JP2012048044A - Optical signal regenerator - Google Patents

Optical signal regenerator Download PDF

Info

Publication number
JP2012048044A
JP2012048044A JP2010191103A JP2010191103A JP2012048044A JP 2012048044 A JP2012048044 A JP 2012048044A JP 2010191103 A JP2010191103 A JP 2010191103A JP 2010191103 A JP2010191103 A JP 2010191103A JP 2012048044 A JP2012048044 A JP 2012048044A
Authority
JP
Japan
Prior art keywords
wavelength
optical signal
optical
phase
maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010191103A
Other languages
Japanese (ja)
Other versions
JP5610475B2 (en
Inventor
Shu Namiki
周 並木
Mingyi Gou
ミンイ ゴウ
Junya Kimita
淳也 来見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010191103A priority Critical patent/JP5610475B2/en
Publication of JP2012048044A publication Critical patent/JP2012048044A/en
Application granted granted Critical
Publication of JP5610475B2 publication Critical patent/JP5610475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute in-line compensation for and reduction of chirp, delay and noise including ASE in an optical signal that dynamically changes under an optical network environment, in an optical signal regenerator using a parametric process.SOLUTION: An optical signal regenerator comprises a phase retaining wavelength converter that uses a parametric process of optical waveguide which converts a frequency of carrier wave in a variable manner while retaining a phase of optical signal. The phase retaining wavelength converter is provided with an optical waveguide that has a dispersion slope S, a wavelength λ0 exhibiting a zero dispersion value and a third non-linear constant γ, for obtaining a relational expression so as to arrange an input wavelength near a peak wavelength λS in a short wavelength of parametric gain or a peak wavelength λL in a long wavelength of parametric gain and to arrange an output wavelength near the peak wavelength λL in the long wavelength of parametric gain or the peak wavelength λS in the short wavelength of parametric gain, respectively, and for using the relational expression to determine a wavelength λp of pump light and instantaneous intensity Pp of pump light of the phase retaining wavelength converter.

Description

本発明は、光通信分野おいて、光信号の受ける自然放出光雑音、群速度分散、遅延揺らぎという光信号の劣化要因を抑制ないし補償し信号波形を再生する光信号再生装置に関するものである。   The present invention relates to an optical signal reproducing apparatus that suppresses or compensates for deterioration factors of an optical signal such as spontaneous emission optical noise, group velocity dispersion, and delay fluctuation received by an optical signal in an optical communication field and reproduces a signal waveform.

情報通信ネットワークのトラフィックは年々増大し、今後も増大し続けると予想される。このような状況において、懸念されるのが電子ルータの消費電力の増大である。今後、超高精細映像のような大容量コンテンツを配信するサービスが普及する中で、電子ルータより電力効率が数ケタ高い光スイッチを活用した光ネットワークの実現が望まれている。   Information and communication network traffic increases year by year and is expected to continue to increase in the future. In such a situation, a concern is an increase in power consumption of the electronic router. In the future, as services for distributing large-capacity content such as ultra-high-definition video become widespread, it is desired to realize an optical network using an optical switch whose power efficiency is several orders of magnitude higher than that of an electronic router.

光スイッチと光ファイバでネットワークを構築するには、光スイッチによる回線切り替えに対して、かならず、任意の2ユーザの間で光伝送の品質が保証されなければならない。ところが、光スイッチによる回線切り替えを行うと光伝送経路が変化するために、2点間の群速度分散、遅延、そして、中継にある光増幅器によって発生する自然放出高雑音(ASE雑音)や光スイッチでの多重経路干渉雑音(MPI雑音)などの伝送を妨げる要因の累積度も変化してしまう。その結果、光スイッチによる経路の選び方によっては光伝送ができたりできなかったりする問題が生じネットワーク運用に弊害が生じる。   In order to construct a network with an optical switch and an optical fiber, it is necessary to guarantee the quality of optical transmission between any two users against line switching by the optical switch. However, when the line is switched by an optical switch, the optical transmission path changes, so that the group velocity dispersion between two points, the delay, and the spontaneous emission high noise (ASE noise) generated by the optical amplifier at the relay and the optical switch Also, the cumulative degree of factors that hinder transmission such as multipath interference noise (MPI noise) in the network changes. As a result, there is a problem in that optical transmission may or may not be possible depending on how a route is selected by the optical switch, and this adversely affects network operation.

そこで、光スイッチノードや伝送路中に、群速度分散・遅延を補償し、ASE雑音・MPI雑音を除去・抑制する仕組みが希求されている。特に、光ネットワークで用いるためには、伝送帯域に制限を与えるようなものは極力使いたくない。広帯域で動作する、可変分散・遅延補償、光信号再生装置が必要である。さらに、光ネットワークでは様々な変調フォーマットによる光信号が行き交うことが予想されるために、できるだけ変調フォーマットに依存しない装置が望ましい。その点、パラメトリック過程では、入力光信号の位相情報が保持されるため、変調フォーマット無依存な動作が容易に実現できるため、これを用いた光信号処理装置は比類ない利点を有するといえる。   Therefore, there is a demand for a mechanism that compensates for group velocity dispersion / delay and removes / suppresses ASE noise and MPI noise in optical switch nodes and transmission lines. In particular, in order to use it in an optical network, we do not want to use as much as possible that which limits the transmission band. There is a need for a variable dispersion / delay compensation and optical signal regeneration device that operates in a wide band. Furthermore, since it is expected that optical signals of various modulation formats will be exchanged in an optical network, an apparatus that is as independent of the modulation format as possible is desirable. In that respect, in the parametric process, the phase information of the input optical signal is retained, and the operation independent of the modulation format can be easily realized. Therefore, it can be said that the optical signal processing apparatus using this has an unparalleled advantage.

パラメトリック過程を用いた光信号再生装置(P-OR)はすでに公知である(非特許文献1参照)。ところが、光信号再生装置を適切に動作させるためには、入力信号のチャープを適切に制御する必要がある。また、リタイミングを含む光3R型の信号再生においては、入力信号のタイミング遅延と局所クロックを確実に同期させる必要がある。
殊に、光ネットワークのように、伝送経路がダイナミックに切り替わりその都度光信号のチャープと遅延が大きく変化するような環境では、ダイナミックな分散と遅延のフレキシブルな制御は不可欠な機能である。入力信号のチャープは可変分散補償によって制御できるが、十分に広い帯域を有し十分に高速動作する可変分散補償技術は従来難しかった。
An optical signal regenerator (P-OR) using a parametric process is already known (see Non-Patent Document 1). However, in order to properly operate the optical signal reproducing device, it is necessary to appropriately control the chirp of the input signal. In addition, in optical 3R signal regeneration including retiming, it is necessary to reliably synchronize the timing delay of the input signal and the local clock.
In particular, in an environment such as an optical network where the transmission path is dynamically switched and the chirp and delay of the optical signal change greatly each time, dynamic dispersion and flexible control of the delay are indispensable functions. Although the chirp of the input signal can be controlled by variable dispersion compensation, a variable dispersion compensation technique that has a sufficiently wide band and operates at a sufficiently high speed has been difficult in the past.

