoline extends in parallel with the inlet portion (L) of the inter-blade flow path, and the bottom of the recess 21 of this embodiment is along this isoline. And has a rectangular cross-sectional shape with a bottom surface having an equal radial distance from the turbine central axis. Other elements are the same as those in the first embodiment, and a description thereof will be omitted. In addition, the same code | symbol is attached | subjected to the component same as Example 1. FIG.

図10において、24は、タービン翼10と側壁との接続部における圧力面18の輪郭曲線を表す。25は、タービン翼10と側壁との接続部における負圧面19の輪郭曲線を表す。タービン翼10の負圧面19のスロート点17を通り、翼間流路の入口部である直線Lに平行な直線mと、隣り合うタービン翼10の圧力面28の輪郭曲線24とが交差する点を交点Zと定義する。   In FIG. 10, 24 represents the contour curve of the pressure surface 18 at the connection between the turbine blade 10 and the side wall. Reference numeral 25 denotes a contour curve of the suction surface 19 at the connection portion between the turbine blade 10 and the side wall. A point where a straight line m that passes through the throat point 17 of the suction surface 19 of the turbine blade 10 and is parallel to the straight line L that is the inlet of the inter-blade passage intersects the contour curve 24 of the pressure surface 28 of the adjacent turbine blade 10. Is defined as an intersection Z.

点Xは、圧力面18の輪郭曲線24上の任意の位置の点であり、圧力面18の輪郭曲線24の翼前縁部先端から点Xまでのタービン軸方向距離(X2)を、圧力面18の輪郭曲線24の翼前縁部先端から交点Zまでの軸方向距離(α2)で割った値を、軸方向無次元長さ(X2/α2)と定義する。軸方向無次元長さ(X2/α2)は、輪郭曲線24の翼前縁部13から翼後縁部14までの間の点Xの相対的な軸方向位置を表す値で、以下の(3)式で表した範囲を取る値である。   Point X is a point at an arbitrary position on the contour curve 24 of the pressure surface 18, and the turbine axial distance (X 2) from the tip of the blade leading edge of the contour curve 24 of the pressure surface 18 to the point X is expressed as the pressure surface. The value divided by the axial distance (α2) from the tip of the blade leading edge of the 18 contour curve 24 to the intersection Z is defined as the axial dimensionless length (X2 / α2). The axial dimensionless length (X2 / α2) is a value that represents the relative axial position of the point X between the blade leading edge 13 and the blade trailing edge 14 of the contour curve 24. ) Is a value that takes the range represented by the formula.

0.0≦X2/α2≦1.0 …(3)
次に点Yは、翼負圧面19の輪郭曲線25上の任意の位置の点であり、負圧面19の輪郭曲線25の翼前縁部先端から点Yまでのタービン軸方向距離(Y2)を、負圧面19の輪郭曲線25の翼前縁部先端からスロート点17までの軸方向距離(β2)で割った値を、軸方向無次元長さ(Y2/β2)と定義する。軸方向無次元長さ(Y2/β2)は、輪郭曲線25の翼前縁部13からスロート点17までの間の点Yの相対的な軸方向位置を表す値で、以下の(4)式で表した範囲を取る値である。
0.0 ≦ X2 / α2 ≦ 1.0 (3)
Next, the point Y is a point at an arbitrary position on the contour curve 25 of the blade suction surface 19, and the turbine axial distance (Y 2) from the tip of the blade leading edge of the contour curve 25 of the suction surface 19 to the point Y is expressed as follows. The value obtained by dividing the contour curve 25 of the suction surface 19 by the axial distance (β2) from the tip of the blade leading edge to the throat point 17 is defined as the axial dimensionless length (Y2 / β2). The axial dimensionless length (Y2 / β2) is a value that represents the relative axial position of the point Y between the blade leading edge 13 and the throat point 17 of the contour curve 25. The following equation (4) It is a value that takes the range represented by.

