JP2012050596A - Radiation imaging device - Google Patents

Radiation imaging device Download PDF

Info

Publication number
JP2012050596A
JP2012050596A JP2010194782A JP2010194782A JP2012050596A JP 2012050596 A JP2012050596 A JP 2012050596A JP 2010194782 A JP2010194782 A JP 2010194782A JP 2010194782 A JP2010194782 A JP 2010194782A JP 2012050596 A JP2012050596 A JP 2012050596A
Authority
JP
Japan
Prior art keywords
radiation
conversion panel
contact
radiation conversion
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010194782A
Other languages
Japanese (ja)
Inventor
Naoyuki Nishino
直行 西納
Haruyasu Nakatsugawa
晴康 中津川
Yasuyoshi Ota
恭義 大田
Naoto Iwakiri
直人 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010194782A priority Critical patent/JP2012050596A/en
Priority to PCT/JP2011/064397 priority patent/WO2012029384A1/en
Publication of JP2012050596A publication Critical patent/JP2012050596A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately protect a scintillator against external impact.SOLUTION: A radiation imaging device (20) has: a contact mechanism (118) for bringing the scintillator and a radiation conversion panel (64) into contact with each other; move detecting units (56, 58), which detect move of the radiation imaging device (20); and a contact control unit (110), which controls the contact mechanism (118) so as to bring the scintillator and the radiation conversion panel (64) into contact with each other when radiation is applied to at least a radiation detector, and which stops the control of the contact made between the scintillator and the radiation conversion panel (64) by the contact mechanism (118), when physical quantities relating to the move of the radiation imaging device (20) detected by the move detecting units (56, 58), exceed a predetermined threshold.

Description

本発明は、放射線を可視光に変換するシンチレータと、前記可視光を電気信号に変換する放射線変換パネルとを有する放射線撮影装置に関する。   The present invention relates to a radiation imaging apparatus having a scintillator that converts radiation into visible light and a radiation conversion panel that converts the visible light into an electrical signal.

医療分野において、放射線源から被写体に放射線を照射し、該被写体を透過した前記放射線を放射線撮影装置で検出することにより、前記被写体の放射線画像を取得することが広汎に行われている。この場合、放射線撮影装置は、例えば、被写体を透過した放射線を可視光に変換するシンチレータと、該可視光を電気信号に変換する放射線変換パネルとを備えた間接変換型の放射線検出器を有する。   In the medical field, a radiation image of a subject is widely acquired by irradiating the subject with radiation from a radiation source and detecting the radiation transmitted through the subject with a radiation imaging apparatus. In this case, the radiation imaging apparatus includes, for example, an indirect conversion type radiation detector including a scintillator that converts radiation transmitted through a subject into visible light and a radiation conversion panel that converts the visible light into an electrical signal.

ところで、近年、高剛性の支持基板と略直交する方向に形成されたCsI等の柱状結晶を備えたシンチレータを前記支持基板に配置した放射線検出器が提案されている(特許文献1参照)。この場合、前記支持基板に配置された前記柱状結晶の先端部分と放射線変換パネルとを貼り合わせることにより前記放射線検出器が構成される。   Recently, a radiation detector has been proposed in which a scintillator including a columnar crystal such as CsI formed in a direction substantially orthogonal to a highly rigid support substrate is disposed on the support substrate (see Patent Document 1). In this case, the radiation detector is configured by bonding a tip portion of the columnar crystal disposed on the support substrate and a radiation conversion panel.

ここで、前記柱状結晶が放射線を可視光に変換した場合、該可視光は前記柱状結晶の柱状部分を進行し、該柱状結晶の先端部分から前記放射線変換パネルに至る。この結果、前記放射線変換パネルにおいて、入射された前記可視光を電気信号に変換することができる。   Here, when the columnar crystal converts radiation into visible light, the visible light travels through the columnar portion of the columnar crystal and reaches the radiation conversion panel from the tip portion of the columnar crystal. As a result, the incident visible light can be converted into an electric signal in the radiation conversion panel.

また、柱状結晶における可視光の発光量の低下を抑制すると共に、各柱間である程度の隙間を確保することにより可視光によるクロストークの発生を回避するために、柱状結晶の充填率は、所定の充填率(例えば、70%〜85%)に設定されていることが望ましい。このようにすることで、放射線から変換された可視光のシンチレータ内での散乱が抑制されると共に、放射線画像の画像ぼけの発生を回避することができる。   In addition, in order to prevent a reduction in the amount of visible light emission in the columnar crystals and to avoid occurrence of crosstalk due to visible light by ensuring a certain gap between the columns, the filling rate of the columnar crystals is predetermined. It is desirable that the filling rate is set to (for example, 70% to 85%). By doing so, scattering of visible light converted from radiation in the scintillator is suppressed, and occurrence of blurring of the radiation image can be avoided.

特開2006−58124号公報JP 2006-58124 A

上述のように、シンチレータの支持基板は、高剛性を確保するために、ある程度の重量を有する必要がある。また、シンチレータの両面(柱状結晶の先端部分及び該柱状結晶における支持基板側の基端部分)は、支持基板と放射線変換パネルとによってそれぞれ固定されている。この場合、支持基板と放射線変換パネルとの間では、剛性が互いに異なる場合もあり得る。さらに、シンチレータの柱状結晶についても、クロストークを防止するために、柱状部分において、ある程度の隙間を確保する必要がある。   As described above, the support substrate of the scintillator needs to have a certain weight in order to ensure high rigidity. Further, both surfaces of the scintillator (the tip portion of the columnar crystal and the base end portion on the support substrate side of the columnar crystal) are fixed by the support substrate and the radiation conversion panel, respectively. In this case, the rigidity may be different between the support substrate and the radiation conversion panel. Further, with respect to the columnar crystal of the scintillator, it is necessary to secure a certain gap in the columnar portion in order to prevent crosstalk.

この結果、例えば、医師又は放射線技師が放射線撮影装置の搬送中に誤って該放射線撮影装置を落下させて、外部から放射線撮影装置に衝撃を与えてしまうと、支持基板の歪み量と放射線変換パネルの歪み量との違いに起因して、前記柱状結晶に不用意な応力が作用する。これにより、柱状結晶の割れ(折れ)やひびが発生して、放射線画像の画像ぼけ等の放射線撮影装置の性能劣化の原因になるおそれがある。   As a result, for example, if a doctor or a radiographer accidentally drops the radiation imaging apparatus during transportation of the radiation imaging apparatus and gives an impact to the radiation imaging apparatus from the outside, the distortion amount of the support substrate and the radiation conversion panel Due to the difference from the strain amount, careless stress acts on the columnar crystals. As a result, cracks (cracks) and cracks of the columnar crystals occur, which may cause deterioration in performance of the radiographic apparatus such as blurring of radiographic images.

本発明は、かかる従来の問題点に鑑みてなされたものであり、外部からの衝撃に対してシンチレータを適切に保護することが可能となる放射線撮影装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a radiation imaging apparatus capable of appropriately protecting a scintillator against an external impact.

上記目的を達成するために、本発明は、放射線を可視光に変換するシンチレータ、及び、前記可視光を電気信号に変換する放射線変換パネルを備えた放射線検出器を有する放射線撮影装置であって、
前記シンチレータと前記放射線変換パネルとを接触させる接触機構と、
前記放射線撮影装置の移動を検知する移動検知部と、
少なくとも前記放射線検出器に対する前記放射線の照射時には、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御し、一方で、前記移動検知部が検知した前記放射線撮影装置の移動に関わる物理量が所定の閾値を超えたときに前記接触機構による前記シンチレータと前記放射線変換パネルとの接触制御を停止させる接触制御部とをさらに有することを特徴としている。
To achieve the above object, the present invention is a radiographic apparatus having a scintillator that converts radiation into visible light, and a radiation detector that includes a radiation conversion panel that converts the visible light into an electrical signal,
A contact mechanism for contacting the scintillator and the radiation conversion panel;
A movement detector for detecting movement of the radiation imaging apparatus;
At least when the radiation detector is irradiated with the radiation, the contact mechanism is controlled to bring the scintillator and the radiation conversion panel into contact with each other, and on the other hand, the movement of the radiation imaging apparatus detected by the movement detection unit is involved. It further has a contact control unit that stops contact control between the scintillator and the radiation conversion panel by the contact mechanism when the physical quantity exceeds a predetermined threshold value.

この場合、前記シンチレータは、該シンチレータを支持する支持基板上に、該支持基板と略直交する方向に沿って、前記放射線を前記可視光に変換可能な柱状結晶を蒸着形成することにより構成され、前記接触機構は、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うようにしている。   In this case, the scintillator is configured by vapor-depositing a columnar crystal capable of converting the radiation into the visible light on a support substrate that supports the scintillator, along a direction substantially orthogonal to the support substrate. The contact mechanism controls contact between the tip portion of the columnar crystal and the radiation conversion panel.

また、前記放射線検出器、前記接触機構、前記移動検知部及び前記接触制御部を、前記放射線を透過可能で且つ可搬型の筐体に収容する場合、前記筐体内では、該筐体の厚み方向に沿って、前記支持基板、前記シンチレータ及び前記放射線変換パネルが順に配置され、前記支持基板又は前記放射線変換パネルに対向する前記筐体の表面が前記放射線が照射される照射面とされる。   Further, in the case where the radiation detector, the contact mechanism, the movement detection unit, and the contact control unit are housed in a portable housing that can transmit the radiation, the thickness direction of the housing is within the housing. The support substrate, the scintillator, and the radiation conversion panel are arranged in order, and the surface of the housing that faces the support substrate or the radiation conversion panel is an irradiation surface on which the radiation is irradiated.

さらに、前記移動検知部は、前記放射線撮影装置の加速度を検出する加速度センサ、又は、前記照射面に接触する被写体から前記放射線撮影装置に加わる圧力を検出する圧力センサであり、前記接触制御部は、前記加速度又は前記圧力に関わる物理量が前記閾値未満である場合には、前記接触機構を制御することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記物理量が前記閾値を超える場合には、前記接触機構による前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を停止させることが望ましい。   Further, the movement detection unit is an acceleration sensor that detects an acceleration of the radiation imaging apparatus, or a pressure sensor that detects a pressure applied to the radiation imaging apparatus from a subject in contact with the irradiation surface, and the contact control unit is When the physical quantity related to the acceleration or the pressure is less than the threshold value, the tip portion of the columnar crystal and the radiation conversion panel are brought into contact by controlling the contact mechanism, while the physical quantity is When exceeding the threshold value, it is desirable to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel by the contact mechanism.

そして、前記接触機構は、下記[1]〜[5]のうち、いずれか1つの構成であることが望ましい。   The contact mechanism preferably has any one of the following [1] to [5].

[1] 前記接触機構は、前記筐体の厚み方向に沿って膨張又は収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うエアバッグであり、前記放射線撮影装置は、前記筐体内に収容され、前記エアバッグに不活性ガスを送り込んで該エアバッグを前記厚み方向に膨張させるインフレータをさらに有する。   [1] The contact mechanism is an airbag that performs contact control between a tip portion of the columnar crystal and the radiation conversion panel by being expanded or contracted along a thickness direction of the casing, and the radiation imaging apparatus Is further provided with an inflator that is housed in the casing and inflates the airbag in the thickness direction by feeding an inert gas into the airbag.

この場合、平面視で、前記シンチレータは、前記支持基板及び前記放射線変換パネルの内方に形成されると共に、前記エアバッグは、前記シンチレータを囲繞するように前記支持基板の外縁部又は前記放射線変換パネルの外縁部に配設され、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの離間を指示した場合に、前記インフレータは、前記不活性ガスを前記エアバッグに送り込み、前記エアバッグは、前記支持基板の外縁部と前記放射線変換パネルの外縁部との間で、前記厚み方向に膨張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させる。   In this case, in a plan view, the scintillator is formed inside the support substrate and the radiation conversion panel, and the air bag surrounds the scintillator so as to surround the scintillator or the radiation conversion. The inflator is disposed on an outer edge of the panel, and when the contact control unit instructs to separate the tip portion of the columnar crystal from the radiation conversion panel, the inflator sends the inert gas into the airbag, The airbag expands in the thickness direction between the outer edge portion of the support substrate and the outer edge portion of the radiation conversion panel, thereby separating the tip portion of the columnar crystal from the radiation conversion panel.

また、前記エアバッグは、前記支持基板と前記筐体における該支持基板に対向する面との間に介挿されるか、又は、前記放射線変換パネルと前記筐体における該放射線変換パネルに対向する面との間に介挿され、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記エアバッグは、前記不活性ガスを排出して前記厚み方向に収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させる。   The airbag is interposed between the support substrate and a surface of the housing facing the support substrate, or a surface of the radiation conversion panel and the housing facing the radiation conversion panel. When the contact control unit instructs to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel, the airbag discharges the inert gas and By contracting in the thickness direction, the end portion of the columnar crystal is separated from the radiation conversion panel.

[2] 前記接触機構は、前記放射線検出器を収容した室内を負圧状態にして、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記室内を大気圧状態にして、前記厚み方向に沿って膨張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させる収容袋である。   [2] The contact mechanism brings the tip of the columnar crystal and the radiation conversion panel into contact with each other by causing the chamber containing the radiation detector to be in a negative pressure state and contracting along the thickness direction. On the other hand, it is an accommodation bag that separates the end portion of the columnar crystal and the radiation conversion panel by inflating the chamber along the thickness direction under atmospheric pressure.

また、前記放射線撮影装置は、前記収容袋に連通する通路に配設されたリーク弁をさらに有し、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触を指示した場合に、前記収容袋は、前記室内を負圧状態にすると共に、前記リーク弁は、弁閉状態となることで、前記通路を介した前記室への空気の侵入を阻止し、一方で、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記リーク弁は、弁開状態となることで、前記通路を介して前記室に前記空気を侵入させて、該室内を大気圧状態にする。   The radiation imaging apparatus further includes a leak valve disposed in a passage communicating with the containing bag, and the contact control unit instructs the contact between the tip portion of the columnar crystal and the radiation conversion panel In addition, the storage bag puts the chamber in a negative pressure state, and the leak valve is in a valve closed state, thereby preventing air from entering the chamber through the passage, When the contact control unit instructs to stop the contact control between the tip portion of the columnar crystal and the radiation conversion panel, the leak valve enters the chamber through the passage when the leak valve is opened. To enter an atmospheric pressure state.

[3] 前記接触機構は、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記厚み方向に沿って伸張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うばね部材である。   [3] The contact mechanism contracts along the thickness direction to bring the tip portion of the columnar crystal into contact with the radiation conversion panel, while extending along the thickness direction, It is a spring member that performs contact control between the tip portion of the columnar crystal and the radiation conversion panel.

この場合、前記ばね部材は、前記筐体における前記照射面側の天板と底板との間にあって、且つ、前記放射線検出器近傍の箇所に配設されるか、あるいは、前記放射線変換パネルの外縁部と前記支持基板の外縁部との間に配設される。   In this case, the spring member is disposed between the top plate and the bottom plate on the irradiation surface side in the housing and is disposed at a location near the radiation detector, or an outer edge of the radiation conversion panel. And the outer edge of the support substrate.

また、前記ばね部材の一端部は、前記天板又は前記放射線変換パネルの外縁部に固定されると共に、前記ばね部材の他端部は、前記底板又は前記支持基板の外縁部に配設されたロック部材に固定され、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触を指示した場合に、前記ロック部材は、前記ばね部材を前記厚み方向に収縮させ、一方で、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記ロック部材は、前記ばね部材に対するロック状態を解除して、前記ばね部材を前記厚み方向に伸張させる。   One end of the spring member is fixed to the outer edge of the top plate or the radiation conversion panel, and the other end of the spring member is disposed on the outer edge of the bottom plate or the support substrate. When the contact controller is fixed to the lock member and the contact control unit instructs the contact between the tip portion of the columnar crystal and the radiation conversion panel, the lock member contracts the spring member in the thickness direction, When the contact control unit instructs to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel, the lock member releases the locked state with respect to the spring member, and the spring member is moved to the thickness. Stretch in the direction.

[4] 前記接触機構は、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記厚み方向に沿って伸張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を停止させる圧電素子である。   [4] The contact mechanism contracts along the thickness direction to bring the tip portion of the columnar crystal into contact with the radiation conversion panel, while extending along the thickness direction, The piezoelectric element stops contact control between the columnar crystal tip and the radiation conversion panel.

この場合、前記圧電素子は、前記筐体における前記照射面側の天板と底板との間であって、且つ、前記放射線検出器近傍の箇所に配設されるか、あるいは、前記放射線変換パネルの外縁部と前記支持基板の外縁部との間に配設される。   In this case, the piezoelectric element is disposed between the top plate and the bottom plate on the irradiation surface side in the housing and in the vicinity of the radiation detector, or the radiation conversion panel. Between the outer edge of the support substrate and the outer edge of the support substrate.

[5] 前記接触機構は、回転軸を中心に回転することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うカムである。   [5] The contact mechanism is a cam that performs contact control between the tip portion of the columnar crystal and the radiation conversion panel by rotating about a rotation axis.

そして、上記の各発明において、前記接触制御部は、前記放射線を出力する放射線源が該放射線の照射準備を行った時点で、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御してもよい。   In each of the above-described inventions, the contact control unit sets the contact mechanism so that the scintillator and the radiation conversion panel are brought into contact with each other when the radiation source that outputs the radiation prepares to irradiate the radiation. You may control.

また、前記接触制御部は、被写体に対する放射線の照射に関わるオーダ情報に基づいて、前記被写体を介した前記放射線検出器への前記放射線の照射前に、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御し、一方で、前記放射線の照射後に前記シンチレータと前記放射線変換パネルとの接触制御を停止させるように前記接触機構を制御してもよい。   Further, the contact control unit brings the scintillator and the radiation conversion panel into contact with each other before irradiation of the radiation to the radiation detector via the subject based on order information related to radiation irradiation on the subject. The contact mechanism may be controlled as described above, and the contact mechanism may be controlled to stop contact control between the scintillator and the radiation conversion panel after the radiation irradiation.

本発明によれば、少なくとも放射線検出器に対する放射線の照射時には、シンチレータと放射線変換パネルとが接触し、一方で、移動検知部が検知した放射線撮影装置の移動に関わる物理量が所定の閾値を超えたときには、接触機構による前記シンチレータと前記放射線変換パネルとの接触制御が停止するので、外部から前記放射線撮影装置に衝撃が加えられる場合でも、前記シンチレータを該衝撃から適切に保護することができる。   According to the present invention, at least when the radiation detector is irradiated with radiation, the scintillator and the radiation conversion panel are in contact with each other, while the physical quantity related to the movement of the radiation imaging apparatus detected by the movement detector exceeds a predetermined threshold. In some cases, contact control between the scintillator and the radiation conversion panel by the contact mechanism is stopped, so that even when an impact is applied to the radiation imaging apparatus from the outside, the scintillator can be appropriately protected from the impact.

従って、前記シンチレータが例えば柱状結晶から構成されている場合でも、前記衝撃に起因した該柱状結晶の割れ(折れ)やひびの発生を確実に回避することが可能となる。   Therefore, even when the scintillator is made of, for example, a columnar crystal, it is possible to reliably avoid the occurrence of cracks (cracks) and cracks of the columnar crystal due to the impact.