これに対し、パラメトリック可変分散補償器(P-TDC)及びパラメトリック遅延分散チューナ(PDDT)(特許文献1、非特許文献2〜3参照)が発明され、光ネットワーク環境下で十分動作できる可変分散補償及び遅延制御が可能となった。
しかしながら、光ネットワーク環境下で適切に動作することを想定して、パラメトリック光信号再生装置(P-OR)とP-TDC・PDDTとを組み合わせて、光信号の劣化要因を包括的に抑えるような技術については、これまで検討されていなかった。
On the other hand, a parametric variable dispersion compensator (P-TDC) and a parametric delay dispersion tuner (PDDT) (see Patent Document 1, Non-Patent Documents 2 to 3) have been invented, and variable dispersion compensation that can operate satisfactorily in an optical network environment. And delay control became possible.
However, assuming that it operates properly in an optical network environment, a parametric optical signal regenerator (P-OR) is combined with P-TDC / PDDT to comprehensively suppress degradation factors of optical signals. The technology has not been studied so far.

特開2009−65570号公報JP 2009-65570 A

K.Inoue,“Optical level equalization based on gain saturation in fiber optical parametric amplifier,”Electron.Lett.,36,1016-1017(2000).K. Inoue, “Optical level equalization based on gain saturation in fiber optical parametric amplifier,” Electron. Lett., 36, 1016-1017 (2000). S.Namiki,“Wide-Band and -Range Tunable Dispersion Compensation Through Parametric Wavelength Conversion and Dispersive Optical Fibers,”J.Lightwave Technol.,26,28-35(2008)S. Namiki, “Wide-Band and -Range Tunable Dispersion Compensation Through Parametric Wavelength Conversion and Dispersive Optical Fibers,” J. Lightwave Technol., 26, 28-35 (2008) S.Namiki and T.Kurosu,“17 ns Tunable Delay for Picosecond Pulses through Simultaneous and Independent Control of Delay and Dispersion Using Cascaded Parametric Processes,”ECOC2008,PDP Th.3.C.3.S. Namiki and T. Kurosu, “17 ns Tunable Delay for Picosecond Pulses through Simultaneous and Independent Control of Delay and Dispersion Using Cascaded Parametric Processes,” ECOC2008, PDP Th.3.C.3.

本発明は、パラメトリック過程を利用した光信号再生装置において、光ネットワーク環境下でダイナミックに変化する光信号のチャープ、遅延、ASEなどの雑音をインラインで補償・抑制することを課題とする。   An object of the present invention is to compensate and suppress in-line noise such as chirp, delay, and ASE of an optical signal that dynamically changes in an optical network environment in an optical signal regeneration device using a parametric process.

上記の課題は、以下の光信号再生装置によって解決される。
(1)光信号の位相を保持しつつ搬送波の周波数を可変に変換する光導波路のパラメトリック過程を利用する位相保持型波長変換器において、分散スロープS、分散値がゼロとなる波長λ0、3次の非線形定数γを有する光導波路を用意し、入力波長をパラメトリック利得の短波長のピーク波長λSの近傍又はパラメトリック利得の長波長のピーク波長λLの近傍に、出力波長をパラメトリック利得の長波長のピーク波長λLの近傍又はパラメトリック利得の短波長のピーク波長λSの近傍にそれぞれ配置できるような、次の関係式を満たすポンプ光の波長λpと位相保持型波長変換器のポンプ光の瞬時強度Ppを決定することを特徴とする位相保持型波長変換器を備えた光信号再生装置。
ここで、πは円周率、cは真空中の光速である。
(2)上記位相保持型波長変換器の前後にそれぞれ可変光減衰器もしくは光増幅器を配置したことを特徴とする(1)に記載の光信号再生装置。
(3)上記位相保持型波長変換器の前後にそれぞれ可変光減衰器もしくは光増幅器を配置したものを2台縦列に接続し、その接続点での出力波長がλLとなるように構成したことを特徴とする(2)に記載の光信号再生装置。
(4)2台の上記位相保持型波長変換器のそれぞれのポンプ光に光信号から見てちょうど逆位相の位相変調がかかるように構成したことを特徴とする(3)に記載の光信号再生装置。
(5)光信号を伝送する第一の分散媒質と、位相保持型波長変換器と、第二の分散媒質と、上記位相保持型波長変換器とがさらに縦列に接続されたことを特徴とする(1)乃至(4)のいずれかに記載の光信号再生装置。
(6)光信号を伝送する上記第一の分散媒質の前に第三の分散媒質と位相保持型波長変換器とがさらに縦列に接続されたことを特徴とする(5)に記載の光信号再生装置。
(7)上記位相保持型波長変換器に用いられるポンプ光として入力光信号と同期した光パルス列を用いることを特徴とする(1)乃至(6)のいずれかに記載の光信号再生装置。
The above problem is solved by the following optical signal reproducing device.
(1) In a phase-maintaining wavelength converter that uses a parametric process of an optical waveguide that variably changes the frequency of a carrier wave while maintaining the phase of the optical signal, the dispersion slope S and the wavelength λ 0 , 3 at which the dispersion value becomes zero Prepare an optical waveguide with the following nonlinear constant γ, input wavelength near the short wavelength peak wavelength λ S of the parametric gain or near the long wavelength peak wavelength λ L of the parametric gain, and the output wavelength the length of the parametric gain. The wavelength λ p of the pump light and the pump light of the phase-maintaining wavelength converter that can be arranged near the peak wavelength λ L of the wavelength or near the peak wavelength λ S of the short wavelength of the parametric gain, respectively. An optical signal regeneration device equipped with a phase-maintaining wavelength converter characterized by determining the instantaneous intensity P p of the optical signal.
Here, π is the circular ratio, and c is the speed of light in vacuum.
(2) The optical signal regeneration device according to (1), wherein a variable optical attenuator or an optical amplifier is disposed before and after the phase maintaining wavelength converter.
(3) Two variable optical attenuators or optical amplifiers arranged before and after the phase maintaining wavelength converter are connected in series, and the output wavelength at the connection point is λ L. (2) The optical signal reproducing device according to (2).
(4) The optical signal regeneration according to (3), wherein the pump light of each of the two phase-maintaining wavelength converters is configured to be subjected to phase modulation with exactly opposite phase when viewed from the optical signal. apparatus.
(5) A first dispersion medium for transmitting an optical signal, a phase maintaining wavelength converter, a second dispersion medium, and the phase maintaining wavelength converter are further connected in cascade. (1) The optical signal reproducing device according to any one of (4).
(6) The optical signal according to (5), wherein a third dispersion medium and a phase-maintaining wavelength converter are further connected in series before the first dispersion medium that transmits the optical signal. Playback device.
(7) The optical signal regenerating apparatus according to any one of (1) to (6), wherein an optical pulse train synchronized with an input optical signal is used as pump light used in the phase maintaining wavelength converter.