0.0≦Y2/β2≦1.0 …(4)
図10において、0〜4までの数値が付された直線は、前述した圧力面18側の輪郭曲線24における軸方向無次元長さ(X2/α2)と、負圧面19側の輪郭曲線25における軸方向無次元長さ(Y2/β2)とが等値となる位置を結んだ直線であり、この直線を等値線と定義する。実施例1と同様に、各等値線に付された0〜4までの数値は、その位置における凹部21の深さの程度を表しており、数値が大きい程、凹部21の凹みが深いことを意味する。
0.0 ≦ Y2 / β2 ≦ 1.0 (4)
In FIG. 10, the straight lines with numerical values from 0 to 4 are the dimensionless axial length (X2 / α2) in the contour curve 24 on the pressure surface 18 side and the contour curve 25 on the suction surface 19 side. This is a straight line connecting positions where the axial dimensionless length (Y2 / β2) is equal, and this straight line is defined as an isoline. As in the first embodiment, the numerical values from 0 to 4 attached to the respective isolines represent the degree of the depth of the concave portion 21 at the position, and the larger the numerical value, the deeper the recess of the concave portion 21 is. Means.

本実施例の凹部21は、実施例1と同様に、側壁の翼間流路20の入口部より下流側、かつスロートsより上流側に設けられている。本実施例の凹部21は、圧力面18と負圧面19との間で、等値線に沿ってタービン中心軸からの半径方向距離が等しい底面を備えた底部を有することを特徴とする。図11は、図10に示したB−B′断面図であり、等値線に沿った凹部21の底部の断面図である。図11に示したように、凹部21の底部は、等値線に沿ってタービン中心軸からの半径方向距離が等しい底面(内周側側壁12)を備えており、矩形断面形状を有する。凹部21は、翼間流路の入口部(L)側からスロートs側に向かって、矩形断面形状の底部を連続して有している。   Similar to the first embodiment, the concave portion 21 of the present embodiment is provided on the downstream side of the inlet portion of the inter-blade channel 20 on the side wall and on the upstream side of the throat s. The concave portion 21 of the present embodiment is characterized in that it has a bottom portion having a bottom surface having an equal radial distance from the turbine central axis along an isoline between the pressure surface 18 and the suction surface 19. FIG. 11 is a cross-sectional view taken along line BB ′ shown in FIG. 10, and is a cross-sectional view of the bottom of the recess 21 along the isoline. As shown in FIG. 11, the bottom of the recess 21 includes a bottom surface (inner peripheral side wall 12) having the same radial distance from the turbine central axis along the isoline, and has a rectangular cross-sectional shape. The concave portion 21 continuously has a bottom portion having a rectangular cross-sectional shape from the inlet portion (L) side of the inter-blade channel toward the throat s side.

凹部21の位置は、タービン翼が作動流体より仕事を取り出すことを考慮し、隣り合うタービン翼前縁を結んだ位置より作動流体が流れる下流側、タービン翼間のスロート長より上流側に設けることでより効果がある。   Considering that the turbine blade takes out work from the working fluid, the recess 21 is provided on the downstream side where the working fluid flows from the position where the leading edges of the adjacent turbine blades are connected, and on the upstream side from the throat length between the turbine blades. It is more effective.

ここで、図11を用いて本実施例における翼間流路を通過する速度ベクトルについて説明する。前述のように、スロートsで、スロート線に対して垂直に近い方向に作用するため、より効果的に翼高さ方向に流量配分される効果が得られる。本実施例の場合、側壁形状を変化させる位置はスロート点17および点Zまでとなり、スロート点17および点Zを結ぶ直線mに垂直に近い方向に速度ベクトルは通過し、この位置で縮流効果による翼中央部に作動流体を多く配分する効果を得ることができる。ここで、輪郭曲線24上の点Z、タービン翼の後縁部14、スロート点17で囲まれる翼間では、上述の縮流効果による流量配分を持ちつつ、輪郭曲線24,25の翼形状の影響を受け、タービン翼の後縁部14とスロート点17を結ぶ直線に垂直に近い方向に速度ベクトルで通過する。   Here, the velocity vector passing through the inter-blade channel in the present embodiment will be described with reference to FIG. As described above, since the throat s acts in a direction near to the throat line, the flow rate is more effectively distributed in the blade height direction. In the case of the present embodiment, the position where the side wall shape is changed is up to the throat point 17 and the point Z, and the velocity vector passes in the direction near the straight line m connecting the throat point 17 and the point Z, and the contraction effect is at this position. It is possible to obtain the effect of distributing a large amount of working fluid to the blade central part. Here, between the blades surrounded by the point Z on the contour curve 24, the trailing edge 14 of the turbine blade, and the throat point 17, the blade shape of the contour curves 24 and 25 has the flow distribution due to the above-described contraction effect. Affected, it passes with a velocity vector in a direction close to perpendicular to the straight line connecting the trailing edge 14 of the turbine blade and the throat point 17.