本実施形態に係る放射線撮影装置(電子カセッテ)を用いた放射線撮影システムの構成図である。It is a block diagram of the radiography system using the radiography apparatus (electronic cassette) which concerns on this embodiment. 図1に示す電子カセッテの斜視図である。It is a perspective view of the electronic cassette shown in FIG. 図3A及び図3Bは、図2に示す電子カセッテのIII−III断面図である。3A and 3B are III-III sectional views of the electronic cassette shown in FIG. 図4A及び図4Bは、図2の電子カセッテにおける放射線検出器近傍の要部断面図である。4A and 4B are cross-sectional views of the main part in the vicinity of the radiation detector in the electronic cassette of FIG. 図4A及び図4Bの放射線検出器の模式的平面図である。5 is a schematic plan view of the radiation detector of FIGS. 4A and 4B. FIG. 図6A及び図6Bは、図2の電子カセッテにおける放射線検出器近傍の要部断面図である。6A and 6B are cross-sectional views of main parts in the vicinity of the radiation detector in the electronic cassette of FIG. 図1の電子カセッテの電気的な概略構成図である。It is an electrical schematic block diagram of the electronic cassette of FIG. 図1の放射線撮影システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the radiography system of FIG. 図1のカセッテに外部から衝撃が加えられる場合での図1の放射線撮影システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the radiography system of FIG. 1 in the case where an external impact is applied to the cassette of FIG. 図10A及び図10Bは、本実施形態の第1変形例を示す要部断面図である。FIG. 10A and FIG. 10B are main part sectional views showing a first modification of the present embodiment. 図11A及び図11Bは、本実施形態の第2変形例を示す要部断面図である。FIG. 11A and FIG. 11B are main part sectional views showing a second modification of the present embodiment. 図12A及び図12Bは、本実施形態の第3変形例を示す要部断面図である。12A and 12B are main part cross-sectional views showing a third modification of the present embodiment. 図13A及び図13Bは、本実施形態の第4変形例を示す要部断面図である。FIG. 13A and FIG. 13B are cross-sectional views of relevant parts showing a fourth modification of the present embodiment. 図14A及び図14Bは、本実施形態の第5変形例を示す要部断面図である。FIG. 14A and FIG. 14B are main part sectional views showing a fifth modification of the present embodiment. 図15A及び図15Bは、本実施形態の第6変形例を示す要部断面図である。FIG. 15A and FIG. 15B are cross-sectional views of relevant parts showing a sixth modification of the present embodiment. 図16A及び図16Bは、本実施形態の第7変形例を示す要部断面図である。FIG. 16A and FIG. 16B are main part sectional views showing a seventh modification of the present embodiment.

本発明に係る放射線撮影装置の好適な実施形態について、図1〜図16Bを参照しながら、詳細に説明する。   A preferred embodiment of a radiation imaging apparatus according to the present invention will be described in detail with reference to FIGS.

図1は、本実施形態に係る電子カセッテ20(放射線撮影装置)を有する放射線撮影システム10の構成図である。   FIG. 1 is a configuration diagram of a radiation imaging system 10 having an electronic cassette 20 (radiation imaging apparatus) according to the present embodiment.

放射線撮影システム10は、ベッド等の撮影台12に横臥した患者等の被写体14に対して放射線16を照射する放射線出力装置18と、被写体14を透過した放射線16を検出して放射線画像に変換する電子カセッテ20と、放射線撮影システム10全体を制御すると共に、医師又は放射線技師(以下、医師ともいう。)の入力操作を受け付けるコンソール22と、撮影した放射線画像等を表示する表示装置24とを備える。   The radiation imaging system 10 detects a radiation output device 18 that irradiates a subject 16 such as a patient lying on an imaging table 12 such as a bed, and the radiation 16 that has passed through the subject 14 and converts the radiation 16 into a radiation image. The electronic cassette 20 includes a console 22 that controls the entire radiation imaging system 10 and receives an input operation of a doctor or a radiographer (hereinafter also referred to as a doctor), and a display device 24 that displays a captured radiation image or the like. .

放射線出力装置18、電子カセッテ20、コンソール22及び表示装置24間では、例えば、UWB(Ultra Wide Band)、IEEE802.11.a/b/g/n等の無線LAN、又は、ミリ波等を用いた無線通信により信号の送受信が行われる。なお、ケーブルを用いた有線通信により信号の送受信を行ってもよいことは勿論である。   Between the radiation output device 18, the electronic cassette 20, the console 22 and the display device 24, for example, UWB (Ultra Wide Band), IEEE 802.11. Signals are transmitted and received by wireless LAN such as a / b / g / n or wireless communication using millimeter waves or the like. It goes without saying that signals may be transmitted and received by wired communication using a cable.

コンソール22には、病院内の放射線科において取り扱われる放射線画像やその他の情報を統括的に管理する放射線科情報システム(RIS)26が接続され、RIS26には、病院内の医事情報を統括的に管理する医事情報システム(HIS)28が接続されている。   The console 22 is connected to a radiology information system (RIS) 26 that centrally manages radiographic images and other information handled in the radiology department in the hospital. The RIS 26 is used to comprehensively manage medical information in the hospital. A medical information system (HIS) 28 to be managed is connected.

放射線出力装置18は、放射線16を照射する放射線源30と、放射線源30を制御する放射線制御装置32と、放射線スイッチ34とを備える。放射線源30は、電子カセッテ20に対して放射線16を照射する。放射線源30が照射する放射線16は、X線、α線、β線、γ線、電子線等であってもよい。放射線スイッチ34は、2段階のストロークを持つように構成され、放射線制御装置32は、放射線スイッチ34が医師によって半押されると放射線16の照射準備を行い、全押されると放射線源30から放射線16を照射させる。   The radiation output device 18 includes a radiation source 30 that irradiates the radiation 16, a radiation control device 32 that controls the radiation source 30, and a radiation switch 34. The radiation source 30 irradiates the electronic cassette 20 with radiation 16. The radiation 16 irradiated by the radiation source 30 may be X-rays, α-rays, β-rays, γ-rays, electron beams, or the like. The radiation switch 34 is configured to have a two-stage stroke, and the radiation control device 32 prepares for irradiation of the radiation 16 when the radiation switch 34 is half-pressed by the doctor, and from the radiation source 30 when the radiation switch 34 is fully pressed. Is irradiated.

なお、前述のように、放射線出力装置18、電子カセッテ20、コンソール22及び表示装置24間では、信号の送受信が可能であるため、放射線出力装置18は、放射線スイッチ34が半押状態となったときに照射準備を示す信号をコンソール22等に送信し、その後、放射線スイッチ34が全押状態となったときに放射線16の照射開始を示す信号をコンソール22等に送信してもよい。   As described above, the radiation output device 18, the electronic cassette 20, the console 22, and the display device 24 can transmit and receive signals. Therefore, in the radiation output device 18, the radiation switch 34 is half pressed. Sometimes, a signal indicating preparation for irradiation may be transmitted to the console 22 or the like, and then a signal indicating the start of irradiation of the radiation 16 may be transmitted to the console 22 or the like when the radiation switch 34 is fully pressed.

図2は、図1に示す電子カセッテ20の斜視図であり、図3A及び図3Bは、図2に示す電子カセッテ20のIII−III線に沿った断面図である。   2 is a perspective view of the electronic cassette 20 shown in FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along line III-III of the electronic cassette 20 shown in FIG.

電子カセッテ20は、パネル部42と、該パネル部42上に配置された制御部48とを備える。なお、パネル部42の厚みは、制御部48の厚みよりも薄く設定されている。   The electronic cassette 20 includes a panel unit 42 and a control unit 48 disposed on the panel unit 42. The thickness of the panel unit 42 is set to be thinner than the thickness of the control unit 48.

パネル部42は、放射線16に対して透過可能な材料からなる略矩形状の筐体40を有し、パネル部42の表面(上面)である照射面44に放射線16が照射される。照射面44の略中央部には、被写体14の撮影領域及び撮影位置を示すガイド線50が形成されている。ガイド線50の外枠が、放射線16の照射野を示す撮影可能領域52になる。また、ガイド線50の中心位置(ガイド線50が十字状に交差する交点)は、撮影可能領域52の中心位置である。   The panel unit 42 includes a substantially rectangular casing 40 made of a material that is transmissive to the radiation 16, and the radiation 16 is irradiated onto the irradiation surface 44 that is the surface (upper surface) of the panel unit 42. A guide line 50 indicating the shooting area and shooting position of the subject 14 is formed at a substantially central portion of the irradiation surface 44. The outer frame of the guide line 50 becomes a shootable region 52 indicating the irradiation field of the radiation 16. The center position of the guide line 50 (intersection where the guide line 50 intersects in a cross shape) is the center position of the shootable area 52.

筐体40の制御部48側の側面には、医師が把持可能な取手54が配設されている。医師は、取手54を把持することにより電子カセッテ20を所望の場所(例えば、撮影台12)に搬送することが可能となる。従って、電子カセッテ20は、可搬型の放射線撮影装置である。   A handle 54 that can be grasped by a doctor is disposed on the side surface of the housing 40 on the control unit 48 side. The doctor can transport the electronic cassette 20 to a desired location (for example, the imaging table 12) by holding the handle 54. Therefore, the electronic cassette 20 is a portable radiation imaging apparatus.

筐体40内の取手54近傍には、電子カセッテ20の加速度(の3軸成分)を検出する3軸の加速度センサ56(移動検知部)が配置されている。なお、加速度センサ56は、電子カセッテ20を誤って落下させたときに、落下の衝撃によって加速度センサ56が壊れないように、上記のように取手54近傍に配置されている。また、筐体40内のガイド線50の中心位置近傍には、外部から電子カセッテ20に付与される圧力(の3軸成分)を検出する3軸の圧力センサ58(移動検知部)が配置されている。この場合、電子カセッテ20が移動することで加速度が発生し、一方で、電子カセッテ20が圧力を受けることで該電子カセッテ20が変位する可能性があるため、これらの物理量は、いずれも、電子カセッテ20の移動に関わる物理量となる。   In the vicinity of the handle 54 in the housing 40, a triaxial acceleration sensor 56 (movement detector) for detecting the acceleration (the triaxial component) of the electronic cassette 20 is arranged. The acceleration sensor 56 is disposed in the vicinity of the handle 54 as described above so that when the electronic cassette 20 is accidentally dropped, the acceleration sensor 56 is not broken by a drop impact. In addition, a triaxial pressure sensor 58 (movement detector) that detects pressure (three axial components) applied to the electronic cassette 20 from the outside is disposed near the center position of the guide wire 50 in the housing 40. ing. In this case, since the acceleration is generated by the movement of the electronic cassette 20, and the electronic cassette 20 may be displaced when the electronic cassette 20 receives pressure, these physical quantities are both electronic This is a physical quantity related to the movement of the cassette 20.

また、筐体40の内部には、シンチレータパネル62及び放射線変換パネル64を有する放射線検出器66と、放射線変換パネル64を駆動させる駆動回路部68(図7参照)とがさらに配置されている。   Further, a radiation detector 66 having a scintillator panel 62 and a radiation conversion panel 64 and a drive circuit unit 68 (see FIG. 7) for driving the radiation conversion panel 64 are further arranged inside the housing 40.

シンチレータパネル62は、被写体14を透過した放射線16を、可視光領域に含まれる蛍光に変換するシンチレータ150(図4A及び図4B参照)を有する。放射線変換パネル64は、放射線16を透過可能であると共に、シンチレータ150が変換した前記蛍光を電気信号に変換する間接変換型の放射線変換パネルである。   The scintillator panel 62 includes a scintillator 150 (see FIGS. 4A and 4B) that converts the radiation 16 that has passed through the subject 14 into fluorescence contained in the visible light region. The radiation conversion panel 64 is an indirect conversion type radiation conversion panel that can transmit the radiation 16 and converts the fluorescence converted by the scintillator 150 into an electric signal.

図3Aは、放射線16が照射される照射面44から順に、放射線変換パネル64とシンチレータパネル62とを筐体40内部に配設した表面読取方式としてのISS(Irradiation Side Sampling)方式の放射線検出器66を図示している。一方、図3Bは、放射線16が照射される照射面44から順に、シンチレータパネル62と放射線変換パネル64とを筐体40内部に配設した裏面読取方式としてのPSS(Penetration Side Sampling)方式の放射線検出器66を図示している。   FIG. 3A shows an ISS (Irradiation Side Sampling) type radiation detector as a surface reading method in which a radiation conversion panel 64 and a scintillator panel 62 are arranged in the housing 40 in order from the irradiation surface 44 irradiated with the radiation 16. 66 is illustrated. On the other hand, FIG. 3B shows a PSS (Penetration Side Sampling) type radiation as a back side reading method in which a scintillator panel 62 and a radiation conversion panel 64 are arranged in the housing 40 in order from the irradiation surface 44 irradiated with the radiation 16. A detector 66 is illustrated.

制御部48は、放射線16に対して非透過性の材料からなる略矩形状の筐体108を有する。該筐体108は、照射面44の一端に沿って延在しており、照射面44における撮影可能領域52の外に制御部48が配設される。この場合、筐体108の内部には、後述するパネル部42を制御するカセッテ制御部110(接触制御部)と、撮影した放射線画像の画像データを記憶するバッファメモリとしてのメモリ112と、コンソール22との間で無線による信号の送受信が可能な通信部114と、バッテリ等の電源部116とが配置されている(図7参照)。電源部116は、電子カセッテ20内の各部に対して電力供給を行う。   The control unit 48 includes a substantially rectangular casing 108 made of a material that is impermeable to the radiation 16. The housing 108 extends along one end of the irradiation surface 44, and the control unit 48 is disposed outside the imageable region 52 on the irradiation surface 44. In this case, inside the housing 108, a cassette control unit 110 (contact control unit) that controls a panel unit 42 (to be described later), a memory 112 as a buffer memory that stores image data of a captured radiographic image, and the console 22. A communication unit 114 capable of wirelessly transmitting and receiving signals and a power source unit 116 such as a battery are arranged (see FIG. 7). The power supply unit 116 supplies power to each unit in the electronic cassette 20.

また、筐体108の上面には、撮影された放射線画像等を表示可能である一方で、医師が種々の情報を入力可能なタッチパネル方式の表示操作部122と、医師に対する各種の通知を音として出力するスピーカ124とが配設されている。さらに、筐体108の側面には、外部電源から電源部116に対して充電を行うためのACアダプタの入力端子126と、外部機器(例えば、コンソール22等)との間で情報を送受信可能なインターフェース手段としてのUSB端子128とが設けられている。   In addition, on the upper surface of the housing 108, a captured radiographic image or the like can be displayed, while a touch-panel display operation unit 122 that allows a doctor to input various information and various notifications to the doctor as sounds. An output speaker 124 is disposed. Further, on the side surface of the housing 108, information can be transmitted and received between the input terminal 126 of the AC adapter for charging the power supply unit 116 from the external power source and the external device (for example, the console 22). A USB terminal 128 is provided as an interface means.

図4A及び図4Bは、筐体40内部の放射線検出器66の要部断面図であり、一例として、図3AのISS方式の放射線検出器66を図示したものである。この場合、筐体40における照射面44側の天板132と、底面側の底板140との間に放射線検出器66が配置されている。   4A and 4B are cross-sectional views of the main part of the radiation detector 66 inside the housing 40. As an example, the ISS radiation detector 66 of FIG. 3A is illustrated. In this case, the radiation detector 66 is disposed between the top plate 132 on the irradiation surface 44 side and the bottom plate 140 on the bottom surface side in the housing 40.

具体的に、底板140には、接着層136を介してスポンジ等の緩衝材138が接着され、該緩衝材138には、接着層142を介してシンチレータパネル62が接着されている。一方、天板132の底板140側には、接着層130を介して放射線変換パネル64が接着されている。   Specifically, a buffer material 138 such as a sponge is bonded to the bottom plate 140 via an adhesive layer 136, and the scintillator panel 62 is bonded to the buffer material 138 via an adhesive layer 142. On the other hand, the radiation conversion panel 64 is bonded to the bottom plate 140 side of the top plate 132 through the adhesive layer 130.

シンチレータパネル62は、接着層142を介して緩衝材138に接着されたAl基板等の剛性を有する支持基板144と、該支持基板144の上面に蒸着形成されたシンチレータ150とを有する。   The scintillator panel 62 includes a support substrate 144 having rigidity such as an Al substrate bonded to the buffer material 138 through an adhesive layer 142, and a scintillator 150 formed by vapor deposition on the upper surface of the support substrate 144.

シンチレータ150は、支持基板144上に、例えば、ヨウ化セシウム(CsI(Tl))が真空蒸着法で短冊状の柱状結晶構造148に形成されたものであり、支持基板144上の該シンチレータ150の基端部分は、非柱状結晶部分146とされている。この場合、柱状結晶構造148は、支持基板144と略直交する方向(図4A及び図4Bの上下方向)に沿って、各柱間がある程度の隙間を確保した状態で形成されている。また、CsIのシンチレータ150は、柱状結晶構造148が湿度に弱く、非柱状結晶部分146が湿度に特に弱いという特性を有するので、光透過性の防湿保護材152で封止されている。   The scintillator 150 is formed by forming, for example, cesium iodide (CsI (Tl)) into a strip-like columnar crystal structure 148 on a support substrate 144 by a vacuum deposition method. The base end portion is a non-columnar crystal portion 146. In this case, the columnar crystal structure 148 is formed in a state in which a certain gap is secured between the columns along a direction substantially perpendicular to the support substrate 144 (the vertical direction in FIGS. 4A and 4B). Further, the CsI scintillator 150 has a characteristic that the columnar crystal structure 148 is weak against humidity and the non-columnar crystal portion 146 is particularly vulnerable to humidity.

そして、シンチレータ150(を被覆した防湿保護材152)における柱状結晶構造148の先端部分側と、放射線変換パネル64とを互いに押し当てることで、筐体40内におけるシンチレータ150と放射線変換パネル64との相対位置を固定するようにしている。これにより、放射線16が放射線変換パネル64及び防湿保護材152を透過してシンチレータ150に至ると、柱状結晶構造148では、放射線16を可視光領域の蛍光に変換し、変換された蛍光は、柱状結晶構造148の柱状部分を進行し、該柱状結晶構造148の先端部分から防湿保護材152を介して放射線変換パネル64に至る。従って、放射線変換パネル64において、入射された蛍光を電気信号に変換することができる。なお、放射線変換パネル64は、TFT基板上に前記蛍光を電気信号に変換する画素(光電変換素子)が積層されたものである。   The scintillator 150 (the moisture-proof protective material 152 that covers the columnar crystal structure 148) and the radiation conversion panel 64 are pressed against each other, so that the scintillator 150 and the radiation conversion panel 64 in the housing 40 are pressed against each other. The relative position is fixed. Thus, when the radiation 16 passes through the radiation conversion panel 64 and the moisture-proof protective material 152 and reaches the scintillator 150, the columnar crystal structure 148 converts the radiation 16 into fluorescence in the visible light region, and the converted fluorescence is columnar. The columnar portion of the crystal structure 148 travels and reaches the radiation conversion panel 64 from the tip portion of the columnar crystal structure 148 through the moisture-proof protective material 152. Therefore, in the radiation conversion panel 64, the incident fluorescence can be converted into an electrical signal. The radiation conversion panel 64 is obtained by stacking pixels (photoelectric conversion elements) that convert the fluorescence into electric signals on a TFT substrate.