本発明によれば、光伝送中に光信号の受ける自然放出光雑音、群速度分散、遅延揺らぎという光信号の劣化要因をダイナミックかつフレキシブルに抑制ないし補償し、伝送路の経路切り替えに対応し伝送距離を飛躍的に延伸することができる。
また本発明によれば、来るべき光ネットワークで必要な、帯域に制限されない分散可変量と十分な高速性を実現し、かつ、伝送中に累積する雑音を低減することができ、高効率な光ネットワーク実現に大きく貢献するものと期待される。
According to the present invention, optical signal degradation factors such as spontaneous emission optical noise, group velocity dispersion, and delay fluctuation received by an optical signal during optical transmission are dynamically and flexibly suppressed or compensated, and transmission is performed in response to path switching of the transmission path. The distance can be extended dramatically.
In addition, according to the present invention, it is possible to realize a dispersion variable amount that is not limited to a band and sufficient high speed necessary for an incoming optical network, and to reduce noise accumulated during transmission. It is expected to contribute greatly to the realization of networks.

本発明の基本原理図Basic principle diagram of the present invention ファイバ型光パラメトリック波長変換器の基本構成Basic configuration of fiber-type optical parametric wavelength converter 入力パワーと出力パワーの伝達関数(トランスファー・ファンクション)と光信号再生の原理Transfer function of input power and output power and principle of optical signal regeneration 非線形ファイバの異常分散領域にポンプ波長がある際のパラメトリック利得による自然放出光の出力スペクトルOutput spectrum of spontaneous emission due to parametric gain when the pump wavelength is in the anomalous dispersion region of nonlinear fiber ゼロ分散波長を1542nmに持つ非線形ファイバに対するポンプ波長と最大利得波長の関係Relationship between pump wavelength and maximum gain wavelength for nonlinear fiber with zero dispersion wavelength at 1542nm. [数1]式を実験的に検証した結果Results of experimental verification of [Formula 1] 実験で測定された伝達関数Experimentally measured transfer function 波長可変光再生器の入出力部にそれぞれ可変光減衰器を配置し減衰値を調整することで得られる均一な伝達関数曲線Uniform transfer function curve obtained by adjusting the attenuation value by placing a variable optical attenuator at the input / output part of the wavelength tunable optical regenerator. 入力信号波長1531nmに対する符号誤り率曲線Code error rate curve for input signal wavelength 1531nm 本発明による、パワーペナルティ改善効果(光信号再生効果)と入力信号波長の関係Relationship between power penalty improvement effect (optical signal regeneration effect) and input signal wavelength according to the present invention 実施例1の波長可変光信号再生装置Wavelength tunable optical signal regeneration device of embodiment 1 実施例2の波長可変光信号再生装置Wavelength variable optical signal regenerating apparatus of embodiment 2 実施例3の波長可変光信号再生装置Wavelength tunable optical signal regeneration device of embodiment 3 実施例4の波長可変光信号再生装置Wavelength tunable optical signal regeneration device of embodiment 4 実施例5の波長可変光信号再生装置Wavelength variable optical signal regenerator of embodiment 5 実施例6の波長可変光信号再生装置Wavelength tunable optical signal regenerator of embodiment 6 実施例7の波長可変光信号再生装置Wavelength tunable optical signal regenerator of Example 7 実施例8の波長可変光信号再生装置Wavelength tunable optical signal regenerating apparatus of embodiment 8 実施例9の波長可変光信号再生装置Wavelength variable optical signal regenerator of embodiment 9 実施例10の波長可変光信号再生装置Wavelength variable optical signal regenerating apparatus of embodiment 10 実施例11の波長可変光信号再生装置Wavelength tunable optical signal regeneration device of example 11

(本発明の基本原理)
本発明は、光ネットワークを自在に張り巡らせ運用するために、さまざまな光信号に対してダイナミックに可変分散補償、遅延補償、及び、ASEやMPI雑音の除去・抑制を同時に可能とする光信号再生を実現するものである。
本発明の基本原理図を図1に示す。
伝送路で分散や遅延及びASE雑音などで劣化した信号を修復する。前段のP-TDCないしPDDTで入力パルスのチャープを整え遅延を制御し、後段の波長可変光信号再生器で、信号波長を入力波長に戻すと同時に、強度雑音を抑制して光信号のまま出力する。
(Basic principle of the present invention)
The present invention is an optical signal regeneration that enables dynamic dispersion compensation, delay compensation, and removal and suppression of ASE and MPI noise at the same time for various optical signals in order to operate optical networks freely. Is realized.
A basic principle diagram of the present invention is shown in FIG.
Repairs signals that have deteriorated due to dispersion, delay, and ASE noise on the transmission line. The input pulse chirp is adjusted with the P-TDC or PDDT at the front stage, the delay is controlled, and the wavelength variable optical signal regenerator at the rear stage returns the signal wavelength to the input wavelength, and at the same time, the intensity noise is suppressed and the optical signal is output as it is To do.

