JP2012048835A - Dye-sensitized solar cell and method of manufacturing the same - Google Patents

Dye-sensitized solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2012048835A
JP2012048835A JP2010187045A JP2010187045A JP2012048835A JP 2012048835 A JP2012048835 A JP 2012048835A JP 2010187045 A JP2010187045 A JP 2010187045A JP 2010187045 A JP2010187045 A JP 2010187045A JP 2012048835 A JP2012048835 A JP 2012048835A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
coordination polymer
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010187045A
Other languages
Japanese (ja)
Other versions
JP5537336B2 (en
Inventor
Takashi Okubo
貴志 大久保
Kyung-Ho Kim
敬鎬 金
Naoya Tanaka
直也 田中
Masahiko Maekawa
雅彦 前川
Takayoshi Kuroda
孝義 黒田
Naoto Mimura
尚登 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Kinki University
Original Assignee
Japan Science and Technology Agency
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Kinki University filed Critical Japan Science and Technology Agency
Priority to JP2010187045A priority Critical patent/JP5537336B2/en
Publication of JP2012048835A publication Critical patent/JP2012048835A/en
Application granted granted Critical
Publication of JP5537336B2 publication Critical patent/JP5537336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell that achieves adsorption to a titanium oxide surface without having a reactive group in a dye molecule although using an inexpensive material, and a method of manufacturing the dye-sensitized solar cell.SOLUTION: The dye-sensitized solar cell is characterized in using a coordination polymer containing a ligand consisting of one kind or two or more kinds of metal ion selected from transition metal elements and one kind or two or more kinds of nitrogen-containing compound or oxygen-containing compound which can be coordinated with the metal ions.

Description

本発明は、色素増感太陽電池に係り、さらに詳しくは配位高分子を用いた色素増感太陽電池およびその色素増感太陽電池の製造方法に関するものである。   The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell using a coordination polymer and a method for producing the dye-sensitized solar cell.

近年、グリーンエネルギーとして太陽光が注目されるようになっており、太陽光を使用する太陽電池の開発が盛んになっている。太陽電池には、シリコン太陽電池、無機化合物を用いた太陽電池、有機化合物を用いた色素増感太陽電池などがある。   In recent years, sunlight has attracted attention as green energy, and the development of solar cells using sunlight has become active. Solar cells include silicon solar cells, solar cells using inorganic compounds, and dye-sensitized solar cells using organic compounds.

そしてその中でも色素増感太陽電池は、多孔性酸化チタンと太陽光を吸収するための色素を用いた太陽電池であり、シリコン太陽電池に比べて製造コストが低いことから、新しいタイプの太陽電池として実用化への期待が近年急速に高くなっている。   Among them, the dye-sensitized solar cell is a solar cell using porous titanium oxide and a dye for absorbing sunlight, and has a lower production cost than a silicon solar cell. Expectation for practical use has been rapidly increasing in recent years.

ここで、従来の色素増感太陽電池は、ガラスなどの基板上に酸化チタンを焼結して被膜を形成した後、太陽光が酸化チタンに照射された際に励起される電荷を電解液などに伝達するための色素を酸化チタン表面に吸着することによって陽極を形成する。   Here, in the conventional dye-sensitized solar cell, after a titanium oxide is sintered on a substrate such as glass to form a film, the electric charge excited when the titanium oxide is irradiated to the titanium oxide is used as an electrolyte solution or the like. The anode is formed by adsorbing the dye for transmitting to the titanium oxide surface.

従前においては、これらに使用される色素には非特許文献1または非特許文献2に示すようにグレッツェルによって発明されたルテニウム錯体が広く用いられている。また、このルテニウム錯体については光電変換効率が高いという点から、例えば特許文献1または特許文献2に示すような各種の技術開発が行われている。   Conventionally, ruthenium complexes invented by Gretzel as shown in Non-Patent Document 1 or Non-Patent Document 2 are widely used as the dyes used in these. In addition, for this ruthenium complex, various technical developments such as those shown in Patent Document 1 or Patent Document 2 have been performed from the viewpoint of high photoelectric conversion efficiency.

また、ルテニウム錯体以外の化合物を色素に用いた色素増感太陽電池も開発されており、例えば特許文献3に示すようなベンゾインドール系染料を用いた色素増感太陽電池が開示されている。   In addition, a dye-sensitized solar cell using a compound other than a ruthenium complex as a dye has been developed. For example, a dye-sensitized solar cell using a benzoindole-based dye as disclosed in Patent Document 3 is disclosed.

特開2005−120042号公報JP 2005-120042 A 特開2006−298882号公報JP 2006-298882 A 特開2009−173928号公報JP 2009-173928 A

B.O‘Regan,M.Gratzel,Nature 1991,353,737B. O'Regan, M.M. Gratzel, Nature 1991, 353, 737 M.Gratzel,Nature 2001,414,338M.M. Gratzel, Nature 2001, 414, 338

しかしながら、特許文献1や特許文献2に代表される、色素にルテニウム錯体を用いる色素増感太陽電池は、酸化チタンに吸着させるために色素分子内にカルボキシル基などの反応基を有している必要があり、色素として使用できる分子に制限があるという課題がある。また、希少金属であるルテニウムを使用することから、製造コストが高くなるという課題もある。   However, dye-sensitized solar cells represented by Patent Document 1 and Patent Document 2 that use a ruthenium complex as a dye need to have a reactive group such as a carboxyl group in the dye molecule in order to adsorb to titanium oxide. There is a problem that there is a limit to the molecules that can be used as the dye. In addition, since ruthenium, which is a rare metal, is used, there is a problem that the manufacturing cost increases.

一方、特許文献3に記載のベンゾインドール系染料を用いた色素増感太陽電池は、ルテニウムを用いるよりは安価に製造できるものの、ルテニウム錯体と同様に色素分子内には酸化チタンに吸着させるためのカルボキシル基などの反応基が必要であることから、色素として使用できる分子に制限があるという課題は依然として存在する。   On the other hand, the dye-sensitized solar cell using the benzoindole-based dye described in Patent Document 3 can be manufactured at a lower cost than using ruthenium. However, like the ruthenium complex, the dye-sensitized solar cell is adsorbed to titanium oxide in the dye molecule. Since a reactive group such as a carboxyl group is necessary, there is still a problem that there are limitations on the molecules that can be used as the dye.

本発明は、上記した従来の問題点に鑑みてなされたものであって、安価な原料を使用しながら、色素分子内に反応基を有することなく酸化チタン表面に吸着することができる色素増感太陽電池およびその色素増感太陽電池の製造方法の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and is capable of adsorbing to the surface of titanium oxide without using a reactive group in the dye molecule while using an inexpensive raw material. It aims at providing the manufacturing method of a solar cell and its dye-sensitized solar cell.

また、太陽光が色素に照射された際に励起される電荷を効率よく酸化チタンなどに伝達することができる色素増感太陽電池およびその色素増感太陽電池の製造方法の提供を目的とする。   It is another object of the present invention to provide a dye-sensitized solar cell that can efficiently transfer charges excited when sunlight is irradiated to the dye to titanium oxide and the like, and a method for manufacturing the dye-sensitized solar cell.

さらに、可視光領域においても高い吸収を示し、照射された太陽光をより効率よく電気に変換することができる色素増感太陽電池およびその色素増感太陽電池の製造方法の提供を目的とする。   Furthermore, it aims at provision of the manufacturing method of the dye-sensitized solar cell which shows high absorption also in visible region, and can convert the irradiated sunlight into electricity more efficiently.