以上のように、本実施例においても、翼中央部に流量を多く配分する効果を得ることができる。ここで本実施例と実施例1を比較すると、本実施例ではスロート位置まで凹面形状を変化させていない。このため、縮流効果による翼中央部に作動流体を多く配分する効果は、前述の実施例1の方が大きい。   As described above, also in the present embodiment, it is possible to obtain an effect of distributing a large flow rate to the blade central portion. Here, when the present embodiment is compared with the first embodiment, the concave surface shape is not changed to the throat position in the present embodiment. For this reason, the effect of distributing a large amount of working fluid to the blade central portion due to the contraction effect is greater in the above-described first embodiment.

本実施例の場合、実施例1と同様に、軸方向無次元長さが0.0〜1.0の範囲内における各無次元深さ(λ/δ)の値の分布を表すグラフが、最大無次元深さ位置にて1つの変曲点を持つ曲線で構成される。変曲点はスロート部に近い位置に存在することにより、より大きな縮流効果を得ることができる。その一例として最大深さを持つ無次元長さ位置は軸方向無次元長さ0.4以上,0.6以下の間に存在することが望ましい。本実施例も実施例1と同様、凹面側壁形状を利用した翼高さ方向の縮流効果により翼中央部に作動流体の流量が多く配分され、翼中央部でのタービン翼損失は低減され、タービン翼の効率は向上する。   In the case of the present embodiment, as in the case of the first embodiment, a graph showing the distribution of values of each dimensionless depth (λ / δ) within the range where the axial dimensionless length is 0.0 to 1.0. It consists of a curve with one inflection point at the maximum dimensionless depth position. Since the inflection point exists at a position close to the throat portion, a larger contraction effect can be obtained. As an example, the dimensionless length position having the maximum depth is preferably present between the dimensionless length in the axial direction of 0.4 or more and 0.6 or less. In the present embodiment as well as the first embodiment, the flow rate of the working fluid is largely distributed to the blade central portion by the contraction effect in the blade height direction using the concave side wall shape, and the turbine blade loss in the blade central portion is reduced. The efficiency of the turbine blade is improved.

図12は、縦軸にタービン翼高さ位置を、横軸にタービン翼出口部における翼高さ方向の翼出口流量を示す図である。従来の非凹面側壁である翼出口流量は点線で示し、本実施例2である凹面側壁を適用した翼出口流量は実線で示す。実施例1と同様に翼中央部に流量が多く配分される。   FIG. 12 is a diagram showing the turbine blade height position on the vertical axis and the blade outlet flow rate in the blade height direction at the turbine blade outlet portion on the horizontal axis. A blade outlet flow rate which is a conventional non-concave side wall is indicated by a dotted line, and a blade outlet flow rate to which the concave side wall according to the second embodiment is applied is indicated by a solid line. As in the first embodiment, a large amount of flow is distributed to the blade center.