本発明は、インライン型のP-TDC又はPDDTの最後尾に配置される出力光信号波長を入力波長に戻す役割を担う波長変換部に、光信号再生機能を有する可変波長変換器を採用する構成をとる。P-TDCとPDDTをインラインで使用するためには、入力光信号の波長と同じ波長を出力する必要があるが、そのためには、これらデバイスの後ろにパラメトリック可変波長変換器を付加しなければならない。この機能に光信号処理効果を付与するには、任意の波長をある所望の波長(すなわちP-TDC又はPDDTへの入力波長)に変換する可変性を有する光信号再生機能を実現しなければならない。既存のP-OR技術では、どのように波長可変性を実現するかについての検討はなされていなかった。特に、光信号再生効果が、入力波長に依存して変化してしまうと問題である。
以下に、本発明の核である、任意の入力信号波長に対して均一な光信号再生効果を得るための方法について述べる。
The present invention employs a variable wavelength converter having an optical signal regeneration function in a wavelength conversion unit that plays a role of returning an output optical signal wavelength arranged at the end of an inline P-TDC or PDDT to an input wavelength. Take. In order to use P-TDC and PDDT in-line, it is necessary to output the same wavelength as that of the input optical signal. To this end, a parametric variable wavelength converter must be added after these devices. . In order to add an optical signal processing effect to this function, it is necessary to realize an optical signal regeneration function having a variability that converts an arbitrary wavelength into a desired wavelength (that is, an input wavelength to P-TDC or PDDT). . In the existing P-OR technology, how to achieve wavelength variability has not been studied. In particular, there is a problem if the optical signal reproduction effect changes depending on the input wavelength.
A method for obtaining a uniform optical signal reproduction effect with respect to an arbitrary input signal wavelength, which is the core of the present invention, will be described below.

P-ORでは、おおむね光ファイバの3次の非線形効果に基づいたファイバ型光パラメトリック増幅(FOPA)過程の飽和現象を利用している(非特許文献1参照)。
FOPAの飽和過程を利用するP-ORにおいて、信号光のコピーが四光波混合過程のアイドラ光として異なる波長に生成される。アイドラ光を出力として扱う構成にすると、光信号再生効果を有する波長変換器として機能することになる。飽和現象は、FOPAのポンプ光のエネルギーが入力光信号との相互作用で枯渇する現象であり、入力光信号が大きいほど飽和が起こるため、光強度の大きい光信号は、光強度の小さい光信号に比べると、小さい利得を受けることになる。FOPAでは、通常光信号の波長は不変であるが、ここでは、パラメトリック過程で発生するアイドラ光すなわち波長変換光に着目して話を進める。
基本的なファイバ型光パラメトリック波長変換器の構成を図2に示す。
P-OR uses a saturation phenomenon in a fiber-type optical parametric amplification (FOPA) process based on the third-order nonlinear effect of an optical fiber (see Non-Patent Document 1).
In P-OR using the FOPA saturation process, a copy of the signal light is generated at different wavelengths as idler light in the four-wave mixing process. When configured to handle idler light as an output, it functions as a wavelength converter having an optical signal reproduction effect. The saturation phenomenon is a phenomenon in which the energy of the FOPA pump light is depleted due to the interaction with the input optical signal, and saturation occurs as the input optical signal increases, so an optical signal with a high optical intensity is an optical signal with a low optical intensity. Compared to, it will receive a small gain. In FOPA, the wavelength of an ordinary optical signal is not changed, but here, the discussion will be focused on idler light generated in a parametric process, that is, wavelength-converted light.
The configuration of a basic fiber type optical parametric wavelength converter is shown in FIG.

飽和型のパラメトリック波長変換過程において、入力光瞬時強度と出力光瞬時強度(波長変換後)の関係(伝達関数:トランスファー・ファンクション)を示すと、図3に示すようになる。入力光強度が大きくなると出力光強度は飽和し瞬時強度が入力の変化に対して安定する領域が発生する。たとえば、入力信号強度が雑音によって揺らいでも、入力光の平均パワーを伝達関数に対して最適になるように調整すれば、出力する光信号の雑音を入力時よりも小さくすることができる。この現象を利用するのが光信号再生である。
本発明では、この現象をP-TDC/PDDTの最後段の波長変換プロセスに適用するために、どの入力波長に対しても均一な光信号再生効果を実現する方法を開示するものである。つまり、どの入力波長及び変換波長に対しても、図3に示す曲線、すなわち伝達関数を均一に設計する方法を与える。
FIG. 3 shows the relationship (transfer function: transfer function) between the input light instantaneous intensity and the output light instantaneous intensity (after wavelength conversion) in the saturation type parametric wavelength conversion process. When the input light intensity increases, the output light intensity saturates, and a region where the instantaneous intensity is stable with respect to input changes occurs. For example, even if the input signal intensity fluctuates due to noise, if the average power of the input light is adjusted so as to be optimal with respect to the transfer function, the noise of the output optical signal can be made smaller than that at the time of input. This phenomenon is utilized in optical signal regeneration.
In the present invention, in order to apply this phenomenon to the wavelength conversion process at the last stage of P-TDC / PDDT, a method for realizing a uniform optical signal reproduction effect for any input wavelength is disclosed. That is, a method for uniformly designing the curve shown in FIG. 3, that is, the transfer function, is provided for any input wavelength and conversion wavelength.

均一な伝達関数を得るためには、原則として、任意の入力波長に対して均一なもしくは高効率なパラメトリック利得を実現すればよい。パラメトリック利得は、飽和領域においては、ポンプ光の非線形位相シフトが無視できなくなる。そこで効率良い利得を得るためには、ポンプ光の波長をパラメトリック過程を発生する非線形ファイバの異常分散領域で動作させるのが効果的である。その際、図4に示すように、光スペクトル上でポンプ光の両側に利得ピークが発生する。
効率的な光信号再生を実現するには、信号波長と変換波長がこの両側の利得ピークにそれぞれほぼ一致するように配置させてやればよい。
図4に非線形ファイバの異常分散領域にポンプ波長がある際のパラメトリック利得による自然放出光の出力スペクトルを示す。
自然放出光のスペクトル形状は、パラメトリック利得のスペクトル形状に対応しており、ポンプ波長の両側にパラメトリック利得のピークが発生する。
この関係が、任意の入力光信号波長に対して成り立つ条件を探せば、入力波長の可変性と高効率な利得飽和すなわち光信号再生効果を得ることができる。この条件を探すために、利得のピーク波長を計算すると、パラメトリック利得の短波長のピーク波長λS及びパラメトリック利得の長波長のピーク波長λLは、次の[数1]で表わされる。
ここで、pはポンプ光、λ0は分散値がゼロとなる波長を表す。πは円周率、cは真空中の光速、γはファイバの3次の非線形定数、Ppは、ポンプ光の光瞬時強度である。Sは、光ファイバの分散スロープ(ps/nm2/km)である。
In order to obtain a uniform transfer function, in principle, a uniform or highly efficient parametric gain should be realized for any input wavelength. In the parametric gain, the nonlinear phase shift of the pump light cannot be ignored in the saturation region. Therefore, in order to obtain an efficient gain, it is effective to operate the wavelength of the pump light in an anomalous dispersion region of a nonlinear fiber that generates a parametric process. At that time, as shown in FIG. 4, gain peaks occur on both sides of the pump light on the optical spectrum.
In order to realize efficient optical signal regeneration, the signal wavelength and the conversion wavelength may be arranged so as to substantially match the gain peaks on both sides.
FIG. 4 shows an output spectrum of spontaneous emission light due to parametric gain when the pump wavelength is in the anomalous dispersion region of the nonlinear fiber.
The spectral shape of spontaneous emission light corresponds to the spectral shape of parametric gain, and peaks of parametric gain occur on both sides of the pump wavelength.
If a condition where this relationship holds for an arbitrary input optical signal wavelength is searched, variability of the input wavelength and highly efficient gain saturation, that is, an optical signal regeneration effect can be obtained. When the peak wavelength of the gain is calculated in order to find this condition, the peak wavelength λ S of the short wavelength of the parametric gain and the peak wavelength λ L of the long wavelength of the parametric gain are expressed by the following [Equation 1].
Here, p represents pump light, and λ 0 represents a wavelength at which the dispersion value becomes zero. π is the circumference, c is the speed of light in vacuum, γ is the third-order nonlinear constant of the fiber, and Pp is the instantaneous light intensity of the pump light. S is the dispersion slope (ps / nm 2 / km) of the optical fiber.