ところで、柱状結晶構造148は、硬く脆い特性を有するため、外部からの圧力や応力に弱い。そのため、電子カセッテ20を落下させたり、過度に外部から圧力をかけたりすることで、柱状結晶構造148に割れ(折れ)やひびが発生し、この結果、撮影性能や感度が低下して、放射線画像の画像ぼけ等の電子カセッテ20の性能劣化が発生するおそれがある。   By the way, the columnar crystal structure 148 has a hard and brittle characteristic, and thus is vulnerable to external pressure and stress. Therefore, when the electronic cassette 20 is dropped or excessive pressure is applied from the outside, the columnar crystal structure 148 is cracked (broken) or cracked. As a result, the imaging performance and sensitivity are lowered, and radiation is reduced. There is a risk of performance degradation of the electronic cassette 20 such as image blurring.

より具体的に説明すると、シンチレータ150の支持基板144は、高剛性を確保するために、ある程度の重量を有する必要がある。また、支持基板144と放射線変換パネル64との間で剛性が互いに異なる場合がある。さらに、シンチレータ150の柱状結晶構造148についても、蛍光の発光量の低下や、各柱間での蛍光のクロストークの発生を回避するために、各柱間である程度の隙間(例えば、70%〜85%の充填率)を確保しておく必要がある。   More specifically, the support substrate 144 of the scintillator 150 needs to have a certain weight in order to ensure high rigidity. In addition, the rigidity may be different between the support substrate 144 and the radiation conversion panel 64. Further, the columnar crystal structure 148 of the scintillator 150 also has a certain gap (for example, 70% to 70%) between the columns in order to avoid a decrease in the amount of fluorescent light emission and the occurrence of fluorescence crosstalk between the columns. It is necessary to ensure a filling rate of 85%.

この結果、例えば、医師が電子カセッテ20の搬送中に誤って該電子カセッテ20を落下させて、外部から電子カセッテ20に衝撃を加えてしまうと、剛性の異なる支持基板144の歪み量と放射線変換パネル64の歪み量との違いに起因して、柱状結晶構造148に不用意な応力が作用するので、柱状結晶構造148の割れ(折れ)やひびが発生して、放射線画像の画像ぼけ等の電子カセッテ20の性能劣化の原因になるおそれがある。また、支持基板144及び放射線変換パネル64が同じ剛性であっても、落下の仕方によって互いに異なる歪み量となる場合もある。さらに、被写体14が照射面44と接触して、該被写体14から照射面44を介して電子カセッテ20に過度の圧力が加えられた場合でも、柱状結晶構造148に不用意な応力が作用してしまうので、柱状結晶構造148の割れ(折れ)やひびが発生するおそれがある。   As a result, for example, if a doctor accidentally drops the electronic cassette 20 during transportation of the electronic cassette 20 and applies an impact to the electronic cassette 20 from the outside, the distortion amount and radiation conversion of the support substrate 144 having different rigidity Inadvertent stress acts on the columnar crystal structure 148 due to a difference from the strain amount of the panel 64, and therefore the columnar crystal structure 148 is cracked (broken) or cracked. There is a risk of performance deterioration of the electronic cassette 20. Further, even if the support substrate 144 and the radiation conversion panel 64 have the same rigidity, there may be cases where the amounts of distortion differ from each other depending on the manner of dropping. Further, even when the subject 14 comes into contact with the irradiation surface 44 and an excessive pressure is applied to the electronic cassette 20 from the subject 14 via the irradiation surface 44, inadvertent stress acts on the columnar crystal structure 148. Therefore, the columnar crystal structure 148 may be cracked (broken) or cracked.

さらに、柱状結晶構造148と放射線変換パネル64とを互いに押し当てている場合に、外部からの衝撃に起因した放射線変換パネル64に対する柱状結晶構造148の位置ずれが発生すると、該放射線変換パネル64の表面を傷つけるので、前記傷の発生により放射線画像の画像欠陥が発生するおそれがある。   Furthermore, when the columnar crystal structure 148 and the radiation conversion panel 64 are pressed against each other, if the misalignment of the columnar crystal structure 148 with respect to the radiation conversion panel 64 due to external impact occurs, the radiation conversion panel 64 Since the surface is damaged, there is a possibility that an image defect of the radiation image may occur due to the generation of the scratch.

そこで、本実施形態では、図5に示すように、平面視で、放射線変換パネル64及び支持基板144の内方に(防湿保護剤152で被覆された)シンチレータ150を配置すると共に、該シンチレータ150の周囲をエアバッグ118(接触機構)で囲繞する。この場合、エアバッグ118は、図4Aに示すように、放射線変換パネル64の外縁部に接着層134を介して接着されている。また、図7に示すように、エアバッグ118には、インフレータ120が接続されている。なお、エアバッグ118及びインフレータ120は、一般的な自動車用のエアバッグ及びインフレータと同様の構造を有する。また、図5の平面視で示すように、放射線変換パネル64及び支持基板144の内方にシンチレータ150が配置されているので、図4Aに示すように、放射線変換パネル64の外縁部及び支持基板144の外縁部は、いずれも、シンチレータ150から左右方向に突出している。   Therefore, in the present embodiment, as shown in FIG. 5, the scintillator 150 (covered with the moisture-proof protective agent 152) is disposed inside the radiation conversion panel 64 and the support substrate 144 in a plan view and the scintillator 150. Is surrounded by an airbag 118 (contact mechanism). In this case, as shown in FIG. 4A, the airbag 118 is bonded to the outer edge portion of the radiation conversion panel 64 via an adhesive layer 134. In addition, as shown in FIG. 7, an inflator 120 is connected to the airbag 118. The airbag 118 and the inflator 120 have the same structure as a general automobile airbag and inflator. Further, as shown in a plan view of FIG. 5, since the scintillator 150 is disposed inward of the radiation conversion panel 64 and the support substrate 144, as shown in FIG. 4A, the outer edge portion and the support substrate of the radiation conversion panel 64 are arranged. The outer edge portions of 144 protrude from the scintillator 150 in the left-right direction.

ここで、図4Aに示すように、少なくとも外部から衝撃(落下又は圧力による衝撃)が加わらない放射線16の照射時には、シンチレータ150と放射線変換パネル64とを互いに押し当てて(接触させて)、筐体40内のシンチレータ150と放射線変換パネル64との相対位置を固定しておく。また、医師が電子カセッテ20を落下させることなく該電子カセッテ20を搬送している場合でも、シンチレータ150と放射線変換パネル64とを接触させてもよい。   Here, as shown in FIG. 4A, at least during irradiation of radiation 16 to which no impact (impact due to dropping or pressure) is applied from outside, the scintillator 150 and the radiation conversion panel 64 are pressed against (contacted with each other) to form a housing. The relative position of the scintillator 150 in the body 40 and the radiation conversion panel 64 is fixed. Further, even when a doctor is transporting the electronic cassette 20 without dropping the electronic cassette 20, the scintillator 150 and the radiation conversion panel 64 may be brought into contact with each other.

一方、例えば、医師による電子カセッテ20の搬送中に、医師が電子カセッテ20を誤って落下させることにより、加速度センサ56の検出した加速度の値が所定の閾値を超えた場合、あるいは、照射面44に対する被写体14のポジショニング時に、該被写体14が照射面44に対して勢いを付けて接触することにより、電子カセッテ20に過度の圧力が付与されて、圧力センサ58の検出した圧力値が所定の閾値を超えた場合には、落下又は圧力による衝撃によって、柱状結晶構造148に不用意な応力が作用し、柱状結晶構造148の割れ(折れ)やひび、さらには、放射線変換パネル64に対する柱状結晶構造148の位置ずれに起因した該放射線変換パネル64の表面の傷が発生する可能性がある。   On the other hand, for example, when the doctor accidentally drops the electronic cassette 20 while the electronic cassette 20 is being transported by the doctor, the acceleration value detected by the acceleration sensor 56 exceeds a predetermined threshold value, or the irradiation surface 44. When the subject 14 is positioned relative to the irradiation surface 44, the subject 14 exerts momentum on the irradiation surface 44, thereby applying an excessive pressure to the electronic cassette 20, and the pressure value detected by the pressure sensor 58 becomes a predetermined threshold value. In the case of exceeding the above, an inadvertent stress acts on the columnar crystal structure 148 due to an impact caused by dropping or pressure, and the columnar crystal structure 148 is cracked (broken) or cracked. There is a possibility that scratches on the surface of the radiation conversion panel 64 due to the position shift of 148 may occur.

このような場合、インフレータ120は、図示しない点火剤を点火して窒素ガス又はヘリウムガス等の不活性ガスを発生させ、発生した不活性ガスをエアバッグ118に送り込む。エアバッグ118は、インフレータ120から不活性ガスが送り込まれると、そのガス圧により支持基板144の方向に膨張する。これにより、支持基板144がエアバッグ118により押圧され、この結果、緩衝材138が筐体40の厚み方向(底板140の方向)に圧縮されるので、図4Bに示すように、放射線変換パネル64に対してシンチレータ150を離間させることができる。そのため、電子カセッテ20の落下又は過度の圧力に起因した、シンチレータ150への不用意な応力による柱状結晶構造148の割れ(折れ)やひび、さらには、放射線変換パネル64表面の傷の発生を回避することが可能となる。   In such a case, the inflator 120 ignites an igniter (not shown) to generate an inert gas such as nitrogen gas or helium gas, and sends the generated inert gas into the airbag 118. When the inert gas is sent from the inflator 120, the airbag 118 is expanded in the direction of the support substrate 144 by the gas pressure. As a result, the support substrate 144 is pressed by the airbag 118, and as a result, the cushioning material 138 is compressed in the thickness direction of the housing 40 (in the direction of the bottom plate 140), and as shown in FIG. In contrast, the scintillator 150 can be separated. Therefore, the columnar crystal structure 148 is prevented from being cracked (broken) or cracked due to inadvertent stress on the scintillator 150 due to the drop of the electronic cassette 20 or excessive pressure, and further the generation of scratches on the surface of the radiation conversion panel 64 is avoided. It becomes possible to do.

なお、エアバッグ118には、不活性ガスを排出する排出孔が形成されており、排出孔を介して不活性ガスを排出することにより、エアバッグ118を収縮することが可能である。   The airbag 118 is formed with a discharge hole for discharging the inert gas, and the airbag 118 can be contracted by discharging the inert gas through the discharge hole.

また、前述した所定の閾値とは、医師が電子カセッテ20の搬送中に誤って該電子カセッテ20を床面等に落下させたときの重力加速度の大きさよりも小さく設定された加速度の値、又は、電子カセッテ20に付与される圧力に起因して柱状結晶構造148の割れ(折れ)やひび、放射線変換パネル64表面の傷が発生するときの圧力値よりも小さく設定された圧力値である。従って、加速度の値が閾値を超えるか、あるいは、圧力値が閾値を超えると、柱状結晶構造148の割れやひび、放射線変換パネル64表面の傷が発生するおそれがあるため、本実施形態では、その直前の段階で、インフレータ120及びエアバッグ118を動作させて、シンチレータ150と放射線変換パネル64とを離間させることにより、該シンチレータ150を落下又は圧力による衝撃から適切に保護するようにしている。   In addition, the predetermined threshold mentioned above is an acceleration value set smaller than the magnitude of the gravitational acceleration when the doctor accidentally drops the electronic cassette 20 on the floor or the like during the transportation of the electronic cassette 20, or The pressure value is set to be smaller than the pressure value when the columnar crystal structure 148 is cracked (broken) or cracked and the surface of the radiation conversion panel 64 is damaged due to the pressure applied to the electronic cassette 20. Therefore, if the acceleration value exceeds the threshold value or the pressure value exceeds the threshold value, the columnar crystal structure 148 may be cracked or cracked, and the surface of the radiation conversion panel 64 may be damaged. Immediately before that, the inflator 120 and the airbag 118 are operated to separate the scintillator 150 and the radiation conversion panel 64, so that the scintillator 150 is appropriately protected from impact caused by dropping or pressure.

なお、本実施形態では、外部から電子カセッテ20が受ける圧力を、該電子カセッテ20の加速度と時間との積から予測してもよい。自由落下ほどの加速度(重力加速度)に到達していなくても、長時間にわたって落下していれば、電子カセッテ20の速度が増加しているはずなので、電子カセッテ20の衝撃圧が相当大きくなるものと予想される。具体的に、医師が取手54を把持した状態で、該取手54の箇所を中心として電子カセッテ20を円弧状に振ったとき(例えば、撮影台12からスライドさせつつ電子カセッテ20を該撮影台12から離間させたとき)に、撮影台12に電子カセッテ20の一部をぶつけてしまい、該電子カセッテ20に大きな衝撃が加わった場合に、シンチレータ150を前記衝撃から適切に保護することができる。   In the present embodiment, the pressure received by the electronic cassette 20 from the outside may be predicted from the product of the acceleration of the electronic cassette 20 and time. Even if the acceleration (gravitational acceleration) does not reach the level of free fall, if it has been falling for a long time, the speed of the electronic cassette 20 should increase, so that the impact pressure of the electronic cassette 20 becomes considerably large. It is expected to be. Specifically, when the electronic cassette 20 is swung in an arc shape around the position of the handle 54 while the doctor holds the handle 54 (for example, the electronic cassette 20 is slid from the imaging table 12 while the electronic cassette 20 is moved to the imaging table 12). When the electronic cassette 20 is partially struck against the photographing stand 12 and a large impact is applied to the electronic cassette 20, the scintillator 150 can be appropriately protected from the impact.

また、本実施形態では、被写体14に対する撮影の手技(例えば、臥位状態での撮影、立位状態での撮影)と、電子カセッテ20の加速度とに基づいて、電子カセッテ20に対する衝撃の有無を判断してもよい。例えば、撮影台12上に電子カセッテ20を配置して臥位状態の被写体14に対する撮影を行う場合に、撮影後に撮影台12から電子カセッテ20を動かしたときに、該撮影台12から床面に電子カセッテ20を落下させるおそれがある。このような場合には、撮影終了後、自由落下に応じた大きさの加速度を加速度センサ56が検出した際に、シンチレータ150と放射線変換パネル64とを離間させればよい。   In the present embodiment, whether or not there is an impact on the electronic cassette 20 is determined based on a shooting technique (for example, shooting in a lying position, shooting in a standing position) on the subject 14 and acceleration of the electronic cassette 20. You may judge. For example, when the electronic cassette 20 is placed on the photographing stand 12 and photographing is performed on the subject 14 in the lying position, when the electronic cassette 20 is moved from the photographing stand 12 after photographing, the photographing stand 12 is moved to the floor surface. There is a risk of dropping the electronic cassette 20. In such a case, the scintillator 150 and the radiation conversion panel 64 may be separated from each other when the acceleration sensor 56 detects an acceleration having a magnitude corresponding to the free fall after the photographing is finished.

また、立位状態で撮影を行う場合には、比較的高い位置に設置された図示しない撮影台に電子カセッテ20を装填した状態で撮影が行われるので、撮影後に前記撮影台から電子カセッテ20を取り外したときに、加速度センサ56が自由落下に応じた大きさの加速度を検出した際に、シンチレータ150と放射線変換パネル64とを離間させればよい。   Further, when shooting in a standing position, since shooting is performed with the electronic cassette 20 loaded on a shooting stand (not shown) installed at a relatively high position, the electronic cassette 20 is removed from the shooting stand after shooting. The scintillator 150 and the radiation conversion panel 64 may be separated from each other when the acceleration sensor 56 detects an acceleration having a magnitude corresponding to the free fall when removed.

さらに、撮影の手技が、撮影の前後で電子カセッテ20を落下させるおそれがある手技である場合には、インフレータ120及びエアバッグ118を動作させて、シンチレータ150と放射線変換パネル64とを予め離間させておき、電子カセッテ20が撮影台12(又は図示しない立位撮影用の撮影台)に設置されたときに、シンチレータ150と放射線変換パネル64と互いに押し当てればよい。   Further, when the photographing technique is a technique that may cause the electronic cassette 20 to drop before and after photographing, the inflator 120 and the airbag 118 are operated to separate the scintillator 150 and the radiation conversion panel 64 in advance. The scintillator 150 and the radiation conversion panel 64 may be pressed against each other when the electronic cassette 20 is installed on the imaging table 12 (or an imaging table for standing imaging (not shown)).

さらにまた、本実施形態では、上述のように、シンチレータ150と放射線変換パネル64とを完全に離間させる場合に限定されるものではなく、エアバッグ118を動作させた際のシンチレータ150と放射線変換パネル64との接触圧が、シンチレータ150と放射線変換パネル64とを互いに押し当てている状態での接触圧よりも低いか、又は、ほとんどかかっていない状態であればよい。すなわち、本実施形態では、インフレータ120及びエアバッグ118の動作時には、少なくともシンチレータ150と放射線変換パネル64との接触制御(シンチレータ150と放射線変換パネル64との押し当て)が停止している状態であればよい。   Furthermore, the present embodiment is not limited to the case where the scintillator 150 and the radiation conversion panel 64 are completely separated as described above, and the scintillator 150 and the radiation conversion panel when the airbag 118 is operated. The contact pressure with 64 may be lower than the contact pressure in a state where the scintillator 150 and the radiation conversion panel 64 are pressed against each other or hardly applied. That is, in the present embodiment, at least the contact control between the scintillator 150 and the radiation conversion panel 64 (pressing of the scintillator 150 and the radiation conversion panel 64) is stopped when the inflator 120 and the airbag 118 are in operation. That's fine.

図6A及び図6Bは、図3Bに示すPSS方式の放射線検出器66の構成を、より詳細に図示した断面図である。PSS方式の放射線検出器66においても、図5A及び図5BのISS方式の放射線検出器66と同様に、エアバッグ118を支持基板144側に膨張させることで、シンチレータ150と放射線変換パネル64とを離間(接触制御を停止)させることが可能である。   6A and 6B are cross-sectional views illustrating the configuration of the PSS radiation detector 66 shown in FIG. 3B in more detail. In the PSS type radiation detector 66 as well, as with the ISS type radiation detector 66 in FIGS. 5A and 5B, the airbag 118 is inflated toward the support substrate 144, so that the scintillator 150 and the radiation conversion panel 64 are separated. It is possible to separate (contact control is stopped).

なお、図4A〜図6Bの説明では、放射線変換パネル64の外縁部に接着層134を介してエアバッグ118を接着させた場合を図示しているが、これに代えて、支持基板144の外縁部に接着層134を介してエアバッグ118を接着させてもよいことは勿論である。この場合、エアバッグ118が放射線変換パネル64に向かって膨張し、該放射線変換パネル64を押圧すると、放射線変換パネル64からエアバッグ118への反力によって緩衝材138が天板132の方向に圧縮されるので、結果的に、シンチレータ150と放射線変換パネル64とを離間(接触制御を停止)させることができる。   4A to 6B illustrate the case where the airbag 118 is bonded to the outer edge portion of the radiation conversion panel 64 via the adhesive layer 134. Instead, the outer edge of the support substrate 144 is illustrated. Of course, the airbag 118 may be adhered to the portion via the adhesive layer 134. In this case, when the airbag 118 expands toward the radiation conversion panel 64 and presses the radiation conversion panel 64, the cushioning material 138 is compressed in the direction of the top plate 132 by the reaction force from the radiation conversion panel 64 to the airbag 118. Therefore, as a result, the scintillator 150 and the radiation conversion panel 64 can be separated (contact control is stopped).

図7は、図1に示す電子カセッテ20の電気的な概略構成図である。   FIG. 7 is a schematic electrical configuration diagram of the electronic cassette 20 shown in FIG.

