JP2012048836A - Method of manufacturing membrane electrode assembly - Google Patents

Method of manufacturing membrane electrode assembly Download PDF

Info

Publication number
JP2012048836A
JP2012048836A JP2010187046A JP2010187046A JP2012048836A JP 2012048836 A JP2012048836 A JP 2012048836A JP 2010187046 A JP2010187046 A JP 2010187046A JP 2010187046 A JP2010187046 A JP 2010187046A JP 2012048836 A JP2012048836 A JP 2012048836A
Authority
JP
Japan
Prior art keywords
catalyst layer
layer
catalyst
electrode assembly
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010187046A
Other languages
Japanese (ja)
Inventor
Teru Hasegawa
輝 長谷川
Hiroyuki Inoue
裕之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010187046A priority Critical patent/JP2012048836A/en
Publication of JP2012048836A publication Critical patent/JP2012048836A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To improve power generation performance by improving the bondability of an interface between an electrolyte film and a catalyst layer formed by vapor deposition.SOLUTION: The method of manufacturing the membrane electrode assembly includes the processes of: i) manufacturing a catalyst layer formation body having the catalyst layer formed by vapor-depositing a catalyst on a surface of a porous film; and (ii) bonding the electrolyte film and the catalyst layer of the catalyst layer formation body together.

Description

本発明は、固体高分子電解質型燃料電池に用いられる膜電極接合体、特に、触媒を蒸着させることにより形成された触媒層を有する膜電極接合体の作製方法に関する。   The present invention relates to a membrane electrode assembly used in a solid polymer electrolyte fuel cell, and more particularly to a method for producing a membrane electrode assembly having a catalyst layer formed by depositing a catalyst.

燃料電池は、燃料ガスとしての水素と酸化ガスとしての酸素との電気化学反応によって発電する装置である。なお、以下では、燃料ガスや酸化ガスを、特に区別することなく単に「反応ガス」あるいは「ガス」と呼ぶ場合もある。燃料電池は、通常、燃料電池セルを、セパレータを介して複数個積層して構成される。1つの燃料電池セルは、プロトン(H)伝導性を有する固体高分子電解質膜(以下、単に「電解質膜」とも呼ぶ)の両面に触媒電極層(以下、単に「触媒層」とも呼ぶ)およびガス拡散層(GDL:Gas Diffusion Layer)を接合した構造体により構成される場合が多い。なお、この構造体は、膜電極接合体(MEA:Membrane Electrode Assembly)、あるいは、膜電極ガス拡散層接合体(MEGA:Membrane Electrode&Gas Diffusion Layer Assembly)と呼ばれる。 A fuel cell is a device that generates electricity by an electrochemical reaction between hydrogen as a fuel gas and oxygen as an oxidizing gas. Hereinafter, the fuel gas and the oxidizing gas may be simply referred to as “reaction gas” or “gas” without particular distinction. A fuel cell is usually configured by stacking a plurality of fuel cells via a separator. One fuel cell includes a catalyst electrode layer (hereinafter also simply referred to as “catalyst layer”) on both sides of a solid polymer electrolyte membrane having proton (H + ) conductivity (hereinafter also simply referred to as “electrolyte membrane”) and In many cases, a gas diffusion layer (GDL: Gas Diffusion Layer) is used in the structure. This structure is called a membrane electrode assembly (MEA) or a membrane electrode gas diffusion layer assembly (MEGA).

燃料電池の低コスト化のために、MEAの作製に使用する触媒、例えば、白金、の低減が求められている。そして、そのための作製方法として、ガス拡散層上に触媒を蒸着させることにより触媒層を形成し、ガス拡散層の触媒層と電解質膜とを接合させることにより作製する方法が知られている。   In order to reduce the cost of fuel cells, there is a demand for a reduction in the catalyst used for the production of MEA, for example, platinum. As a manufacturing method therefor, a method is known in which a catalyst layer is formed by vapor-depositing a catalyst on a gas diffusion layer, and the catalyst layer of the gas diffusion layer is bonded to an electrolyte membrane.