分散スロープS、分散値がゼロとなる波長λ0、3次の非線形定数γを有する光ファイバを用意し、それぞれ入力波長をパラメトリック利得の短波長のピーク波長λS、出力波長をパラメトリック利得の長波長のピーク波長λLにそれぞれ配置できるような、[数1]式を満たすポンプ光の波長λpとポンプ光の瞬時強度Ppを決めてやればよい。
ここで重要なのは、入力波長と出力波長は正確にλSかλLに一致させなければ動作しないというわけではない。入力波長と出力波長は、λS、λLの近傍、すなわちパラメトリック利得がλS、λLでの値より3db低下以内にあればよい。
さらに、入力波長をパラメトリック利得の長波長のピーク波長λLの近傍に、また出力波長をパラメトリック利得の短波長のピーク波長λSの近傍にそれぞれ配置することもできる。
Prepare an optical fiber with a dispersion slope S, a wavelength λ 0 where the dispersion value is zero, and a third-order nonlinear constant γ, and each input wavelength is the short wavelength peak wavelength λ S , and the output wavelength is the parametric gain length What is necessary is just to determine the wavelength λ p of the pump light and the instantaneous intensity P p of the pump light that satisfy the formula [1] such that they can be respectively arranged at the peak wavelength λ L of the wavelength.
What is important here is that the input wavelength and the output wavelength do not work unless they exactly match λ S or λ L. The input wavelength and the output wavelength may be in the vicinity of λ S and λ L , that is, the parametric gain may be within 3 db lower than the values at λ S and λ L.
Further, the input wavelength can be arranged in the vicinity of the long wavelength peak wavelength λ L of the parametric gain, and the output wavelength can be arranged in the vicinity of the short wavelength peak wavelength λ S of the parametric gain.

[数1]式を実際に具体的な数値を入れて計算すると、図5のようになる。
図5は、ゼロ分散波長を1542nmに持つ非線形ファイバに対するポンプ波長と最大利得波長の関係を示す。左図は、分散スロープS=0.026ps/nm2/kmの際に、γPpを4.1(実線)、6.5(点線) and 10.3km-1(破線)と変えたときの曲線を表す。右図は、γPpを10.3km-1と固定した時に、分散スロープSを0.004(実線)、0.013(点線)、0.026ps/nm2/km(破線)と変えたときの曲線を表す。
この図は、ポンプ波長をずらすと、それに応じてパラメトリック利得のピーク波長が動いている様を示している。短波長側のピーク利得波長は比較的大きく変化するのに対して、長波長側のピーク利得波長はほとんど変化しない領域が確認できる。すなわち、たとえば、この短波長側のピーク利得波長線上に信号光を、長波長側の線上に変換光を配置して用いれば、本発明において、常にパラメトリック利得が最大の条件で動作できることになる。
FIG. 5 shows the formula [Formula 1] that is actually calculated with specific numerical values.
FIG. 5 shows the relationship between the pump wavelength and the maximum gain wavelength for a nonlinear fiber having a zero dispersion wavelength of 1542 nm. The left figure shows a curve when γP p is changed to 4.1 (solid line), 6.5 (dotted line) and 10.3 km −1 (broken line) when the dispersion slope S = 0.026 ps / nm 2 / km. The right figure shows a curve when the dispersion slope S is changed to 0.004 (solid line), 0.013 (dotted line), and 0.026 ps / nm 2 / km (broken line) when γP p is fixed at 10.3 km −1 .
This figure shows that when the pump wavelength is shifted, the peak wavelength of the parametric gain is moved accordingly. While the peak gain wavelength on the short wavelength side changes relatively large, it can be confirmed that the peak gain wavelength on the long wavelength side hardly changes. That is, for example, if signal light is arranged on the short wavelength side peak gain wavelength line and converted light is arranged on the long wavelength side line, the present invention can always operate under the condition of maximum parametric gain.

図6に、[数1]式を実験的に検証した結果を示す。図6左図は、ポンプ波長を変化させた際のパラメトリック利得によって発生した自然放出光スペクトルを示している。各ポンプ波長における最大利得波長を図6右図に[数1]式の理論曲線とともにプロットする。
実験で使用した非線形ファイバのゼロ分散波長は1542nm、スロープは、0.026ps/nm2/km。γPpは、10.3km-1。左図は、ポンプ波長1542、1544、1546、1548、1550、1552、1554nmにおける非線形ファイバ出力光スペクトルである。右図は、ポンプ波長と最大利得波長の関係であり、○は実験観測値である。曲線は[数1]式による理論値である。
図6より、信号波長1521nmから1543nmまでの連続波長範囲に対して出力波長を1561nmに固定した高効率かつ均一な波長可変光信号再生効果が実現できることがうかがえる。
FIG. 6 shows the result of experimental verification of the formula [1]. The left figure of FIG. 6 shows the spontaneous emission light spectrum generated by the parametric gain when the pump wavelength is changed. The maximum gain wavelength at each pump wavelength is plotted on the right side of FIG.
The zero-dispersion wavelength of the nonlinear fiber used in the experiment is 1542 nm, and the slope is 0.026 ps / nm 2 / km. γP p is 10.3 km −1 . The figure on the left is the nonlinear fiber output light spectrum at pump wavelengths 1542, 1544, 1546, 1548, 1550, 1552, and 1554 nm. The right figure shows the relationship between the pump wavelength and the maximum gain wavelength. The curve is a theoretical value according to the formula [1].
FIG. 6 shows that a high-efficiency and uniform wavelength-variable optical signal reproduction effect in which the output wavelength is fixed at 1561 nm over the continuous wavelength range from the signal wavelength 1521 nm to 1543 nm can be realized.

このファイバを用いて、各条件での光出力の伝達関数を測定した結果を図7に示す。変換波長は1561nmに固定した。
図7では、各伝達関数の曲線は飽和特性を示しており所望の光信号再生効果が期待できることが分かるが、同一の入力パワーに対して均一な出力曲線が得られるようにはならない。そのために、本発明では、この光信号再生装置の入出力に可変光減衰器を配置することで、同一の入力パワーに対して均一な伝達関数が得られる。
図8には、実際に入出力部に可変光減衰器を配置して、各ポンプ波長での伝達関数曲線がほぼ重なることを示す。
こうして、出力波長を1561nmに固定しながら、入力の任意波長に対して均一な光信号再生効果を得ることができる。
FIG. 7 shows the result of measuring the transfer function of light output under each condition using this fiber. The conversion wavelength was fixed at 1561 nm.
In FIG. 7, it can be seen that the curves of the respective transfer functions show saturation characteristics and a desired optical signal regeneration effect can be expected, but a uniform output curve cannot be obtained for the same input power. Therefore, in the present invention, a uniform transfer function can be obtained for the same input power by arranging variable optical attenuators at the input and output of the optical signal reproducing apparatus.
FIG. 8 shows that the variable optical attenuators are actually arranged in the input / output section and the transfer function curves at the respective pump wavelengths almost overlap.
In this way, it is possible to obtain a uniform optical signal reproduction effect with respect to an arbitrary input wavelength while fixing the output wavelength to 1561 nm.

図9には、実際にこの曲線を活用した10.75Gbit/s Return-to-Zero (RZ)光信号の符号誤り率の測定比較を示す。図9より、強度雑音が付加され伝送ペナルティーが生じた光信号が、光信号再生器を経ることで、伝送ペナルティーも減少したことが確認された。
バック・ツー・バック(●)、波長変換後(▲)、強度雑音が付加された信号のバック・ツー・バック(■)、光信号再生効果を伴う波長変換後(★)。インセットには、それぞれのアイパターン及びそのヒストグラムを示す。強度雑音が光信号再生効果によって抑制されたことが確認される。
FIG. 9 shows a measurement comparison of the code error rate of a 10.75 Gbit / s Return-to-Zero (RZ) optical signal that actually uses this curve. From FIG. 9, it was confirmed that the transmission penalty was also reduced by passing the optical signal having the transmission noise caused by the intensity noise through the optical signal regenerator.
Back-to-back (●), after wavelength conversion (▲), back-to-back of signal with intensity noise added (■), after wavelength conversion with optical signal regeneration effect (★). The inset shows each eye pattern and its histogram. It is confirmed that the intensity noise is suppressed by the optical signal reproduction effect.

同様にして異なる入力信号波長に対して得られた、光信号再生効果の結果を図10に示す。入力信号波長20nmの範囲にわたって、伝送特性の改善効果が得られたことが分かる。
以上のとおり、波長可変な光信号再生を実現することができるようになった。本発明では、この部分を図1にあるように、P-TDC、PDDTに組み合わせることにより、ダイナミックな光ネットワークに適用できる光信号再生技術を実現する。
なお光導波路として光ファイバを例示して説明したが本発明は、光ファイバに限らず一般の光導波路も採用可能であることはいうまでもない。
Similarly, the results of the optical signal reproduction effect obtained for different input signal wavelengths are shown in FIG. It can be seen that the effect of improving the transmission characteristics was obtained over the range of the input signal wavelength of 20 nm.
As described above, optical signal reproduction with variable wavelength can be realized. In the present invention, as shown in FIG. 1, this part is combined with P-TDC and PDDT to realize an optical signal reproduction technique applicable to a dynamic optical network.
Although an optical fiber has been described as an example of the optical waveguide, it is needless to say that the present invention is not limited to the optical fiber but can be a general optical waveguide.

以下、本発明の実施例を例示する。
(実施例1)
図11は、ファイバ型光パラメトリック波長変換器の前後に可変光減衰器もしくは光増幅器を配置して光信号再生効果が波長に対して均一となるように調整する機能を有する可変波長型光信号再生装置である。図中BPFは、可変式のバンドパスフィルタである。
Examples of the present invention are illustrated below.
Example 1
FIG. 11 shows a variable wavelength optical signal regeneration having a function of adjusting the optical signal regeneration effect with respect to the wavelength by arranging a variable optical attenuator or an optical amplifier before and after the fiber optical parametric wavelength converter. Device. In the figure, BPF is a variable band-pass filter.

(実施例2)
図12に示すように、[数1]式を満たすように用意された波長可変型光信号再生装置を2台縦列に接続することで、[数1]式におけるλLを中間波長として、入力波長と出力波長の両方を自在に可変にできる。図中BPFは、可変式のバンドパスフィルタである。
(Example 2)
As shown in FIG. 12, by connecting two wavelength-variable optical signal reproducing devices prepared so as to satisfy the [Equation 1] in series, λ L in the [Equation 1] is used as an intermediate wavelength. Both wavelength and output wavelength can be made freely variable. In the figure, BPF is a variable band-pass filter.

(実施例3)
図13に示すように、実施例2の2つのポンプ光に光信号から見て逆位相になるような位相変調を加え、高非線形ファイバで誘導ブリユアン散乱(SBS)の発生を抑制するとともに、光信号の伝送品質を良好に保つことができる。SBSが発生すると光信号の品質がSBSの雑音によって著しく劣化してしまうが、ポンプ光に位相変調を施すことで、SBSの発生を抑制することができる。ただし、ポンプ光に位相変調をかけると光信号光に位相雑音が乗ってしまうが、2段縦列に構成された波長変換過程で互いに逆位相になるようにポンプ光への位相変調を施すことで信号光に付加される位相変調をキャンセルすることができる。図中BPFは、可変式のバンドパスフィルタである。
(Example 3)
As shown in FIG. 13, the two pump lights of the second embodiment are phase-modulated so as to have opposite phases when viewed from the optical signal, thereby suppressing the generation of stimulated Brillouin scattering (SBS) in the highly nonlinear fiber, Signal transmission quality can be kept good. When SBS occurs, the quality of the optical signal is significantly degraded by SBS noise. However, the generation of SBS can be suppressed by performing phase modulation on the pump light. However, when phase modulation is applied to the pump light, phase noise is added to the optical signal light. However, by applying phase modulation to the pump light so that the phases are opposite to each other in the wavelength conversion process configured in a two-stage column. The phase modulation added to the signal light can be canceled. In the figure, BPF is a variable band-pass filter.