図13は、縦軸にタービン翼高さ位置を、横軸にタービン翼損失を示す図である。従来の非凹面側壁を点線で示し、本実施例2を適用した凹面側壁を実線で示す。実施例1の場合と同様に、凹面側壁形状を利用した翼高さ方向の縮流効果により翼中央部に作動流体の流量が多く配分され、翼中央部でのタービン翼損失は低減される。この結果、タービン翼の効率は向上する。   FIG. 13 is a diagram illustrating the turbine blade height position on the vertical axis and the turbine blade loss on the horizontal axis. A conventional non-concave side wall is indicated by a dotted line, and a concave side wall to which Example 2 is applied is indicated by a solid line. As in the case of the first embodiment, the flow rate of the working fluid is largely distributed to the blade central portion by the contraction effect in the blade height direction using the concave sidewall shape, and the turbine blade loss at the blade central portion is reduced. As a result, the efficiency of the turbine blade is improved.

以上の説明の通り、本発明によれば、軸流タービン翼について、従来よりも段落効率が向上する軸流タービン翼を提供することができる。   As described above, according to the present invention, it is possible to provide an axial-flow turbine blade with improved paragraph efficiency as compared with the conventional axial-flow turbine blade.

本実施例は、軸流タービンのタービン段落に適用した場合の一例として説明したが、これに限定されるものではない。軸流タービン翼の静翼,動翼、の一方、またはその両方に適用することでも効果を得ることができるし、タービン外周壁のみ、あるいはタービン内周壁のみに凹面側壁を適用した場合でも、本発明と同様の効果を得ることができるものである。また、本実施例は、蒸気タービン、およびガスタービンの何れでも適用可能である。   Although this embodiment has been described as an example when applied to a turbine stage of an axial flow turbine, it is not limited to this. The effect can also be obtained by applying it to one or both of the stationary blades and moving blades of an axial flow turbine blade, or even if a concave sidewall is applied only to the turbine outer peripheral wall or only to the turbine inner peripheral wall. The same effect as the invention can be obtained. In addition, the present embodiment can be applied to either a steam turbine or a gas turbine.

1 ダイヤフラム外輪
2 ダイヤフラム内輪
3 静翼
5 動翼
6 シュラウド
10 タービン翼
11 外周側側壁
12 内周側側壁
17 スロート点
18 圧力面
19 負圧面
20 翼間流路
21 凹部
22 翼間流路側壁面
24,25 輪郭曲線
s スロート
t ピッチ長
DESCRIPTION OF SYMBOLS 1 Diaphragm outer ring 2 Diaphragm inner ring 3 Stator blade 5 Rotor blade 6 Shroud 10 Turbine blade 11 Outer peripheral side wall 12 Inner peripheral side wall 17 Throat point 18 Pressure surface 19 Negative pressure surface 20 Interblade channel 21 Recess 22 Interblade channel side wall 24 25 Contour curve s Throat t Pitch length

Claims (6)

軸流タービンに使用され、周方向に延伸する外周側および内周側の側壁の間に、タービン翼が複数枚、周方向に設けられ、隣り合う前記タービン翼の間に、作動流体が流れる翼間流路が形成されるタービン段落であって、
隣り合う前記タービン翼の翼前縁部先端を結ぶ直線を前記翼間流路の入口部と定義した場合に、
前記翼間流路の半径方向側の壁面を構成する前記外周側および内周側の少なくともいずれか一方の前記側壁の、前記翼間流路の入口部より作動流体流れ方向下流側、かつ隣り合う前記タービン翼同士の距離が最小となるスロートより作動流体流れ方向上流側の位置に、前記側壁の内側に向かって凹む凹部を設け、
前記凹部は、前記翼間流路の周方向側の壁面を構成する、隣り合う前記タービン翼の互いに対向する翼圧力面と翼負圧面との間で、前記翼圧力面と前記翼負圧面とを結ぶ仮想直線に沿ってタービン中心軸から等しい半径距離を有する底面を備えた矩形断面形状の底部を有し、
前記凹部は、前記矩形断面形状の底部を前記翼間流路の入口部側から前記スロート部側に向かって連続して有することを特徴とするタービン段落。
A blade used in an axial turbine and provided with a plurality of turbine blades in the circumferential direction between the outer peripheral side wall and the inner peripheral side wall extending in the circumferential direction, and the working fluid flows between the adjacent turbine blades A turbine stage in which an inter-channel is formed,
When a straight line connecting the blade leading edge tips of the adjacent turbine blades is defined as the inlet portion of the inter-blade channel,
The side wall of at least one of the outer peripheral side and the inner peripheral side constituting the wall surface on the radial direction side of the inter-blade channel is adjacent to the downstream side in the working fluid flow direction from the inlet portion of the inter-blade channel. Provide a recess recessed toward the inside of the side wall at a position upstream of the throat where the distance between the turbine blades is the minimum in the working fluid flow direction,
The concave portion constitutes a wall surface on the circumferential side of the inter-blade channel, and between the blade pressure surface and the blade suction surface facing each other of the adjacent turbine blades, the blade pressure surface and the blade suction surface A bottom of a rectangular cross-sectional shape with a bottom surface having an equal radial distance from the turbine central axis along a virtual straight line connecting
The said recessed part has the bottom part of the said rectangular cross-sectional shape continuously toward the said throat part side from the entrance part side of the said flow path between blades, The turbine stage characterized by the above-mentioned.
請求項1に記載のタービン段落であって、
前記翼圧力面の輪郭曲線の翼前縁部先端から任意の位置までの輪郭曲線長さ(X1)を、前記翼圧力面の輪郭曲線の翼前縁部先端から翼後縁部先端までの輪郭曲線長さ(α1)で割った値を無次元長さ(X1/α1)と定義し、
前記翼負圧面側の輪郭曲線の翼前縁部先端から任意の位置までの輪郭曲線長さ(Y1)を、前記翼負圧面の輪郭曲線の翼前縁部先端からスロート点までの輪郭曲線長さ(β1)で割った値を、無次元長さ(Y1/β1)と定義し、
等値の前記翼圧力面側の無次元長さ(X1/α1)と前記負圧面の無次元長さ(Y1/β1)とを結ぶ直線を等値線と定義した場合に、
前記仮想直線は、前記等値線であることを特徴とするタービン段落。
The turbine stage according to claim 1,
The contour curve length (X1) from the tip of the blade leading edge to the arbitrary position of the blade pressure surface contour curve is defined as the contour from the blade leading edge tip to the blade trailing edge tip of the blade pressure surface contour curve. Define the value divided by the curve length (α1) as the dimensionless length (X1 / α1),
The contour curve length (Y1) from the tip of the blade leading edge of the blade suction surface side to an arbitrary position is defined as the contour curve length from the tip of the blade leading edge of the blade suction surface to the throat point. The value divided by (β1) is defined as the dimensionless length (Y1 / β1),
When a straight line connecting the dimensionless length (X1 / α1) on the blade pressure surface side of the equal value and the dimensionless length (Y1 / β1) of the suction surface is defined as an isoline,
The imaginary straight line is the isoline, the turbine paragraph.
請求項2に記載のタービン段落であって、
前記凹部を有する側壁の翼間流路側壁面を基準面とし、
無次元長さが任意の値の等値線位置における、前記基準面から前記凹部の底面までの半径方向距離(λ)を、前記基準面から前記凹部の底面までの半径方向距離の最大値(δ)で割った値を、無次元深さ(λ/δ)とし、
無次元深さ(λ/δ)が1.0となる無次元長さを、最大無次元深さ位置と定義した場合に、
無次元長さ0.0以上,1.0以下の範囲における各無次元深さ(λ/δ)の値の分布を表すグラフが、前記最大無次元深さ位置にて1つの変曲点を持つ曲線で構成され、
前記最大無次元深さ位置は、無次元長さ0.5以上,0.9以下の範囲内に1点だけあることを特徴とするタービン段落。
The turbine stage according to claim 2,
The side wall surface between the blades of the side wall having the recess as a reference plane,
The radial distance (λ) from the reference surface to the bottom surface of the recess at the isoline position where the dimensionless length is an arbitrary value is the maximum radial distance from the reference surface to the bottom surface of the recess ( The value divided by δ) is the dimensionless depth (λ / δ),