しかしながら、上記方法により作製されたMEAでは、電解質膜と蒸着形成された触媒層との界面における接合性が悪く、これを用いた燃料電池セルの発電正性能が低い、という問題があった。   However, the MEA produced by the above method has a problem in that the bonding property at the interface between the electrolyte membrane and the deposited catalyst layer is poor, and the power generation performance of the fuel cell using this is low.

特開2007−056064号公報JP 2007-056064 A 特開平08−213027号公報Japanese Patent Application Laid-Open No. 08-213027

そこで、本発明は、電解質膜と蒸着形成された触媒層との界面における接合性を改善し、発電性能を向上させることが可能な技術を提供することを目的とする。   Therefore, an object of the present invention is to provide a technique capable of improving the bondability at the interface between the electrolyte membrane and the deposited catalyst layer and improving the power generation performance.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
膜電極接合体の作製方法であって、
i)多孔質フィルムの表面に触媒を蒸着させることにより触媒層を形成した触媒層形成体を作製する工程と、
ii)電解質膜と前記触媒層形成体の触媒層とを接合させる工程と、
を備えることを特徴とする膜電極接合体の作製方法。
適用例1の作製方法によれば、触媒層が多孔質フィルムの表面に蒸着形成された触媒層形成体は、従来のようにガス拡散層の表面に蒸着形成された場合に比べて、柔軟性を有している。このため、触媒層形成体の触媒層と電解質膜とを接合した場合に、触媒層と電解質膜との界面における接合性を改善することが可能であり、作製した膜電極接合体を用いた燃料電池セルの発電性能を向上させることが可能である。
[Application Example 1]
A method for producing a membrane electrode assembly,
i) producing a catalyst layer forming body in which a catalyst layer is formed by depositing a catalyst on the surface of the porous film;
ii) joining the electrolyte membrane and the catalyst layer of the catalyst layer forming body;
A method for producing a membrane electrode assembly, comprising:
According to the production method of Application Example 1, the catalyst layer formed body in which the catalyst layer is vapor-deposited on the surface of the porous film is more flexible than the conventional case where the catalyst layer is vapor-deposited on the surface of the gas diffusion layer. have. For this reason, when the catalyst layer and the electrolyte membrane of the catalyst layer forming body are joined, it is possible to improve the bondability at the interface between the catalyst layer and the electrolyte membrane, and the fuel using the produced membrane electrode assembly It is possible to improve the power generation performance of the battery cell.

なお、本発明は、種々の形態で実現することが可能であり、例えば、膜電極接合体の作製方法だけでなく、この作製方法により作製された膜電極接合体、この膜電極接合体を用いた燃料電池、この燃料電池を用いた燃料電池システム等の種々の形態で実現することが可能である。   The present invention can be realized in various forms. For example, not only a method for producing a membrane electrode assembly, but also a membrane electrode assembly produced by this production method, and this membrane electrode assembly are used. The present invention can be realized in various forms such as a conventional fuel cell and a fuel cell system using the fuel cell.

実施例としての膜電極接合体の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the membrane electrode assembly as an Example. 比較例としての膜電極接合体の作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the membrane electrode assembly as a comparative example. 実施例および比較例の作製方法により得られた膜電極接合体を用いた燃料電池セルの発電性能を比較して示す表である。It is a table | surface which compares and shows the electric power generation performance of the fuel cell using the membrane electrode assembly obtained by the preparation method of an Example and a comparative example.

本発明の実施の形態を、実施例に基づいて以下の順序で説明する。
A.実施例:
B.変形例:
Embodiments of the present invention will be described in the following order based on examples.
A. Example:
B. Variations:

A.実施例:
(1)膜電極接合体の作製方法の実施例
図1は、実施例としての膜電極接合体の作製方法を示す説明図である。この実施形態の膜電極接合体の作製方法は、以下で説明する3つの工程からなる。
A. Example:
(1) Example of Manufacturing Method of Membrane / Electrode Assembly FIG. 1 is an explanatory view showing a manufacturing method of a membrane / electrode assembly as an example. The manufacturing method of the membrane electrode assembly of this embodiment consists of three processes described below.

[工程1]
工程1では、柔軟性のある導電性の多孔質フィルムを被蒸着体20sとして用い、被蒸着体20sの一方の表面に触媒として白金(Pt)を蒸着させることにより、被蒸着体20sの表面に触媒層(以下、「蒸着触媒層」とも呼ぶ)20ctが形成された触媒層形成体20ctsを作製する。蒸着法としては、スパッタ法や化学蒸着法等を用いればよい。
[Step 1]
In step 1, a flexible conductive porous film is used as the deposition target 20s, and platinum (Pt) is deposited as a catalyst on one surface of the deposition target 20s, thereby forming a surface of the deposition target 20s. A catalyst layer forming body 20cts in which a catalyst layer (hereinafter also referred to as “deposition catalyst layer”) 20ct is formed is produced. As a vapor deposition method, a sputtering method, a chemical vapor deposition method, or the like may be used.

導電性の多孔質フィルムとしては、カーボン等の導電体とPTFE(ポリテトラフルオロエチレン)やポリイミド等のバインダー樹脂からなり、柔軟性のあるものが用いられる。柔軟性はヤング率により規定することが可能であり、例えば、1MPa以上0.1GPa以下の条件で規定することができる。なお、通常、ヤング率が1GPa以上のものは柔軟性に乏しいと考えられ、後述する比較例のように、ガス拡散層(GDL)が被蒸着体の場合、一般に利用されるカーボン繊維集合体のヤング率が10GPa〜50GPa程度であるため、柔軟性がないと言える。   As the conductive porous film, a flexible film made of a conductor such as carbon and a binder resin such as PTFE (polytetrafluoroethylene) or polyimide is used. The flexibility can be defined by Young's modulus, and can be defined, for example, under the condition of 1 MPa or more and 0.1 GPa or less. In general, a material having a Young's modulus of 1 GPa or more is considered to be poor in flexibility. When the gas diffusion layer (GDL) is a vapor-deposited body as in a comparative example described later, the carbon fiber aggregate generally used is used. Since the Young's modulus is about 10 GPa to 50 GPa, it can be said that there is no flexibility.

蒸着する触媒としては、白金のほか、他の遷移金属(Co,Ni,Fe等)を含む白金合金を用いることができる。   As a catalyst for vapor deposition, platinum alloy containing other transition metals (Co, Ni, Fe, etc.) can be used in addition to platinum.

[工程2]
工程2では、工程1で作製した触媒層形成体20ctsの蒸着触媒層20ctを電解質膜10の一方の面に接合させて、膜・蒸着触媒層接合体10ctsを作製する。接合条件としては、温度80℃〜200℃および圧力0.1MPa〜10MPaの範囲内で、それぞれ、電解質膜10および触媒層形成体20ctsの物性に合わせて適宜選択される。
[Step 2]
In step 2, the deposited catalyst layer 20ct of the catalyst layer forming body 20cts produced in step 1 is joined to one surface of the electrolyte membrane 10 to produce a membrane / deposited catalyst layer assembly 10cts. The joining conditions are appropriately selected according to the physical properties of the electrolyte membrane 10 and the catalyst layer forming body 20cts, respectively, within a temperature range of 80 ° C. to 200 ° C. and a pressure of 0.1 MPa to 10 MPa.

[工程3]
工程3では、ガス拡散層50、触媒層30ct、蒸着触媒層接合体10cts、GDL基材層40bの順に積層し、それぞれを接合して膜電極接合体(MEA)を作製する。なお、接合条件としては、工程2と同様に、ガス拡散層50、触媒層30ct、蒸着触媒層接合体10cts、および、GDL基材層40bの物性に合わせて、温度と圧力が適宜選択される。
[Step 3]
In step 3, the gas diffusion layer 50, the catalyst layer 30ct, the vapor deposition catalyst layer assembly 10cts, and the GDL base material layer 40b are laminated in this order, and are joined together to produce a membrane electrode assembly (MEA). As for the bonding conditions, as in step 2, the temperature and pressure are appropriately selected according to the physical properties of the gas diffusion layer 50, the catalyst layer 30ct, the vapor deposition catalyst layer assembly 10cts, and the GDL base material layer 40b. .

ガス拡散層50は導電性のGDL基材層50bと多孔質層50sとを接合した接合体構造を有しており、触媒層30ctは多孔質層50sの上に積層して接合される。GDL基材層50bとしては、カーボンペーパーやカーボンクロス等が用いられる。多孔質層50sとしては、例えば、被蒸着体20sと同様に、導電性の多孔質フィルムが用いられる。   The gas diffusion layer 50 has a joined body structure in which a conductive GDL base material layer 50b and a porous layer 50s are joined, and the catalyst layer 30ct is laminated and joined on the porous layer 50s. As the GDL base material layer 50b, carbon paper, carbon cloth, or the like is used. As the porous layer 50s, for example, a conductive porous film is used in the same manner as the deposition target 20s.

触媒層30ctは、蒸着によらないで作製される従来の触媒層であり、例えば、触媒層形成シート上に触媒インクを塗布し乾燥させることにより作製することができる。触媒インクとしては、たとえば、電解質溶液と、触媒としての白金(Pt)を担持したカーボン(例えば、カーボンブラック)担体と、を混合したものを用いることができる。なお、電解質溶液としては、例えば、スルホン酸基を有するパーフルオロカーボン重合体からなるフッ素系樹脂材料(例えば、ナフィオン、デュポン社製)を、水およびアルコール類を溶媒として溶解させたものを用いることができる。   The catalyst layer 30ct is a conventional catalyst layer produced without vapor deposition. For example, the catalyst layer 30ct can be produced by applying a catalyst ink on a catalyst layer forming sheet and drying it. As the catalyst ink, for example, a mixture of an electrolyte solution and a carbon (for example, carbon black) carrier carrying platinum (Pt) as a catalyst can be used. As the electrolyte solution, for example, a fluorine resin material made of a perfluorocarbon polymer having a sulfonic acid group (for example, Nafion, manufactured by DuPont) dissolved in water and alcohols as a solvent may be used. it can.

蒸着触媒層接合体10ctsは触媒層30ctの上に電解質膜10が接する向きで積層して接合される。   The deposited catalyst layer assembly 10cts is laminated and joined on the catalyst layer 30ct in a direction in which the electrolyte membrane 10 is in contact.

GDL基材層40bは、ガス拡散層50のGDL基材層50bと同様に、GDL基材層50bとしては、カーボンペーパーやカーボンクロス等が用いられる。   Similar to the GDL base layer 50b of the gas diffusion layer 50, the GDL base layer 40b is made of carbon paper or carbon cloth as the GDL base layer 50b.

なお、GDL基材層40bと多孔質フィルムを用いた被蒸着体20sとがアノード側のガス拡散層40を構成し、このガス拡散層40と蒸着触媒層20ctとがアノード側のガス拡散電極20を構成する。また、ガス拡散層50と触媒層30ctとがカソード側のガス拡散電極を構成する。   The GDL base material layer 40b and the deposition target 20s using the porous film constitute the gas diffusion layer 40 on the anode side, and the gas diffusion layer 40 and the deposition catalyst layer 20ct include the gas diffusion electrode 20 on the anode side. Configure. The gas diffusion layer 50 and the catalyst layer 30ct constitute a cathode-side gas diffusion electrode.

以上のようにして作製された膜電極接合体では、多孔質フィルムの細孔内に触媒粒子や電解質、導電材等を含浸させるものではなく、柔軟な多孔質フィルム(被蒸着体)の表面に蒸着触媒層を形成しているので、蒸着触媒層が形成された触媒層形成体も柔軟な構造を有している。このため、電解質膜と触媒層形成体との接合時において、電解質膜と蒸着触媒層の界面における接合性が高く、発電性能が良いと考えられる。   In the membrane / electrode assembly produced as described above, the pores of the porous film are not impregnated with catalyst particles, electrolyte, conductive material, etc., but on the surface of a flexible porous film (deposited body). Since the vapor deposition catalyst layer is formed, the catalyst layer forming body on which the vapor deposition catalyst layer is formed also has a flexible structure. Therefore, at the time of joining the electrolyte membrane and the catalyst layer forming body, it is considered that the joining property at the interface between the electrolyte membrane and the deposited catalyst layer is high and the power generation performance is good.

(2)膜電極接合体の作製方法の比較例
図2は、比較例としての膜電極接合体の作製方法を示す説明図である。比較例の膜電極接合体の作製方法は、以下で説明する2つの工程からなる。
(2) Comparative Example of Manufacturing Method of Membrane / Electrode Assembly FIG. 2 is an explanatory view showing a manufacturing method of a membrane / electrode assembly as a comparative example. The manufacturing method of the membrane electrode assembly of the comparative example includes two steps described below.

[工程1]
工程1では、実施例のガス拡散層50と同様に、導電性のGDL基材層40bと多孔質層40sとを接合した接合体構造を有するガス拡散層40Bを被蒸着体とし、多孔質層40s側の表面に触媒としての白金(Pt)を蒸着させることにより、ガス拡散層40Bの表面に触媒層(蒸着触媒層)20ctが形成された触媒層形成体40ctを作製する。なお、以下では、ガス拡散層40Bを「被蒸着体40B」と呼ぶこともある。なお、ガス拡散層40Bのヤング率は10GPa〜50GPa程度であり、柔軟性がない。
[Step 1]
In step 1, as in the gas diffusion layer 50 of the example, the gas diffusion layer 40B having a joined structure in which the conductive GDL base material layer 40b and the porous layer 40s are joined is used as a deposition target, and the porous layer By depositing platinum (Pt) as a catalyst on the surface on the 40s side, a catalyst layer forming body 40ct in which a catalyst layer (deposition catalyst layer) 20ct is formed on the surface of the gas diffusion layer 40B is produced. Hereinafter, the gas diffusion layer 40B may be referred to as “deposition target body 40B”. Note that the Young's modulus of the gas diffusion layer 40B is about 10 GPa to 50 GPa and is not flexible.

[工程2]
工程2では、ガス拡散層50、触媒層30ct、電解質膜10、触媒層形成体40ctの順に積層し、それぞれを接合して膜電極接合体(MEA)を作製する。なお、接合条件としては、実施例と同様に、ガス拡散層50、触媒層30ct、電解質膜10、および、触媒層形成体40ctの物性に合わせて、温度と圧力が適宜選択される。なお、触媒層30ctはガス拡散層50の多孔質層50sの上に積層して接合され、触媒層形成体40ctは電解質膜10の上に蒸着触媒層20ctが接する向きで積層して接合される。
[Step 2]
In step 2, the gas diffusion layer 50, the catalyst layer 30ct, the electrolyte membrane 10, and the catalyst layer forming body 40ct are laminated in this order, and are joined together to produce a membrane electrode assembly (MEA). As for the joining conditions, similarly to the embodiment, the temperature and pressure are appropriately selected according to the physical properties of the gas diffusion layer 50, the catalyst layer 30ct, the electrolyte membrane 10, and the catalyst layer forming body 40ct. The catalyst layer 30ct is laminated and joined on the porous layer 50s of the gas diffusion layer 50, and the catalyst layer forming body 40ct is laminated and joined on the electrolyte membrane 10 in the direction in which the deposited catalyst layer 20ct is in contact. .

なお、ガス拡散層40Bと蒸着触媒層20ctとがアノード側のガス拡散電極20Bを構成し、ガス拡散層50と触媒層30ctとがカソード側のガス拡散電極を構成する。   The gas diffusion layer 40B and the vapor deposition catalyst layer 20ct constitute an anode side gas diffusion electrode 20B, and the gas diffusion layer 50 and the catalyst layer 30ct constitute a cathode side gas diffusion electrode.

以上のようにして作製された膜電極接合体では、被蒸着体としてのガス拡散層の表面に蒸着触媒層を形成しており、蒸着触媒層が形成された触媒層形成体は柔軟性に乏しい。このため、電解質膜と触媒層形成体との接合時において隙間が発生し、電解質膜と蒸着触媒層の界面における接合性が悪いと考えられる。   In the membrane / electrode assembly produced as described above, the deposited catalyst layer is formed on the surface of the gas diffusion layer as the deposition target, and the catalyst layer formed body on which the deposited catalyst layer is formed is poor in flexibility. . For this reason, it is considered that a gap is generated at the time of joining the electrolyte membrane and the catalyst layer forming body, and the joining property at the interface between the electrolyte membrane and the deposited catalyst layer is poor.

(3)実施例の膜電極接合体の性能
図3は、実施例および比較例の作製方法により得られた膜電極接合体を用いた燃料電池セルの発電性能を比較して示す表である。80℃100%RHで、負荷0.5[A/cm]および負荷1.5[A/cm]の場合の電圧[V]を測定した。図3に示すように、比較例の膜電極接合体に比べて実施例の膜電極接合体のほうが、発電性能が良いことがわかる。
(3) Performance of Membrane / Electrode Assembly of Example FIG. 3 is a table showing comparison of power generation performance of fuel cells using membrane / electrode assemblies obtained by the production methods of Examples and Comparative Examples. The voltage [V] at a load of 0.5 [A / cm 2 ] and a load of 1.5 [A / cm 2 ] was measured at 80 ° C. and 100% RH. As shown in FIG. 3, it can be seen that the membrane electrode assembly of the example has better power generation performance than the membrane electrode assembly of the comparative example.

以上の結果からわかるように、実施例により作製された膜電極接合体では、電解質膜と蒸着触媒層との界面における接合性を改善することができ、発電性能を向上させることが可能である。   As can be seen from the above results, the membrane / electrode assembly produced according to the example can improve the bondability at the interface between the electrolyte membrane and the vapor deposition catalyst layer, and can improve the power generation performance.

B.変形例:
なお、上記実施例における構成要素の中の、独立クレームでクレームされた要素以外の要素は、付加的な要素であり、適宜省略可能である。また、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
B. Variations:
In addition, elements other than the elements claimed in the independent claims among the constituent elements in the above embodiment are additional elements and can be omitted as appropriate. The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the scope of the invention.

上記実施例において、アノード側の蒸着触媒層に使用する触媒は白金または白金合金であるとして説明したが、水素酸化力を有する触媒であればよい。   In the above embodiment, the catalyst used for the vapor deposition catalyst layer on the anode side has been described as being platinum or a platinum alloy, but any catalyst having hydrogen oxidizing power may be used.

上記実施例において、ガス拡散層(GDL)として、多孔質層とGDL基材層との接合体構造のものを使用する場合を示したが、GDL基材層のみあるいは多孔質層のみの構造であってもよい。   In the above embodiment, the case where a gas diffusion layer (GDL) having a structure of a porous layer and a GDL base material layer is used has been shown. There may be.

上記実施例において、柔軟な多孔質フィルムとして、ヤング率が1MPa以上0.1GPa以下のものと規定しているが、これに限定されるものではなく以下のいずれか一つが成立すればよい。
1)1MPa以上0.1GPa以下
2)ガス拡散層のヤング率より小さく、好ましくは被蒸着体のヤング率の1/10
3)電解質膜のヤング率の1/10倍〜10倍の範囲
In the said Example, although the Young's modulus is prescribed | regulated as a flexible porous film as 1 Mpa or more and 0.1 GPa or less, it is not limited to this and any one of the following should just be materialized.
1) 1 MPa or more and 0.1 GPa or less 2) Young's modulus of gas diffusion layer, preferably 1/10 of Young's modulus of vapor-deposited body
3) Range of 1/10 to 10 times the Young's modulus of the electrolyte membrane

上記実施例では、アノード側のみに、多孔質フィルムに触媒を蒸着して触媒層が形成された触媒層形成体を電解質膜に接合することにより、アノード側の触媒層が形成された構造を例に説明しているが、カソード側の触媒層も同様の構造としてもよい。ただし、少なくともアノード側の触媒層を実施例の構造とすれば、アノード側の触媒層の形成に使用する触媒の量を低減しつつ、従来と同等以上の性能を発揮することが可能である。   In the above embodiment, a structure in which a catalyst layer on the anode side is formed by bonding a catalyst layer forming body, in which a catalyst layer is formed by vapor-depositing a catalyst on a porous film, to the electrolyte membrane only on the anode side. However, the catalyst layer on the cathode side may have the same structure. However, if at least the catalyst layer on the anode side has the structure of the embodiment, it is possible to exhibit the same or better performance as before while reducing the amount of the catalyst used for forming the catalyst layer on the anode side.

10…電解質膜
10cts…蒸着触媒層接合体
20cts…触媒層形成体
20…ガス拡散電極
20B…ガス拡散電極
20s…被蒸着体(多孔質フィルム)
20ct…蒸着触媒層
30ct…触媒層
40…ガス拡散層
40B…ガス拡散層(被蒸着体)
40s…多孔質層
40b…GDL基材層
40ct…触媒層形成体
50…ガス拡散層
50s…多孔質層
50b…GDL基材層
DESCRIPTION OF SYMBOLS 10 ... Electrolyte membrane 10cts ... Deposition catalyst layer assembly 20cts ... Catalyst layer formation body 20 ... Gas diffusion electrode 20B ... Gas diffusion electrode 20s ... Deposited body (porous film)
20 ct ... deposition catalyst layer 30 ct ... catalyst layer 40 ... gas diffusion layer 40B ... gas diffusion layer (deposition body)
40 s ... porous layer 40 b ... GDL substrate layer 40 ct ... catalyst layer forming body 50 ... gas diffusion layer 50 s ... porous layer 50 b ... GDL substrate layer

Claims (1)

膜電極接合体の作製方法であって、
i)多孔質フィルムの表面に触媒を蒸着させることにより触媒層を形成した触媒層形成体を作製する工程と、
ii)電解質膜と前記触媒層形成体の触媒層とを接合させる工程と、
を備えることを特徴とする膜電極接合体の作製方法。
A method for producing a membrane electrode assembly,
i) producing a catalyst layer forming body in which a catalyst layer is formed by depositing a catalyst on the surface of the porous film;
ii) joining the electrolyte membrane and the catalyst layer of the catalyst layer forming body;
A method for producing a membrane electrode assembly, comprising:
JP2010187046A 2010-08-24 2010-08-24 Method of manufacturing membrane electrode assembly Pending JP2012048836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187046A JP2012048836A (en) 2010-08-24 2010-08-24 Method of manufacturing membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187046A JP2012048836A (en) 2010-08-24 2010-08-24 Method of manufacturing membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2012048836A true JP2012048836A (en) 2012-03-08

Family

ID=45903507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187046A Pending JP2012048836A (en) 2010-08-24 2010-08-24 Method of manufacturing membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2012048836A (en)

Similar Documents

Publication Publication Date Title
JP4890787B2 (en) Fuel cell and manufacturing method thereof
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
CN101136480B (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system comprising same
US20060257641A1 (en) Electrode substrate for a fuel cell, a method for preparing the same, and a membrane-electrode assembly comprising the same
JP2006019298A (en) Polymer electrolyte membrane for fuel cell, membrane/electrode assembly, fuel cell system, and manufacturing method for membrane/electrode assembly
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
KR100717790B1 (en) Membrane/electrode assembly for fuel cell and fuel cell system comprising the same
WO2009139370A1 (en) Fuel cell and fuel cell layer
US20220302486A1 (en) Membrane electrode assembly
JP5105888B2 (en) Gas diffusion electrode, fuel cell, and method of manufacturing gas diffusion electrode
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
US20080199758A1 (en) Small portable fuel cell and membrane electrode assembly used therein
US20160233523A1 (en) Fuel cell separator, fuel cell, and manufacturing method of fuel cell separator
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2006012816A (en) Separator for fuel cell, its manufacturing method, and fuel cell comprising it
US20110318668A1 (en) Membrane-electrode assembly for fuel cell, fuel cell and manufacturing the method thereof
JP2013127865A (en) Electrode catalyst for fuel cell, method for manufacturing ionomer used for electrode catalyst, method for manufacturing membrane electrode assembly, membrane electrode assembly and fuel cell
JP7310800B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2011171301A (en) Direct oxidation fuel cell
JP2008198437A (en) Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell using it
KR20060096610A (en) Membrane electrode assembly for fuel cell, and stack for fuel cell and full cell system comprising the same
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
KR101035620B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the electrode
JP2012048836A (en) Method of manufacturing membrane electrode assembly
JP6606869B2 (en) Manufacturing method of membrane electrode assembly for fuel cell