(実施例4)
図14は、実施例3の構成を一つの高非線形ファイバ(HNLF)で実現する双方向型光信号再生装置である。図中TLSは波長可変光源、EDFAはエルビウム添加ファイバ増幅器、VOAは可変光減衰器、PCは偏波制御装置である。
Example 4
FIG. 14 shows a bidirectional optical signal regeneration device that realizes the configuration of the third embodiment with one highly nonlinear fiber (HNLF). In the figure, TLS is a wavelength tunable light source, EDFA is an erbium-doped fiber amplifier, VOA is a variable optical attenuator, and PC is a polarization controller.

(実施例5)
図15に、実施例4の励起光源であるTLSの出力に位相変調を加え、誘導ブリユアン散乱を抑制した構成を示す。二つの位相変調器(PM)は同一RF源で駆動し、変換光が受ける位相変調の影響をキャンセルするようにタイミングを調整する。
(Example 5)
FIG. 15 shows a configuration in which stimulated Brillouin scattering is suppressed by applying phase modulation to the output of the TLS that is the excitation light source of the fourth embodiment. The two phase modulators (PM) are driven by the same RF source and adjust the timing so as to cancel the influence of the phase modulation received by the converted light.

(実施例6)
図16に、実施例4、5において、ポンプ光を共通にしたものを示す。これによると、入射光信号と常に同一の波長を有する信号が出力される。
(Example 6)
FIG. 16 shows a common pump light in Examples 4 and 5. According to this, a signal always having the same wavelength as the incident light signal is output.

(実施例7)
図17は、実施例4〜6の光信号再生部分にリタイミングの効果を加え、光3R再生としたものを示す。図中PDは受光素子、CRはクロック抽出器、MLLDはモード同期レーザである。
(Example 7)
FIG. 17 shows an optical 3R reproduction by adding a retiming effect to the optical signal reproduction portions of Examples 4 to 6. In the figure, PD is a light receiving element, CR is a clock extractor, and MLLD is a mode-locked laser.

(実施例8)
図18に、可変分散補償・光2R信号再生装置を示す。DCFは分散補償ファイバ、BPFもTLSに連動して波長を制御する。出力波長は必ずしも入力波長と同一である必要はない。
(Example 8)
FIG. 18 shows a variable dispersion compensation / optical 2R signal reproducing apparatus. DCF controls the wavelength in conjunction with dispersion compensating fiber and BPF also works in conjunction with TLS. The output wavelength is not necessarily the same as the input wavelength.

(実施例9)
図19に、可変分散補償・光3R信号再生装置を示す。DCFは分散補償ファイバ、BPFもTLSに連動して波長を制御する。出力波長は必ずしも入力波長と同一である必要はない。図中ISOは光アイソレータ、Polは偏光子、Δτは遅延器である。
Example 9
FIG. 19 shows a variable dispersion compensation / optical 3R signal reproducing apparatus. DCF controls the wavelength in conjunction with dispersion compensating fiber and BPF also works in conjunction with TLS. The output wavelength is not necessarily the same as the input wavelength. In the figure, ISO is an optical isolator, Pol is a polarizer, and Δτ is a delay device.

(実施例10)
図20に、可変遅延分散補償・光3R信号再生装置を示す。DCFは分散補償ファイバ、BPFもTLSに連動して波長を制御する。出力波長は必ずしも入力波長と同一である必要はない。
(Example 10)
FIG. 20 shows a variable delay dispersion compensation / optical 3R signal regeneration device. DCF controls the wavelength in conjunction with dispersion compensating fiber and BPF also works in conjunction with TLS. The output wavelength is not necessarily the same as the input wavelength.

(実施例11)
図21に、可変分散補償・光3R信号再生装置を示す。DCFは分散補償ファイバ、BPFもTLSに連動して波長を制御する。出力波長は必ずしも入力波長と同一である必要はない。図中WCは、波長変換器である。
(Example 11)
FIG. 21 shows a variable dispersion compensation / optical 3R signal reproducing apparatus. DCF controls the wavelength in conjunction with dispersion compensating fiber and BPF also works in conjunction with TLS. The output wavelength is not necessarily the same as the input wavelength. In the figure, WC is a wavelength converter.

背景技術で述べたように、本発明の高速且つ帯域制限のない光信号再生装置は、ポイント・ツー・ポイントの光伝送だけでなく、むしろ、光信号がダイナミックにスイッチング・ルーティングされる光ネットワークに不可欠であるため、高速且つ帯域制限のない可変分散補償を必要とする通信容量の増大が進む技術に適用できる。
As described in the background art, the high-speed and bandwidth-restricted optical signal regeneration apparatus of the present invention is not limited to point-to-point optical transmission, but rather to an optical network in which optical signals are dynamically switched and routed. Since it is indispensable, it can be applied to a technology in which the communication capacity is increased, which requires high-speed variable dispersion compensation without band limitation.

Claims (7)