電子カセッテ20は、画素160を行列状のTFT72上に配置した構造を有する。画素160は、行列状に配置されており、図示しない光電変換素子を有する。駆動回路部68を構成するバイアス電源162からバイアス電圧が供給される各画素160では、可視光(蛍光)を光電変換することにより発生した電荷が蓄積され、各列毎にTFT72を順次オンすることにより、各信号線166を介して電荷信号(電気信号)をアナログ信号の画素値として読み出すことができる。なお、図7では便宜上、画素160及びTFT72を、縦4×横4個の配列としているが、所望の個数の配列としてもよいことは勿論である。   The electronic cassette 20 has a structure in which pixels 160 are arranged on a matrix of TFTs 72. The pixels 160 are arranged in a matrix and have photoelectric conversion elements (not shown). In each pixel 160 to which a bias voltage is supplied from a bias power source 162 that constitutes the drive circuit unit 68, charges generated by photoelectric conversion of visible light (fluorescence) are accumulated, and the TFTs 72 are sequentially turned on for each column. Thus, a charge signal (electric signal) can be read out as a pixel value of an analog signal via each signal line 166. In FIG. 7, for the sake of convenience, the pixels 160 and the TFTs 72 are arranged in a 4 × 4 arrangement, but it is needless to say that a desired number of arrangements may be used.

各画素160に接続されるTFT72は、行方向に延びるゲート線164と、列方向に延びる信号線166とが接続される。各ゲート線164は、駆動回路部68を構成するゲート駆動部168に接続され、各信号線166は、チャージアンプ170を介して、駆動回路部68を構成するマルチプレクサ部172に接続される。マルチプレクサ部172には、アナログ信号の電気信号をデジタル信号の電気信号に変換するAD変換部174が接続されている。AD変換部174は、デジタル信号に変換した電気信号(デジタル信号の画素値、以下、デジタル値という場合もある)をカセッテ制御部110に出力する。   The TFT 72 connected to each pixel 160 is connected to a gate line 164 extending in the row direction and a signal line 166 extending in the column direction. Each gate line 164 is connected to a gate drive unit 168 constituting the drive circuit unit 68, and each signal line 166 is connected via a charge amplifier 170 to a multiplexer unit 172 constituting the drive circuit unit 68. The multiplexer unit 172 is connected to an AD conversion unit 174 that converts an electrical signal of an analog signal into an electrical signal of a digital signal. The AD conversion unit 174 outputs an electrical signal (a pixel value of the digital signal, hereinafter also referred to as a digital value) converted into a digital signal to the cassette control unit 110.

カセッテ制御部110は、電子カセッテ20全体の制御を行う。この場合、コンピュータ等の情報処理装置に所定のプログラムを読み込ませることによって、コンピュータをカセッテ制御部110として機能させることができる。   The cassette control unit 110 controls the entire electronic cassette 20. In this case, the computer can function as the cassette control unit 110 by causing the information processing apparatus such as a computer to read a predetermined program.

カセッテ制御部110には、メモリ112及び通信部114が接続されている。メモリ112は、デジタル信号の画素値を記憶し、通信部114は、コンソール22との間で信号の送受信を行う。通信部114は、複数の画素値が行列状に配置されて構成される1枚の画像(1フレームの画像)をコンソール22にパケット送信する。電源部116は、カセッテ制御部110、メモリ112及び通信部114等に電力を供給する。バイアス電源162は、カセッテ制御部110から送られてきた電力を各画素160に供給する。   A memory 112 and a communication unit 114 are connected to the cassette control unit 110. The memory 112 stores pixel values of digital signals, and the communication unit 114 transmits and receives signals to and from the console 22. The communication unit 114 packet-transmits one image (one frame image) configured by arranging a plurality of pixel values in a matrix. The power supply unit 116 supplies power to the cassette control unit 110, the memory 112, the communication unit 114, and the like. The bias power supply 162 supplies the power transmitted from the cassette control unit 110 to each pixel 160.

カセッテ制御部110は、読出制御部180、衝撃予知判定部182、離間指示部184及び接触指示部186を有する。   The cassette control unit 110 includes a read control unit 180, an impact prediction determination unit 182, a separation instruction unit 184, and a contact instruction unit 186.

読出制御部180は、ゲート駆動部168、チャージアンプ170、マルチプレクサ部172及びAD変換部174を制御することで、画素160に蓄積された電気信号を1行単位で順次読み出す。   The read control unit 180 controls the gate driving unit 168, the charge amplifier 170, the multiplexer unit 172, and the AD conversion unit 174, thereby sequentially reading the electrical signals accumulated in the pixels 160 in units of one row.

衝撃予知判定部182は、加速度センサ56が検出した加速度の値、又は、圧力センサ58が検出した圧力値が、所定の閾値を超えるか否かを判定する。すなわち、衝撃予知判定部182は、加速度センサ56又は圧力センサ58の検出結果に基づいて、電子カセッテ20の床面への衝突(落下)や電子カセッテ20への過度の圧力の付与のような、外部から電子カセッテ20に加えられる衝撃が柱状結晶構造148の割れ(折れ)やひび、放射線変換パネル64表面の傷を発生させるような衝撃であるか否かを判定(予知)している。   The impact prediction determination unit 182 determines whether the acceleration value detected by the acceleration sensor 56 or the pressure value detected by the pressure sensor 58 exceeds a predetermined threshold value. That is, the impact prediction determination unit 182 is based on the detection result of the acceleration sensor 56 or the pressure sensor 58, such as collision (falling) of the electronic cassette 20 on the floor surface or application of excessive pressure to the electronic cassette 20. It is determined (predicted) whether or not the impact applied to the electronic cassette 20 from the outside is such that the columnar crystal structure 148 is cracked (broken) or cracked and the surface of the radiation conversion panel 64 is damaged.

そして、衝撃予知判定部182は、加速度センサ56が検出した加速度の値が閾値を超えた場合、又は、圧力センサ58が検出した圧力値が閾値を超えた場合に、外部から電子カセッテ20に、柱状結晶構造148の割れ(折れ)やひび、放射線変換パネル64表面の傷を発生させるような衝撃が与えられることを通知する通知信号を離間指示部184に出力する。   Then, when the value of the acceleration detected by the acceleration sensor 56 exceeds the threshold value or when the pressure value detected by the pressure sensor 58 exceeds the threshold value, the impact prediction determination unit 182 A notification signal is output to the separation instructing unit 184 for notifying that an impact that may cause cracks (breaks) or cracks in the columnar crystal structure 148 and scratches on the surface of the radiation conversion panel 64 is applied.

また、加速度センサ56は、加速度を逐次検出し、検出した加速度を示す検出信号をカセッテ制御部110に逐次出力する一方で、圧力センサ58は、圧力を逐次検出し、検出した圧力を示す検出信号をカセッテ制御部110に逐次出力している。従って、衝撃予知判定部182は、離間指示部184に通知信号を出力した後、今度は、加速度センサ56の検出した加速度の値が閾値よりも低下するか否か、又は、圧力センサ58の検出した圧力値が閾値よりも低下するか否かを判定する。衝撃予知判定部182は、加速度の値が閾値よりも低下し、且つ、圧力値が閾値よりも低下した場合に、外部から電子カセッテ20に衝撃が加えられる可能性がなくなったことを通知する通知信号を接触指示部186に出力する。   The acceleration sensor 56 sequentially detects acceleration and sequentially outputs a detection signal indicating the detected acceleration to the cassette control unit 110, while the pressure sensor 58 sequentially detects pressure and a detection signal indicating the detected pressure. Are sequentially output to the cassette control unit 110. Therefore, after the impact prediction determination unit 182 outputs the notification signal to the separation instruction unit 184, this time, whether or not the acceleration value detected by the acceleration sensor 56 falls below the threshold value or the detection by the pressure sensor 58. It is determined whether or not the measured pressure value falls below a threshold value. The impact prediction determination unit 182 notifies that there is no possibility that an impact is applied to the electronic cassette 20 from the outside when the acceleration value is lower than the threshold value and the pressure value is lower than the threshold value. A signal is output to the contact instruction unit 186.

ところで、電子カセッテ20の総重量をm、落下開始時の電子カセッテ20と床面との間の距離(落下距離)をh、重量加速度をg、電子カセッテ20が床面に落下(衝突)した瞬間の落下速度をv、落下開始から床面への衝突までに要する落下時間をtとすれば、落下速度v及び落下時間tは、それぞれ、v=(2×g×h)1/2、t=(2×h/g)1/2となる。 By the way, the total weight of the electronic cassette 20 is m, the distance (falling distance) between the electronic cassette 20 and the floor surface at the start of dropping is h, the weight acceleration is g, and the electronic cassette 20 falls (collises) on the floor surface. Assuming that the instantaneous drop speed is v and the drop time required from the start of the drop to the collision with the floor surface is t, the drop speed v and the drop time t are v = (2 × g × h) 1/2 , respectively. t = (2 × h / g) 1/2 .

そこで、衝撃予知判定部182は、加速度の値を用いて衝撃の予知を判定する代わりに、落下時間tよりも短く設定した所定時間を閾値とし、加速度センサ56が検出した加速度の値が略0レベルから電子カセッテ20の落下とみなすことのできる所定レベルの値に至ったときを落下開始時刻とし、該落下開始時刻から所定時間経過して前記閾値に到達したときに、離間指示部184に通知信号を出力してもよい。この場合、衝撃予知判定部182は、加速度センサ56が検出した加速度の値に基づき設定した落下開始時刻からの経過時間を計時することにより衝突の予知が行われるので、計時した経過時間も電子カセッテ20の移動に関わる物理量となる。   Therefore, instead of determining the prediction of impact using the acceleration value, the impact prediction determination unit 182 uses a predetermined time set shorter than the falling time t as a threshold value, and the acceleration value detected by the acceleration sensor 56 is substantially zero. When a predetermined level value that can be regarded as a fall of the electronic cassette 20 from the level is reached, the drop start time is set, and when the predetermined time has elapsed from the drop start time and the threshold value is reached, the separation instruction unit 184 is notified. A signal may be output. In this case, since the impact prediction determination unit 182 counts the elapsed time from the drop start time set based on the acceleration value detected by the acceleration sensor 56, the collision is predicted, so the elapsed time measured is also the electronic cassette. This is a physical quantity related to 20 movements.

離間指示部184は、衝撃予知判定部182から通知信号が入力された場合、エアバッグ118を動作させる(放射線変換パネル64とシンチレータ150との接触制御を停止させる)ための動作開始指示信号をインフレータ120に出力する。インフレータ120は、動作開始指示信号が入力されると、点火剤を点火して不活性ガスを発生させ、エアバッグ118に送り込む。一方、接触指示部186は、衝撃予知判定部182から通知信号が入力された場合、インフレータ120の動作を停止させる(放射線変換パネル64とシンチレータ150との接触制御を開始させる)ための動作停止指示信号をインフレータ120に出力する。インフレータ120は、動作停止指示信号が入力されると、エアバッグ118への不活性ガスの送出を停止させる。   The separation instruction unit 184 receives an operation start instruction signal for operating the airbag 118 (stops contact control between the radiation conversion panel 64 and the scintillator 150) when the notification signal is input from the impact prediction determination unit 182. 120 is output. When the operation start instruction signal is input, the inflator 120 ignites the igniter, generates an inert gas, and sends it to the airbag 118. On the other hand, when the notification signal is input from the impact prediction determination unit 182, the contact instruction unit 186 stops the operation of the inflator 120 (starts contact control between the radiation conversion panel 64 and the scintillator 150). The signal is output to the inflator 120. When the operation stop instruction signal is input, the inflator 120 stops sending the inert gas to the airbag 118.

本実施形態に係る電子カセッテ20を有する放射線撮影システム10は、基本的には以上のように構成されるものであり、次にその動作について、図8及び図9のフローチャートを参照しながら説明する。   The radiation imaging system 10 having the electronic cassette 20 according to the present embodiment is basically configured as described above. Next, the operation thereof will be described with reference to the flowcharts of FIGS. 8 and 9. .

ここでは、先ず、図8を参照しながら、放射線撮影システム10の基本的な動作、すなわち、柱状結晶構造148の割れ(折れ)やひび、さらには、放射線変換パネル64表面の傷の発生の原因となる衝撃が電子カセッテ20に加えられない場合での放射線撮影システム10の動作(正常動作)について説明する。   Here, first, referring to FIG. 8, the basic operation of the radiation imaging system 10, that is, the cause of the cracks (cracks) and cracks of the columnar crystal structure 148, and further the generation of scratches on the surface of the radiation conversion panel 64 is described. The operation (normal operation) of the radiation imaging system 10 when no impact is applied to the electronic cassette 20 will be described.

次に、図9を参照しながら、医師による電子カセッテ20の搬送中に誤って電子カセッテ20を落下させてしまった場合や、被写体14のポジショニング時に被写体14が勢いよく照射面44に接触して電子カセッテ20に過度の圧力が付与された場合での電子カセッテ20内部の動作(インフレータ120及びエアバッグ118の動作)について説明する。   Next, referring to FIG. 9, when the electronic cassette 20 is accidentally dropped while the electronic cassette 20 is being transported by a doctor, or when the subject 14 is positioned, the subject 14 vigorously contacts the irradiation surface 44. An operation (operation of the inflator 120 and the airbag 118) inside the electronic cassette 20 when an excessive pressure is applied to the electronic cassette 20 will be described.

図8のステップS1において、医師は、RIS26又はHIS28からコンソール22が取得したオーダ情報に基づき、被写体14の撮影条件を設定する。なお、オーダ情報とは、RIS26又はHIS28において、医師により作成されるものであり、被写体14の氏名、年齢、性別等、被写体14を特定するための被写体情報に加えて、撮影に使用する放射線出力装置18及び電子カセッテ20の情報や、被写体14の撮影部位や撮影での手技等が含まれる。また、撮影条件とは、例えば、放射線源30の管電圧や管電流、放射線16の曝射時間等、被写体14の撮影部位に対して放射線16を照射させるために必要な各種の条件である。   In step S <b> 1 of FIG. 8, the doctor sets imaging conditions for the subject 14 based on the order information acquired by the console 22 from the RIS 26 or the HIS 28. Note that the order information is created by a doctor in the RIS 26 or HIS 28, and in addition to subject information for specifying the subject 14 such as the name, age, and sex of the subject 14, radiation output used for imaging. The information of the apparatus 18 and the electronic cassette 20, the imaging part of the subject 14, the procedure in imaging, and the like are included. The imaging conditions are various conditions necessary for irradiating the imaging region of the subject 14 with the radiation 16 such as the tube voltage and tube current of the radiation source 30 and the exposure time of the radiation 16.

次のステップS2において、医師は、所定の保管場所に保管されている電子カセッテ20の取手54を把持して該電子カセッテ20を搬送し、撮影台12上に設置する。次のステップS3において、医師は、被写体14の撮影部位が撮影可能領域52に納まるように該被写体14を撮影台12及び電子カセッテ20上に横臥させて、撮影可能領域52に対する前記撮影部位のポジショニングを行う。   In the next step S <b> 2, the doctor holds the handle 54 of the electronic cassette 20 stored in a predetermined storage location, conveys the electronic cassette 20, and installs it on the imaging table 12. In the next step S 3, the doctor lays the subject 14 on the imaging table 12 and the electronic cassette 20 so that the imaging region of the subject 14 falls within the imaging region 52, and positions the imaging region with respect to the imaging region 52. I do.

この場合、電源部116は、カセッテ制御部110、通信部114、加速度センサ56及び圧力センサ58に対しては、電力を常時供給している。従って、加速度センサ56は、電子カセッテ20の加速度を逐次検出し、検出した加速度を示す検出信号をカセッテ制御部110に逐次出力している。また、圧力センサ58は、外部から電子カセッテ20に付与される圧力を逐次検出し、検出した圧力を示す検出信号をカセッテ制御部110に逐次出力している。   In this case, the power supply unit 116 constantly supplies power to the cassette control unit 110, the communication unit 114, the acceleration sensor 56, and the pressure sensor 58. Therefore, the acceleration sensor 56 sequentially detects the acceleration of the electronic cassette 20 and sequentially outputs a detection signal indicating the detected acceleration to the cassette control unit 110. The pressure sensor 58 sequentially detects the pressure applied to the electronic cassette 20 from the outside, and sequentially outputs a detection signal indicating the detected pressure to the cassette control unit 110.

ここで、被写体14の撮影部位が撮影可能領域52にポジショニングされることにより、被写体14から電子カセッテ20に圧力が付与される。従って、圧力センサ58は、被写体14から付与された圧力を検出し、該圧力を示す検出信号をカセッテ制御部110に出力する。衝撃予知判定部182は、前記検出信号の示す圧力値のレベルが、被写体14から電子カセッテ20に付与される程度の圧力のレベルであれば、現在、被写体14のポジショニング中であると判定する。   Here, when the imaging region of the subject 14 is positioned in the imageable region 52, pressure is applied from the subject 14 to the electronic cassette 20. Therefore, the pressure sensor 58 detects the pressure applied from the subject 14 and outputs a detection signal indicating the pressure to the cassette control unit 110. The impact prediction determination unit 182 determines that the subject 14 is currently positioned when the level of the pressure value indicated by the detection signal is a level of pressure that is applied to the electronic cassette 20 from the subject 14.

カセッテ制御部110は、衝撃予知判定部182の判定結果に基づいて、電源部116から駆動回路部68、表示操作部122及びスピーカ124への電力供給を開始させる。これにより、バイアス電源162は、各画素160に対するバイアス電圧の供給を開始するので、該各画素160は、電荷蓄積が可能な状態となる。また、表示操作部122は、各種の情報を表示すると共に、医師による入力操作が可能な状態に至る。さらに、スピーカ124は、カセッテ制御部110からの信号を音として外部に出力することが可能な状態に至る。この結果、電子カセッテ20は、スリープ状態から起動状態に切り替わる。   The cassette control unit 110 starts power supply from the power supply unit 116 to the drive circuit unit 68, the display operation unit 122, and the speaker 124 based on the determination result of the impact prediction determination unit 182. As a result, the bias power supply 162 starts to supply a bias voltage to each pixel 160, so that each pixel 160 is in a state where charge can be accumulated. In addition, the display operation unit 122 displays various types of information and reaches a state where an input operation by a doctor is possible. Furthermore, the speaker 124 reaches a state where a signal from the cassette control unit 110 can be output to the outside as a sound. As a result, the electronic cassette 20 is switched from the sleep state to the activated state.

また、カセッテ制御部110は、衝撃予知判定部182の判定結果に基づいて、通信部114を介して無線によりコンソール22にオーダ情報や撮影条件の送信を要求する送信要求信号を送信する。コンソール22は、前記送信要求信号を受信すると、電子カセッテ20に対して前記オーダ情報及び前記撮影条件を無線により送信すると共に、放射線出力装置18に対して前記撮影条件を無線により送信する。これにより、放射線出力装置18では、受信された前記撮影条件が放射線制御装置32に登録される。また、電子カセッテ20では、受信された前記オーダ情報及び前記撮影条件がカセッテ制御部110に登録される。なお、カセッテ制御部110は、前記オーダ情報及び前記撮影条件を受信すると、これらの情報を表示操作部122に表示させてもよい。   Further, the cassette control unit 110 transmits a transmission request signal for requesting transmission of order information and imaging conditions to the console 22 wirelessly via the communication unit 114 based on the determination result of the impact prediction determination unit 182. When the console 22 receives the transmission request signal, it transmits the order information and the imaging conditions to the electronic cassette 20 by radio and transmits the imaging conditions to the radiation output device 18 by radio. Thereby, in the radiation output device 18, the received imaging condition is registered in the radiation control device 32. In the electronic cassette 20, the received order information and the imaging conditions are registered in the cassette control unit 110. The cassette control unit 110 may display the information on the display operation unit 122 when receiving the order information and the imaging conditions.

ステップS4において、医師が放射線スイッチ34を半押すると、放射線制御装置32は、放射線16の照射準備を行うと共に、照射準備を通知する通知信号をコンソール22に無線により送信する。コンソール22は、放射線源30からの放射線16の照射と同期させるための同期制御信号を無線により電子カセッテ20に送信する。電子カセッテ20のカセッテ制御部110は、前記同期制御信号を受信すると、照射準備に入ったことを示す情報を表示操作部122に表示させると共に、スピーカ124を介して外部に音として通知してもよい。   In step S <b> 4, when the doctor half-presses the radiation switch 34, the radiation control device 32 prepares for irradiation of the radiation 16 and transmits a notification signal notifying the preparation for irradiation to the console 22 wirelessly. The console 22 wirelessly transmits a synchronization control signal for synchronizing with the irradiation of the radiation 16 from the radiation source 30 to the electronic cassette 20. When the cassette control unit 110 of the electronic cassette 20 receives the synchronization control signal, the cassette control unit 110 displays information indicating that the irradiation preparation has been started on the display operation unit 122 and also notifies the outside via the speaker 124 as a sound. Good.

その後、医師が放射線スイッチ34を全押すると、放射線制御装置32は、放射線源30から放射線16を前記撮影条件で設定された所定時間だけ被写体14の撮影部位に照射する(ステップS5)。この場合、放射線制御装置32は、放射線16の照射開始と同時に、照射開始を通知する通知信号を無線によりコンソール22に送信してもよい。コンソール22は、受信した前記通知信号を電子カセッテ20に転送し、該電子カセッテ20のカセッテ制御部110は、前記通知信号を受信すると、照射中であることを情報を表示操作部122に表示させると共に、スピーカ124を介して外部に音として通知してもよい。   Thereafter, when the doctor fully presses the radiation switch 34, the radiation control device 32 irradiates the imaging region of the subject 14 with the radiation 16 from the radiation source 30 for a predetermined time set under the imaging conditions (step S5). In this case, the radiation control device 32 may transmit a notification signal for notifying the start of irradiation to the console 22 wirelessly simultaneously with the start of irradiation of the radiation 16. The console 22 transfers the received notification signal to the electronic cassette 20, and when the cassette control unit 110 of the electronic cassette 20 receives the notification signal, the display operation unit 122 displays information indicating that irradiation is being performed. At the same time, the sound may be notified to the outside through the speaker 124.

そして、放射線16が被写体14の撮影部位を透過して電子カセッテ20の放射線検出器66に至ったステップS6において、放射線検出器66が図4Aに示すISS方式の放射線検出器である場合に、放射線16は、放射線変換パネル64及び防湿保護材152を介してシンチレータ150の柱状結晶構造148に至る。   In step S6 in which the radiation 16 passes through the imaging region of the subject 14 and reaches the radiation detector 66 of the electronic cassette 20, if the radiation detector 66 is the ISS radiation detector shown in FIG. 16 reaches the columnar crystal structure 148 of the scintillator 150 through the radiation conversion panel 64 and the moisture-proof protective material 152.

柱状結晶構造148は、放射線16の強度に応じた強度の可視光(蛍光)を発光し、前記蛍光は、柱状結晶構造148の柱状部分から先端部分に向かって進行し、防湿保護材152を介して放射線変換パネル64に入射する。なお、一部の蛍光は、非柱状結晶部分146に向かって進行する場合もあるが、該非柱状結晶部分146又は支持基板144において柱状結晶構造148側に反射されるので、該一部の蛍光も放射線変換パネル64に入射することが可能となる。   The columnar crystal structure 148 emits visible light (fluorescence) having an intensity corresponding to the intensity of the radiation 16, and the fluorescence proceeds from the columnar portion to the tip portion of the columnar crystal structure 148 via the moisture-proof protective material 152. Then, it enters the radiation conversion panel 64. Note that some fluorescence may travel toward the non-columnar crystal portion 146, but is reflected to the columnar crystal structure 148 side at the non-columnar crystal portion 146 or the support substrate 144, and thus the partial fluorescence also It becomes possible to enter the radiation conversion panel 64.

放射線変換パネル64を構成する各画素160は、蛍光を電気信号に変換し、電荷として蓄積する。次いで、各画素160に保持された被写体14の撮影部位の放射線画像である電荷情報は、カセッテ制御部110を構成する読出制御部180からゲート駆動部168に供給される駆動信号に従って読み出される。   Each pixel 160 constituting the radiation conversion panel 64 converts fluorescence into an electric signal and accumulates it as electric charge. Next, the charge information that is the radiographic image of the imaging region of the subject 14 held in each pixel 160 is read according to the drive signal supplied from the read control unit 180 constituting the cassette control unit 110 to the gate drive unit 168.

すなわち、ゲート駆動部168は、ゲート線164を0行目から順次選択し、選択したゲート線164にゲート信号を供給して、該ゲート信号が供給されたTFT72をオンにすることで、各画素160に蓄積された電荷を0行目から行単位で順次読み出す。各画素160から行単位で順次読み出された電荷は、各信号線166を介して各列のチャージアンプ170に入力され、その後、マルチプレクサ部172及びAD変換部174を介して、デジタル信号の電気信号としてメモリ112に記憶される(ステップS7)。つまり、メモリ112には、行単位で得られた1行分の画像データが順次記憶される。   That is, the gate driver 168 sequentially selects the gate line 164 from the 0th row, supplies a gate signal to the selected gate line 164, and turns on the TFT 72 to which the gate signal is supplied. The charges accumulated in 160 are sequentially read from the 0th row in units of rows. The electric charges sequentially read out from each pixel 160 in units of rows are input to the charge amplifiers 170 in the respective columns through the signal lines 166, and then the electric signals of the digital signals are input through the multiplexer unit 172 and the AD conversion unit 174. The signal is stored in the memory 112 (step S7). That is, the memory 112 sequentially stores image data for one row obtained in units of rows.

メモリ112に記憶された放射線画像は、電子カセッテ20を識別するためのカセッテID情報と共に、通信部114を介して無線によりコンソール22に送信される。コンソール22は、受信された放射線画像及びカセッテID情報を表示装置24に表示させる(ステップS8)。また、カセッテ制御部110は、放射線画像及びカセッテID情報を共に表示操作部122に表示させてもよい。   The radiographic image stored in the memory 112 is transmitted to the console 22 wirelessly through the communication unit 114 together with the cassette ID information for identifying the electronic cassette 20. The console 22 displays the received radiation image and cassette ID information on the display device 24 (step S8). Further, the cassette control unit 110 may cause the display operation unit 122 to display both the radiation image and the cassette ID information.

医師は、表示装置24又は表示操作部122の表示内容を視認して放射線画像が得られたことを確認した後に、被写体14をポジショニング状態から解放する(ステップS9)。この場合でも、圧力センサ58は、外部から電子カセッテ20に付与される圧力を逐次検出して、その検出信号をカセッテ制御部110に逐次出力しており、衝撃予知判定部182は、前記検出信号の示す圧力のレベルが、被写体14のポジショニング状態での圧力レベルから略0レベルにまで低下した時点で、被写体14がポジショニング状態から解放されたと判定する。   The doctor visually confirms the display contents of the display device 24 or the display operation unit 122 and confirms that a radiographic image has been obtained, and then releases the subject 14 from the positioning state (step S9). Even in this case, the pressure sensor 58 sequentially detects the pressure applied to the electronic cassette 20 from the outside, and sequentially outputs the detection signal to the cassette control unit 110. The impact prediction determination unit 182 It is determined that the subject 14 has been released from the positioning state when the pressure level shown in FIG.

そして、カセッテ制御部110は、衝撃予知判定部182の判定結果に基づいて、電源部116から駆動回路部68、表示操作部122及びスピーカ124への電力供給を停止させる。これにより、バイアス電源162から各画素160へのバイアス電圧の供給が停止すると共に、表示操作部122及びスピーカ124の動作も停止する。この結果、電子カセッテ20は、起動状態からスリープ状態に移行する。   The cassette control unit 110 stops power supply from the power supply unit 116 to the drive circuit unit 68, the display operation unit 122, and the speaker 124 based on the determination result of the impact prediction determination unit 182. Thereby, the supply of the bias voltage from the bias power source 162 to each pixel 160 is stopped, and the operations of the display operation unit 122 and the speaker 124 are also stopped. As a result, the electronic cassette 20 shifts from the activated state to the sleep state.

ステップS10において、医師は、表示操作部122の表示が消えて電子カセッテ20がスリープ状態に移行したことを確認した後に、該電子カセッテ20の取手54を把持して、電子カセッテ20を所定の保管場所にまで搬送する。   In step S <b> 10, after confirming that the display on the display operation unit 122 has disappeared and the electronic cassette 20 has shifted to the sleep state, the doctor grasps the handle 54 of the electronic cassette 20 and stores the electronic cassette 20 in a predetermined storage state. Transport to location.

次に、図9の動作について説明する。   Next, the operation of FIG. 9 will be described.

ステップS2、S3、S9、S10中、加速度センサ56は、電子カセッテ20の加速度を逐次検出し、検出した加速度を示す検出信号をカセッテ制御部110に逐次出力する一方で、圧力センサ58は、外部から電子カセッテ20に付与される圧力を逐次検出し、検出した圧力を示す検出信号をカセッテ制御部110に逐次出力している(ステップS21)。   During steps S2, S3, S9, and S10, the acceleration sensor 56 sequentially detects the acceleration of the electronic cassette 20, and sequentially outputs detection signals indicating the detected acceleration to the cassette control unit 110, while the pressure sensor 58 is externally connected. The pressure applied to the electronic cassette 20 is sequentially detected, and a detection signal indicating the detected pressure is sequentially output to the cassette control unit 110 (step S21).

この場合、カセッテ制御部110の衝撃予知判定部182は、加速度センサ56及び圧力センサ58から検出信号が入力される毎に、加速度センサ56からの検出信号の示す加速度の値が所定の閾値を超えているか否かを判定すると共に、圧力センサ58からの検出信号の示す圧力値が所定の閾値(許容値)を超えているか否かを判定する(ステップS22)。   In this case, the impact prediction determination unit 182 of the cassette control unit 110 causes the acceleration value indicated by the detection signal from the acceleration sensor 56 to exceed a predetermined threshold every time detection signals are input from the acceleration sensor 56 and the pressure sensor 58. It is determined whether or not the pressure value indicated by the detection signal from the pressure sensor 58 exceeds a predetermined threshold (allowable value) (step S22).

ステップS22において、加速度の値が所定の閾値に到達しておらず、且つ、圧力値も所定の閾値に到達していない場合には(ステップS22:NO)、衝撃予知判定部182は、柱状結晶構造148の割れ(折れ)やひび、さらには、放射線変換パネル64表面の傷を発生させるような大きな衝撃が電子カセッテ20に加えられていないと判定し、次の検出信号の入力を待つ状態となる。   In step S22, when the acceleration value does not reach the predetermined threshold value and the pressure value does not reach the predetermined threshold value (step S22: NO), the impact prediction determination unit 182 determines that the columnar crystal It is determined that a large impact that causes cracks (breaks) or cracks in the structure 148 and further damage to the surface of the radiation conversion panel 64 has not been applied to the electronic cassette 20, and waiting for input of the next detection signal; Become.

一方、ステップS22において、加速度の値が所定の閾値を超えるか、あるいは、圧力値が所定の閾値を超えた場合には(ステップS22:YES)、衝撃予知判定部182は、外部からの衝撃によって柱状結晶構造148の割れ(折れ)やひび、及び、放射線変換パネル64表面の傷が発生する可能性があると判定し(ステップS23)、外部から電子カセッテ20に衝撃が与えられることを通知する通知信号を離間指示部184に出力する。   On the other hand, when the acceleration value exceeds the predetermined threshold value or the pressure value exceeds the predetermined threshold value in step S22 (step S22: YES), the impact prediction determination unit 182 causes an external impact. It is determined that there is a possibility that cracks (breaks) or cracks in the columnar crystal structure 148 and scratches on the surface of the radiation conversion panel 64 may occur (step S23), and notification is given that an impact is applied to the electronic cassette 20 from the outside. The notification signal is output to the separation instruction unit 184.

ステップS24において、離間指示部184は、衝撃予知判定部182からの通知信号に基づいて、インフレータ120に動作開始指示信号を出力し、インフレータ120は、入力された動作開始指示信号に基づいて点火剤を点火し、不活性ガスを発生させてエアバッグ118に送り込む。これにより、エアバッグ118は、送り込まれた不活性ガスによって支持基板144の方向に膨張し、支持基板144を押圧する。この結果、緩衝材138は、底板140の方向に圧縮されるので、図4Bに示すように、放射線変換パネル64に対してシンチレータ150を離間させることができる。   In step S24, the separation instruction unit 184 outputs an operation start instruction signal to the inflator 120 based on the notification signal from the impact prediction determination unit 182, and the inflator 120 generates the ignition agent based on the input operation start instruction signal. Is ignited and an inert gas is generated and sent into the airbag 118. Thereby, the airbag 118 is expanded in the direction of the support substrate 144 by the fed inert gas, and presses the support substrate 144. As a result, the cushioning material 138 is compressed in the direction of the bottom plate 140, so that the scintillator 150 can be separated from the radiation conversion panel 64 as shown in FIG. 4B.

また、離間指示部184は、衝撃予知判定部182から通知信号が入力されると、外部からの衝撃に起因してエアバッグ118が作動し、且つ、放射線変換パネル64とシンチレータ150とが離間することを示す警告信号を表示操作部122及びスピーカ124に出力する。表示操作部122は、警告信号の示す情報を表示すると共に、スピーカ124は、警告信号を音として外部に出力する(ステップS25)。これにより、医師は、表示操作部122の表示内容を視認することにより、及び/又は、スピーカ124からの音を聞くことにより、外部からの衝撃によってエアバッグ118が作動し、放射線変換パネル64に対してシンチレータ150が離間することを把握することができる。   In addition, when the notification signal is input from the impact prediction determination unit 182, the separation instruction unit 184 operates the airbag 118 due to an external impact, and the radiation conversion panel 64 and the scintillator 150 are separated. A warning signal indicating this is output to the display operation unit 122 and the speaker 124. The display operation unit 122 displays information indicated by the warning signal, and the speaker 124 outputs the warning signal to the outside as a sound (step S25). As a result, the doctor visually recognizes the display content of the display operation unit 122 and / or listens to the sound from the speaker 124, whereby the airbag 118 is activated by an external impact, and the radiation conversion panel 64 is displayed. On the other hand, it can be grasped that the scintillator 150 is separated.

このように、エアバッグ118が作動して放射線変換パネル64とシンチレータ150とが離間するので、実際に、電子カセッテ20が床面に落下し、あるいは、被写体14が照射面44に対して勢いよく接触して、柱状結晶構造148の割れ(折れ)やひび、及び、放射線変換パネル64表面の傷を発生させるような衝撃が外部から電子カセッテ20に加えられても(ステップS26)、該柱状結晶構造148を適切に保護することができる。   Thus, since the airbag 118 operates and the radiation conversion panel 64 and the scintillator 150 are separated from each other, the electronic cassette 20 actually falls on the floor surface, or the subject 14 vigorously moves with respect to the irradiation surface 44. Even if an impact is applied to the electronic cassette 20 from the outside (step S26), the columnar crystal structure 148 may be cracked (broken) or cracked in the columnar crystal structure 148 and scratched on the surface of the radiation conversion panel 64. Structure 148 can be adequately protected.

その後、衝撃予知判定部182は、エアバッグ118の作動から所定時間経過していれば(ステップS27:YES)、外部から電子カセッテ20に衝撃が加えられる可能性がなくなったものと判定し、接触指示部186に通知信号を出力する。ステップS28において、接触指示部186は、前記通知信号に基づいてインフレータ120に動作停止指示信号を出力し、インフレータ120は、入力された動作停止指示信号に基づいて、エアバッグ118への不活性ガスの送出を停止する。これにより、エアバッグ118の不活性ガスは、図示しない排出孔から排出されて、該エアバッグ118は収縮する。この結果、放射線変換パネル64とシンチレータ150とが再度接触して、元の状態に戻る(原状回復される)。   Thereafter, if a predetermined time has elapsed since the operation of the airbag 118 (step S27: YES), the impact prediction determination unit 182 determines that there is no possibility of an impact being applied to the electronic cassette 20 from the outside, and the contact A notification signal is output to the instruction unit 186. In step S28, the contact instruction unit 186 outputs an operation stop instruction signal to the inflator 120 based on the notification signal, and the inflator 120 generates an inert gas to the airbag 118 based on the input operation stop instruction signal. Stops sending. As a result, the inert gas in the airbag 118 is discharged from a discharge hole (not shown), and the airbag 118 contracts. As a result, the radiation conversion panel 64 and the scintillator 150 come into contact again and return to the original state (the original state is restored).

また、接触指示部186は、前記通知信号に基づいて表示操作部122の警告表示を消去させると共に、スピーカ124からの警告音を停止させる。これにより、医師は、放射線変換パネル64とシンチレータ150とが再度接触して原状回復されたことを容易に把握することができる。   Further, the contact instruction unit 186 deletes the warning display of the display operation unit 122 based on the notification signal and stops the warning sound from the speaker 124. Thereby, the doctor can easily grasp that the radiation conversion panel 64 and the scintillator 150 are brought into contact with each other again and the original state is recovered.

なお、エアバッグ118の作動中でも、加速度センサ56は、電子カセッテ20の加速度を逐次検出し、検出した加速度を示す検出信号をカセッテ制御部110に逐次出力する一方で、圧力センサ58は、外部から電子カセッテ20に付与される圧力を逐次検出し、検出した圧力を示す検出信号をカセッテ制御部110に逐次出力することが可能であるため、衝撃予知判定部182は、エアバッグ118の作動後、加速度の値が所定の閾値を下回り、且つ、圧力値が所定の閾値を下回った場合には、外部から電子カセッテ20に衝撃が加えられる可能性がなくなったものと判定し、接触指示部186に通知信号を出力してもよい。この場合でも、放射線変換パネル64とシンチレータ150とを元の状態に確実に戻すことができる。   Even during the operation of the airbag 118, the acceleration sensor 56 sequentially detects the acceleration of the electronic cassette 20, and sequentially outputs detection signals indicating the detected acceleration to the cassette control unit 110, while the pressure sensor 58 is externally applied. Since it is possible to sequentially detect the pressure applied to the electronic cassette 20 and sequentially output a detection signal indicating the detected pressure to the cassette control unit 110, the impact prediction determination unit 182 When the acceleration value falls below a predetermined threshold value and the pressure value falls below a predetermined threshold value, it is determined that there is no possibility that an impact is applied to the electronic cassette 20 from the outside, and the contact instruction unit 186 is notified. A notification signal may be output. Even in this case, the radiation conversion panel 64 and the scintillator 150 can be reliably returned to the original state.

また、エアバッグ118の不活性ガスは、図示しない排出孔から排出されているので、インフレータ120が点火剤の点火時にのみ不活性ガスをエアバッグ1118に送り込む構造であれば、ステップS27の処理を省略してもよい。この場合、エアバッグ118は、前記排出孔から不活性ガスを排出させることにより収縮するので、収縮後には、放射線変換パネル64とシンチレータ150とを元の状態に戻すことが可能である。   Further, since the inert gas in the airbag 118 is discharged from a discharge hole (not shown), if the inflator 120 is configured to send the inert gas to the airbag 1118 only when the ignition agent is ignited, the process of step S27 is performed. It may be omitted. In this case, since the airbag 118 contracts by discharging the inert gas from the discharge hole, the radiation conversion panel 64 and the scintillator 150 can be returned to the original state after the contraction.

さらに、上記の説明では、表示操作部122の表示やスピーカ124からの音を介して警告を行う場合について説明したが、離間指示部184は、通信部114を介して無線によりコンソール22に警告信号を送信してもよい。これにより、コンソール22は、受信した警告信号に応じた警告表示内容を表示装置24に表示させ、医師は、表示装置24の表示内容を視認することにより、外部からの衝撃によってエアバッグ118が作動し、放射線変換パネル64とシンチレータ150とが離間したことを把握することができる。さらに、接触指示部186は、通信部114を介して無線によりコンソール22に警告表示を消去させるための信号を送信し、コンソール22は、受信した前記信号に基づいて、表示装置24の警告表示を消去させる。これにより、医師は、放射線変換パネル64とシンチレータ150とが再度接触して原状回復されたことを把握することができる。   Further, in the above description, the case where a warning is given via the display of the display operation unit 122 or the sound from the speaker 124 has been described, but the separation instruction unit 184 wirelessly sends a warning signal to the console 22 via the communication unit 114. May be sent. As a result, the console 22 causes the display device 24 to display a warning display content corresponding to the received warning signal, and the doctor visually recognizes the display content of the display device 24, whereby the airbag 118 is activated by an external impact. Then, it can be grasped that the radiation conversion panel 64 and the scintillator 150 are separated. Further, the contact instruction unit 186 transmits a signal for causing the console 22 to delete the warning display wirelessly via the communication unit 114, and the console 22 displays a warning display on the display device 24 based on the received signal. Erase. Thereby, the doctor can grasp | ascertain that the radiation conversion panel 64 and the scintillator 150 contacted again, and the original state was recovered.

以上説明したように、本実施形態に係る電子カセッテ20によれば、少なくとも放射線検出器66に対する放射線16の照射時には、シンチレータ150と放射線変換パネル64とが接触し、一方で、加速度センサ56が検出した加速度の値、圧力センサ58が検出した圧力値、又は、前記加速度に基づく電子カセッテ20の落下時間が、所定の閾値を超えたときに、シンチレータ150と放射線変換パネル64とを離間させる(シンチレータ150と放射線変換パネル64との接触制御を停止させる)ようにしたので、外部から電子カセッテ20に衝撃が加えられる場合でも、シンチレータ150(の柱状結晶構造148)を該衝撃から適切に保護することができ、前記衝撃に起因した該柱状結晶構造148の割れ(折れ)やひびの発生、さらには、前記衝撃に起因した柱状結晶構造148の位置ずれによる放射線変換パネル64表面の傷の発生を確実に回避することが可能となる。   As described above, according to the electronic cassette 20 according to the present embodiment, at least when the radiation detector 66 is irradiated with the radiation 16, the scintillator 150 and the radiation conversion panel 64 are in contact with each other, while the acceleration sensor 56 detects the radiation. The scintillator 150 and the radiation conversion panel 64 are separated when the acceleration value detected, the pressure value detected by the pressure sensor 58, or the drop time of the electronic cassette 20 based on the acceleration exceeds a predetermined threshold (scintillator 150 and the radiation conversion panel 64 are stopped), so that even when an impact is applied to the electronic cassette 20 from the outside, the scintillator 150 (the columnar crystal structure 148) is appropriately protected from the impact. Generation of cracks (cracks) and cracks of the columnar crystal structure 148 due to the impact, Raniwa, it is possible to reliably avoid the occurrence of scratches on the radiation conversion panel 64 surface due to positional deviation of the columnar crystal structure 148 due to the impact.

この場合、柱状結晶構造148の先端部分が防湿保護材152を介して放射線変換パネル64と接触することで、柱状結晶構造148で放射線16から変換された蛍光を放射線変換パネル64に効率よく入射させることができる。また、外部から衝撃を受ける可能性がある場合、エアバッグ118の動作により、柱状結晶構造148の先端部分及び防湿保護材152と、放射線変換パネル64とが離間する。このように、電子カセッテ20が外部から衝撃を受ける可能性があっても、柱状結晶構造148を該衝撃から確実に保護することができるので、前記衝撃に関わりなく、電子カセッテ20の撮影性能を維持することが可能となる。   In this case, the tip portion of the columnar crystal structure 148 comes into contact with the radiation conversion panel 64 via the moisture-proof protective material 152, so that the fluorescence converted from the radiation 16 by the columnar crystal structure 148 is efficiently incident on the radiation conversion panel 64. be able to. When there is a possibility of receiving an impact from the outside, the tip of the columnar crystal structure 148 and the moisture-proof protective material 152 are separated from the radiation conversion panel 64 by the operation of the airbag 118. As described above, even if the electronic cassette 20 may receive an impact from the outside, the columnar crystal structure 148 can be reliably protected from the impact, so that the imaging performance of the electronic cassette 20 can be improved regardless of the impact. Can be maintained.

さらに、インフレータ120からエアバッグ118に不活性ガスが送り込まれ、エアバッグ118が筐体40の厚み方向に沿って膨張することにより、放射線変換パネル64とシンチレータ150とが離間するので、外部からの衝撃に対して、速やかに放射線変換パネル64とシンチレータ150とを離間させることができる。また、インフレータ120からの不活性ガスの送給を停止させるか、及び/又は、エアバッグ118の排出孔から不活性ガスを排出させることにより、エアバッグ118を収縮させて、放射線変換パネル64とシンチレータ150とを再度接触させることができるため、一旦離間した放射線変換パネル64とシンチレータ150とを元の状態に戻す(原状回復させる)ことが容易である。   Further, an inert gas is sent from the inflator 120 to the airbag 118, and the airbag 118 expands along the thickness direction of the housing 40, whereby the radiation conversion panel 64 and the scintillator 150 are separated from each other. The radiation conversion panel 64 and the scintillator 150 can be quickly separated from the impact. Further, the supply of the inert gas from the inflator 120 is stopped, and / or the inert gas is discharged from the discharge hole of the airbag 118, so that the airbag 118 is contracted, and the radiation conversion panel 64 Since the scintillator 150 can be brought into contact with the scintillator 150 again, it is easy to return the radiation conversion panel 64 and the scintillator 150 once separated to the original state (recover the original state).

さらに、図5の平面視で、エアバッグ118がシンチレータ150を囲繞するように支持基板144の外縁部及び放射線変換パネル64の外縁部に配設されているので、支持基板144の外縁部と放射線変換パネル64の外縁部との間で、エアバッグ118を筐体40の厚み方向に膨張させることで、シンチレータ150の平面サイズに関わりなく、柱状結晶構造148の先端部分と放射線変換パネル64とを精度よく且つ確実に離間させることができる。   Further, in the plan view of FIG. 5, the airbag 118 is disposed on the outer edge portion of the support substrate 144 and the outer edge portion of the radiation conversion panel 64 so as to surround the scintillator 150. By inflating the airbag 118 in the thickness direction of the housing 40 between the outer edge of the conversion panel 64, the tip portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be connected regardless of the plane size of the scintillator 150. It can be separated accurately and reliably.

なお、前述したように、医師が放射線スイッチ34を半押した段階で、放射線制御装置32は、放射線16の照射準備を通知する通知信号を無線によりコンソール22に送信し、コンソール22は、同期制御信号を無線により電子カセッテ20に送信する。   As described above, when the doctor half-presses the radiation switch 34, the radiation control device 32 wirelessly transmits a notification signal for notifying preparation for irradiation of the radiation 16 to the console 22, and the console 22 performs synchronous control. The signal is transmitted to the electronic cassette 20 by radio.

そこで、本実施形態では、外部から電子カセッテ20に衝撃が加えられる可能性のある放射線16の照射準備前の時間帯と、放射線16の照射後の時間帯とにおいては、シンチレータ150と放射線変換パネル64とを離間させるように、インフレータ120及びエアバッグ118を動作させ、一方で、電子カセッテ20が同期制御信号を受信した時点から放射線16の照射後までの時間帯においては、インフレータ120及びエアバッグ118の動作を停止させて、シンチレータ150と放射線変換パネル64とを接触させてもよい。例えば、被写体14のポジショニング時には、被写体14から電子カセッテ20に過度の荷重(圧力)が加えられて、柱状結晶構造148の割れやひび、放射線変換パネル64表面の傷が発生する可能性があるので、このような衝撃が加えられそうな時間帯については、シンチレータ150と放射線変換パネル64とを離間させておく。   Therefore, in the present embodiment, the scintillator 150 and the radiation conversion panel are used in a time zone before preparation for irradiation of the radiation 16 that may cause an impact to the electronic cassette 20 from the outside and a time zone after irradiation with the radiation 16. The inflator 120 and the airbag 118 are operated so as to be separated from each other, while the inflator 120 and the airbag are in a time zone from when the electronic cassette 20 receives the synchronization control signal to after irradiation of the radiation 16. The operation of 118 may be stopped and the scintillator 150 and the radiation conversion panel 64 may be brought into contact with each other. For example, when positioning the subject 14, an excessive load (pressure) is applied from the subject 14 to the electronic cassette 20, which may cause cracks and cracks in the columnar crystal structure 148 and scratches on the surface of the radiation conversion panel 64. The scintillator 150 and the radiation conversion panel 64 are separated from each other during a time zone in which such an impact is likely to be applied.

つまり、本実施形態では、外部から衝撃を受ける可能性が少ない放射線16の照射中のみ、シンチレータ150と放射線変換パネル64とが接触するようにしているので、前記衝撃からシンチレータ150を適切に保護することが可能になると共に、電子カセッテ20の撮影性能を低下させることなく、適切な放射線画像を取得することが可能となる。すなわち、電子カセッテ20では、オーダ情報の登録に基づいて、被写体14への放射線16の照射前に、シンチレータ150と放射線変換パネル64とを接触させ、一方で、放射線16の照射後にシンチレータ150と放射線変換パネル64とを離間させることが可能である。   That is, in this embodiment, since the scintillator 150 and the radiation conversion panel 64 are in contact with each other only during irradiation of the radiation 16 that is less likely to receive an impact from the outside, the scintillator 150 is appropriately protected from the impact. In addition, an appropriate radiographic image can be acquired without deteriorating the imaging performance of the electronic cassette 20. That is, in the electronic cassette 20, the scintillator 150 and the radiation conversion panel 64 are brought into contact with each other before the irradiation of the radiation 16 on the subject 14 based on the registration of the order information. The conversion panel 64 can be separated.

次に、本実施形態の変形例(第1〜第7変形例)を図10A〜図16Bを参照しながら説明する。   Next, modified examples (first to seventh modified examples) of the present embodiment will be described with reference to FIGS. 10A to 16B.

なお、これらの変形例において、図1〜図9と同じ構成要素については、同じ参照数字を付けて説明し、詳細な説明を省略する。   In these modifications, the same components as those in FIGS. 1 to 9 are described with the same reference numerals, and detailed description thereof is omitted.

第1変形例では、図10A及び図10Bに示すように、筐体40内の天板132と底板140との間に、放射線検出器66を収容する収容袋190(接触機構)が配設されている。   In the first modified example, as shown in FIGS. 10A and 10B, an accommodation bag 190 (contact mechanism) that accommodates the radiation detector 66 is disposed between the top plate 132 and the bottom plate 140 in the housing 40. ing.

この場合、収容袋190の底板140側は、接着層198を介して底板140と接着し、一方で、収容袋190の天板132側は、接着層200を介して天板132と接着している。そして、収容袋190の室192内に放射線検出器66が収容されている。ここで、一例として、ISS方式の放射線検出器66の場合、支持基板144は、接着層204を介して収容袋190の底板140側に接着され、一方で、放射線変換パネル64は、接着層202を介して収容袋190の天板132側に接着される。   In this case, the bottom plate 140 side of the storage bag 190 is bonded to the bottom plate 140 via the adhesive layer 198, while the top plate 132 side of the storage bag 190 is bonded to the top plate 132 via the adhesive layer 200. Yes. The radiation detector 66 is accommodated in the chamber 192 of the accommodation bag 190. Here, as an example, in the case of the ISS type radiation detector 66, the support substrate 144 is bonded to the bottom plate 140 side of the containing bag 190 via the adhesive layer 204, while the radiation conversion panel 64 is bonded to the adhesive layer 202. Is attached to the top plate 132 side of the storage bag 190.

また、収容袋190には、室192と連通する通路194が設けられ、該通路194の途中には、リーク弁196が配設されている。   The accommodation bag 190 is provided with a passage 194 communicating with the chamber 192, and a leak valve 196 is disposed in the middle of the passage 194.

図10Aの場合、リーク弁196は、弁閉状態となって、通路194を介した室192への空気の侵入を阻止し、該室192内を負圧状態にしている。これにより、柱状結晶構造148の先端部分と放射線変換パネル64とが防湿保護材152を介して接触され、放射線画像の撮影が可能な状態となる。   In the case of FIG. 10A, the leak valve 196 is in a valve-closed state, prevents air from entering the chamber 192 through the passage 194, and places the inside of the chamber 192 in a negative pressure state. As a result, the tip of the columnar crystal structure 148 and the radiation conversion panel 64 are brought into contact with each other via the moisture-proof protective material 152, and a radiographic image can be captured.

一方、加速度センサ56が検出した加速度の値が所定の閾値を超えた場合、又は、圧力センサ58が検出した圧力値が所定の閾値を超えた場合に、衝撃予知判定部182は、外部から電子カセッテ20に衝撃が加えられる可能性があると判定し、離間指示部184は、衝撃予知判定部182からの通知信号に基づいて、リーク弁196を弁閉状態から弁開状態に切り替える。これにより、通路194を介して室192内に空気を侵入し、該室192内が大気圧状態となる。この結果、図10Bに示すように、収容袋190は、筐体40の厚み方向(図10Bの上下方向)に沿って膨張し、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。なお、図10Bにおいて、収容袋190が筐体40の厚み方向に沿って膨張すると、該収容袋190は、筐体40の天板132及び底板140を押圧するので、図10Aの場合と比較して、収容袋190近傍における筐体40の厚みが厚くなる。   On the other hand, when the acceleration value detected by the acceleration sensor 56 exceeds a predetermined threshold value, or when the pressure value detected by the pressure sensor 58 exceeds a predetermined threshold value, the impact prediction determination unit 182 generates an electronic Based on the notification signal from the impact prediction determination unit 182, the separation instruction unit 184 switches the leak valve 196 from the valve closed state to the valve open state. As a result, air enters the chamber 192 through the passage 194 and the chamber 192 is in an atmospheric pressure state. As a result, as shown in FIG. 10B, the housing bag 190 expands along the thickness direction of the housing 40 (vertical direction in FIG. 10B), and separates the distal end portion of the columnar crystal structure 148 from the radiation conversion panel 64. be able to. In FIG. 10B, when the storage bag 190 is inflated along the thickness direction of the housing 40, the storage bag 190 presses the top plate 132 and the bottom plate 140 of the housing 40. Therefore, as compared with the case of FIG. Thus, the thickness of the housing 40 in the vicinity of the containing bag 190 is increased.

なお、外部から電子カセッテ20への衝撃の可能性がない場合、接触指示部186は、図示しない真空ポンプを動作させて、通路194を介して室192内の空気を排出して負圧状態にした後に、リーク弁196を弁開状態から弁閉状態に切り替え、図10Aのように、放射線変換パネル64とシンチレータ150とを再度接触させる。   When there is no possibility of impact to the electronic cassette 20 from the outside, the contact instruction unit 186 operates a vacuum pump (not shown) to discharge the air in the chamber 192 through the passage 194 and bring it into a negative pressure state. After that, the leak valve 196 is switched from the valve open state to the valve closed state, and the radiation conversion panel 64 and the scintillator 150 are brought into contact again as shown in FIG. 10A.

このように、第1変形例では、リーク弁196を弁開状態又は弁閉状態に切り替えることにより、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、外部から電子カセッテ20に衝撃が加えられても、該シンチレータ150を適切に保護することができる。また、第1変形例においても、放射線変換パネル64とシンチレータ150とを接触又は離間させることによる本実施形態の各効果が容易に得られることは勿論である。   As described above, in the first modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by switching the leak valve 196 to the valve open state or the valve closed state (contact with the radiation conversion panel 64 and the scintillator 150). Therefore, even if an impact is applied to the electronic cassette 20 from the outside, the scintillator 150 can be appropriately protected. Also in the first modified example, it is needless to say that the effects of the present embodiment can be easily obtained by bringing the radiation conversion panel 64 and the scintillator 150 into contact with or separating from each other.

なお、第1変形例では、収容袋190内に放射線検出器66を収容した状態で、放射線変換パネル64とシンチレータ150との接触又は離間を行っているが、筐体40全体を収容袋190のように機能させて、放射線変換パネル64とシンチレータ150との接触又は離間を行ってもよい。   In the first modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other while the radiation detector 66 is housed in the housing bag 190. Thus, the radiation conversion panel 64 and the scintillator 150 may be contacted or separated from each other.

第2変形例では、図11A及び図11Bに示すように、筐体40内において、底板140における放射線検出器66近傍の箇所にプランジャ212(ロック部材)が固着され、該プランジャ212と天板132との間にばね部材214(接触機構)が介挿されている。また、支持基板144は、接着層210を介して底板140に接着され、放射線変換パネル64は、接着層130を介して天板132に接着される。   In the second modified example, as shown in FIGS. 11A and 11B, a plunger 212 (lock member) is fixed to a position in the vicinity of the radiation detector 66 in the bottom plate 140 in the housing 40, and the plunger 212 and the top plate 132 are fixed. A spring member 214 (contact mechanism) is interposed between the two. The support substrate 144 is bonded to the bottom plate 140 via the adhesive layer 210, and the radiation conversion panel 64 is bonded to the top plate 132 via the adhesive layer 130.

図11Aの場合、プランジャ212がばね部材214の弾発力に抗して該ばね部材214を底板140側に引っ張ることにより、ばね部材214が筐体40の厚み方向に圧縮され(ロックされ)、この結果、柱状結晶構造148の先端部分と放射線変換パネル64とが接触されて、放射線画像の撮影が可能な状態となる。   In the case of FIG. 11A, when the plunger 212 pulls the spring member 214 toward the bottom plate 140 against the elastic force of the spring member 214, the spring member 214 is compressed (locked) in the thickness direction of the housing 40. As a result, the tip of the columnar crystal structure 148 and the radiation conversion panel 64 are brought into contact with each other, and a radiographic image can be captured.

一方、外部から電子カセッテ20に衝撃が加えられる可能性のあることを衝撃予知判定部182が判定し、離間指示部184が衝撃予知判定部182からの通知信号に基づいてプランジャ212にばね部材214の解放(ロック解除)を指示するロック解除信号を出力すると、プランジャ212は、ばね部材214に対する引張りを停止し、ばね部材214は、弾発力によって天板132側に伸張する。これにより、図11Bのように、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。なお、図11Bにおいて、ばね部材214が天板132側に伸張すると、ばね部材214が天板132を押圧するので、図11Aの場合と比較して、放射線検出器66近傍における筐体40の厚みが厚くなる。   On the other hand, the impact prediction determination unit 182 determines that an impact may be applied to the electronic cassette 20 from the outside, and the separation instruction unit 184 receives the spring member 214 from the plunger 212 based on the notification signal from the impact prediction determination unit 182. When a lock release signal instructing release (lock release) is output, the plunger 212 stops pulling on the spring member 214, and the spring member 214 expands toward the top plate 132 side by elastic force. Thereby, as shown in FIG. 11B, the tip portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be separated. In FIG. 11B, when the spring member 214 extends to the top plate 132 side, the spring member 214 presses the top plate 132, so that the thickness of the housing 40 in the vicinity of the radiation detector 66 is compared with the case of FIG. 11A. Becomes thicker.

なお、外部から電子カセッテ20に衝撃が加えられる可能性がない場合、接触指示部186は、プランジャ212を再度動作させて、ばね部材214を底板140側に収縮させ、図11Aのように、放射線変換パネル64とシンチレータ150とを再度接触させる。   When there is no possibility that an impact is applied to the electronic cassette 20 from the outside, the contact instruction unit 186 operates the plunger 212 again to contract the spring member 214 to the bottom plate 140 side, and as shown in FIG. The conversion panel 64 and the scintillator 150 are brought into contact again.

このように、第2変形例においても、プランジャ212及びばね部材214の動作によって、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、第2変形例と同様の効果を得ることができる。   As described above, also in the second modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by the operation of the plunger 212 and the spring member 214 (contact control for the radiation conversion panel 64 and the scintillator 150 is executed or stopped). Therefore, the same effect as the second modification can be obtained.

第3変形例では、図12A及び図12Bに示すように、筐体40内における放射線検出器66近傍の箇所に、圧電素子220(接触機構)を2つの電極222、224で挟み込んだ圧電アクチュエータ226が天板132と底板140との間に介挿されている。   In the third modification, as shown in FIGS. 12A and 12B, a piezoelectric actuator 226 in which a piezoelectric element 220 (contact mechanism) is sandwiched between two electrodes 222 and 224 at a location near the radiation detector 66 in the housing 40. Is interposed between the top plate 132 and the bottom plate 140.

図12Aのように、電源部116等の電源228と電極222との間に設けられたスイッチ230がオフの場合、圧電アクチュエータ226は動作せず、柱状結晶構造148の先端部分と放射線変換パネル64とが接触し、放射線画像の撮影が可能な状態となる。   As shown in FIG. 12A, when the switch 230 provided between the power supply 228 such as the power supply unit 116 and the electrode 222 is off, the piezoelectric actuator 226 does not operate, and the distal end portion of the columnar crystal structure 148 and the radiation conversion panel 64. And the radiographic image can be captured.

一方、外部から電子カセッテ20に衝撃が加えられる可能性があることを衝撃予知判定部182が判定し、離間指示部184が衝撃予知判定部182からの通知信号に基づいてスイッチ230をオンにすると、電源228から各電極222、224に電圧が印加されて、圧電素子220は、筐体40の幅方向に圧縮すると共に筐体40の厚み方向に伸張する。これにより、図12Bのように、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。なお、図12Bにおいて、圧電素子220が筐体40の厚み方向に伸張すると、天板132及び底板140が押圧されるので、図12Aの場合と比較して、放射線検出器60近傍における筐体40の厚みが厚くなる。   On the other hand, when the impact prediction determination unit 182 determines that a shock may be applied to the electronic cassette 20 from the outside, and the separation instruction unit 184 turns on the switch 230 based on the notification signal from the impact prediction determination unit 182. A voltage is applied from the power source 228 to each of the electrodes 222 and 224, and the piezoelectric element 220 is compressed in the width direction of the housing 40 and expanded in the thickness direction of the housing 40. Thereby, as shown in FIG. 12B, the distal end portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be separated. In FIG. 12B, when the piezoelectric element 220 expands in the thickness direction of the housing 40, the top plate 132 and the bottom plate 140 are pressed, so that the housing 40 in the vicinity of the radiation detector 60 is compared with the case of FIG. 12A. The thickness of becomes thicker.

なお、外部から電子カセッテ20に衝撃が加えられる可能性がない場合、接触指示部186は、スイッチ230を再度オフにして、図12Aのように、放射線変換パネル64とシンチレータ150とを再度接触させる。   When there is no possibility that an impact is applied to the electronic cassette 20 from the outside, the contact instruction unit 186 turns off the switch 230 again to bring the radiation conversion panel 64 and the scintillator 150 into contact again as shown in FIG. 12A. .

このように、第3変形例においても、圧電アクチュエータ226の動作によって、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、第2変形例と同様の効果を得ることができる。   Thus, also in the third modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by the operation of the piezoelectric actuator 226 (contact control with respect to the radiation conversion panel 64 and the scintillator 150 is executed or stopped). The same effects as those of the second modification can be obtained.

第4変形例は、図13Aに示すように、プランジャ212及びばね部材214が放射線変換パネル64と支持基板144との間に介挿されているか、あるいは、図13Bに示すように、圧電アクチュエータ226が放射線変換パネル64と支持基板144との間に介挿されている。   In the fourth modified example, as shown in FIG. 13A, the plunger 212 and the spring member 214 are inserted between the radiation conversion panel 64 and the support substrate 144, or as shown in FIG. 13B, the piezoelectric actuator 226 is inserted. Is interposed between the radiation conversion panel 64 and the support substrate 144.

この場合でも、プランジャ212及びばね部材214の動作、又は、圧電アクチュエータ226の動作に起因して、放射線変換パネル64と支持基板144とがそれぞれ押圧されて、放射線変換パネル64とシンチレータ150とが接触又は離間するので、第2変形例及び第3変形例と同様の効果を得ることができる。   Even in this case, due to the operation of the plunger 212 and the spring member 214, or the operation of the piezoelectric actuator 226, the radiation conversion panel 64 and the support substrate 144 are pressed, and the radiation conversion panel 64 and the scintillator 150 come into contact with each other. Alternatively, since they are separated from each other, the same effects as those of the second and third modifications can be obtained.

第5変形例は、図14A及び図14Bに示すように、支持基板144と底板140との間にエアバッグ240(接触機構)が介挿されている。この場合、エアバッグ240は、接着層136を介して底板140に接着され、支持基板144は、接着層142を介してエアバッグ240に接着されている。   In the fifth modification, as shown in FIGS. 14A and 14B, an airbag 240 (contact mechanism) is interposed between the support substrate 144 and the bottom plate 140. In this case, the airbag 240 is bonded to the bottom plate 140 via the adhesive layer 136, and the support substrate 144 is bonded to the airbag 240 via the adhesive layer 142.

図14Aのように、インフレータ120から送り込まれる不活性ガスによりエアバッグ240が筐体40の厚み方向に膨張すると、柱状結晶構造148の先端部分と放射線変換パネル64とが接触し、放射線画像の撮影が可能な状態となる。   As shown in FIG. 14A, when the airbag 240 is inflated in the thickness direction of the casing 40 by the inert gas sent from the inflator 120, the distal end portion of the columnar crystal structure 148 and the radiation conversion panel 64 come into contact with each other, and a radiographic image is captured. Is possible.

一方、外部から電子カセッテ20に衝撃が加えられる可能性があることを衝撃予知判定部182が判定し、離間指示部184が衝撃予知判定部182からの通知信号に基づいてインフレータ120による不活性ガスの送給を停止させると、エアバッグ240内の不活性ガスは、図示しない排出孔を介して排出され、この結果、エアバッグ240は、筐体40の厚み方向(底板140の方向)に収縮し、この結果、図14Bのように、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。   On the other hand, the impact prediction determination unit 182 determines that an impact may be applied to the electronic cassette 20 from the outside, and the separation instruction unit 184 generates an inert gas from the inflator 120 based on the notification signal from the impact prediction determination unit 182. Is stopped, the inert gas in the airbag 240 is discharged through a discharge hole (not shown). As a result, the airbag 240 contracts in the thickness direction of the casing 40 (the direction of the bottom plate 140). As a result, the tip portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be separated as shown in FIG. 14B.

なお、外部から電子カセッテ20に衝撃が加えられる可能性がない場合、接触指示部186がインフレータ120を再度動作させて、エアバッグ240への不活性ガスの送給を再開すると、図14Aのように、放射線変換パネル64とシンチレータ150とが再度接触する。   When there is no possibility that an impact is applied to the electronic cassette 20 from the outside, when the contact instructing unit 186 operates the inflator 120 again to resume the supply of the inert gas to the airbag 240, as shown in FIG. 14A. In addition, the radiation conversion panel 64 and the scintillator 150 come into contact again.

このように、第5変形例においても、エアバッグ240及びインフレータ120の動作によって、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、本実施形態及び第1〜4変形例と同様の効果を得ることができる。   Thus, also in the fifth modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by the operation of the airbag 240 and the inflator 120 (contact control for the radiation conversion panel 64 and the scintillator 150 is executed or stopped). Therefore, the same effects as in the present embodiment and the first to fourth modifications can be obtained.

第6変形例は、図15A及び図15Bに示すように、底板140に立設する2つの支持部材250の上端部に設けられた回転軸252に、偏心カムであるカム254(接触機構)がそれぞれ軸支され、2つのカム254によって支持基板144が支持されている。   As shown in FIGS. 15A and 15B, in the sixth modification, a cam 254 (contact mechanism) that is an eccentric cam is provided on the rotary shaft 252 provided at the upper ends of the two support members 250 erected on the bottom plate 140. The support substrate 144 is supported by two cams 254 that are respectively pivotally supported.

回転軸252に対してカム254の回転角度が図15Aに示す角度であれば、柱状結晶構造148の先端部分と放射線変換パネル64とが接触し、放射線画像の撮影が可能な状態となる。   If the rotation angle of the cam 254 with respect to the rotation shaft 252 is the angle shown in FIG. 15A, the distal end portion of the columnar crystal structure 148 comes into contact with the radiation conversion panel 64, and a radiographic image can be captured.

一方、外部から電子カセッテ20に衝撃が加えられる可能性があることを衝撃予知判定部182が判定し、離間指示部184が衝撃予知判定部182からの通知信号に基づいて、回転軸252を中心としてカム254を回転させると、支持基板144が底板140側に下降するので、図15Bのように、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。   On the other hand, the impact prediction determination unit 182 determines that an impact may be applied to the electronic cassette 20 from the outside, and the separation instruction unit 184 is centered on the rotating shaft 252 based on the notification signal from the impact prediction determination unit 182. When the cam 254 is rotated, the support substrate 144 descends to the bottom plate 140 side, so that the distal end portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be separated as shown in FIG. 15B.

なお、外部から電子カセッテ20に衝撃が加えられる可能性がない場合、接触指示部186が回転軸252を中心にカム254を図15Aに示す回転角度まで回転させると、放射線変換パネル64とシンチレータ150とを再度接触させることができる。   When there is no possibility that an impact is applied to the electronic cassette 20 from the outside, the radiation conversion panel 64 and the scintillator 150 are obtained when the contact instruction unit 186 rotates the cam 254 about the rotation shaft 252 to the rotation angle shown in FIG. Can be contacted again.

このように、第6変形例においても、回転軸252を中心としたカム254の回転動作によって、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、本実施形態及び第1〜5変形例と同様の効果を得ることができる。   Thus, also in the sixth modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by the rotational operation of the cam 254 around the rotation shaft 252 (contact control with respect to the radiation conversion panel 64 and the scintillator 150). Therefore, the same effects as those of the present embodiment and the first to fifth modifications can be obtained.

第7変形例は、図16A及び図16Bに示すように、放射線変換パネル64と天板132との間にエアバッグ274(接触機構)が介挿されている。この場合、エアバッグ274は、接着層272を介して天板132に接着され、放射線変換パネル64は、接着層276を介してエアバッグ274に接着されている。また、支持基板144も接着層270を介して底板140に接着されている。   In the seventh modified example, as shown in FIGS. 16A and 16B, an airbag 274 (contact mechanism) is interposed between the radiation conversion panel 64 and the top plate 132. In this case, the airbag 274 is bonded to the top plate 132 via the adhesive layer 272, and the radiation conversion panel 64 is bonded to the airbag 274 via the adhesive layer 276. Further, the support substrate 144 is also bonded to the bottom plate 140 through the adhesive layer 270.

図16Aのように、インフレータ120から送り込まれる不活性ガスによりエアバッグ274が筐体40の厚み方向に膨張すると、柱状結晶構造148の先端部分と放射線変換パネル64とが接触し、放射線画像の撮影が可能な状態となる。   As shown in FIG. 16A, when the airbag 274 is inflated in the thickness direction of the housing 40 by the inert gas sent from the inflator 120, the distal end portion of the columnar crystal structure 148 comes into contact with the radiation conversion panel 64, and radiographic images are captured. Is possible.

一方、外部から電子カセッテ20に衝撃が加えられる可能性があると衝撃予知判定部182が判定し、離間指示部184が衝撃予知判定部182からの通知信号に基づいてインフレータ120による不活性ガスの送給を停止させると、エアバッグ274内の不活性ガスは、図示しない排出孔を介して排出され、この結果、エアバッグ274は、筐体40の厚み方向(天板132の方向)に収縮し、この結果、図16Bのように、柱状結晶構造148の先端部分と放射線変換パネル64とを離間させることができる。   On the other hand, the impact prediction determination unit 182 determines that an impact may be applied to the electronic cassette 20 from the outside, and the separation instruction unit 184 determines the inert gas generated by the inflator 120 based on the notification signal from the impact prediction determination unit 182. When the supply is stopped, the inert gas in the airbag 274 is discharged through a discharge hole (not shown). As a result, the airbag 274 contracts in the thickness direction of the casing 40 (the direction of the top plate 132). As a result, the tip portion of the columnar crystal structure 148 and the radiation conversion panel 64 can be separated as shown in FIG. 16B.

なお、外部から電子カセッテ20に衝撃が加えられる可能性がない場合、接触指示部186がインフレータ120を再度動作させて、エアバッグ274への不活性ガスの送給を再開させると、図16Aのように、放射線変換パネル64とシンチレータ150とが再度接触する。   If there is no possibility that an impact is applied to the electronic cassette 20 from the outside, the contact instructing unit 186 operates the inflator 120 again to restart the supply of the inert gas to the airbag 274. Thus, the radiation conversion panel 64 and the scintillator 150 come into contact again.

このように、第7変形例においても、エアバッグ274及びインフレータ120の動作によって、放射線変換パネル64とシンチレータ150とを接触又は離間させる(放射線変換パネル64とシンチレータ150とに対する接触制御を実行又は停止させる)ので、第5変形例と同様の効果を得ることができる。   Thus, also in the seventh modification, the radiation conversion panel 64 and the scintillator 150 are brought into contact with or separated from each other by the operation of the airbag 274 and the inflator 120 (contact control for the radiation conversion panel 64 and the scintillator 150 is executed or stopped). Therefore, the same effect as that of the fifth modification can be obtained.

なお、本実施形態に係る電子カセッテ20は、上記の各説明に限定されることはなく、下記の構成を採用するか、あるいは、併用することも可能であることは勿論である。   It should be noted that the electronic cassette 20 according to the present embodiment is not limited to the above description, and it is needless to say that the following configuration may be adopted or used together.

上記の各説明では、シンチレータ150と放射線変換パネル64とを接触又は離間させるための接触機構の具体例として、エアバッグ118、240、274、収容袋190、ばね部材214、圧電素子220、カム254を用いた場合について説明した。前記接触機構は、上記の具体例に限定されることはなく、シンチレータ150と放射線変換パネル64とを動的に接触又は離間できるものであれば、どのような構成でも構わない。   In the above descriptions, as specific examples of the contact mechanism for contacting or separating the scintillator 150 and the radiation conversion panel 64, the airbags 118, 240, 274, the storage bag 190, the spring member 214, the piezoelectric element 220, and the cam 254 are used. The case where was used was described. The contact mechanism is not limited to the above specific example, and any configuration may be used as long as it can dynamically contact or separate the scintillator 150 and the radiation conversion panel 64.

例えば、本実施形態、第1変形例及び第7変形例では、インフレータ120で発生させた不活性ガスをエアバッグ118、240、274に送給することで、該エアバッグ118、240、274を膨張させている。これに代えて、外部からエアを補充可能なエアボンベを電子カセッテ20に搭載又は連結し、バルブの開閉制御により前記エアボンベからエアバッグ118、240、274にエアを送給して、該エアバッグ118、240、274を膨張させてもよい。また、エアポンプ(コンプレッサ)からエアバッグ118、240、274に圧縮エアを送給して、該エアバッグ118、240、274を膨張させてもよい。なお、これらの例において、エアバッグ118、240、274を収縮させるためには、エアバッグ118、240、274の図示しない孔からエアを排出させるか、あるいは、エアポンプを駆動させて、エアバッグ118、240、274からエアを排出させればよい。   For example, in the present embodiment, the first modified example, and the seventh modified example, the inert gas generated by the inflator 120 is supplied to the airbags 118, 240, 274 so that the airbags 118, 240, 274 are It is inflated. Instead, an air cylinder capable of replenishing air from the outside is mounted on or connected to the electronic cassette 20, and air is supplied from the air cylinder to the airbags 118, 240, and 274 by valve opening / closing control. 240, 274 may be inflated. Alternatively, compressed air may be supplied from the air pump (compressor) to the airbags 118, 240, and 274 to inflate the airbags 118, 240, and 274. In these examples, in order to contract the airbags 118, 240, and 274, the airbag 118, 240, and 274 are discharged through holes (not shown) or the air pump is driven to drive the airbag 118. , 240, 274 may be discharged.

また、本実施形態及び第1〜第7変形例の各図面では、シンチレータ150と放射線変換パネル64とを離間させる際、完全に離間させた場合(非接触状態)を図示している。本実施形態及び第1〜第7変形例は、これらの図示内容に限定されることはなく、上述した接触機構によるシンチレータ150と放射線変換パネル64との接触制御を停止させることにより、シンチレータ150と放射線変換パネル64との接触圧を、シンチレータ150と放射線変換パネル64とを押し当てているときの接触圧よりも低圧力とするか、あるいは、ほとんど圧力がかかっていない状態としてもよい。この場合、シンチレータ150と放射線変換パネル64とを完全に離間させることはできないが、シンチレータ150と放射線変換パネル64とに対する前記接触機構の接触制御を停止したことによる各効果を得ることは可能である。   Moreover, in each drawing of this embodiment and the 1st-7th modification, when separating the scintillator 150 and the radiation conversion panel 64, the case where it separated completely (non-contact state) is illustrated. The present embodiment and the first to seventh modifications are not limited to these illustrated contents, and by stopping contact control between the scintillator 150 and the radiation conversion panel 64 by the contact mechanism described above, the scintillator 150 The contact pressure with the radiation conversion panel 64 may be lower than the contact pressure when the scintillator 150 and the radiation conversion panel 64 are pressed, or may be in a state where almost no pressure is applied. In this case, the scintillator 150 and the radiation conversion panel 64 cannot be completely separated from each other, but it is possible to obtain the respective effects obtained by stopping the contact control of the contact mechanism with respect to the scintillator 150 and the radiation conversion panel 64. .

さらに、本実施形態及び第1〜第7変形例では、主として、外部から電子カセッテ20に衝撃が与えられる場合でのシンチレータ150と放射線変換パネル64とに対する接触制御について説明した。本実施形態及び第1〜第7変形例は、これらの説明に限定されることはなく、被写体14の撮影前に上記の接触機構がオーダ情報に基づいてシンチレータ150と放射線変換パネル64とを接触させ(押し当て)、一方で、被写体14の撮影後に、シンチレータ150と放射線変換パネル64とを離間させるか、又は、シンチレータ150と放射線変換パネル64との接触圧を低下させてもよい。外部から衝撃を受ける可能性の低い撮影中にのみ、シンチレータ150と放射線変換パネル64とを押し当てるようにしているので、この場合でも、シンチレータ150と放射線変換パネル64との接触制御に関わる各効果を得ることが可能である。   Further, in the present embodiment and the first to seventh modified examples, mainly the contact control with respect to the scintillator 150 and the radiation conversion panel 64 when an impact is applied to the electronic cassette 20 from the outside has been described. The present embodiment and the first to seventh modifications are not limited to these descriptions, and the contact mechanism contacts the scintillator 150 and the radiation conversion panel 64 based on the order information before photographing the subject 14. On the other hand, after photographing the subject 14, the scintillator 150 and the radiation conversion panel 64 may be separated from each other, or the contact pressure between the scintillator 150 and the radiation conversion panel 64 may be reduced. Since the scintillator 150 and the radiation conversion panel 64 are pressed against each other only during imaging with a low possibility of receiving an impact from the outside, even in this case, each effect related to contact control between the scintillator 150 and the radiation conversion panel 64 is achieved. It is possible to obtain

なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

10…放射線撮影システム
14…被写体
16…放射線
20…電子カセッテ
40…筐体
44…照射面
56…加速度センサ
58…圧力センサ
62…シンチレータパネル
64…放射線変換パネル
66…放射線検出器
110…カセッテ制御部
118、240、274…エアバッグ
120…インフレータ
122…表示操作部
124…スピーカ
132…天板
140…底板
144…支持基板
148…柱状結晶構造
150…シンチレータ
182…衝撃予知判定部
184…離間指示部
186…接触指示部
190…収容袋
192…室
194…通路
196…リーク弁
212…プランジャ
214…ばね部材
226…圧電アクチュエータ
254…カム
DESCRIPTION OF SYMBOLS 10 ... Radiation imaging system 14 ... Subject 16 ... Radiation 20 ... Electronic cassette 40 ... Housing 44 ... Irradiation surface 56 ... Acceleration sensor 58 ... Pressure sensor 62 ... Scintillator panel 64 ... Radiation conversion panel 66 ... Radiation detector 110 ... Cassette control part 118, 240, 274 ... airbag 120 ... inflator 122 ... display operation unit 124 ... speaker 132 ... top plate 140 ... bottom plate 144 ... support substrate 148 ... columnar crystal structure 150 ... scintillator 182 ... impact prediction determination unit 184 ... separation instruction unit 186 ... instruction contact portion 190 ... accommodating bag 192 ... chamber 194 ... passage 196 ... leak valve 212 ... plunger 214 ... spring member 226 ... piezoelectric actuator 254 ... cam

Claims (17)

放射線を可視光に変換するシンチレータ、及び、前記可視光を電気信号に変換する放射線変換パネルを備えた放射線検出器を有する放射線撮影装置において、
前記シンチレータと前記放射線変換パネルとを接触させる接触機構と、
前記放射線撮影装置の移動を検知する移動検知部と、
少なくとも前記放射線検出器に対する前記放射線の照射時には、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御し、一方で、前記移動検知部が検知した前記放射線撮影装置の移動に関わる物理量が所定の閾値を超えたときに前記接触機構による前記シンチレータと前記放射線変換パネルとの接触制御を停止させる接触制御部と、
をさらに有することを特徴とする放射線撮影装置。
In a radiation imaging apparatus having a scintillator that converts radiation into visible light, and a radiation detector that includes a radiation conversion panel that converts the visible light into an electrical signal.
A contact mechanism for contacting the scintillator and the radiation conversion panel;
A movement detector for detecting movement of the radiation imaging apparatus;
At least when the radiation detector is irradiated with the radiation, the contact mechanism is controlled to bring the scintillator and the radiation conversion panel into contact with each other, and on the other hand, the movement of the radiation imaging apparatus detected by the movement detection unit is involved. A contact control unit that stops contact control between the scintillator and the radiation conversion panel by the contact mechanism when a physical quantity exceeds a predetermined threshold;
A radiation imaging apparatus, further comprising:
請求項1記載の装置において、
前記シンチレータは、該シンチレータを支持する支持基板上に、該支持基板と略直交する方向に沿って、前記放射線を前記可視光に変換可能な柱状結晶を蒸着形成することにより構成され、
前記接触機構は、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うことを特徴とする放射線撮影装置。
The apparatus of claim 1.
The scintillator is configured by vapor-depositing a columnar crystal capable of converting the radiation into the visible light on a support substrate that supports the scintillator, along a direction substantially orthogonal to the support substrate.
The radiation mechanism according to claim 1, wherein the contact mechanism controls contact between a tip portion of the columnar crystal and the radiation conversion panel.
請求項2記載の装置において、
前記放射線検出器、前記接触機構、前記移動検知部及び前記接触制御部を収容し、前記放射線を透過可能で且つ可搬型の筐体をさらに有し、
前記筐体内では、該筐体の厚み方向に沿って、前記支持基板、前記シンチレータ及び前記放射線変換パネルが順に配置され、
前記支持基板又は前記放射線変換パネルに対向する前記筐体の表面が前記放射線が照射される照射面とされることを特徴とする放射線撮影装置。
The apparatus of claim 2.
The radiation detector, the contact mechanism, the movement detection unit, and the contact control unit are accommodated, and further includes a portable housing that can transmit the radiation.
In the casing, the support substrate, the scintillator, and the radiation conversion panel are sequentially arranged along the thickness direction of the casing.
The radiation imaging apparatus according to claim 1, wherein a surface of the housing facing the support substrate or the radiation conversion panel is an irradiation surface on which the radiation is irradiated.
請求項3記載の装置において、
前記移動検知部は、前記放射線撮影装置の加速度を検出する加速度センサ、又は、前記照射面に接触する被写体から前記放射線撮影装置に加わる圧力を検出する圧力センサであり、
前記接触制御部は、
前記加速度又は前記圧力に関わる物理量が前記閾値未満である場合には、前記接触機構を制御することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、
一方で、前記物理量が前記閾値を超える場合には、前記接触機構による前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を停止させることを特徴とする放射線撮影装置。
The apparatus of claim 3.
The movement detection unit is an acceleration sensor that detects acceleration of the radiation imaging apparatus, or a pressure sensor that detects pressure applied to the radiation imaging apparatus from a subject in contact with the irradiation surface,
The contact controller is
When the physical quantity related to the acceleration or the pressure is less than the threshold, by controlling the contact mechanism, the tip portion of the columnar crystal and the radiation conversion panel are contacted,
On the other hand, when the physical quantity exceeds the threshold, contact control between the tip portion of the columnar crystal and the radiation conversion panel by the contact mechanism is stopped.
請求項4記載の装置において、
前記接触機構は、前記筐体の厚み方向に沿って膨張又は収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うエアバッグであり、
前記放射線撮影装置は、前記筐体内に収容され、前記エアバッグに不活性ガスを送り込んで該エアバッグを前記厚み方向に膨張させるインフレータをさらに有することを特徴とする放射線撮影装置。
The apparatus of claim 4.
The contact mechanism is an airbag that performs contact control between the tip portion of the columnar crystal and the radiation conversion panel by expanding or contracting along the thickness direction of the housing.
The radiation imaging apparatus further includes an inflator that is housed in the housing and that inflates the airbag in the thickness direction by feeding an inert gas into the airbag.
請求項5記載の装置において、
平面視で、前記シンチレータは、前記支持基板及び前記放射線変換パネルの内方に形成されると共に、前記エアバッグは、前記シンチレータを囲繞するように前記支持基板の外縁部又は前記放射線変換パネルの外縁部に配設され、
前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの離間を指示した場合に、前記インフレータは、前記不活性ガスを前記エアバッグに送り込み、
前記エアバッグは、前記支持基板の外縁部と前記放射線変換パネルの外縁部との間で、前記厚み方向に膨張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させることを特徴とする放射線撮影装置。
The apparatus of claim 5.
In plan view, the scintillator is formed inside the support substrate and the radiation conversion panel, and the airbag surrounds the scintillator so as to surround the scintillator or the outer edge of the radiation conversion panel. Arranged in the section,
When the contact controller instructs the separation between the tip portion of the columnar crystal and the radiation conversion panel, the inflator sends the inert gas into the airbag,
The airbag is inflated in the thickness direction between the outer edge portion of the support substrate and the outer edge portion of the radiation conversion panel, thereby separating the tip portion of the columnar crystal and the radiation conversion panel. A characteristic radiographic apparatus.
請求項5記載の装置において、
前記エアバッグは、前記支持基板と前記筐体における該支持基板に対向する面との間に介挿されるか、又は、前記放射線変換パネルと前記筐体における該放射線変換パネルに対向する面との間に介挿され、
前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記エアバッグは、前記不活性ガスを排出して前記厚み方向に収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させることを特徴とする放射線撮影装置。
The apparatus of claim 5.
The airbag is interposed between the support substrate and a surface of the housing facing the support substrate, or between the radiation conversion panel and the surface of the housing facing the radiation conversion panel. Inserted between
When the contact controller instructs to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel, the airbag discharges the inert gas and contracts in the thickness direction, A radiation imaging apparatus characterized in that a tip portion of the columnar crystal is separated from the radiation conversion panel.
請求項4記載の装置において、
前記接触機構は、前記放射線検出器を収容した室内を負圧状態にして、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記室内を大気圧状態にして、前記厚み方向に沿って膨張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを離間させる収容袋であることを特徴とする放射線撮影装置。
The apparatus of claim 4.
The contact mechanism makes the chamber containing the radiation detector in a negative pressure state and contracts along the thickness direction to bring the tip portion of the columnar crystal into contact with the radiation conversion panel, A radiation imaging apparatus, wherein the chamber is an atmospheric pressure state and expands along the thickness direction so as to separate the distal end portion of the columnar crystal from the radiation conversion panel.
請求項8記載の装置において、
前記収容袋に連通する通路に配設されたリーク弁をさらに有し、
前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触を指示した場合に、前記収容袋は、前記室内を負圧状態にすると共に、前記リーク弁は、弁閉状態となることで、前記通路を介した前記室への空気の侵入を阻止し、
一方で、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記リーク弁は、弁開状態となることで、前記通路を介して前記室に前記空気を侵入させて、該室内を大気圧状態にすることを特徴とする放射線撮影装置。
The apparatus of claim 8.
A leak valve disposed in a passage communicating with the containing bag;
When the contact controller instructs the contact between the tip of the columnar crystal and the radiation conversion panel, the storage bag places the chamber in a negative pressure state, and the leak valve enters a valve closed state. By preventing air from entering the chamber through the passage,
On the other hand, when the contact control unit instructs to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel, the leak valve is opened, and thus the leak valve is opened via the passage. A radiation imaging apparatus characterized by causing the air to enter a room and bringing the room into an atmospheric pressure state.
請求項4記載の装置において、
前記接触機構は、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記厚み方向に沿って伸張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うばね部材であることを特徴とする放射線撮影装置。
The apparatus of claim 4.
The contact mechanism contracts along the thickness direction to bring the tip portion of the columnar crystal into contact with the radiation conversion panel, while extending along the thickness direction, A radiation imaging apparatus, wherein the radiation imaging apparatus is a spring member that controls contact between a distal end portion and the radiation conversion panel.
請求項10記載の装置において、
前記ばね部材は、
前記筐体における前記照射面側の天板と底板との間にあって、且つ、前記放射線検出器近傍の箇所に配設されるか、
あるいは、前記放射線変換パネルの外縁部と前記支持基板の外縁部との間に配設されることを特徴とする放射線撮影装置。
The apparatus of claim 10.
The spring member is
Between the top plate and the bottom plate on the irradiation surface side in the housing, and is disposed at a location near the radiation detector,
Alternatively, the radiation imaging apparatus is disposed between an outer edge portion of the radiation conversion panel and an outer edge portion of the support substrate.
請求項11記載の装置において、
前記ばね部材の一端部は、前記天板又は前記放射線変換パネルの外縁部に固定されると共に、前記ばね部材の他端部は、前記底板又は前記支持基板の外縁部に配設されたロック部材に固定され、
前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触を指示した場合に、前記ロック部材は、前記ばね部材を前記厚み方向に収縮させ、
一方で、前記接触制御部が前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御の停止を指示した場合に、前記ロック部材は、前記ばね部材に対するロック状態を解除して、前記ばね部材を前記厚み方向に伸張させることを特徴とする放射線撮影装置。
The apparatus of claim 11.
One end portion of the spring member is fixed to the outer edge portion of the top plate or the radiation conversion panel, and the other end portion of the spring member is a lock member disposed on the outer edge portion of the bottom plate or the support substrate. Fixed to
When the contact control unit instructs the contact between the tip portion of the columnar crystal and the radiation conversion panel, the lock member contracts the spring member in the thickness direction,
On the other hand, when the contact control unit instructs to stop contact control between the tip portion of the columnar crystal and the radiation conversion panel, the lock member releases the locked state with respect to the spring member, and the spring member A radiation imaging apparatus characterized by extending the film in the thickness direction.
請求項4記載の装置において、
前記接触機構は、前記厚み方向に沿って収縮することにより、前記柱状結晶の先端部分と前記放射線変換パネルとを接触させ、一方で、前記厚み方向に沿って伸張することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を停止させる圧電素子であることを特徴とする放射線撮影装置。
The apparatus of claim 4.
The contact mechanism contracts along the thickness direction to bring the tip portion of the columnar crystal into contact with the radiation conversion panel, while extending along the thickness direction, A radiation imaging apparatus, wherein the radiation imaging apparatus is a piezoelectric element that stops contact control between a distal end portion and the radiation conversion panel.
請求項13記載の装置において、
前記圧電素子は、
前記筐体における前記照射面側の天板と底板との間であって、且つ、前記放射線検出器近傍の箇所に配設されるか、
あるいは、前記放射線変換パネルの外縁部と前記支持基板の外縁部との間に配設されることを特徴とする放射線撮影装置。
The apparatus of claim 13.
The piezoelectric element is
Between the top plate and the bottom plate on the irradiation surface side in the casing, and is disposed in the vicinity of the radiation detector,
Alternatively, the radiation imaging apparatus is disposed between an outer edge portion of the radiation conversion panel and an outer edge portion of the support substrate.
請求項4記載の装置において、
前記接触機構は、回転軸を中心に回転することにより、前記柱状結晶の先端部分と前記放射線変換パネルとの接触制御を行うカムであることを特徴とする放射線撮影装置。
The apparatus of claim 4.
The radiographic apparatus according to claim 1, wherein the contact mechanism is a cam that controls contact between the distal end portion of the columnar crystal and the radiation conversion panel by rotating about a rotation axis.
請求項1〜15のいずれか1項に記載の装置において、
前記接触制御部は、前記放射線を出力する放射線源が該放射線の照射準備を行った時点で、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御することを特徴とする放射線撮影装置。
The device according to any one of claims 1 to 15,
The contact control unit controls the contact mechanism so that the scintillator and the radiation conversion panel are brought into contact with each other when the radiation source that outputs the radiation prepares to irradiate the radiation. Shooting device.
請求項1〜16のいずれか1項に記載の装置において、
前記接触制御部は、被写体に対する放射線の照射に関わるオーダ情報に基づいて、前記被写体を介した前記放射線検出器への前記放射線の照射前に、前記シンチレータと前記放射線変換パネルとを接触させるように前記接触機構を制御し、一方で、前記放射線の照射後に前記シンチレータと前記放射線変換パネルとの接触制御を停止させるように前記接触機構を制御することを特徴とする放射線撮影装置。
The device according to any one of claims 1 to 16,
The contact control unit is configured to bring the scintillator and the radiation conversion panel into contact before irradiation of the radiation to the radiation detector via the subject based on order information relating to radiation irradiation of the subject. A radiation imaging apparatus characterized by controlling the contact mechanism, and on the other hand, controlling the contact mechanism to stop contact control between the scintillator and the radiation conversion panel after irradiation of the radiation.
JP2010194782A 2010-08-31 2010-08-31 Radiation imaging device Withdrawn JP2012050596A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010194782A JP2012050596A (en) 2010-08-31 2010-08-31 Radiation imaging device
PCT/JP2011/064397 WO2012029384A1 (en) 2010-08-31 2011-06-23 Radiation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194782A JP2012050596A (en) 2010-08-31 2010-08-31 Radiation imaging device

Publications (1)

Publication Number Publication Date
JP2012050596A true JP2012050596A (en) 2012-03-15

Family

ID=45772496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194782A Withdrawn JP2012050596A (en) 2010-08-31 2010-08-31 Radiation imaging device

Country Status (2)

Country Link
JP (1) JP2012050596A (en)
WO (1) WO2012029384A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513703A (en) * 2015-02-17 2018-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Medical imaging detector
US10058297B2 (en) 2013-11-08 2018-08-28 Samsung Electronics Co., Ltd. Medical imaging system and workstation and X-ray detector thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014168A (en) * 2000-06-27 2002-01-18 Canon Inc X-ray imaging apparatus
JP4847492B2 (en) * 2008-06-02 2011-12-28 キヤノン株式会社 Radiation detection apparatus, radiation detection system, and control method thereof
JP2010156598A (en) * 2008-12-26 2010-07-15 Fujifilm Corp Portable radiation image photographing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10058297B2 (en) 2013-11-08 2018-08-28 Samsung Electronics Co., Ltd. Medical imaging system and workstation and X-ray detector thereof
US11278251B2 (en) 2013-11-08 2022-03-22 Samsung Electronics Co., Ltd. Medical imaging system and workstation and X-ray detector thereof
JP2018513703A (en) * 2015-02-17 2018-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Medical imaging detector

Also Published As

Publication number Publication date
WO2012029384A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5603713B2 (en) Radiography equipment
US8198593B2 (en) Radiation conversion device and radiation image capturing system
EP2317340B1 (en) Radiation image detector
JP5137763B2 (en) Radiation detection apparatus and radiographic imaging system
JP5436281B2 (en) Radiography system, console, radiography cassette, and program
US8563939B2 (en) Radiation detecting apparatus and radiation detecting system
JP2006263322A (en) Radiographic imaging system, console, and program executed in console
WO2006101232A1 (en) Radiograph capturing system, console, program executed in console, cassette, and program executed in cassette
JP2008142094A (en) Radiograph capturing device and radiograph imaging system
JP2009028449A (en) Radiation image photographing system and radiation generator
JP2006113053A (en) X-ray detector provided with shock absorbing cover
WO2006103794A1 (en) Radiographic imaging system, console, and program executed by console
JP2012050596A (en) Radiation imaging device
JP2012047627A (en) Radiation detection panel
JP2012100797A (en) Radiation image photographing system
JP2012247401A (en) Radiographic apparatus
JP2012052892A (en) Radiographic device
JP2012011026A (en) Electronic cassette and radiographic system
US20090195209A1 (en) Radiation conversion device
JP4914849B2 (en) Radiation converter and radiation converter processing apparatus
JP2010156598A (en) Portable radiation image photographing device
JP2012181025A (en) Radiation imaging device
US7999234B2 (en) Cradle for use with radiation conversion device
JP5541084B2 (en) Cradle
JP5355653B2 (en) Radiation imaging apparatus and control method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105