上記目的を達成するために、本発明の請求項1に係る色素増感太陽電池は、遷移金属元素の中から選ばれる1種または2種以上の金属イオンと、金属イオンに配位可能な1種または2種以上の含硫黄化合物または含窒素化合物からなる配位子を含有する配位高分子を用いることを特徴とする。   In order to achieve the above object, a dye-sensitized solar cell according to claim 1 of the present invention is one or two or more metal ions selected from transition metal elements, and 1 capable of coordinating to metal ions. A coordination polymer containing a ligand composed of a seed or two or more sulfur-containing compounds or nitrogen-containing compounds is used.

本発明の請求項2に係る色素増感太陽電池は、遷移金属元素が、Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Auの中から選ばれる1種または2種以上の金属元素であることを特徴とする。   In the dye-sensitized solar cell according to claim 2 of the present invention, the transition metal element is one selected from Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au. Or it is 2 or more types of metal elements, It is characterized by the above-mentioned.

本発明の請求項3に係る色素増感太陽電池は、配位子が、下記の化1または化2で表わされるジチオカルバミン酸イオンの誘導体の中から選ばれる1種または2種以上の誘導体であることを特徴とする。
(R1およびR2は、同一または異なる脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、複素環基および置換複素環基を示す。)
(R3は、少なくとも1つの窒素原子を含む複素環基または置換複素環基を示す。)
In the dye-sensitized solar cell according to claim 3 of the present invention, the ligand is one or two or more derivatives selected from dithiocarbamate ion derivatives represented by the following chemical formula 1 or chemical formula 2. It is characterized by that.
(R 1 and R 2 represent the same or different aliphatic hydrocarbon group, substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, substituted aromatic hydrocarbon group, heterocyclic group and substituted heterocyclic group.)
(R 3 represents a heterocyclic group or a substituted heterocyclic group containing at least one nitrogen atom.)

本発明の請求項4に係る色素増感太陽電池は、配位高分子が、さらに臭素イオンまたはヨウ素イオンを含むことによって構成されたものであることを特徴とする。   The dye-sensitized solar cell according to claim 4 of the present invention is characterized in that the coordination polymer further comprises bromine ions or iodine ions.

本発明の請求項5に係る色素増感太陽電池は、配位高分子が、遷移金属元素に銅を用い、配位子にヘキサメチレンジチオカルバミン酸を用い、かつ臭素イオンまたはヨウ素イオンを用いて構成されたものであることを特徴とする。   In the dye-sensitized solar cell according to claim 5 of the present invention, the coordination polymer is composed of copper as a transition metal element, hexamethylenedithiocarbamic acid as a ligand, and bromine ion or iodine ion. It is characterized by being made.

本発明の請求項6に係る色素増感太陽電池の製造方法は、酸化チタンのペーストと配位高分子とを混合する工程を備えることを特徴とする。   The method for producing a dye-sensitized solar cell according to claim 6 of the present invention includes a step of mixing a titanium oxide paste and a coordination polymer.

まず、本発明の色素増感太陽電池について以下に説明する。   First, the dye-sensitized solar cell of the present invention will be described below.

本発明に係る色素増感太陽電池は、酸化チタンの表面に吸着する色素に配位高分子を用いることを特徴とし、さらに配位高分子として遷移金属元素の中から選ばれる1種または2種以上の金属イオンと、金属イオンに配位可能な1種または2種以上の含硫黄化合物または含窒素化合物からなる配位子を必須成分として用いることを特徴とする。   The dye-sensitized solar cell according to the present invention is characterized by using a coordination polymer as a dye adsorbed on the surface of titanium oxide, and further, one or two kinds selected from transition metal elements as the coordination polymer. A ligand comprising the above metal ions and one or more sulfur-containing compounds or nitrogen-containing compounds capable of coordinating to the metal ions is used as an essential component.

ここで、本発明における「配位高分子」とは、金属イオンを中心にその周囲に有機化合物の配位子が結合している金属錯体が繋がっている構造を取っているものをいう。具体的には、図8に示す一次元構造を取るものや、図9に示す二次元構造を取るものや、図10に示す三次元構造を取るものなどがあげられる。
なお、かかる配位高分子は、各金属錯体の中心に位置する金属イオン同士が配位子によって架橋された繰り返し構造を取っているものだけでなく、必要に応じて金属錯体の各ユニットを架橋するために、後記するような臭素イオンやヨウ素イオンなど、配位子とは別の架橋剤成分を含有し、当該架橋剤成分によっても架橋された繰り返し構造を取っているものも含まれる。
また、配位高分子骨格が正電荷もしくは負電荷を帯びている場合は、その電荷を打ち消すためにフェロセニウムイオンやアンモニウムイオンなどのカチオンやアニオンが図8、図9、図10に代表される配位高分子骨格の間に入り込む場合があり、その様な化合物も配位高分子に含まれる。
Here, the “coordinating polymer” in the present invention refers to one having a structure in which a metal complex in which a ligand of an organic compound is bound around a metal ion is connected. Specifically, the one having the one-dimensional structure shown in FIG. 8, the one having the two-dimensional structure shown in FIG. 9, the one having the three-dimensional structure shown in FIG.
Such coordination polymers are not only those having a repeating structure in which metal ions located at the center of each metal complex are cross-linked by a ligand, but also each unit of the metal complex is cross-linked as necessary. In order to do so, the following include a crosslinking agent component other than the ligand, such as bromine ion and iodine ion, which will be described later, and a repeating structure crosslinked by the crosslinking agent component.
When the coordination polymer skeleton has a positive charge or a negative charge, cations and anions such as ferrocenium ion and ammonium ion are represented in FIG. 8, FIG. 9, and FIG. 10 in order to cancel the charge. Such a compound is also included in the coordination polymer.

次に、配位高分子を構成する各成分について説明する。   Next, each component constituting the coordination polymer will be described.

本発明に用いられる金属イオンは、遷移金属元素の中から選ばれる1種または2種以上の元素の金属イオンが用いられる。そして、遷移金属元素の中でもFe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Auという、いわゆる8族および1B族の元素の金属イオンを用いることが好ましく、さらに、その中でも下記する配位子を配位することによって配位高分子全体に電子を非局在化させることができ、安価であるという点から銅イオンを用いることが好ましい。
なお、これらの金属イオンについては、1種だけではなく異なる金属イオンを併用することによって、それぞれの金属イオンが有する特性を発現させることができる。例えば、銅イオンとともにプラチナイオンやイリジウムイオンなどの重原子効果を有する金属イオンを用いることによって、銅イオンが有する電子の非局在化効果だけでなく、プラチナイオンやイリジウムイオンなどが有する励起寿命延長効果を発現させることができる。
As the metal ions used in the present invention, metal ions of one or more elements selected from transition metal elements are used. Among the transition metal elements, it is preferable to use metal ions of so-called group 8 and group 1B elements such as Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au. Of these, by coordinating the ligands described below, it is possible to delocalize electrons throughout the coordination polymer, and it is preferable to use copper ions from the viewpoint of being inexpensive.
In addition, about these metal ions, the characteristic which each metal ion has can be expressed by using not only 1 type but different metal ions together. For example, by using metal ions having heavy atom effects such as platinum ions and iridium ions together with copper ions, not only the electron delocalization effect of copper ions but also the excitation lifetime extension of platinum ions and iridium ions, etc. An effect can be expressed.

本発明に用いられる配位子は、上記した金属イオンに配位可能な1種または2種以上の含硫黄化合物または含窒素化合物が用いられる。含硫黄化合物の例としては、ジチオオキサレート、テトラチオオキサレート、ジチオカルボン酸置換基を有する配位子などがあげられ、含窒素化合物の例としては、ピラジン、ビピリジン、イミダゾール骨格を有する配位子などがあげられる。
そして、含硫黄化合物または含窒素化合物の中でも、下記の化1または化2で表わされるジチオカルバミン酸イオンの誘導体を用いることが好ましく、さらに、上記した金属イオンと電子を非局在化させることができるという点から、ヘキサメチレンジチオカルバミン酸を用いることが好ましい。
As the ligand used in the present invention, one or two or more sulfur-containing compounds or nitrogen-containing compounds capable of coordinating with the above metal ions are used. Examples of sulfur-containing compounds include dithiooxalate, tetrathiooxalate, and ligands having a dithiocarboxylic acid substituent. Examples of nitrogen-containing compounds include coordination with pyrazine, bipyridine, and imidazole skeletons. Child etc. are given.
Among the sulfur-containing compounds or nitrogen-containing compounds, it is preferable to use a dithiocarbamate ion derivative represented by the following chemical formula 1 or chemical formula 2, and further, the above metal ions and electrons can be delocalized. Therefore, it is preferable to use hexamethylene dithiocarbamic acid.

(R1およびR2は、同一または異なる脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、複素環基および置換複素環基を示す。) (R 1 and R 2 represent the same or different aliphatic hydrocarbon group, substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, substituted aromatic hydrocarbon group, heterocyclic group and substituted heterocyclic group.)

(R3は、少なくとも1つの窒素原子を含む複素環基または置換複素環基を示す。) (R 3 represents a heterocyclic group or a substituted heterocyclic group containing at least one nitrogen atom.)

なお、R3の具体例としては、以下の化3で表わされる複素環基または置換複素環基があげられる。またR3には、化3で表わされる複素環基または置換複素環基に、さらに同一または異なる脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、複素環基および置換複素環基が結合しているものを用いることもできる。 Specific examples of R 3 include heterocyclic groups and substituted heterocyclic groups represented by the following chemical formula 3. R 3 represents a heterocyclic group or a substituted heterocyclic group represented by Chemical Formula 3, and the same or different aliphatic hydrocarbon group, substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, substituted aromatic hydrocarbon group. In addition, those in which a heterocyclic group and a substituted heterocyclic group are bonded can also be used.

本発明の配位高分子には、金属イオンと配位子以外に、金属イオン同士を架橋するための架橋剤成分としてハロゲン元素を用いることができる。なお、その中でも電子の非局在化効果を向上させるという点から、臭素イオンまたはヨウ素イオンを用いることが好ましい。
かかる架橋剤成分を用いることによって、さらに配位高分子全体への電子の非局在化効果を向上させることができる。
例えば、化4に示すように、金属イオンに銅イオンを用い、配位子にヘキサメチレンジチオカルバミン酸を用いて配位した単核錯体同士を、臭素イオンまたはヨウ素イオンを用いて架橋することで銅イオンの禁制遷移状態を破ることができ、よって配位高分子全体への電子の非局在化効果をさらに向上させることができる。
In the coordination polymer of the present invention, in addition to the metal ion and the ligand, a halogen element can be used as a cross-linking agent component for cross-linking metal ions. Of these, bromine ions or iodine ions are preferably used from the viewpoint of improving the delocalization effect of electrons.
By using such a crosslinking agent component, it is possible to further improve the delocalization effect of electrons on the entire coordination polymer.
For example, as shown in Chemical Formula 4, copper ions are cross-linked using bromide ions or iodine ions by cross-linking mononuclear complexes coordinated using copper ions as metal ions and hexamethylenedithiocarbamic acid as ligands. The forbidden transition state of ions can be broken, and thus the delocalization effect of electrons on the entire coordination polymer can be further improved.

(XはBrまたはI) (X is Br or I)

なお、本発明の配位高分子の製造方法としては、原料となる化合物を有機溶媒中で混合するなど、公知の方法で製造することができる。また、架橋剤成分として臭素イオンまたはヨウ素イオンを用いる場合には、まず、単核錯体を作製した後、当該単核錯体と臭素イオン化合物またはヨウ素イオン化合物とを混合することによって製造することができる。具体的には、例えば、銅イオンとヘキサメチレンジチオカルバミン酸を用いて配位した単核錯体を作製しておき、その後作製した単核錯体と臭化銅を有機溶媒中で混合することなどによって製造する。   In addition, as a manufacturing method of the coordination polymer of this invention, it can manufacture by a well-known method, such as mixing the compound used as a raw material in an organic solvent. When bromine ions or iodine ions are used as the cross-linking agent component, the mononuclear complex can be prepared first and then mixed with the mononuclear complex and the bromine ion compound or iodine ion compound. . Specifically, for example, a mononuclear complex coordinated using copper ions and hexamethylenedithiocarbamic acid is prepared, and then the produced mononuclear complex and copper bromide are mixed in an organic solvent. To do.

本発明の配位高分子の分子量や繰り返し単位(n)数としては、特に限定されるものではないが、分子量としては1000以上であることが好ましく、繰り返し単位数としては100以上であることが好ましい。なお、分子量と繰り返し単位(n)数の上限については、使用に支障がない範囲において適宜設定することができる。   The molecular weight and the number of repeating units (n) of the coordination polymer of the present invention are not particularly limited, but the molecular weight is preferably 1000 or more, and the number of repeating units is 100 or more. preferable. In addition, about the upper limit of molecular weight and the number of repeating units (n), it can set suitably in the range which does not have trouble in use.

次に、本発明の色素増感太陽電池の製造方法について説明する。   Next, the manufacturing method of the dye-sensitized solar cell of this invention is demonstrated.

本発明に係る色素増感太陽電池の製造方法は、酸化チタンのペーストと配位高分子とを混合する工程を備えることを特徴とするものである。
すなわち、酸化チタンのペーストと上記した配位高分子とを混合することによって、色素としての配位高分子を酸化チタン表面に吸着させ、その後色素が吸着した酸化チタンをガラスなどの基板上に塗布し焼結して陽極を形成するのである。
かかる方法によって、従来のような色素分子内にカルボキシル基などの反応基を有していなくても、色素を酸化チタン表面に吸着させることができ、色素として使用できる分子の選択肢を拡げることができる。
なお、混合の方法としては、必要に応じた配合量の酸化チタンのペーストと配位高分子とを乳鉢などで直接混ぜ合わせる方法などがあげられる。また、酸化チタンのペーストとしてはペクセル・テクノロジー社製のものなど市販のものを用いることができる。
The method for producing a dye-sensitized solar cell according to the present invention includes a step of mixing a titanium oxide paste and a coordination polymer.
That is, by mixing the titanium oxide paste and the coordination polymer described above, the coordination polymer as a dye is adsorbed on the titanium oxide surface, and then the titanium oxide on which the dye is adsorbed is applied onto a substrate such as glass. It is then sintered to form the anode.
By this method, the dye can be adsorbed on the surface of titanium oxide even if the dye molecule does not have a reactive group such as a carboxyl group as in the past, and the choice of molecules that can be used as the dye can be expanded. .
Examples of the mixing method include a method in which a titanium oxide paste having a blending amount as required is directly mixed with a coordination polymer in a mortar or the like. As the titanium oxide paste, commercially available products such as those manufactured by Pexel Technology, Inc. can be used.

本発明の請求項1に係る色素増感太陽電池によれば、単核錯体として用いた場合よりも変換効率の高い色素増感太陽電池を得ることができる。また、安価に色素増感太陽電池を作製することができる。   According to the dye-sensitized solar cell according to claim 1 of the present invention, a dye-sensitized solar cell having higher conversion efficiency than that when used as a mononuclear complex can be obtained. Moreover, a dye-sensitized solar cell can be produced at low cost.