光信号の位相を保持しつつ搬送波の周波数を可変に変換する光導波路のパラメトリック過程を利用する位相保持型波長変換器において、分散スロープS、分散値がゼロとなる波長λ0、3次の非線形定数γを有する光導波路を用意し、入力波長をパラメトリック利得の短波長のピーク波長λSの近傍又はパラメトリック利得の長波長のピーク波長λLの近傍に、出力波長をパラメトリック利得の長波長のピーク波長λLの近傍又はパラメトリック利得の短波長のピーク波長λSの近傍にそれぞれ配置できるような、次の関係式を満たすポンプ光の波長λpと位相保持型波長変換器のポンプ光の瞬時強度Ppを決定することを特徴とする位相保持型波長変換器を備えた光信号再生装置。
ここで、πは円周率、cは真空中の光速である。
In a phase-maintaining wavelength converter that uses a parametric process of an optical waveguide that variably changes the frequency of a carrier wave while maintaining the phase of an optical signal, a dispersion slope S, a wavelength λ 0 at which the dispersion value is zero, a third-order nonlinearity An optical waveguide having a constant γ is prepared, the input wavelength is near the short wavelength peak wavelength λ S of the parametric gain or the long wavelength peak wavelength λ L of the parametric gain, and the output wavelength is the peak of the long wavelength of the parametric gain. The pump light wavelength λ p and the instantaneous intensity of the pump light of the phase-maintaining wavelength converter that can be placed near the wavelength λ L or near the peak wavelength λ S of the short wavelength of the parametric gain, respectively. An optical signal regeneration device including a phase-maintaining wavelength converter characterized by determining P p .
Here, π is the circular ratio, and c is the speed of light in vacuum.
上記位相保持型波長変換器の前後にそれぞれ可変光減衰器もしくは光増幅器を配置したことを特徴とする請求項1に記載の光信号再生装置。 2. The optical signal reproducing apparatus according to claim 1, wherein a variable optical attenuator or an optical amplifier is disposed before and after the phase maintaining wavelength converter. 上記位相保持型波長変換器の前後にそれぞれ可変光減衰器もしくは光増幅器を配置したものを2台縦列に接続し、その接続点での出力波長がλLとなるように構成したことを特徴とする請求項2に記載の光信号再生装置。 Two variable optical attenuators or optical amplifiers arranged before and after the phase maintaining wavelength converter are connected in series, and the output wavelength at the connection point is λ L. The optical signal reproducing device according to claim 2. 2台の上記位相保持型波長変換器のそれぞれのポンプ光に光信号から見てちょうど逆位相の位相変調がかかるように構成したことを特徴とする請求項3に記載の光信号再生装置。 4. The optical signal regenerating apparatus according to claim 3, wherein the pump light of each of the two phase-maintaining wavelength converters is configured to be subjected to phase modulation of exactly opposite phase when viewed from the optical signal. 光信号を伝送する第一の分散媒質と、位相保持型波長変換器と、第二の分散媒質と、上記位相保持型波長変換器とがさらに縦列に接続されたことを特徴とする請求項1乃至4のいずれか1項に記載の光信号再生装置。 2. The first dispersion medium for transmitting an optical signal, a phase-maintaining wavelength converter, a second dispersion medium, and the phase-maintaining wavelength converter are further connected in cascade. 5. The optical signal regeneration device according to any one of items 1 to 4. 光信号を伝送する上記第一の分散媒質の前に第三の分散媒質と位相保持型波長変換器とがさらに縦列に接続されたことを特徴とする請求項5項に記載の光信号再生装置。 6. The optical signal reproducing apparatus according to claim 5, wherein a third dispersion medium and a phase-maintaining wavelength converter are further connected in series before the first dispersion medium for transmitting an optical signal. . 上記位相保持型波長変換器に用いられるポンプ光として入力光信号と同期した光パルス列を用いることを特徴とする請求項1乃至6のいずれか1項に記載の光信号再生装置。


7. The optical signal regeneration apparatus according to claim 1, wherein an optical pulse train synchronized with an input optical signal is used as pump light used in the phase maintaining wavelength converter.


JP2010191103A 2010-08-27 2010-08-27 Optical signal regeneration device Expired - Fee Related JP5610475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191103A JP5610475B2 (en) 2010-08-27 2010-08-27 Optical signal regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191103A JP5610475B2 (en) 2010-08-27 2010-08-27 Optical signal regeneration device

Publications (2)

Publication Number Publication Date
JP2012048044A true JP2012048044A (en) 2012-03-08
JP5610475B2 JP5610475B2 (en) 2014-10-22

Family

ID=45902977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191103A Expired - Fee Related JP5610475B2 (en) 2010-08-27 2010-08-27 Optical signal regeneration device

Country Status (1)

Country Link
JP (1) JP5610475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200379A (en) * 2018-05-18 2019-11-21 富士通株式会社 Wavelength conversion device, transmission device, and transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203757A (en) * 2007-02-22 2008-09-04 National Institute Of Advanced Industrial & Technology Variable dispersion compensating device and optical network using the same
JP2010152169A (en) * 2008-12-25 2010-07-08 Fujitsu Ltd Optical signal processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203757A (en) * 2007-02-22 2008-09-04 National Institute Of Advanced Industrial & Technology Variable dispersion compensating device and optical network using the same
JP2010152169A (en) * 2008-12-25 2010-07-08 Fujitsu Ltd Optical signal processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013061480; Journal of Lightwave Technology Vol.24,No.9, 200609, 3471-3479 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200379A (en) * 2018-05-18 2019-11-21 富士通株式会社 Wavelength conversion device, transmission device, and transmission system
JP7099045B2 (en) 2018-05-18 2022-07-12 富士通株式会社 Wavelength converters, transmissions, and transmission systems

Also Published As

Publication number Publication date
JP5610475B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP4401626B2 (en) Method and apparatus for processing optical signals
EP0703680B1 (en) Apparatus and method for compensating chromatic dispersion produced in optical phase conjugation or other types of optical signal conversion
EP2083320B1 (en) Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
JP5027434B2 (en) Device for shaping optical signal waveform
JP2010022042A (en) Waveform shaper, kerr-shutter, pulse roller, otdm signal generator, soliton purifier, and, soliton noise control method
JP5381089B2 (en) Optical signal processing device
Pelusi WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers
JP5347333B2 (en) Optical signal processing device
Namiki Wide-band and-range tunable dispersion compensation through parametric wavelength conversion and dispersive optical fibers
JP2010026308A (en) Optical signal-processing device
Singh et al. On compensation of four wave mixing effect in dispersion managed hybrid WDM-OTDM multicast overlay system with optical phase conjugation modules
JP5610475B2 (en) Optical signal regeneration device
Boscolo et al. Performance comparison of 2R and 3R optical regeneration schemes at 40 Gb/s for application to all-optical networks
Payal et al. Nonlinear impairments in fiber optic communication systems: analytical review
Kumar FWM mitigation in 2.56 Tb DWDM-OTDM optical link employing modified duobinary modulation and dispersion compensation
MDU Nonlinear Impairments in Fiber Optic Communication Systems: Analytical Review
Su-Lin et al. Power efficiency improvement of a wavelength-preserved all optical 2R regeneration system in an SOA-based optical cross-gain compression mechanism
Gavioli et al. Investigation of cascadability and optimum inter-regenerator spacing in 43Gb/s transmission with a λ-preserving SOA-based optical regenerator
Roethlingshoefer et al. Phase-preserving amplitude regeneration using dispersion-imbalanced loop mirror
Willner et al. Recent advances in tunable optical delays and their applications
Ismail et al. Wide range operation of an all-optical NRZ-DPSK-to-RZ-DPSK regenerative waveform–wavelength conversion with flexible width-tunability
Lali-Dastjerdi Optical Amplication for Terabit-per-Second Ultra-High Speed Communication Systems
Kurumida et al. Experimental study of a parametric optical path conditioner with functions of tunable dispersion compensation and signal regeneration
Gavioli et al. Investigation of fibre launch power margin in 40 Gb/s transmission with all-optical regeneration
Chong et al. 4-wavelength 2R regeneration based on self-phase modulation and inter-channel walk-off control in bidirectional fiber configuration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5610475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees