JP2012050777A - Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same - Google Patents

Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same Download PDF

Info

Publication number
JP2012050777A
JP2012050777A JP2010197687A JP2010197687A JP2012050777A JP 2012050777 A JP2012050777 A JP 2012050777A JP 2010197687 A JP2010197687 A JP 2010197687A JP 2010197687 A JP2010197687 A JP 2010197687A JP 2012050777 A JP2012050777 A JP 2012050777A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
measurement
current
conductivity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197687A
Other languages
Japanese (ja)
Inventor
Toru Yamaguchi
亨 山口
Mitsuhiro Katashima
充弘 片嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010197687A priority Critical patent/JP2012050777A/en
Publication of JP2012050777A publication Critical patent/JP2012050777A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a simple, safe and highly accurate apparatus for creating distribution image of electric conductivity and a visceral fat measuring apparatus by achieving impedance CT method to measure biological impedance of a subject with high accuracy.SOLUTION: Two pairs of electrode groups (51a and 51b) are located in a circular pattern on the outer periphery of the subject to be measured. Electric current is applied between two electrodes (Aand A) which are sequentially selected from a first electrode group (51a), and potential differences between adjacent electrodes at the electrodes (Band B) corresponding to the two electrodes on which the electric current is applied among the remaining electrodes (A, ..., A, A, A, ..., A) of the first electrode group and a second electrode group (52b) are measured sequentially. Since the potentials at all electrode locations are measured, measurement error is compensated and highly accurate biological impedance measurement can be achieved.

Description

本発明は、インピーダンスCT法によって測定部位断面の体脂肪分布を画像化し、体脂肪を測定するための導電率分布画像の生成装置、その方法およびそれを用いた体脂肪測定装置に関する。   The present invention relates to an apparatus for generating a conductivity distribution image for measuring body fat by imaging a body fat distribution in a cross section of a measurement site by impedance CT method, a method thereof, and a body fat measurement apparatus using the method.

人体腹部に蓄積される脂肪は、その蓄積部位から、皮下脂肪と内臓脂肪に大別される。このうち特に内臓脂肪の蓄積は、糖尿病、高血圧、脂質異常症などの病態、およびこれらが重複して発症した病態であるメタボリックシンドロームの誘発因子となることが言われており、健康の維持、増進のために内臓脂肪量の管理の重要性が認識されている。   Fat accumulated in the human abdomen is roughly classified into subcutaneous fat and visceral fat from the accumulation site. Among these, accumulation of visceral fat is said to be an inducing factor for metabolic syndrome, which is a pathological condition such as diabetes, hypertension, dyslipidemia, and other pathological conditions, and maintains and promotes health. Because of the importance of visceral fat mass management.

測定部位断面の脂肪分布を画像化し、皮下脂肪量と内臓脂肪量のそれぞれを区別して測定可能な装置としては、X線CT、MRI等が知られている。しかしながら、これらの装置はきわめて高価で、装置の維持管理には費用と手間がかかり、さらに隔離された部屋と広い設置床面積を必要とするため規模の大きな装置となる。また、X線CTの場合には、放射線の被曝が健康被害を及ぼす可能性があり、一般人が健康管理のために日常的に使用するには適さない。   X-ray CT, MRI, and the like are known as apparatuses capable of imaging fat distribution in the cross section of the measurement site and measuring each of the subcutaneous fat mass and visceral fat mass. However, these devices are extremely expensive, and the maintenance and management of the devices are expensive and troublesome. Further, since these devices require an isolated room and a large installation floor area, they become large-scale devices. In addition, in the case of X-ray CT, radiation exposure may cause health damage, and is not suitable for daily use by ordinary people for health management.

測定部位断面での導電率分布を比較的簡易な装置で画像化する方法としてインピーダンスCT法が知られており、本発明者らはこのインピーダンスCT法を体脂肪測定に応用することに着目した。インピーダンスCT法は、特許文献1に開示されるように、測定部位に電流を流し、その外周表面上に誘起された電位分布から測定部位断面での導電率分布を推定する技術である。   The impedance CT method is known as a method for imaging the conductivity distribution in the cross section of the measurement site with a relatively simple device, and the present inventors paid attention to the application of this impedance CT method to body fat measurement. As disclosed in Patent Document 1, the impedance CT method is a technique for causing a current to flow through a measurement site and estimating a conductivity distribution at a cross-section of the measurement site from a potential distribution induced on the outer peripheral surface thereof.

特開2003−339658号公報JP 2003-339658 A

ところで特許文献1において、得られた画像から脂肪面積を推定する方法は閾値を上回るか下回るかで二値化している。主な測定対象とする腹部は、人体の中でも断面サイズが比較的大きくかつ脂肪分布が複雑であるため、このような方法で脂肪比率を測定するには、X線CTに匹敵する十分な解像度が必要となる。   By the way, in Patent Document 1, the method of estimating the fat area from the obtained image is binarized depending on whether it exceeds or falls below a threshold value. The abdomen, which is the main measurement target, has a relatively large cross-sectional size and a complicated fat distribution in the human body. Therefore, sufficient resolution comparable to X-ray CT is required to measure the fat ratio by this method. Necessary.

また、生体インピーダンス計測では電極と真皮の接触抵抗による影響を避けるため4電極法を用いる。そのため、腹部をリング状に取り囲む電極を配置し、所定の2つの電極を電流を流すための電極(以下電流電極という。)とし、残りの電極を用いて隣接する電極同士の電位差を測定する。しかし、電流電極近傍の電位を測定することができないため測定精度に限界がある。   In bioimpedance measurement, the 4-electrode method is used to avoid the influence of contact resistance between the electrode and the dermis. Therefore, an electrode that surrounds the abdomen in a ring shape is disposed, and two predetermined electrodes are used as electrodes for flowing current (hereinafter referred to as current electrodes), and the potential difference between adjacent electrodes is measured using the remaining electrodes. However, the measurement accuracy is limited because the potential in the vicinity of the current electrode cannot be measured.

本発明は、このような従来の技術の課題に着目してなされたものであり、本発明によれば、より高精度に生体インピーダンスを測定して、良好なインピーダンス画像を取得し、より正確に内臓脂肪量を推定することができる。   The present invention has been made by paying attention to such problems of the prior art, and according to the present invention, bioimpedance is measured with higher accuracy, a good impedance image is obtained, and more accurately. Visceral fat mass can be estimated.

本発明の技術的側面によれば、体脂肪測定装置は、測定対象の外周上に環状に複数の電極位置が規定され、各電極位置に各電極が配置される第1電極群と、 前記各電極位置において前記第1電極群の電極の近傍に各電極が配置される第2電極群と、(i)前記第1電極群のうち順次選択される2つの電極位置の電極を電流電極として選択して電流を印加し、(ii)すべての電極位置について前記電流電極以外の電極を電位測定電極として選択し、隣接電極位置における前記電位測定電極間の電位差を順次測定するインピーダンス測定手段と、測定結果に基づいて前記測定対象の断面上の導電率分布を算出し、画像化する導電率分布算出手段と、算出された導電率分布に基づいて脂肪量を算出する脂肪量算出手段と、算出された脂肪量を表示する表示手段とを具備することを特徴とする。   According to the technical aspect of the present invention, the body fat measurement device includes a first electrode group in which a plurality of electrode positions are defined in a ring shape on the outer periphery of a measurement target, and each electrode is disposed at each electrode position; A second electrode group in which each electrode is arranged in the vicinity of the electrode of the first electrode group at an electrode position; and (i) an electrode at two electrode positions sequentially selected from the first electrode group is selected as a current electrode. (Ii) impedance measurement means for selecting electrodes other than the current electrode as potential measurement electrodes for all electrode positions and sequentially measuring a potential difference between the potential measurement electrodes at adjacent electrode positions; and measurement A conductivity distribution calculating means for calculating and imaging the conductivity distribution on the cross section of the measurement object based on the result, and a fat mass calculating means for calculating the fat mass based on the calculated conductivity distribution. Table the amount of fat Characterized by comprising a display means for.

また、本発明の他の技術的側面によれば、さらに前記隣接電極位置の前記電位測定電極間の電位差の総和がゼロとなるように前記インピーダンス測定手段の測定誤差が補償されることを特徴とする。   According to another technical aspect of the present invention, the measurement error of the impedance measuring means is further compensated so that the sum of potential differences between the potential measuring electrodes at the adjacent electrode positions becomes zero. To do.

本発明のさらに別の技術的側面によれば、体脂肪測定方法は、測定対象の外周上に環状に規定される複数の電極位置に対して各電極位置に各電極が配置される第1電極群から順次選択された2つの電極間に電流を印加することと、前記各電極位置において前記第1電極群の電極の近傍に各電極が配置される第2電極群と前記第1電極群とからすべての隣接電極位置について前記電流を印加した電極以外の電極を順次選択して電位差を測定することと、前記隣接電極位置の電極間の電位差の総和がゼロとなるように各電位差の測定誤差が補償されることと、補償された各電位差に基づいて前記測定対象の断面上の導電率分布を算出して画像化することと、算出された導電率分布に基づいて脂肪量を算出することとを含むことを特徴とする。   According to still another technical aspect of the present invention, the body fat measurement method includes a first electrode in which each electrode is disposed at each electrode position with respect to a plurality of electrode positions defined in a ring shape on the outer periphery of the measurement target. Applying a current between two electrodes sequentially selected from the group; and a second electrode group in which each electrode is disposed in the vicinity of the electrode of the first electrode group at each electrode position; and the first electrode group; Measuring the potential difference by sequentially selecting the electrodes other than the electrode to which the current is applied for all adjacent electrode positions from the above, and the measurement error of each potential difference so that the sum of the potential differences between the electrodes at the adjacent electrode positions becomes zero Is compensated, the conductivity distribution on the cross section of the measurement object is calculated based on each compensated potential difference, and the fat amount is calculated based on the calculated conductivity distribution. It is characterized by including.

本発明によれば、電極を二段構造とすることにより測定対象の腹部の一周にわたる電位差を万遍なく測定することができるため、キルヒホッフの第2法則を適用することが可能となり、測定回路におけるオフセットや排除が困難な飛来ノイズなどに由来する測定誤差を補償して精度の高いインピーダンス分布を測定することができる。また、誤差補償を自動化することができる。   According to the present invention, since the potential difference over the entire circumference of the abdomen to be measured can be measured uniformly by adopting a two-stage electrode, it becomes possible to apply Kirchhoff's second law, and in the measurement circuit A highly accurate impedance distribution can be measured by compensating for a measurement error caused by an incoming noise or the like that is difficult to offset or eliminate. In addition, error compensation can be automated.

本発明の実施形態の体脂肪測定装置の構成図。The block diagram of the body fat measuring apparatus of embodiment of this invention. インピーダンス測定手段の構成図。The block diagram of an impedance measurement means. 電極ユニットと回路ユニットの構成図。The block diagram of an electrode unit and a circuit unit. 電極群の平面配置図。FIG. 3 is a plan view of an electrode group. 第1電極群と第2電極群の配置を示す斜視図。The perspective view which shows arrangement | positioning of a 1st electrode group and a 2nd electrode group. 第1電極群と第2電極群を用いたインピーダンス測定の概念図。The conceptual diagram of the impedance measurement using the 1st electrode group and the 2nd electrode group. 一体型電極部の構成図。The block diagram of an integrated electrode part. インピーダンス測定の他の実施形態の概念図Conceptual diagram of another embodiment of impedance measurement

以下に本発明の実施の形態について図1〜図8を参照して説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は本発明の第1の実施形態の体脂肪測定装置を示す構成図である。体脂肪測定装置は、被測定体(測定対象)の外周表面上に配置する複数の電極を有する2組の電極群1aおよび1bと、複数の電極のうち順次選択される二つの電極間に電流を流し、残りの電極の電位もしくは電極間の電位差を測定するインピーダンス測定手段2と、電極の位置から被測定体の輪郭情報を計測する輪郭情報測定手段3と、測定された電位または電位差および輪郭情報とから被測定体の測定部位断面上の導電率分布を求める導電率分布算出手段4と、得られた導電率分布に基づいて被測定体の体脂肪量、体脂肪率、内臓脂肪量、皮下脂肪量等を算出する脂肪量算出手段5と、その算出結果を表示する表示手段6とからなる。なお、体脂肪測定装置に含まれる2組の電極群1aおよび1bとインピーダンス測定手段2と輪郭情報測定手段3とは導電率分布画像の生成装置を構成する。   FIG. 1 is a configuration diagram showing a body fat measuring device according to a first embodiment of the present invention. The body fat measurement device includes two sets of electrode groups 1a and 1b having a plurality of electrodes arranged on the outer peripheral surface of a measurement object (measurement target), and a current between two electrodes sequentially selected from the plurality of electrodes. Impedance measuring means 2 for measuring the potential of the remaining electrode or the potential difference between the electrodes, contour information measuring means 3 for measuring the contour information of the measured object from the position of the electrode, and the measured potential or potential difference and contour Conductivity distribution calculating means 4 for obtaining the conductivity distribution on the measurement site cross section of the body to be measured from the information, and the body fat mass, body fat percentage, visceral fat mass of the body to be measured based on the obtained conductivity distribution, It comprises fat mass calculation means 5 for calculating the subcutaneous fat mass and the like, and display means 6 for displaying the calculation result. The two sets of electrode groups 1a and 1b, the impedance measuring means 2, and the contour information measuring means 3 included in the body fat measuring device constitute a conductivity distribution image generating device.

<電極群の構成>
図2は電極群とインピーダンス測定手段の構成図である。本実施形態の電極群51a,51bを含む電極部70は図4に示すような平面図を有する構造をとることができる。リング状の支持板53上に、複数のエアシリンダ55a,55bがリングの中心を向いて固定され、エアシリンダ55a(55b)のロッド56a(56b)の先端には電極51a(51b)が配置されている。被測定体50は支持板53の開閉部52を開くことによって支持板51の中心部に入り込み、開閉部52を閉じた後に測定に供される。
<Configuration of electrode group>
FIG. 2 is a configuration diagram of the electrode group and the impedance measuring means. The electrode part 70 including the electrode groups 51a and 51b of the present embodiment can have a structure having a plan view as shown in FIG. On the ring-shaped support plate 53, a plurality of air cylinders 55a, 55b are fixed toward the center of the ring, and an electrode 51a (51b) is disposed at the tip of the rod 56a (56b) of the air cylinder 55a (55b). ing. The measured object 50 enters the central portion of the support plate 51 by opening the opening / closing portion 52 of the support plate 53, and is used for measurement after the opening / closing portion 52 is closed.

被測定体表面への電極51a(51b)の接触は、エアシリンダ55a(55b)に空気圧をかけてロッド56a(56b)を伸長し、電極51a(51b)を被測定体表面に押し付けることにより行う。測定部位をたとえば人体腹部とする場合には、被験者を支持板53の中心に立位で静止させ、支持板53の高さを被験者の臍高位に合わせることにより被験者の腹部外周上に電極を配置する。   The electrode 51a (51b) is brought into contact with the surface of the measurement object by applying air pressure to the air cylinder 55a (55b) to extend the rod 56a (56b) and pressing the electrode 51a (51b) against the surface of the measurement object. . For example, when the measurement site is the human abdomen, the subject is placed in a standing position at the center of the support plate 53, and the height of the support plate 53 is adjusted to the height of the subject's umbilicus to place electrodes on the outer periphery of the subject's abdomen. To do.

本実施形態の体脂肪測定装置は図5および図6に示すように2組の電極群51a,51bを上下二段のリング状に配置し、任意の2つの電極を電流源たる定電流回路23と接続する電極(電流電極)として選択し、その近傍に配置された電極を当該電極位置における電圧測定電極として選択することにより、腹部の一周にわたって電位差を測定することができる。本実施形態においては第1電極群51aの一対の電極を電流電極として選択し、当該電極位置における電圧測定電極は電流電極に対応する第2電極群51bを選択するものとして説明する。なお、図5において電極51a,51bを支持する構造は省略している。   As shown in FIGS. 5 and 6, the body fat measurement device of this embodiment has two sets of electrode groups 51 a and 51 b arranged in a two-stage upper and lower ring shape, and a constant current circuit 23 that uses any two electrodes as a current source. Is selected as an electrode (current electrode) to be connected to the electrode, and an electrode disposed in the vicinity thereof is selected as a voltage measurement electrode at the electrode position, whereby the potential difference can be measured over the entire circumference of the abdomen. In the present embodiment, it is assumed that a pair of electrodes of the first electrode group 51a is selected as a current electrode, and the voltage measurement electrode at the electrode position selects the second electrode group 51b corresponding to the current electrode. In FIG. 5, the structure for supporting the electrodes 51a and 51b is omitted.

各電極51a,51bの近傍にはプリアンプ37a,37bが配置され,電極が電圧測定電極として選択された場合にはプリアンプ37a,37bの出力が選択スイッチ群36を介して差動増幅器26に出力される。また、電流電極として選択された電極51aはスイッチ群24を介して定電流回路23の電流源72a,72bに接続されるとともに、選択スイッチ群36は対応する第2電極群51bを電圧測定電極として選択する。なお、スイッチ群24の1単位は1対のスイッチからなり、各スイッチは電流源72a,72bのいずれかに接続されて、所定の電流電極を選択する。   Preamplifiers 37a and 37b are arranged in the vicinity of the electrodes 51a and 51b. When the electrodes are selected as voltage measurement electrodes, the outputs of the preamplifiers 37a and 37b are output to the differential amplifier 26 via the selection switch group 36. The The electrode 51a selected as the current electrode is connected to the current sources 72a and 72b of the constant current circuit 23 via the switch group 24, and the selection switch group 36 uses the corresponding second electrode group 51b as the voltage measurement electrode. select. Note that one unit of the switch group 24 includes a pair of switches, and each switch is connected to one of the current sources 72a and 72b to select a predetermined current electrode.

第1電極群51aは被測定体の外周表面上を取り巻くように複数(N個)の電極が1次元配置され、第2電極群51bは第1の電極群51aの各電極に対応するように複数(N個)の電極が隣接配置される。電極51a,51bの数Nは、測定部位の種類や大きさに応じて適宜選択することができるが、本実施形態においてはN=32個として説明する。   In the first electrode group 51a, a plurality (N) of electrodes are arranged one-dimensionally so as to surround the outer peripheral surface of the measurement object, and the second electrode group 51b corresponds to each electrode of the first electrode group 51a. A plurality (N) of electrodes are arranged adjacent to each other. The number N of the electrodes 51a and 51b can be appropriately selected according to the type and size of the measurement site. In the present embodiment, N = 32 will be described.

被験者(測定対象)を導電率が3次元に分布する長形物体(仮想モデル体)とみなしたときに、第1電極群51aおよび第2電極群51bは物体の所定の高さ(腹部)で長手方向に直交するように配置される。この場合に、基準の位置(たとえば臍高位)から方位角方向に電極をリング状に実質的に等間隔に配置し、図6に示すように第1の電極群51aを{A,A,・・・,Ai−1,A,Ai+1,・・・,A}、第2の電極群51bを{B,B,・・・,Bi−1,B,Bi+1,・・・,B}と表すことにする。たとえば、電極Bは電極Aの近傍に配置され、本実施形態では電極Aに対して長形物体の長手方向に平行な方向(上下方向)の近傍に配置される。したがって、1つの電極位置(i=1,2,・・・,N)に第1電極群の電極(A)と第2電極群の電極(B)が相互に近傍に配置される。 When the subject (measurement target) is regarded as a long object (virtual model body) whose conductivity is distributed three-dimensionally, the first electrode group 51a and the second electrode group 51b are at a predetermined height (abdomen) of the object. Arranged so as to be orthogonal to the longitudinal direction. In this case, the electrodes are arranged in a ring shape substantially equidistantly from the reference position (for example, the umbilical high position) in the azimuth direction, and the first electrode group 51a is {A 1 , A 2 as shown in FIG. ,..., A i−1 , A i , A i + 1 ,..., A N }, and the second electrode group 51b are {B 1 , B 2 ,..., B i−1 , B i , B i + 1 ,..., B N }. For example, the electrode B i is disposed in the vicinity of the electrode A i , and in the present embodiment, is disposed in the vicinity of the direction (vertical direction) parallel to the longitudinal direction of the elongated object with respect to the electrode A i . Therefore, the electrode (A i ) of the first electrode group and the electrode (B i ) of the second electrode group are arranged in the vicinity of each other at one electrode position (i = 1, 2,..., N).

インピーダンスの精密測定には4電極法によらなければならない。したがって、第1の電極群51aのうち電極Aと電極Ai+2が電流電極として選択された場合には、従来であれば、電極Ai+1、Ai+3、Ai+4、Ai+5・・・A、A、A・・・Ai−1のN−2個の電極を用いて隣接電極間の電位差を測定していた。ただし、電極位置Ai+1は両隣りが電流電極のため、実質的に電位差測定に利用しにくい。これに対して、本発明は従来測定できなかった電極Ai−1、A、Ai+1、Ai+2、Ai+3の隣接電極間の電位差をそれとほぼ等価なAi−1、B、Ai+1、Bi+2、Ai+3の隣接電極間の電位差に置き換えて完全な測定を実現することができる。 The precision measurement of impedance must be based on the 4-electrode method. Therefore, when the electrode A i and the electrode A i + 2 of the first electrode group 51a are selected as current electrodes, conventionally, the electrodes A i + 1 , A i + 3 , A i + 4 , A i + 5 ... A N , A 1 , A 2 ... A i-1 N-2 electrodes were used to measure the potential difference between adjacent electrodes. However, since the electrode position A i + 1 is a current electrode on both sides, it is substantially difficult to use for potential difference measurement. On the other hand, in the present invention, a potential difference between adjacent electrodes of electrodes A i−1 , A i , A i + 1 , A i + 2 , A i + 3 , which could not be measured conventionally, is substantially equivalent to A i−1 , B i , A A complete measurement can be realized by substituting the potential difference between adjacent electrodes of i + 1 , B i + 2 and A i + 3 .

ここでi番目の電極位置にある電極(AまたはB)の電位をV、i+1番目の電極位置にある電極(Ai+1またはBi+1)の電位をVi+1、これらの電位差をΔV=Vi+1−Vと表現すると、隣接電極間電位差の総和はキルヒホッフの第2法則により、

Figure 2012050777
Here, the potential of the electrode (A i or B i ) at the i-th electrode position is V i , the potential of the electrode (A i + 1 or B i + 1 ) at the i + 1-th electrode position is V i + 1 , and the potential difference thereof is ΔV i = V i + 1 −V i , the total sum of potential differences between adjacent electrodes is determined by Kirchhoff's second law,
Figure 2012050777

が成立する。なお、電極A(B)の隣接電極はAN−1(BN−1)とA(B)とし、iはN(=32)を法とするものとして解釈する(A=A)。 Is established. The adjacent electrodes of the electrode A N (B N ) are A N-1 (B N-1 ) and A 1 (B 1 ), and i is interpreted as modulo N (= 32) (A N = A 0 ).

この場合、第1電極群の特定の2個の電極A、Ai+2を電流電極として選択すると、他の30個の電極Ai+3、Ai+4、Ai+5・・・A32、A、A・・・Ai−1、Ai+1と第2電極群のうち電極B、Bi+2が電圧測定電極として選択される。すなわち、第1電極群51aから順次選択される2つの電極位置(i,i+2)の電極を電流電極(A,Ai+2)として選択して電流を印加し、すべての電極位置(i=1,2,・・・,N)について電流電極以外の62個の電極から所定の一対の電極を電位測定電極として選択し、隣接電極位置における前記電位測定電極間の電位差(ΔV〜ΔV)を順次測定する。 In this case, when two specific electrodes A i and A i + 2 in the first electrode group are selected as current electrodes, the other 30 electrodes A i + 3 , A i + 4 , A i + 5 ... A 32 , A 1 , A 2 ... A i−1 , A i + 1 and the electrodes B i and B i + 2 among the second electrode group are selected as voltage measuring electrodes. That is, the electrodes at the two electrode positions (i, i + 2) sequentially selected from the first electrode group 51a are selected as the current electrodes (A i , A i + 2 ), the current is applied, and all the electrode positions (i = 1) are selected. , 2,..., N), a predetermined pair of electrodes is selected as a potential measurement electrode from 62 electrodes other than the current electrode, and a potential difference (ΔV 1 to ΔV N ) between the potential measurement electrodes at adjacent electrode positions. Are measured sequentially.

より具体的には、コンピュータ21に含まれるコントローラに制御されたスイッチ群24が任意の一対の電極51aを電流電極として選択する。スイッチ群24は図6に例示するように、定電流回路23の2本の出力線を特定の電極A,Ai+2に選択的に接続するスイッチ群であるが、図2においては簡略化して表現している。 More specifically, the switch group 24 controlled by a controller included in the computer 21 selects an arbitrary pair of electrodes 51a as current electrodes. As illustrated in FIG. 6, the switch group 24 is a switch group that selectively connects the two output lines of the constant current circuit 23 to specific electrodes A i and A i + 2 , but is simplified in FIG. 2. expressing.

図2には32対の第1電極群51a、第2電極群51bのうち4対のみが例示されている。マルチプレクサ27等についても同様である。すなわち、図において上側の2対の電極群のうち第1電極群51aの2つの電極がスイッチ群24により電流電極として選択されてそれぞれ電流源72a,72bに接続され、対応する第2電極群51bの2つの電極がスイッチ群36により電圧測定電極として選択されている。   FIG. 2 illustrates only four of the 32 pairs of the first electrode group 51a and the second electrode group 51b. The same applies to the multiplexer 27 and the like. That is, in the figure, two electrodes of the first electrode group 51a of the upper two pairs of electrode groups are selected as current electrodes by the switch group 24 and connected to the current sources 72a and 72b, respectively, and the corresponding second electrode group 51b. These two electrodes are selected as voltage measuring electrodes by the switch group 36.

また、図において下側の2対の電極群のうち第1電極群51aがスイッチ群36により測定電極として選択されるが、第2電極群51bはインピーダンス測定手段に接続されない。電圧測定はマルチプレクサ27で測定電極を順次切り換えることにより実行される。   In the figure, the first electrode group 51a is selected as the measurement electrode by the switch group 36 from the lower two electrode groups, but the second electrode group 51b is not connected to the impedance measuring means. Voltage measurement is performed by sequentially switching the measurement electrodes by the multiplexer 27.

<電極ユニット>
図2では定電流回路23の接続相手の2つの電極51aをスイッチ群(マトリックススイッチ)24のON/OFFにより選択するように模式的に表現したが、正弦波発振器22に基づいて正弦波電流を発生する定電流回路23を各電極51aの近傍に配置し、スイッチ群24を配置してON/OFFを切り換えるように構成してもよい。
<Electrode unit>
In FIG. 2, the two electrodes 51 a to be connected to the constant current circuit 23 are schematically represented by selecting ON / OFF of the switch group (matrix switch) 24, but the sine wave current is calculated based on the sine wave oscillator 22. The generated constant current circuit 23 may be arranged in the vicinity of each electrode 51a, and the switch group 24 may be arranged to switch ON / OFF.

図3は、1対の電極群51a,51bを含む電極ユニット40とこれに接続される回路ユニット41の一組のみを模式的に表現したものである。   FIG. 3 schematically represents only one set of an electrode unit 40 including a pair of electrode groups 51a and 51b and a circuit unit 41 connected thereto.

電極ユニット40は第1電極群51aの1つの電極(たとえばA)とその近傍に配置される第2電極群51bの1つの電極(たとえばB)および各電極に切り換え可能に接続されるプリアンプ37a,37bを含む。また、スイッチ群25は図2のスイッチ群24の断続機能を含み、第1電極群51aが電流電極として選択された場合には回路ユニット41の定電流回路23の電流を第1電極群51aに導き、それ以外の場合には第1電極群51aをプリアンプ37aの入力に択一的に接続する。また、スイッチ群36は、第1電極群51aが電流電極として選択された場合には第2電極51bに接続されたプリアンプ37bの出力を差動アンプ26に接続し、それ以外の場合には第1電極51aに接続されたプリアンプ37aの出力を差動アンプ26に択一的に接続する。スイッチ群36で選択された電圧信号はラインcを経由して回路ユニット41の差動増幅器26に出力されるとともにラインfを介して隣接する回路ユニットの差動増幅器(図示せず)に出力される。 Preamplifier electrode unit 40 which is connected to be switched to one electrode (e.g., A i) and one electrode (e.g., B i) and the electrodes of the second electrode group 51b disposed in the vicinity of the first electrode group 51a 37a and 37b are included. Further, the switch group 25 includes the intermittent function of the switch group 24 of FIG. 2, and when the first electrode group 51a is selected as a current electrode, the current of the constant current circuit 23 of the circuit unit 41 is supplied to the first electrode group 51a. In other cases, the first electrode group 51a is alternatively connected to the input of the preamplifier 37a. In addition, the switch group 36 connects the output of the preamplifier 37b connected to the second electrode 51b to the differential amplifier 26 when the first electrode group 51a is selected as the current electrode, and otherwise the first group 51a. The output of the preamplifier 37a connected to one electrode 51a is selectively connected to the differential amplifier 26. The voltage signal selected by the switch group 36 is output to the differential amplifier 26 of the circuit unit 41 via the line c and is output to the differential amplifier (not shown) of the adjacent circuit unit via the line f. The

回路ユニット41は測定系として差動アンプ26、バッファアンプ43、および電流刺激系として位相反転器46、位相選択スイッチ47、電流源45を含む。差動増幅器26はスイッチ群36で選択された測定電極の電位と、隣接する回路ユニットからラインeを介して入力された隣接位置の測定電極の電位との電位差を増幅してバッファアンプ43を介してラインaからマルチプレクサ27に出力する。また正弦波発振器22からラインbを介して正弦波信号が位相反転器46に入力し、非反転出力と反転出力とがスイッチ47で選択される。選択された正弦波電圧信号は電圧制御型電流源45で電圧電流変換されて正弦波電流を発生し、ラインdを介して電流電極51aに出力される。   The circuit unit 41 includes a differential amplifier 26 and a buffer amplifier 43 as a measurement system, and a phase inverter 46, a phase selection switch 47, and a current source 45 as a current stimulation system. The differential amplifier 26 amplifies the potential difference between the potential of the measurement electrode selected by the switch group 36 and the potential of the measurement electrode at the adjacent position input from the adjacent circuit unit via the line e, and passes through the buffer amplifier 43. To the multiplexer 27 from the line a. A sine wave signal is input from the sine wave oscillator 22 to the phase inverter 46 via the line b, and a non-inverted output and an inverted output are selected by the switch 47. The selected sine wave voltage signal is voltage-current converted by the voltage control type current source 45 to generate a sine wave current, which is output to the current electrode 51a via the line d.

図3のような電極ユニット40と回路ユニット41の構成により定電流回路23と電流電極とが近接配置されるため周波数特性が改善される。なお、32組の電極ユニット40と回路ユニット41は32組の電極部70に組み込まれるように構成してもよい。   With the configuration of the electrode unit 40 and the circuit unit 41 as shown in FIG. 3, the frequency characteristics are improved because the constant current circuit 23 and the current electrode are arranged close to each other. Note that the 32 sets of electrode units 40 and the circuit unit 41 may be configured to be incorporated into the 32 sets of electrode portions 70.

<電位測定>
全ての隣接電極間電位差ΔVが測定されると(N回)、任意の電極位置i,j間(i<j)の電位差ΔVijは測定で得られた電位差ΔVを用いて、

Figure 2012050777
<Potential measurement>
When the potential difference ΔV i between all adjacent electrodes is measured (N times), the potential difference ΔV ij between any electrode positions i and j (i <j) is calculated using the potential difference ΔV k obtained by the measurement,
Figure 2012050777

から算出することができる。 It can be calculated from

被測定体表面で発生した電位は、電極51a,51bを通して差動増幅器26で増幅され、その出力信号がマルチプレクサ27を通ってバンドパスフィルタ(帯域通過フィルタ)28に導かれる。バンドパスフィルタ28を通過した信号は、位相検出型アンプ29に導かれ、移相器31からのタイミング信号を用いて正弦波発振器22と同一位相の成分(実部)と90度位相の遅れた成分(虚部)に分解された後、直流電圧信号に変換される。その後、直流電圧信号がA/D変換器(直流電圧計)30によってA/D変換され、コンピュータ21に取り込まれる。   The potential generated on the surface of the measurement object is amplified by the differential amplifier 26 through the electrodes 51a and 51b, and the output signal is guided to the band pass filter (band pass filter) 28 through the multiplexer 27. The signal that has passed through the bandpass filter 28 is guided to the phase detection type amplifier 29, and is delayed by 90 degrees in phase and the same phase component (real part) as the sine wave oscillator 22 using the timing signal from the phase shifter 31. After being decomposed into components (imaginary part), it is converted into a DC voltage signal. Thereafter, the DC voltage signal is A / D converted by an A / D converter (DC voltmeter) 30 and taken into the computer 21.

これらの操作をマルチプレクサ27の接点を移動させて繰り返し、すべての差動増幅器26からの出力信号を計測する。さらに、スイッチ群24(25)を順次切り替えて別の電極間に電流を流し、差動増幅器26からの出力信号を同様にして計測する。   These operations are repeated by moving the contacts of the multiplexer 27, and output signals from all the differential amplifiers 26 are measured. Further, the switch group 24 (25) is sequentially switched to pass a current between the other electrodes, and the output signal from the differential amplifier 26 is measured in the same manner.

被測定体50に電流を印加するための電流電極51aは被測定体50の外周上に配置した電極から適宜選択できる。また、電流電極51aの電極間隔は電圧測定のダイナミックレンジ等を考慮して適宜設定できるが、本実施形態ではひとつおきに隣接する2つの電極すなわち隣接電極間隔の2単位分の距離を設定し、2つの電極を被測定体50の全周のすべての位置(電極位置iとi+2)について選択する。この場合には選択される電極位置の組み合わせは、{(i,i+2)}={(1,3),(2,4),(3,5)・・・(N−2,N),(N−1,1),(N,2)}とすることができる。   The current electrode 51 a for applying a current to the measured object 50 can be selected as appropriate from the electrodes arranged on the outer periphery of the measured object 50. In addition, the electrode interval of the current electrodes 51a can be set as appropriate in consideration of the dynamic range of voltage measurement, etc., but in this embodiment, every two adjacent electrodes, that is, a distance corresponding to 2 units of the adjacent electrode interval is set, Two electrodes are selected for all positions (electrode positions i and i + 2) of the entire circumference of the measurement object 50. In this case, the combination of the selected electrode positions is {(i, i + 2)} = {(1, 3), (2, 4), (3, 5) (N-2, N), (N-1, 1), (N, 2)}.

<測定誤差の補償>
すでに説明したように、2組の電極群51a,51bを配置したことにより、1周にわたる隣接位置の電極間の電位差の総和が式(1)に示すように常にゼロになることを利用することができる。ところでプリアンプ37a,37b、差動増幅器26、ロックインアンプ29等の測定回路を介して現実に測定される電位差をΔV’、直流信号を処理するロックインアンプ29、A/D変換器30等で生じる誤差電圧(オフセット電圧等)をe、電位差の真値をΔVとすると、生の測定データはΔV’=ΔV+eと表現できる。この誤差電圧eには、生体インピーダンスにより生じた電位差とは関係なく電子回路で発生する飛来ノイズも含まれる。すなわち、プリアンプ37a,37bの入力インピーダンスは接触抵抗の影響を極力軽減するために非常に大きいため空中を伝搬する測定周波数と同一の飛来ノイズの影響を受けやすい。
<Measurement error compensation>
As already described, by using two sets of electrode groups 51a and 51b, the fact that the sum of potential differences between electrodes at adjacent positions over one round is always zero as shown in equation (1) is used. Can do. By the way, the potential difference actually measured via the measurement circuits such as the preamplifiers 37a and 37b, the differential amplifier 26, and the lock-in amplifier 29 is ΔV i ′, the lock-in amplifier 29 that processes the DC signal, the A / D converter 30 and the like. the error voltage caused by (offset voltage, etc.) e, when the true value of the potential difference and [Delta] V i, raw measurement data can be expressed as ΔV i '= ΔV i + e . The error voltage e includes flying noise generated in the electronic circuit regardless of the potential difference caused by the bioelectrical impedance. That is, the input impedance of the preamplifiers 37a and 37b is very large in order to reduce the influence of the contact resistance as much as possible, so that it is easily affected by the same incoming noise as the measurement frequency propagating in the air.

インピーダンス測定からインピーダンス分布の画像を再構成するためには一般に有効数字6桁の精度が必要とされる。したがってわずかな測定誤差があっても高精度な測定には深刻な問題となる。そこで、測定回路系に依存する測定誤差を簡便かつ確実に除去する方法が望まれていた。   In order to reconstruct an image of impedance distribution from impedance measurement, an accuracy of 6 significant figures is generally required. Therefore, even if there is a slight measurement error, it becomes a serious problem for high-accuracy measurement. Therefore, there has been a demand for a method for easily and reliably removing measurement errors depending on the measurement circuit system.

発明者らは測定対象50を一巡する欠けのない本発明の電位差測定法によれば、式(1)より、

Figure 2012050777
According to the potential difference measuring method of the present invention that makes a round of the measurement object 50, the inventors have obtained the following equation (1):
Figure 2012050777

となるので、

Figure 2012050777
So,
Figure 2012050777

により測定誤差eが補償され、真値を容易に推定することができることを見いだした。すなわち、各電位差の実測値ΔV’およびその総和Vtotalに基づいてΔVを求めることができ、さらに式(2)より高い精度で任意の電位差ΔVijを算出することができる。 Thus, it was found that the measurement error e is compensated and the true value can be easily estimated. That is, based on the measured value [Delta] V i 'and the sum V total of each potential difference can be obtained [Delta] V i, further it is possible to calculate any potential difference [Delta] V ij with high accuracy from the equation (2).

<輪郭形状の計測>
複雑な脂肪分布を画像化するためには楕円等で近似するのでは足りず、現実の測定部位断面の輪郭形状を測定する必要がある。
<Measurement of contour shape>
In order to image a complex fat distribution, it is not sufficient to approximate it with an ellipse or the like, and it is necessary to measure the contour shape of an actual measurement site section.

輪郭情報測定手段3は電極部70のエアシリンダ55a(55b)に配置された位置センサ57a(57b)とコンピュータ(コントローラ)21とから構成される。エアシリンダ55a(55b)にはロッド55a(55b)が駆出された量に応じた電気信号を出力する位置センサ57a(57b)が取り付けられている。コンピュータ21は、ロッド56a(56b)が完全に引き込まれた時の電極の位置情報と位置センサ57a(57b)によって検出されたロッド56a(56b)の駆出量情報とから、被測定体50に接触した状態の電極51a,51bの位置を算出する。したがって、すべてのエアシリンダ55a,55bにおける電極51a(51b)の位置を検知することにより、被測定体50の輪郭形状や断面積などが得られる。   The contour information measuring means 3 is composed of a position sensor 57a (57b) and a computer (controller) 21 arranged in the air cylinder 55a (55b) of the electrode unit 70. A position sensor 57a (57b) that outputs an electrical signal corresponding to the amount of ejection of the rod 55a (55b) is attached to the air cylinder 55a (55b). The computer 21 uses the position information of the electrode when the rod 56a (56b) is completely retracted and the ejection amount information of the rod 56a (56b) detected by the position sensor 57a (57b) to the measured object 50. The positions of the electrodes 51a and 51b in contact with each other are calculated. Therefore, by detecting the positions of the electrodes 51a (51b) in all the air cylinders 55a and 55b, the contour shape, cross-sectional area, etc. of the measured object 50 can be obtained.

図7は1対の電極51a,51bを一体的に構成した電極部70を示す。電極部70は輪郭情報測定手段3、電極ユニット(図示せず)、回路ユニット(図示せず)を含んで構成される。1対の電極51a,51bは低摩擦空気シリンダ75のロッド76の先端に固定された電極支持部77に位置固定される。ロッド76は主軸が被測定体50の輪郭にほぼ垂直に向かう方向Aに伸縮自在である。また電極51a,51bの繰り出し量は位置センサ(リニアポテンショメータ)としてのスライド抵抗器78により検出される。すなわち、電極支持部77にスライド抵抗器78の可動部78aが位置固定され,抵抗体78bが低摩擦空気シリンダ75に位置固定されるため、電極51a,51bの繰り出し量が相応する抵抗値に変換されて位置検出される。このように電極部70を一体として構成することによって構造が簡素化されて小型化することができるとともに、回路部分(電極ユニット40、回路ユニット41)を電極近傍に組み込むことによって周波数特性やS/Nが向上する。   FIG. 7 shows an electrode portion 70 in which a pair of electrodes 51a and 51b are integrally formed. The electrode unit 70 includes a contour information measuring unit 3, an electrode unit (not shown), and a circuit unit (not shown). The pair of electrodes 51a and 51b are fixed to an electrode support 77 fixed to the tip of the rod 76 of the low friction air cylinder 75. The rod 76 is extendable in a direction A in which the main axis is substantially perpendicular to the contour of the measured object 50. Further, the feed amounts of the electrodes 51a and 51b are detected by a slide resistor 78 as a position sensor (linear potentiometer). That is, since the movable portion 78a of the slide resistor 78 is fixed to the electrode support portion 77 and the resistor 78b is fixed to the low friction air cylinder 75, the feed amounts of the electrodes 51a and 51b are converted into corresponding resistance values. The position is detected. Thus, the structure of the electrode unit 70 can be simplified and the size can be reduced, and the frequency characteristics and S / S can be reduced by incorporating the circuit portion (electrode unit 40, circuit unit 41) in the vicinity of the electrode. N is improved.

<導電率分布の算出>
導電率分布算出手段4はコンピュータおよびそのコンピュータに組み込まれたソフトウエアを含み、取得されたデータに基づいて導電率分布またはインピーダンス分布を算出する。なお、インピーダンス[Ωm]は導電率[Ω−1−1]の逆数でこれらは等価である。
<Calculation of conductivity distribution>
The conductivity distribution calculating means 4 includes a computer and software installed in the computer, and calculates the conductivity distribution or impedance distribution based on the acquired data. The impedance [Ωm] is the reciprocal of the conductivity [Ω −1 m −1 ] and these are equivalent.

まず、輪郭情報測定手段3によって求められた測定部位断面の輪郭形状ならびに測定部位外周上に配置された電極51a,51bの位置情報に基づいて被測定体50と同一の輪郭形状を有する仮想モデル面が構成される。次に、仮想モデル面上に初期値として適当な導電率分布を与え、インピーダンス測定手段2による測定と同様の電極間に同様の電流を流したとき、仮想モデル面外周上に発生する電位分布を有限要素法などによって計算する。   First, a virtual model surface having the same contour shape as the measured object 50 based on the contour shape of the cross section of the measurement site obtained by the contour information measuring means 3 and the positional information of the electrodes 51a and 51b arranged on the outer circumference of the measurement site. Is configured. Next, an appropriate conductivity distribution is given as an initial value on the virtual model surface, and a potential distribution generated on the outer periphery of the virtual model surface when a similar current is passed between electrodes similar to the measurement by the impedance measuring means 2 is obtained. Calculate by the finite element method.

算出した電位分布を、インピーダンス測定手段2で実際の被測定体50に対して測定された電位差ΔVijと比較し、両者の差(残差)が小さくなるように、仮想モデル面上の導電率分布を修正する。導電率分布を修正した仮想モデル面に対して、同様にして外周の電位分布を計算し、実測値と再度比較する。残差が所定の設定値以下になるまであるいは残差が一定値に収束するまでこれらの操作を反復し、仮想モデル面上に測定部位断面と同一の導電率分布を再現する。二次元的な仮想モデル面の代わりに、長手方向に同一の断面形状を有する三次元的な仮想モデル体を用いてもよい。 The calculated potential distribution is compared with the potential difference ΔV ij measured with respect to the actual measured object 50 by the impedance measuring means 2, and the conductivity on the virtual model surface is reduced so that the difference (residual) between the two becomes small. Correct the distribution. In the same manner, the potential distribution on the outer periphery is calculated for the virtual model surface whose conductivity distribution is corrected, and is compared again with the actual measurement value. These operations are repeated until the residual becomes equal to or smaller than a predetermined set value or until the residual converges to a constant value, and the same conductivity distribution as that of the cross section of the measurement site is reproduced on the virtual model plane. Instead of the two-dimensional virtual model surface, a three-dimensional virtual model body having the same cross-sectional shape in the longitudinal direction may be used.

<脂肪量算出>
脂肪量算出手段5はコンピュータに含まれ、導電率分布算出手段4によりえられた導電率分布画像に基づいて脂肪量を算出する。すなわち、脂肪と筋肉等の非脂肪部分とは導電率が異なるため、導電率の分布が脂肪、筋肉等の分布を反映しているので、たとえば所定のしきい値以下の導電率を有する領域を脂肪領域と判定し、それ以外の領域を非脂肪域と判定し、これらの結果に基づいて脂肪量を算出することができる。本発明には他の脂肪量算出方法も適用することができる。いずれの脂肪量算出方法であっても本発明のインピーダンス測定法によれば脂肪量の推定精度を向上させることができる。
<Fat mass calculation>
The fat amount calculating means 5 is included in the computer and calculates the fat amount based on the conductivity distribution image obtained by the conductivity distribution calculating means 4. In other words, since the conductivity of fat and non-fat portions such as muscles is different, the distribution of conductivity reflects the distribution of fat, muscle, etc. It is determined that the region is a fat region, and other regions are determined to be non-fat regions, and the fat mass can be calculated based on these results. Other fat mass calculation methods can also be applied to the present invention. Any fat mass calculation method can improve the estimation accuracy of fat mass according to the impedance measurement method of the present invention.

表示手段6は、液晶表示装置や有機EL表示装置等の映像表示装置あるいは紙、フィルム等の印刷媒体への印刷機器を用いることができる。映像表示装置の画面あるいは印刷機器の印刷媒体上には、算出した導電率分布画像や脂肪分布画像を表示したり、被験者のプロフィールなどの入力データや算出した体脂肪量などの出力データの数値および文字情報を表示することができる。   The display means 6 can be a video display device such as a liquid crystal display device or an organic EL display device, or a printing device for printing media such as paper and film. The calculated conductivity distribution image and fat distribution image are displayed on the screen of the video display device or the printing medium of the printing device, the input data such as the subject's profile and the numerical value of the output data such as the calculated body fat amount and Character information can be displayed.

(変更実施形態)
本発明はすでに説明したように、所定の電極位置(i,i+2)の電流電極が選択された場合に、すべての電極位置(i=1,2,・・・,N)について隣接電極間電位差ΔVを測定することを特徴とする。そのため、本実施形態では第1電極群から所定の電極位置の2個の電極を電流電極として選択し、電位測定面を電流電極位置とできるだけ一致させるように順次電圧測定電極を選択した。電流電極近傍の電圧測定電極がジグザグに選択されるためジグザグモードと呼ぶことにする。この場合には図6に示すように、第1電極群の電極51aと第2電極群51bから電極ユニット40および回路ユニット41を介して電圧測定電極を順次切り換える必要がある。
(Modified embodiment)
In the present invention, as described above, when a current electrode at a predetermined electrode position (i, i + 2) is selected, the potential difference between adjacent electrodes is determined for all electrode positions (i = 1, 2,..., N). ΔV i is measured. Therefore, in the present embodiment, two electrodes at predetermined electrode positions are selected as current electrodes from the first electrode group, and voltage measurement electrodes are sequentially selected so that the potential measurement surface matches the current electrode position as much as possible. Since the voltage measuring electrode in the vicinity of the current electrode is selected in a zigzag manner, it will be referred to as a zigzag mode. In this case, as shown in FIG. 6, it is necessary to sequentially switch the voltage measurement electrodes from the electrode 51 a and the second electrode group 51 b of the first electrode group via the electrode unit 40 and the circuit unit 41.

図8には、電流電極を第1電極群51aから順次選択し、電圧測定電極を第2電極群51bから順次選択する変更実施形態を示す。電流電極位置からわずかにずれた平面上に電圧測定電極が配置されるのでパラレルモードと呼ぶことにする。この場合にも全ての電極位置について隣接電極間電位差ΔVを測定するのでキルヒホッフの第2法則を利用することができる。さらに、電極ユニット40においてスイッチ群25、36による電気的接続の切り換え等が不要となるためジグザグモードに比べて回路を簡素化、小型化することができる。 FIG. 8 shows a modified embodiment in which current electrodes are sequentially selected from the first electrode group 51a and voltage measurement electrodes are sequentially selected from the second electrode group 51b. Since the voltage measurement electrode is arranged on a plane slightly deviated from the current electrode position, it will be referred to as a parallel mode. In this case, Kirchhoff's second law can be used because the potential difference ΔV i between adjacent electrodes is measured for all electrode positions. Furthermore, since it is not necessary to switch the electrical connection by the switch groups 25 and 36 in the electrode unit 40, the circuit can be simplified and miniaturized compared to the zigzag mode.

本発明によれば、2組の電極群を用いて測定対象の精密なインピーダンス測定が可能となるため、より高い空間分解能の導電率分布画像や脂肪分布画像を算出することができる。   According to the present invention, it is possible to accurately measure the impedance of a measurement target using two sets of electrodes, and therefore, it is possible to calculate a conductivity distribution image and a fat distribution image with higher spatial resolution.

1a,1b 電極群
21 コンピュータ(コントローラ)
22 正弦波発振器
23 定電流回路
24,25,36 スイッチ群
26 差動増幅器
27 マルチプレクサ
28 バンドパスフィルター
29 ロックインアンプ
30 A/D変換器
31 移相器
37a,37b プリアンプ
40 電極ユニット、 41 回路ユニット
51a 第1電極群、 51b 第2電極群
52 開閉部
53 支持板
55a,55b,75 エアシリンダー
56a,56b,76 ロッド
57a,57b,78 位置センサ
70 電極部
72a,72b 交流電流源
77 電極支持部
78 スライド抵抗器
1a, 1b Electrode group 21 Computer (controller)
22 Sine Wave Oscillator 23 Constant Current Circuit 24, 25, 36 Switch Group 26 Differential Amplifier 27 Multiplexer 28 Band Pass Filter 29 Lock-in Amplifier 30 A / D Converter 31 Phase Shifter 37a, 37b Preamplifier 40 Electrode Unit, 41 Circuit Unit 51a First electrode group, 51b Second electrode group 52 Opening / closing part 53 Support plate 55a, 55b, 75 Air cylinder 56a, 56b, 76 Rod 57a, 57b, 78 Position sensor 70 Electrode part 72a, 72b AC current source 77 Electrode support part 78 Slide resistor

Claims (7)

測定対象の外周上に環状に複数の電極位置が規定され、各電極位置に各電極が配置される第1電極群と、
前記各電極位置において前記第1電極群の電極の近傍に各電極が配置される第2電極群と、
(i)前記第1電極群のうち順次選択される2つの電極位置の電極を電流電極として選択して電流を印加し、
(ii)すべての電極位置について前記電流電極以外の電極から電位測定電極を選択し、隣接電極位置における前記電位測定電極間の電位差を順次測定するインピーダンス測定手段と、
測定結果に基づいて前記測定対象の断面上の導電率分布を算出し、画像化する導電率分布算出手段と
を具備することを特徴とする導電率分布画像の生成装置。
A first electrode group in which a plurality of electrode positions are defined annularly on the outer circumference of the measurement target, and each electrode is disposed at each electrode position;
A second electrode group in which each electrode is disposed in the vicinity of the electrode of the first electrode group at each electrode position;
(I) applying an electric current by selecting electrodes at two electrode positions sequentially selected from the first electrode group as current electrodes;
(Ii) impedance measurement means for selecting potential measurement electrodes from electrodes other than the current electrode for all electrode positions and sequentially measuring a potential difference between the potential measurement electrodes at adjacent electrode positions;
A conductivity distribution image generating apparatus, comprising: a conductivity distribution calculating unit that calculates a conductivity distribution on a cross section of the measurement object based on a measurement result, and forms an image.
前記隣接電極位置の前記電位測定電極間の電位差の総和がゼロとなるように前記インピーダンス測定手段の測定誤差が補償されることを特徴とする請求項1記載の導電率分布画像の生成装置。   2. The conductivity distribution image generating apparatus according to claim 1, wherein a measurement error of the impedance measuring unit is compensated so that a total sum of potential differences between the potential measuring electrodes at the adjacent electrode positions becomes zero. 前記インピーダンス測定手段が選択する電位測定電極は、前記第1電極群のうち前記電流電極として選択されない電極および前記第2電極群のうち前記電流電極の電極位置の電極から選択されることを特徴とする請求項1または2記載の導電率分布画像の生成装置。   The potential measuring electrode selected by the impedance measuring means is selected from an electrode not selected as the current electrode in the first electrode group and an electrode at the electrode position of the current electrode in the second electrode group. The conductivity distribution image generating device according to claim 1 or 2. 前記インピーダンス測定手段が選択する電位測定電極は、前記第2電極群から選択されることを特徴とする請求項1または2記載の導電率分布画像の生成装置。   3. The conductivity distribution image generating apparatus according to claim 1, wherein the potential measuring electrode selected by the impedance measuring unit is selected from the second electrode group. 前記第1電極群の各電極とそれに対応する前記第2電極群の電極が電極支持部に位置固定されて、前記電極支持部は測定対象の外周に向かう方向に移動自在であり、
前記電極支持部の移動量に基づいて前記測定対象の外周の輪郭形状を取得し前記導電率分布算出手段に出力する輪郭形状測定手段をさらに具備することを特徴とする請求項1乃至4のいずれか1項記載の導電率分布画像の生成装置。
Each electrode of the first electrode group and the corresponding electrode of the second electrode group are fixed to the electrode support part, and the electrode support part is movable in a direction toward the outer periphery of the measurement target,
5. The apparatus according to claim 1, further comprising a contour shape measuring unit that acquires a contour shape of an outer periphery of the measurement target based on a movement amount of the electrode support portion and outputs the contour shape to the conductivity distribution calculating unit. The conductivity distribution image generating device according to claim 1.
請求項1乃至5のいずれか1項記載の導電率分布画像の生成装置と、
算出された導電率分布に基づいて脂肪量を算出する脂肪量算出手段と、
算出された脂肪量を表示する表示手段と
を具備することを特徴とする体脂肪測定装置。
The conductivity distribution image generating device according to any one of claims 1 to 5,
A fat amount calculating means for calculating a fat amount based on the calculated conductivity distribution;
A body fat measuring device comprising display means for displaying the calculated fat mass.
測定対象の外周上に環状に規定される複数の電極位置に対して各電極位置に各電極が配置される第1電極群から順次選択された2つの電極間に電流を印加することと、
前記各電極位置において前記第1電極群の電極の近傍に各電極が配置される第2電極群と前記第1電極群とからすべての隣接電極位置について前記電流を印加した電極以外の電極を順次選択して電位差を測定することと、
前記隣接電極位置の電極間の電位差の総和がゼロとなるように各電位差の測定誤差を補償することと、
補償された各電位差に基づいて前記測定対象の断面上の導電率分布を算出して画像化することと
を含むことを特徴とする導電率分布画像の生成方法。
Applying a current between two electrodes sequentially selected from the first electrode group in which each electrode is arranged at each electrode position with respect to a plurality of electrode positions defined in a ring shape on the outer circumference of the measurement object;
The electrodes other than the electrode to which the current is applied are sequentially applied to all adjacent electrode positions from the second electrode group and the first electrode group in which each electrode is disposed in the vicinity of the electrode of the first electrode group at each electrode position. Select and measure the potential difference;
Compensating the measurement error of each potential difference so that the sum of the potential differences between the electrodes at the adjacent electrode positions becomes zero;
A method of generating a conductivity distribution image, comprising: calculating and imaging a conductivity distribution on a cross section of the measurement object based on each compensated potential difference.
JP2010197687A 2010-09-03 2010-09-03 Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same Pending JP2012050777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197687A JP2012050777A (en) 2010-09-03 2010-09-03 Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197687A JP2012050777A (en) 2010-09-03 2010-09-03 Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same

Publications (1)

Publication Number Publication Date
JP2012050777A true JP2012050777A (en) 2012-03-15

Family

ID=45904833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197687A Pending JP2012050777A (en) 2010-09-03 2010-09-03 Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP2012050777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368773B2 (en) 2014-10-21 2019-08-06 Samsung Electronics Co., Ltd. Apparatus for measuring body fat and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368773B2 (en) 2014-10-21 2019-08-06 Samsung Electronics Co., Ltd. Apparatus for measuring body fat and method thereof

Similar Documents

Publication Publication Date Title
JP6860229B2 (en) Conductivity acquisition device
JP2013531525A5 (en)
JP2012501779A (en) Method and system for magnetically induced tomography
US20160015363A1 (en) Systems for measuring force and torque on ultrasound probe during imaging through strain measurement
US8942787B2 (en) Soft field tomography system and method
EP2502557B1 (en) System and method for soft-field tomography data acquisition
EP0094113A2 (en) Tomography
JP6813563B2 (en) Determining fluid level
JP6492103B2 (en) In vivo signal source position detection method and in vivo signal source position detection apparatus
JP3958628B2 (en) Body fat measuring device
CN109745047A (en) A kind of electric impedance imaging system based on pressure resistance type electrode
JP2012050777A (en) Apparatus and method for creating distribution image of electric conductivity, and body fat measuring apparatus using the same
JP2019523428A (en) Electrical impedance measurement and EIT image for localization of subcutaneous micro-biological channel
Ain et al. Dual modality electrical impedance and ultrasound reflection tomography to improve image quality
JP6518084B2 (en) In-vivo signal source position detection device and in-vivo signal source position detection method
van Duinen et al. MR compatible strain gauge based force transducer
AYATI S.... et al, 2012
JP6588614B2 (en) In vivo signal source position detection method and in vivo signal source position detection apparatus
Dimas et al. SPICE and MATLAB simulation and evaluation of Electrical Impedance Tomography readout chain using phantom equivalents
Kjærsgaard-Rasmussen et al. Inside-out electrical capacitance tomography
Busch et al. Realization of a multi-layer EIT-system
JPH07369A (en) High-speed imaging method of internal impedance distribution
JP2015051101A (en) Muscle mass measurement device
Salama et al. A multitasking electrical impedance tomography system using titanium alloy electrode
Brown et al. Tomography