本発明の請求項2に係る色素増感太陽電池によれば、遷移元素の中でも特定の元素を用いることによって、配位高分子における可視領域の吸収の増加、電気伝導性の増大、もしくは励起寿命の増大による高い変換効率の色素増感太陽電池を得ることができる。   According to the dye-sensitized solar cell according to claim 2 of the present invention, by using a specific element among the transition elements, the absorption in the visible region in the coordination polymer is increased, the electrical conductivity is increased, or the excitation lifetime is increased. Thus, a dye-sensitized solar cell with high conversion efficiency can be obtained.

本発明の請求項3に係る色素増感太陽電池によれば、配位子の中でもジチオカルバミン酸イオンの誘導体を用いることによって、効率よく可視光を吸収する配位高分子を得ることができる。
これは遷移元素のイオン化エネルギーとジチオカルバミン酸イオンの誘導体のイオン化エネルギーが近接しているために、本来は禁制遷移である遷移元素の光励起が金属イオンと配位子の軌道の混成によって許容になるためである。また同時に軌道の混成によって、光励起によって生じた電子が配位高分子全体に非局在化するために電気伝導性が増大する。
以上の理由により、ジチオカルバミン酸イオンの誘導体を含む配位高分子全体として光を吸収することができ、可視光域の波長でも高い吸収を有する色素増感太陽電池を得ることができる。
According to the dye-sensitized solar cell of claim 3 of the present invention, a coordination polymer that efficiently absorbs visible light can be obtained by using a derivative of dithiocarbamate ion among the ligands.
This is because the ionization energy of the transition element and the ionization energy of the derivative of the dithiocarbamate ion are close to each other. It is. At the same time, due to the orbital hybridization, the electrons generated by photoexcitation are delocalized throughout the coordination polymer, increasing the electrical conductivity.
For the above reasons, it is possible to obtain a dye-sensitized solar cell that can absorb light as a whole coordination polymer including a derivative of dithiocarbamate ion and has high absorption even at a wavelength in the visible light region.

本発明の請求項4に係る色素増感太陽電池によれば、 遷移元素と、含硫黄化合物からなる配位子に加えて、さらに臭素イオンまたはヨウ素イオンによって構成された配位高分子を用いることによって、より電気伝導性が高く、変換効率の高い色素増感太陽電池を得ることができる。   According to the dye-sensitized solar cell of claim 4 of the present invention, in addition to the transition element and the ligand composed of the sulfur-containing compound, the coordination polymer further composed of bromine ion or iodine ion is used. Thus, a dye-sensitized solar cell with higher electrical conductivity and higher conversion efficiency can be obtained.

本発明の請求項5に係る色素増感太陽電池によれば、遷移元素に銅を、配位子にヘキサメチレンジチオカルバミン酸イオンの誘導体を、さらに臭素イオンまたはヨウ素イオンを用いて配位高分子を構成することによって、上記した全ての効果を発現する色素増感太陽電池を得ることができる。   According to the dye-sensitized solar cell of claim 5 of the present invention, the coordination polymer is formed using copper as a transition element, a derivative of hexamethylenedithiocarbamate ion as a ligand, and bromine ion or iodine ion. By comprising, the dye-sensitized solar cell which expresses all the above-mentioned effects can be obtained.

本発明の請求項6に係る色素増感太陽電池の製造方法によれば、陽極に使用する酸化チタンをペースト状にして配位高分子と混合することによって、配位高分子の末端にカルボキシル基などの反応基を導入することなく、どのような配位高分子でも酸化チタンの表面に吸着させることができる。   According to the method for producing a dye-sensitized solar cell according to claim 6 of the present invention, a carboxyl group is formed at the end of the coordination polymer by mixing titanium oxide used for the anode in a paste form with the coordination polymer. Any coordination polymer can be adsorbed on the surface of titanium oxide without introducing reactive groups such as.

実施例1、実施例2、比較例の電流密度ー電圧特性を示すグラフである。It is a graph which shows the current density-voltage characteristic of Example 1, Example 2, and a comparative example. 実施例1〜4の電流密度ー電圧特性を示すグラフである。It is a graph which shows the current density-voltage characteristic of Examples 1-4. 実施例5、実施例6の電流密度ー電圧特性を示すグラフである。It is a graph which shows the current density-voltage characteristic of Example 5 and Example 6. FIG. 実施例7の電流密度ー電圧特性を示すグラフである。10 is a graph showing current density-voltage characteristics of Example 7. 実施例1、実施例2、比較例の拡散反射スペクトルを示すグラフである。It is a graph which shows the diffuse reflection spectrum of Example 1, Example 2, and a comparative example. 実施例1、実施例2、比較例の光電子分光測定の結果を示すグラフである。It is a graph which shows the result of the photoelectron spectroscopy measurement of Example 1, Example 2, and a comparative example. 実施例1、実施例2、比較例のコールコールプロットを示すグラフである。It is a graph which shows the Cole-Cole plot of Example 1, Example 2, and a comparative example. 一次元構造を取る配位高分子を示す模式図である。It is a schematic diagram which shows the coordination polymer which takes a one-dimensional structure. 二次元構造を取る配位高分子を示す模式図である。It is a schematic diagram which shows the coordination polymer which takes a two-dimensional structure. 三次元構造を取る配位高分子を示す模式図である。It is a schematic diagram which shows the coordination polymer which takes a three-dimensional structure.

次に、実施例および比較例ならびに図面に基づいて、本発明の色素増感太陽電池およびその製造方法を詳細に説明する。なお、以下に述べる実施例は本発明を具体化した一例に過ぎず、本発明の技術的範囲を限定するものでない。   Next, based on an Example and a comparative example, and drawing, the dye-sensitized solar cell of this invention and its manufacturing method are demonstrated in detail. In addition, the Example described below is only an example which actualized this invention, and does not limit the technical scope of this invention.

(単核錯体の作製)
まず、10mmolの水酸化ナトリウムを溶かしたメタノール溶液100mlに10mmolのヘキサメチレンイミンを加え、更に10mmolの二硫化炭素を反応させた。
次に、この溶液に5mmolの塩化銅二水和物を100mlのメタノールに溶かした溶液を加え、5分間撹拌し反応させた。
得られた沈殿物をろ過して集めた後、クロロホルム200mlに溶かし、その溶解液に200mlのメタノールを加え、約100mlに減圧濃縮した。更にメタノール200mlを加え、約50mlに減圧濃縮した後、得られた微結晶を吸引ろ過によって集め、少量のエーテルで洗浄し乾燥することで化5に示す、単核錯体Cu(Hm−dtc)2を得た。
(Preparation of mononuclear complex)
First, 10 mmol of hexamethyleneimine was added to 100 ml of a methanol solution in which 10 mmol of sodium hydroxide was dissolved, and 10 mmol of carbon disulfide was further reacted.
Next, a solution obtained by dissolving 5 mmol of copper chloride dihydrate in 100 ml of methanol was added to this solution, and the mixture was stirred and reacted for 5 minutes.
The resulting precipitate was collected by filtration, dissolved in 200 ml of chloroform, 200 ml of methanol was added to the solution, and the mixture was concentrated under reduced pressure to about 100 ml. After adding 200 ml of methanol and concentrating under reduced pressure to about 50 ml, the resulting microcrystals were collected by suction filtration, washed with a small amount of ether and dried to show the mononuclear complex Cu (Hm-dtc) 2 shown in Chemical Formula 5. Got.

(配位高分子の作製)
化5に示す単核錯体0.1molをクロロホルム20mlに溶解し、臭化銅を0.2molをアセトニトリル3mlとアセトン17mlの混合溶媒に溶解した後、それぞれの溶解液を混合し、1日室温で放置することによって、化6に示す実施例1に使用する配位高分子([CuI 2CuIIBr2(Hm−dtc)2(CH3CN)2n (CuBrHm1D)の黒色単結晶)を作製した。
(XはBr)
(Production of coordination polymer)
After dissolving 0.1 mol of the mononuclear complex shown in Chemical formula 5 in 20 ml of chloroform and 0.2 mol of copper bromide in a mixed solvent of 3 ml of acetonitrile and 17 ml of acetone, the respective solutions are mixed and mixed at room temperature for 1 day. By allowing to stand, the coordination polymer used in Example 1 shown in Chemical formula 6 ([Cu I 2 Cu II Br 2 (Hm-dtc) 2 (CH 3 CN) 2 ] n (CuBrHm1D) black single crystal) Was made.
(X is Br)

(色素増感太陽電池の作製)
低温焼結用酸化チタンペースト(品番:PECC−k01、ペクセル・テクノロジー社製)0.1molと、上記で作製した配位高分子0.3molを乳鉢の中で混合し、ガラス基板上に形成した透明電極(ITO)に50μmの厚さで塗布した。そして、この電極を50℃で30分乾燥させることによって陽極を作製した。
次に、ガラス基板上に形成した透明電極(ITO)にPEDOT−TMA(ポリ(3,4−エチレンジオキシチオフェン)テトラメタクリレート)を同重量のメタノールで溶解したものをスピンコートを行うことによって0.5mg塗布し、50℃で30分乾燥させることによって陰極を作製した。
次に、ポリエチレングリコール200に、ヨウ化リチウムを0.5mol/Lの濃度で、さらにヨウ素を0.005mol/Lの濃度で溶解することによって電解液を作製した。
最後に、ポリイミドフィルムをスペーサに用いて、作製した陽極と陰極を50μmのすき間を介在させるようにして貼り合わせ、電極の間に電解液を注入することで実施例1の色素増感太陽電池を得た。
(Preparation of dye-sensitized solar cell)
A titanium oxide paste for low-temperature sintering (product number: PECC-k01, manufactured by Pexel Technology) 0.1 mol and the coordination polymer 0.3 mol prepared above were mixed in a mortar and formed on a glass substrate. It apply | coated to the transparent electrode (ITO) with the thickness of 50 micrometers. Then, this electrode was dried at 50 ° C. for 30 minutes to produce an anode.
Next, spin coating is applied to a transparent electrode (ITO) formed on a glass substrate by dissolving PEDOT-TMA (poly (3,4-ethylenedioxythiophene) tetramethacrylate) with methanol of the same weight. A negative electrode was prepared by applying 0.5 mg and drying at 50 ° C. for 30 minutes.
Next, an electrolytic solution was prepared by dissolving lithium iodide in polyethylene glycol 200 at a concentration of 0.5 mol / L and further iodine at a concentration of 0.005 mol / L.
Finally, using the polyimide film as a spacer, the produced anode and cathode were bonded together with a 50 μm gap interposed therebetween, and the electrolyte solution was injected between the electrodes to thereby obtain the dye-sensitized solar cell of Example 1. Obtained.

実施例1に使用した臭化銅の代わりにヨウ化銅を用いた以外は実施例1と同様にして実施例2の色素増感太陽電池を得た。   A dye-sensitized solar cell of Example 2 was obtained in the same manner as in Example 1 except that copper iodide was used instead of the copper bromide used in Example 1.

(単核錯体の作製)
まず、10mmolの水酸化ナトリウムを溶かしたメタノール溶液100mlに10mmolのピぺリジンを加え、更に10mmolの二硫化炭素を反応させた。
次に、この溶液に5mmolの塩化銅二水和物を100mlのメタノールに溶かした溶液を加え、5分間撹拌し反応させた。
得られた沈殿物をろ過して集めた後、クロロホルム200mlに溶かし、その溶解液に200mlのメタノールを加え、約100mlに減圧濃縮した。更にメタノール200mlを加え、約50mlに減圧濃縮した後、得られた微結晶を吸引ろ過によって集め、少量のエーテルで洗浄し乾燥することで化7に示す、単核錯体Cu(Pip−dtc)2を得た。
(Preparation of mononuclear complex)
First, 10 mmol of piperidine was added to 100 ml of a methanol solution in which 10 mmol of sodium hydroxide was dissolved, and 10 mmol of carbon disulfide was further reacted.
Next, a solution obtained by dissolving 5 mmol of copper chloride dihydrate in 100 ml of methanol was added to this solution, and the mixture was stirred and reacted for 5 minutes.
The resulting precipitate was collected by filtration, dissolved in 200 ml of chloroform, 200 ml of methanol was added to the solution, and the mixture was concentrated under reduced pressure to about 100 ml. After adding 200 ml of methanol and concentrating under reduced pressure to about 50 ml, the resulting microcrystals were collected by suction filtration, washed with a small amount of ether and dried to show the mononuclear complex Cu (Pip-dtc) 2 shown in Chemical formula 7. Got.

(配位高分子の作製)
化7に示す単核錯体0.1molをクロロホルム20mlに溶解し、臭化銅を0.2molをアセトニトリル3mlとアセトン17mlの混合溶媒に溶解した後、それぞれの溶解液を混合し、1日室温で放置することによって、実施例3に使用する配位高分子([CuI 2CuIIBr2(Pip−dtc)2(CH3CN)2n (CuBrPip1D)の黒色単結晶)を作製した。
(Production of coordination polymer)
After dissolving 0.1 mol of the mononuclear complex shown in Chemical Formula 7 in 20 ml of chloroform and 0.2 mol of copper bromide in a mixed solvent of 3 ml of acetonitrile and 17 ml of acetone, the respective solutions are mixed and mixed at room temperature for 1 day. By allowing to stand, the coordination polymer ([Cu I 2 Cu II Br 2 (Pip-dtc) 2 (CH 3 CN) 2 ] n (CuBrPip1D) black single crystal) used in Example 3 was produced.

(色素増感太陽電池の作製)
実施例1と同様の手法にて実施例3の色素増感太陽電池を得た。
(Preparation of dye-sensitized solar cell)
A dye-sensitized solar cell of Example 3 was obtained in the same manner as in Example 1.

実施例3に使用した臭化銅の代わりにヨウ化銅を用いた以外は実施例3と同様にして実施例4の色素増感太陽電池を得た。   A dye-sensitized solar cell of Example 4 was obtained in the same manner as Example 3 except that copper iodide was used instead of copper bromide used in Example 3.

(単核錯体の作製)
まず、10mmolの水酸化ナトリウムを溶かしたメタノール溶液100mlに10mmolのジプロピルアミンを加え、更に10mmolの二硫化炭素を反応させた。
次に、この溶液に5mmolの塩化銅二水和物を100mlのメタノールに溶かした溶液を加え、5分間撹拌し反応させた。
得られた沈殿物をろ過して集めた後、クロロホルム200mlに溶かし、その溶解液に200mlのメタノールを加え、約100mlに減圧濃縮した。更にメタノール200mlを加え、約50mlに減圧濃縮した後、得られた微結晶を吸引ろ過によって集め、少量のエーテルで洗浄し乾燥することで化8に示す、単核錯体Cu(nPr2−dtc)2を得た。
(Preparation of mononuclear complex)
First, 10 mmol of dipropylamine was added to 100 ml of a methanol solution in which 10 mmol of sodium hydroxide had been dissolved, and 10 mmol of carbon disulfide was further reacted.
Next, a solution obtained by dissolving 5 mmol of copper chloride dihydrate in 100 ml of methanol was added to this solution, and the mixture was stirred and reacted for 5 minutes.
The resulting precipitate was collected by filtration, dissolved in 200 ml of chloroform, 200 ml of methanol was added to the solution, and the mixture was concentrated under reduced pressure to about 100 ml. After adding 200 ml of methanol and concentrating under reduced pressure to about 50 ml, the resulting microcrystals were collected by suction filtration, washed with a small amount of ether and dried to show the mononuclear complex Cu (nPr 2 -dtc) 2 got.

(配位高分子の作製)
化8に示す単核錯体0.1molをクロロホルム20mlに溶解し、塩化銅二水和物0.4molをアセトン20mlに溶解した後、それぞれの溶解液を混合し、1日室温で放置することによって、実施例5に使用する配位高分子([CuI 6CuIIICl7 (nPr2−dtc)2n (CuClnPr2D)の黒色単結晶)を作製した。
(Production of coordination polymer)
By dissolving 0.1 mol of the mononuclear complex shown in Chemical Formula 8 in 20 ml of chloroform and 0.4 mol of copper chloride dihydrate in 20 ml of acetone, the respective solutions are mixed and left at room temperature for 1 day. Then, a coordination polymer ([Cu I 6 Cu III Cl 7 (nPr 2 -dtc) 2 ] n (CuClnPr2D) black single crystal) used in Example 5 was produced.

(色素増感太陽電池の作製)
実施例1と同様の手法にて実施例5の色素増感太陽電池を得た。
(Preparation of dye-sensitized solar cell)
A dye-sensitized solar cell of Example 5 was obtained in the same manner as in Example 1.

まず、10mmolの水酸化ナトリウムを溶かしたメタノール溶液100mlに10mmolのジブチルアミンを加え、更に10mmolの二硫化炭素を反応させた。
次に、この溶液に5mmolの塩化銅二水和物を100mlのメタノールに溶かした溶液を加え、5分間撹拌し反応させた。
得られた沈殿物をろ過して集めた後、クロロホルム200mlに溶かし、その溶解液に200mlのメタノールを加え、約100mlに減圧濃縮した。更にメタノール200mlを加え、約50mlに減圧濃縮した後、得られた微結晶を吸引ろ過によって集め、少量のエーテルで洗浄し乾燥することで化9に示す、単核錯体Cu(nBu2−dtc)2を得た。
First, 10 mmol of dibutylamine was added to 100 ml of methanol solution in which 10 mmol of sodium hydroxide was dissolved, and 10 mmol of carbon disulfide was further reacted.
Next, a solution obtained by dissolving 5 mmol of copper chloride dihydrate in 100 ml of methanol was added to this solution, and the mixture was stirred and reacted for 5 minutes.
The resulting precipitate was collected by filtration, dissolved in 200 ml of chloroform, 200 ml of methanol was added to the solution, and the mixture was concentrated under reduced pressure to about 100 ml. After adding 200 ml of methanol and concentrating under reduced pressure to about 50 ml, the resulting microcrystals were collected by suction filtration, washed with a small amount of ether and dried to give a mononuclear complex Cu (nBu 2 -dtc) 2 got.

(配位高分子の作製)
化9に示す単核錯体0.1molをクロロホルム20mlに溶解し、臭化銅0.2molを数滴の水になじませてからアセトン20mlに溶解した後、それぞれの溶解液を混合し、1日室温で放置することによって、実施例6に使用する配位高分子([CuI 7CuIIBr7(nBu2−dtc)2n (CuBrnBu2D)の黒色単結晶)を作製した。
(Production of coordination polymer)
After dissolving 0.1 mol of the mononuclear complex shown in Chemical Formula 9 in 20 ml of chloroform, dissolving 0.2 mol of copper bromide in several drops of water and then dissolving in 20 ml of acetone, the respective solutions are mixed and mixed for 1 day. by leaving at room temperature to prepare a coordination polymer used in example 6 ([Cu I 7 Cu II Br 7 (nBu 2 -dtc) 2] black single crystal n (CuBrnBu2D)).

(色素増感太陽電池の作製)
実施例1と同様の手法にて実施例6の色素増感太陽電池を得た。
(Preparation of dye-sensitized solar cell)
A dye-sensitized solar cell of Example 6 was obtained in the same manner as in Example 1.

(単核錯体の作製)
まず、10mmolの水酸化ナトリウムを溶かしたメタノール溶液100mlに10mmolのピロリジンを加え、更に10mmolの二硫化炭素を反応させた。
次に、この溶液に5mmolの塩化銅二水和物を100mlのメタノールに溶かした溶液を加え、5分間撹拌し反応させた。
得られた沈殿物をろ過して集めた後、クロロホルム200mlに溶かし、その溶解液に200mlのメタノールを加え、約100mlに減圧濃縮した。更にメタノール200mlを加え、約50mlに減圧濃縮した後、得られた微結晶を吸引ろ過によって集め、少量のエーテルで洗浄し乾燥することで化10に示す、単核錯体Cu(Pyr−dtc)2を得た。
(Preparation of mononuclear complex)
First, 10 mmol of pyrrolidine was added to 100 ml of a methanol solution in which 10 mmol of sodium hydroxide was dissolved, and 10 mmol of carbon disulfide was further reacted.
Next, a solution obtained by dissolving 5 mmol of copper chloride dihydrate in 100 ml of methanol was added to this solution, and the mixture was stirred and reacted for 5 minutes.
The resulting precipitate was collected by filtration, dissolved in 200 ml of chloroform, 200 ml of methanol was added to the solution, and the mixture was concentrated under reduced pressure to about 100 ml. After adding 200 ml of methanol and concentrating under reduced pressure to about 50 ml, the resulting microcrystals were collected by suction filtration, washed with a small amount of ether and dried to show the mononuclear complex Cu (Pyr-dtc) 2 shown in Chemical formula 10. Got.

(配位高分子の作製)
化10に示す単核錯体0.1molをクロロホルム20mlに溶解し、CuBrS(CH320.4molをアセトニトリル10mlに溶解してから10mlのアセトンで希釈した後、それぞれの溶解液を混合し、1日室温で放置することによって、実施例7に使用する配位高分子({[CuI 4CuII 2Br4(Pyr−dtc)4]CHCl3n(CuBrPyr3D)の黒色単結晶)を作製した。
(Production of coordination polymer)
After dissolving 0.1 mol of the mononuclear complex shown in Chemical Formula 10 in 20 ml of chloroform, dissolving 0.4 mol of CuBrS (CH 3 ) 2 in 10 ml of acetonitrile and then diluting with 10 ml of acetone, the respective solutions are mixed, The coordination polymer ({[Cu I 4 Cu II 2 Br 4 (Pyr-dtc) 4 ] CHCl 3 } n (CuBrPyr3D) black single crystal) used in Example 7 was allowed to stand at room temperature for 1 day. Produced.

(色素増感太陽電池の作製)
実施例1と同様の手法にて実施例7の色素増感太陽電池を得た。
(Preparation of dye-sensitized solar cell)
A dye-sensitized solar cell of Example 7 was obtained in the same manner as in Example 1.

比較例Comparative example

実施例1に使用した配位高分子の代わりに、化5に示す単核錯体を用いた以外は実施例1と同様にして比較例の色素増感太陽電池を得た。   A dye-sensitized solar cell of Comparative Example was obtained in the same manner as in Example 1 except that the mononuclear complex shown in Chemical Formula 5 was used instead of the coordination polymer used in Example 1.