When the dimensionless length where the dimensionless depth (λ / δ) is 1.0 is defined as the maximum dimensionless depth position,
A graph showing the distribution of values of each dimensionless depth (λ / δ) in the range of dimensionless length 0.0 or more and 1.0 or less shows one inflection point at the maximum dimensionless depth position. Composed of curves
The turbine paragraph, wherein the maximum dimensionless depth position has only one point within a range of dimensionless length of 0.5 or more and 0.9 or less.
請求項1に記載のタービン段落であって、
前記翼負圧面の輪郭曲線上のスロート点を通過し、前記翼間流路の入口部に平行な直線と、前記翼圧力面の輪郭曲線との交点を交点(Z)と定義し、
前記翼圧力面の輪郭曲線の翼前縁部先端から任意の位置までのタービン軸方向距離(X2)を、前記翼圧力面の輪郭曲線の翼前縁部先端から前記交点(Z)までのタービン軸方向距離(α2)で割った値を軸方向無次元長さ(X2/α2)と定義し、
前記翼負圧面の輪郭曲線の前縁部先端から任意の位置までのタービン軸方向距離(Y2)を、前記翼負圧面の輪郭曲線の前縁部先端から前記スロート点までのタービン軸方向距離(β2)で割った値を軸方向無次元長さ(Y2/β2)と定義し、
等値の前記翼圧力面側の軸方向無次元長さ(X2/α2)と前記負圧面の軸方向無次元長さ(Y2/β2)とを結ぶ直線を等値線と定義した場合に、
前記仮想直線は、前記等値線であることを特徴とするタービン段落。
The turbine stage according to claim 1,
An intersection (Z) is defined as an intersection of a straight line passing through a throat point on the contour curve of the blade suction surface and parallel to the inlet portion of the inter-blade channel and the contour curve of the blade pressure surface;
The turbine axial distance (X2) from the blade leading edge tip of the blade pressure surface contour curve to an arbitrary position is represented by the turbine from the blade leading edge tip of the blade pressure surface contour curve to the intersection (Z). The value divided by the axial distance (α2) is defined as the axial dimensionless length (X2 / α2),
Turbine axial distance (Y2) from the front edge of the blade suction surface contour curve to an arbitrary position, and the turbine axial distance from the front edge of the blade suction surface contour curve to the throat point ( Define the value divided by β2) as the axial dimensionless length (Y2 / β2),
When a straight line connecting the axial dimensionless length (X2 / α2) on the blade pressure surface side of the equivalent value and the axial dimensionless length (Y2 / β2) of the suction surface is defined as an isoline,
The imaginary straight line is the isoline, the turbine paragraph.
請求項4に記載のタービン段落であって、
前記凹部を有する側壁の翼間流路側壁面を基準面とし、
軸方向無次元長さが任意の値の等値線位置における、前記基準面から前記凹部の底面までの半径方向距離(λ)を、前記基準面から前記凹部の底面までの半径方向距離の最大値(δ)で割った値を、無次元深さ(λ/δ)とし、
無次元深さ(λ/δ)が1.0となる軸方向無次元長さを、最大無次元深さ位置と定義した場合に、
軸方向無次元長さ0.0以上,1.0以下の範囲における各無次元深さ(λ/δ)の値の分布を表すグラフが、前記最大無次元深さ位置にて1つの変曲点を持つ曲線で構成され、 前記最大無次元深さ位置は、軸方向無次元長さ0.4以上,0.6以下の範囲内に1点だけあることを特徴とするタービン段落。
The turbine stage according to claim 4,
The side wall surface between the blades of the side wall having the recess as a reference plane,
The radial distance (λ) from the reference surface to the bottom surface of the recess at the isoline position where the axial dimensionless length is an arbitrary value is the maximum radial distance from the reference surface to the bottom surface of the recess. The value divided by the value (δ) is the dimensionless depth (λ / δ),
When an axial dimensionless length where the dimensionless depth (λ / δ) is 1.0 is defined as the maximum dimensionless depth position,
A graph showing the distribution of values of each dimensionless depth (λ / δ) in the axial dimensionless length range of 0.0 or more and 1.0 or less is one inflection at the maximum dimensionless depth position. A turbine paragraph, comprising a curve having points, wherein the maximum dimensionless depth position is only one point within a range of an axial dimensionless length of 0.4 or more and 0.6 or less.
請求項1乃至5のいずれか1項に記載されたタービン段落を備えることを特徴とする蒸気タービン。   A steam turbine comprising the turbine stage according to any one of claims 1 to 5.
JP2010197252A 2010-09-03 2010-09-03 Turbine stage, and steam turbine using the same Pending JP2012052491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197252A JP2012052491A (en) 2010-09-03 2010-09-03 Turbine stage, and steam turbine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197252A JP2012052491A (en) 2010-09-03 2010-09-03 Turbine stage, and steam turbine using the same

Publications (1)

Publication Number Publication Date
JP2012052491A true JP2012052491A (en) 2012-03-15

Family

ID=45906082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197252A Pending JP2012052491A (en) 2010-09-03 2010-09-03 Turbine stage, and steam turbine using the same

Country Status (1)

Country Link
JP (1) JP2012052491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024458A1 (en) * 2014-08-13 2016-02-18 株式会社Ihi Axial flow-type turbo machine
CN110869585A (en) * 2017-11-17 2020-03-06 三菱日立电力系统株式会社 Turbine nozzle and axial turbine provided with same
CN111622812A (en) * 2019-02-28 2020-09-04 三菱日立电力系统株式会社 Axial flow steam turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024458A1 (en) * 2014-08-13 2016-02-18 株式会社Ihi Axial flow-type turbo machine
JP2016040463A (en) * 2014-08-13 2016-03-24 株式会社Ihi Axial flow type turbo machine
CN110869585A (en) * 2017-11-17 2020-03-06 三菱日立电力系统株式会社 Turbine nozzle and axial turbine provided with same
CN110869585B (en) * 2017-11-17 2022-08-09 三菱重工业株式会社 Turbine nozzle and axial turbine provided with same
CN111622812A (en) * 2019-02-28 2020-09-04 三菱日立电力系统株式会社 Axial flow steam turbine
CN111622812B (en) * 2019-02-28 2023-03-24 三菱重工业株式会社 Axial flow steam turbine

Similar Documents

Publication Publication Date Title
JP5946707B2 (en) Axial turbine blade
US9051840B2 (en) Wall of turbo machine and turbo machine
JP5433793B2 (en) Transonic wing
RU2666933C1 (en) Turbomachine component or collection of components and associated turbomachine
CN102483072B (en) Compressor blade for an axial compressor
KR101383993B1 (en) Supersonic turbine rotor blade and axial flow turbine
US10316675B2 (en) Turbine
JP2017528632A (en) Endwall configuration for gas turbine engines
JP2017502207A (en) Centrifugal compressor impeller with nonlinear blade leading edge and associated design method
CN102587997A (en) Vane for an axial flow turbomachine and corresponding turbomachine
JP7104379B2 (en) Axial flow type fan, compressor and turbine blade design method, and blades obtained by the design
JP2012052491A (en) Turbine stage, and steam turbine using the same
US11982204B2 (en) Turbomachine part or assembly of parts
JP6518526B2 (en) Axial flow turbine
US20200157942A1 (en) Method for modifying blades of fan, compressor and turbine of axial flow type, and blade obtained by modification
JP4869099B2 (en) Nozzle blades and axial turbine
JP3402176B2 (en) Blades for turbomachinery
JPS6147285B2 (en)
JP5819504B2 (en) Impeller and turbomachine having the same
JP7246959B2 (en) Turbine blades and steam turbines
JP6215154B2 (en) Rotating machine
JP7190370B2 (en) axial turbine
WO2020129390A1 (en) Turbine blade and steam turbine provided with same
JPH10220202A (en) Axial turbine
KR20230072650A (en) A method of designing an axial-flow pump with guide vanes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518