次に、上記によって得た実施例1〜7および比較例の色素増感太陽電池について、各特性の測定を行った。   Next, each characteristic was measured about the dye-sensitized solar cell of Examples 1-7 obtained by the above, and a comparative example.

(電流密度ー電圧特性の測定)
電流密度ー電圧特性はソーラーシミュレータ(AM1.5、100mW/cm2)を用いて測定した。測定結果を図1〜4に示す。
そして、図1から得られる、電圧がゼロの時の電流密度を短絡電流密度(Jsc)、負荷電圧をかけて電流密度がゼロになった時の電圧を開放電圧(Voc)、電流密度―電圧曲線から得られる最大出力を短絡電流密度と開放電圧の積で除したものをフィルファクタ(FF)、最大出力を入射光強度で除したものを変換効率ηとした。
その結果、実施例1の色素増感太陽電池は、Jsc=0.41mA/cm2、Voc=0.50V、FF=0.53、η=0.11%であった。実施例2の色素増感太陽電池は、Jsc=0.39mA/cm2、Voc=0.56V、FF=0.53、η=0.11%であった。一方、比較例の色素増感太陽電池は、Jsc=0.20mA/cm2、Voc=0.55V、FF=0.58、η=0.06%であった。
以上のことから、色素に配位高分子を用いることによって、単核錯体を色素に用いた場合よりも短絡電流密度(Jsc)が増大し、その結果変換効率ηも約2倍になることがわかる。
また、図2〜4は実施例1〜7の色素増感太陽電池における、電流密度ー電圧特性の測定結果である。
(Measurement of current density vs. voltage characteristics)
The current density-voltage characteristics were measured using a solar simulator (AM1.5, 100 mW / cm 2 ). The measurement results are shown in FIGS.
1, the current density when the voltage is zero is the short-circuit current density (Jsc), the voltage when the load voltage is applied and the current density is zero is the open circuit voltage (Voc), and the current density-voltage The value obtained by dividing the maximum output obtained from the curve by the product of the short-circuit current density and the open-circuit voltage was defined as the fill factor (FF), and the value obtained by dividing the maximum output by the incident light intensity was defined as the conversion efficiency η.
As a result, the dye-sensitized solar cell of Example 1 was Jsc = 0.41 mA / cm 2 , Voc = 0.50 V, FF = 0.53, and η = 0.11%. The dye-sensitized solar cell of Example 2 had Jsc = 0.39 mA / cm 2 , Voc = 0.56V, FF = 0.53, and η = 0.11%. On the other hand, the dye-sensitized solar cell of the comparative example had Jsc = 0.20 mA / cm 2 , Voc = 0.55V, FF = 0.58, and η = 0.06%.
From the above, by using a coordination polymer for the dye, the short-circuit current density (Jsc) increases as compared with the case where the mononuclear complex is used for the dye, and as a result, the conversion efficiency η is also approximately doubled. Recognize.
2 to 4 show measurement results of current density-voltage characteristics in the dye-sensitized solar cells of Examples 1 to 7.

(拡散反射スペクトルの測定)
拡散反射スペクトルは、実施例1、実施例2、比較例の色素増感太陽電池0.01molを80mgの酸化マグネシウム(MgO)に混合したものについて測定を行った。測定結果を図5に示す。
その結果、配位高分子を色素に用いた実施例1と実施例2の色素増感太陽電池は、単核錯体を色素に用いた比較例の色素増感太陽電池に比べ、600〜800nmのいわゆる可視光域において高い吸収を示すことがわかる。なおこのことは、本発明の色素増感太陽電池の変換効率ηが高い理由の1つであると考えられる。
(Measurement of diffuse reflection spectrum)
The diffuse reflection spectrum was measured for a mixture of 0.01 mol of the dye-sensitized solar cell of Example 1, Example 2, and Comparative Example in 80 mg of magnesium oxide (MgO). The measurement results are shown in FIG.
As a result, the dye-sensitized solar cells of Example 1 and Example 2 using the coordination polymer as the dye are 600 to 800 nm in comparison with the dye-sensitized solar cell of the comparative example using the mononuclear complex as the dye. It can be seen that high absorption is shown in the so-called visible light region. This is considered to be one of the reasons why the conversion efficiency η of the dye-sensitized solar cell of the present invention is high.

(最高被占軌道:HOMOと最低空軌道:LUMOの測定)
図5に示す拡散反射スペクトルの結果から最低空軌道(LUMO)を、図6に示す光電子分光測定の結果から最高被占軌道(HOMO)を算出した。
その結果、実施例1の色素増感太陽電池はHOMOが−5.20eV、LUMOが−3.72eVであり、実施例2の色素増感太陽電池はHOMOが−5.10eV、LUMOが−3.62eVであり、比較例の色素増感太陽電池はHOMOが−4.95eV、LUMOが−3.50eVであった。
ここで、酸化チタンの伝導帯は−3.80eVであることから、実施例1、実施例2の色素増感太陽電池のLUMOレベルよりも低いエネルギー準位にあることがわかる。従って、実施例1、実施例2の色素増感太陽電池に太陽光が照射されて励起した電子はスムースに酸化チタンへと送られることがわかる。
また、実施例1、実施例2に使用した電解液(ヨウ化リチウム/ヨウ素溶液)の酸化還元電位は−4.80eVであることから、実施例1、実施例2の色素増感太陽電池のHOMOレベルよりも高いエネルギー準位にあることがわかる。従って、太陽光が照射されて励起した電子が酸化チタンに送られることによって欠損した配位高分子の空軌道に、電解液から電子がスムースに送られることがわかる。
(Measurement of highest occupied orbit: HOMO and lowest empty orbit: LUMO)
The lowest unoccupied orbit (LUMO) was calculated from the diffuse reflection spectrum result shown in FIG. 5, and the highest occupied orbit (HOMO) was calculated from the result of photoelectron spectroscopy measurement shown in FIG.
As a result, the dye-sensitized solar cell of Example 1 has a HOMO of −5.20 eV and a LUMO of −3.72 eV, and the dye-sensitized solar cell of Example 2 has a HOMO of −5.10 eV and a LUMO of −3. The dye-sensitized solar cell of the comparative example had a HOMO of −4.95 eV and a LUMO of −3.50 eV.
Here, since the conduction band of titanium oxide is −3.80 eV, it can be seen that the energy level is lower than the LUMO level of the dye-sensitized solar cells of Examples 1 and 2. Therefore, it can be seen that the electrons excited when the dye-sensitized solar cells of Example 1 and Example 2 are irradiated with sunlight are smoothly sent to titanium oxide.
Moreover, since the oxidation-reduction potential of the electrolyte solution (lithium iodide / iodine solution) used in Example 1 and Example 2 is −4.80 eV, the dye-sensitized solar cells of Examples 1 and 2 are used. It can be seen that the energy level is higher than the HOMO level. Therefore, it can be seen that electrons are smoothly sent from the electrolyte solution to the vacant orbits of the coordination polymer that is lost when the electrons excited by irradiation of sunlight are sent to titanium oxide.

(インピーダンス特性の測定:Cole−Cole Plot)
6440B Series Precision Component Analyzer(Wayne Kerr Electronics社製)によって実施例1、実施例2、比較例のインピーダンス特性を測定し、図7に示すようにインピーダンスの実部及び虚部の測定値について、コールコールプロットを行った。ここで、コールコールプロットにおいては、グラフ内においてプロットされた半円の直径が色素−酸化チタン界面での抵抗に相当する。
従って、図7に示す通り、実施例1、実施例2の色素増感太陽電池は、比較例の色素増感太陽電池に比べて半円の半径が小さいことから、色素−酸化チタン界面における抵抗を減少させることができ、スムースな電子移動を行うことができることがわかる。
(Measurement of impedance characteristics: Cole-Cole Plot)
The impedance characteristics of Example 1, Example 2, and Comparative Example were measured by 6440B Series Precision Component Analyzer (manufactured by Wayne Kerr Electronics), and the measured values of the real part and the imaginary part of the impedance as shown in FIG. A plot was made. Here, in the Cole-Cole plot, the diameter of the semicircle plotted in the graph corresponds to the resistance at the dye-titanium oxide interface.
Therefore, as shown in FIG. 7, the dye-sensitized solar cells of Example 1 and Example 2 have a semicircular radius smaller than that of the dye-sensitized solar cell of the comparative example. It can be seen that the electron can be reduced and smooth electron movement can be performed.

本発明は色素増感太陽電池に用いることができる。   The present invention can be used for a dye-sensitized solar cell.

1 金属イオン
2 配位子
1 Metal ion 2 Ligand

Claims (6)

遷移金属元素の中から選ばれる1種または2種以上の金属イオンと、
前記金属イオンに配位可能な1種または2種以上の含硫黄化合物または含窒素化合物からなる配位子を含有する配位高分子を用いることを特徴とする色素増感太陽電池。
One or more metal ions selected from transition metal elements;
A dye-sensitized solar cell comprising a coordination polymer containing a ligand composed of one or more sulfur-containing compounds or nitrogen-containing compounds capable of coordinating with the metal ions.
前記遷移金属元素が、
Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Auの中から選ばれる1種または2種以上の金属元素であることを特徴とする請求項1に記載の色素増感太陽電池。
The transition metal element is
2. The metal element according to claim 1, which is one or more metal elements selected from Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au. Dye-sensitized solar cell.
前記配位子が、
下記の化1または化2で表わされるジチオカルバミン酸イオンの誘導体の中から選ばれる1種または2種以上の誘導体であることを特徴とする請求項1または請求項2に記載の色素増感太陽電池。
(R1およびR2は、同一または異なる脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、複素環基および置換複素環基を示す。)
(R3は、少なくとも1つの窒素原子を含む複素環基または置換複素環基を示す。)
The ligand is
3. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is one or more derivatives selected from derivatives of dithiocarbamate ions represented by the following chemical formula 1 or chemical formula 2: .
(R 1 and R 2 represent the same or different aliphatic hydrocarbon group, substituted aliphatic hydrocarbon group, aromatic hydrocarbon group, substituted aromatic hydrocarbon group, heterocyclic group and substituted heterocyclic group.)
(R 3 represents a heterocyclic group or a substituted heterocyclic group containing at least one nitrogen atom.)
前記配位高分子が、
さらに臭素イオンまたはヨウ素イオンを含むことによって構成されたものであることを特徴とする請求項1から請求項3のいずれか一項に記載の色素増感太陽電池。
The coordination polymer is
The dye-sensitized solar cell according to any one of claims 1 to 3, further comprising bromine ions or iodine ions.
前記配位高分子が、
遷移金属元素に銅を用い、
前記配位子にヘキサメチレンジチオカルバミン酸を用い、
かつ臭素イオンまたはヨウ素イオンを用いて構成されたものであることを特徴とする請求項4に記載の色素増感太陽電池。
The coordination polymer is
Using copper as the transition metal element,
Hexamethylenedithiocarbamic acid is used as the ligand,
The dye-sensitized solar cell according to claim 4, wherein the dye-sensitized solar cell is configured using bromine ions or iodine ions.
酸化チタンのペーストと前記配位高分子とを混合する工程を備えることを特徴とした請求項1から請求項5のいずれか一項に記載の色素増感太陽電池の製造方法。 The method for producing a dye-sensitized solar cell according to any one of claims 1 to 5, further comprising a step of mixing a titanium oxide paste and the coordination polymer.
JP2010187045A 2010-08-24 2010-08-24 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5537336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187045A JP5537336B2 (en) 2010-08-24 2010-08-24 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187045A JP5537336B2 (en) 2010-08-24 2010-08-24 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012048835A true JP2012048835A (en) 2012-03-08
JP5537336B2 JP5537336B2 (en) 2014-07-02

Family

ID=45903506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187045A Expired - Fee Related JP5537336B2 (en) 2010-08-24 2010-08-24 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5537336B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272116B2 (en) * 2011-03-03 2013-08-28 学校法人近畿大学 Thin film solar cell
JP2015073962A (en) * 2013-10-10 2015-04-20 学校法人近畿大学 Coordination polymer thin film and manufacturing method of thin-film solar cell provided with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (en) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical battery and metal complex pigment
JP2001059062A (en) * 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd Photoelectric conversion element, photoelectrochemical battery or cell and metal complex coloring matter
JP2009252727A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (en) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical battery and metal complex pigment
JP2001059062A (en) * 1999-06-14 2001-03-06 Fuji Photo Film Co Ltd Photoelectric conversion element, photoelectrochemical battery or cell and metal complex coloring matter
JP2009252727A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272116B2 (en) * 2011-03-03 2013-08-28 学校法人近畿大学 Thin film solar cell
KR101416139B1 (en) 2011-03-03 2014-07-08 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Thin film solar cell
JP2015073962A (en) * 2013-10-10 2015-04-20 学校法人近畿大学 Coordination polymer thin film and manufacturing method of thin-film solar cell provided with the same

Also Published As

Publication number Publication date
JP5537336B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
Benesperi et al. The researcher's guide to solid-state dye-sensitized solar cells
Wang et al. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte
Freitag et al. The revival of dye-sensitized solar cells
EP2224534A1 (en) Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
Kannankutty et al. Tert-butylpyridine coordination with [Cu (dmp) 2] 2+/+ redox couple and its connection to the stability of the dye-sensitized solar cell
WO2007088871A1 (en) Dye sensitization photoelectric converter
CA2655192A1 (en) Dye-sensitized solar cell
US7964790B2 (en) Dye for photoelectric device and photoelectric device comprising the dye
Stojanović et al. The rise of dye‐sensitized solar cells: from molecular photovoltaics to emerging solid‐state photovoltaic technologies
KR20140053987A (en) Pigment sensitization solar cell
Gnida et al. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells
Martín-Gomis et al. Dye sensitized solar cells (DSSCs) based on bulky tert-octylphenoxy-carboxyphenyl substituted phthalocyanine without the presence of co-adsorbents
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
Raja et al. Improving the efficiency of dye-sensitized solar cells via the impact of triphenylamine-based inventive organic additives on biodegradable cellulose polymer gel electrolytes
Lin et al. A novel multifunctional polymer ionic liquid as an additive in iodide electrolyte combined with silver mirror coating counter electrodes for quasi-solid-state dye-sensitized solar cells
JP4561073B2 (en) Photoelectric conversion element and electronic device
JP2006202562A (en) Catalyst electrode, and dye-sensitized solar cell with it
JP4721755B2 (en) Complex, photoelectric conversion element and dye-sensitized solar cell
JP5537336B2 (en) Dye-sensitized solar cell and method for producing the same
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
KR101054470B1 (en) Dye-sensitized solar cell electrolyte and dye-sensitized solar cell using same
KR101551074B1 (en) Solid-state dye-sensitized solar cell with long-term stability containing pyridine compound as an adhesive
JP6057982B2 (en) Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
KR101088675B1 (en) Electrolyte for dye-sensitized solarcell comprising pyridinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP4776182B2 (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20100922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees