JP2012047855A - Light input/output structure for multilayer optical wiring - Google Patents

Light input/output structure for multilayer optical wiring Download PDF

Info

Publication number
JP2012047855A
JP2012047855A JP2010187909A JP2010187909A JP2012047855A JP 2012047855 A JP2012047855 A JP 2012047855A JP 2010187909 A JP2010187909 A JP 2010187909A JP 2010187909 A JP2010187909 A JP 2010187909A JP 2012047855 A JP2012047855 A JP 2012047855A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical
light
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010187909A
Other languages
Japanese (ja)
Inventor
Masao Kinoshita
雅夫 木下
Hiroyuki Ohashi
啓之 大橋
Hirohito Yamada
博仁 山田
Michinao Nozawa
道直 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
NEC Corp
Original Assignee
Tohoku University NUC
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Corp filed Critical Tohoku University NUC
Priority to JP2010187909A priority Critical patent/JP2012047855A/en
Publication of JP2012047855A publication Critical patent/JP2012047855A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light input/output structure for multilayer optical wiring that achieves efficient optical coupling at a diffraction grating of each layer by radiating and diffracting light with a homogeneous phase without need of individually preparing an optical coupling structure for each layer and separately preparing an optical circuit for branching light from an optical coupling structure to each layer.SOLUTION: In the light input/output structure for multilayer optical wiring, a plurality of diffraction grating couplers 1-1 and 1-2 for diffracting a light beam 10 incident to a substrate from a vertical direction X1 into a substrate in-plane direction are laminated in multistage in a thickness direction X1 of the substrate. A plurality of wave guides are prepared for guiding the light diffracted by the plurality of diffraction grating couplers 1-1 and 1-2 to each layer optical circuit. Optical path lengths 1-1 and 1-2 of diffraction grating couplers in adjacent layers are equivalent to nλ/2 (here, λis a wavelength in vacuum of light that is guided to an upper layer optical circuit, and nis a natural number).

Description

本発明は、微細な光導波路を有する平面光回路と、光ファイバなどの外部光学系との間での光入出力を実現する光入出力インターフェース構造に関し、特に多層の光回路にも対応可能な、面型の多層光配線用光入出力構造に関する。   The present invention relates to an optical input / output interface structure that realizes optical input / output between a planar optical circuit having a fine optical waveguide and an external optical system such as an optical fiber, and is particularly applicable to multilayer optical circuits. The present invention relates to an optical input / output structure for a plane type multilayer optical wiring.

LSIなどの半導体チップの内部或いはチップ間でのデータ通信を光で行う光配線が検討されている。
そのようなチップ内或いはチップ間光通信においては、チップの内外での光信号の受け渡しが必要となる。
このようなチップ内の光回路では微細な光導波路が使用されるため、チップ外の光ファイバなどとの光結合には通常高精度の位置合わせが必要となる。
そのため、比較的位置合わせ精度を緩和できる回折格子を用いた面型の光結合構造が提案されている(特許文献1、非特許文献1、非特許文献2、及び、図6を参照)。
Optical wiring for performing data communication inside or between semiconductor chips such as LSIs with light has been studied.
In such intra-chip or inter-chip optical communication, it is necessary to exchange optical signals inside and outside the chip.
In such an optical circuit in the chip, a fine optical waveguide is used, and therefore, high-precision alignment is usually required for optical coupling with an optical fiber or the like outside the chip.
Therefore, a surface-type optical coupling structure using a diffraction grating that can relatively relax the alignment accuracy has been proposed (see Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, and FIG. 6).

これらの構造のものは、図6に示すように、光結合効率を向上させるために入射光26の入射側と反対側に反射器23を設け、回折格子21を透過した光を反射させて、この反射光を回折格子21と再結合させている。   As shown in FIG. 6, in these structures, a reflector 23 is provided on the side opposite to the incident side of the incident light 26 in order to improve the optical coupling efficiency, and the light transmitted through the diffraction grating 21 is reflected. This reflected light is recombined with the diffraction grating 21.

なお、図6は、非特許文献1に開示される回折格子を用いた光結合構造を示しており、図6の符号22は、光ファイバを示し、図6の符号24は、光導波路を示し、図6の符号25は、集積回路を示している。   6 shows an optical coupling structure using the diffraction grating disclosed in Non-Patent Document 1. Reference numeral 22 in FIG. 6 indicates an optical fiber, and reference numeral 24 in FIG. 6 indicates an optical waveguide. Reference numeral 25 in FIG. 6 denotes an integrated circuit.

しかしながら、チップの高性能化や高速化に伴い、回路はより複雑化・高密度化してきており、光配線層も電気配線と同様に多層化の道を辿るものと考えられるが、そのような多層化された光配線層を構成する各層の光導波路に効果的に光を導く方法は未だ提案されていない。   However, with higher performance and higher speed of chips, circuits are becoming more complex and denser, and the optical wiring layer is considered to follow a multi-layered path like electrical wiring. There has not yet been proposed a method for effectively guiding light to the optical waveguides of the layers constituting the multilayered optical wiring layer.

US2004/0156589US2004 / 0156589

F. V. Laere et al., IEEE J. lightwave Technol. 25, 151 (2007)F. V. Laere et al., IEEE J. lightwave Technol. 25, 151 (2007) B. Analui et al., IEEE J. Solid-State Circuits 41, 2945 (2006)B. Analui et al., IEEE J. Solid-State Circuits 41, 2945 (2006)

微細な光導波路を有する光回路へ、外部の光ファイバなどから光信号の入出力を行う回折格子結合型光入出力構造を用いて、多層化された光回路の各層の光導波路に光の入出力を行うためには、各層に対応した光入出力構造を個別に設けたり、また、1つの光入出力構造から、各層へ光を分配する光分波回路を別途設けたりする必要があるなどの課題があった。   Using a diffraction grating coupled optical input / output structure that inputs and outputs optical signals from an external optical fiber to an optical circuit having a fine optical waveguide, light enters the optical waveguide of each layer of the multilayered optical circuit. In order to perform output, it is necessary to individually provide an optical input / output structure corresponding to each layer, or to separately provide an optical demultiplexing circuit for distributing light to each layer from one optical input / output structure, etc. There was a problem.

そこで本発明においては、多層化された回折格子結合型光入出力構造により、同時に複数層の光導波路への光入出力を行える光入出力構造を提案しているが、各層の光回路間の距離を何ら制御することなく、単に複数の回折格子結合器を積層した場合には、上方より入射する光の位相と、下方の回折格子結合器で反射され、下方から入射する反射光の位相がランダムとなり、場合によっては逆位相で互いに打ち消しあい、導波路に導かれる光の強度が弱まるという課題があった。   Therefore, in the present invention, an optical input / output structure capable of simultaneously inputting / outputting light to / from a plurality of optical waveguides using a multilayered diffraction grating coupled optical input / output structure is proposed. When a plurality of diffraction grating couplers are simply stacked without controlling the distance, the phase of light incident from above and the phase of reflected light reflected from the lower diffraction grating coupler and incident from below are There is a problem that the light is random and, in some cases, cancels each other out in opposite phases, and the intensity of light guided to the waveguide is weakened.

また、多層化された回折格子結合器の下方には、光結合効率を高めるために反射器が設けられているが、回折格子結合器と反射器との距離を何らの制御することなく、単に複数の回折格子結合器を積層した場合、一の回折格子の上方より入射する光の位相と、下方の反射器により反射され下方から入射する反射光の位相がランダムとなり、場合によっては逆位相で互いに打ち消しあい、導波路に導かれる光の強度が弱まるという課題があった。   In addition, a reflector is provided below the multilayered diffraction grating coupler to increase the optical coupling efficiency, but without any control of the distance between the diffraction grating coupler and the reflector, When a plurality of diffraction grating couplers are stacked, the phase of light incident from above one diffraction grating and the phase of reflected light reflected from the lower reflector and incident from below become random, and in some cases, the phases are opposite. There was a problem that the intensity of the light that canceled each other and led to the waveguide was weakened.

さらにまた、各層の回折格子結合器のライン部とスペース部の位置関係に何ら工夫を施すことなく、単に複数の回折格子結合器を積層した場合、複数層の回折格子結合器を入射光が通過していく間に波面が乱れて、下層の回折格子結合器においては理想的な動作が得られずに、回折によって効果的に光信号を導波路に導くことが難しくなる。
また最下部の反射器に入射光が到達する頃には、波面が完全に乱れてしまい、効果的な反射光が得られず、各層回折格子結合器はの下方からの反射光を殆ど利用することができず、高い結合効率が得られないという課題があった。
Furthermore, when a plurality of diffraction grating couplers are simply stacked without any modification to the positional relationship between the line portion and the space portion of each layer of the diffraction grating coupler, incident light passes through the plurality of diffraction grating couplers. In the meantime, the wave front is disturbed, and an ideal operation cannot be obtained in the lower diffraction grating coupler, and it becomes difficult to effectively guide the optical signal to the waveguide by diffraction.
Also, when the incident light reaches the lowermost reflector, the wavefront is completely disturbed, and effective reflected light cannot be obtained, and each layer diffraction grating coupler uses almost the reflected light from below. In other words, there is a problem that high coupling efficiency cannot be obtained.

そこで本発明は、それら従来の問題を解決するものであって、すなわち本発明の目的は、各層の光回路に対応した光入出力構造を個別に設けたり、1つの光入出力構造から各層の光回路へ光を分配する光分波器を別途設けたりする必要がなく、しかも、各層の光回路に結合する光の強度を、各層の光回路間の距離を制御することにより、また、各層の回折格子結合器と反射器との距離を制御することにより、更には層の回折格子結合器のライン部とスペース部の位置関係を制御することによって下層に向かう入射光の波面の乱れを抑制することで、各層の回折格子結合器において効果的に入射光を光回路に導くことができ、それぞれの層の光導波路に効率良く光を分配して導くことができる多層光配線構造を提供することである。   Therefore, the present invention solves these conventional problems. That is, the object of the present invention is to provide an optical input / output structure corresponding to the optical circuit of each layer individually, or from one optical input / output structure to each layer. There is no need to separately provide an optical demultiplexer for distributing light to the optical circuit, and the intensity of light coupled to the optical circuit of each layer can be controlled by controlling the distance between the optical circuits of each layer. By controlling the distance between the diffraction grating coupler and the reflector, and by controlling the positional relationship between the line part and the space part of the diffraction grating coupler of the layer, the disturbance of the wave front of the incident light toward the lower layer is suppressed. Thus, it is possible to effectively guide the incident light to the optical circuit in the diffraction grating coupler of each layer, and to provide a multilayer optical wiring structure capable of efficiently distributing and guiding the light to the optical waveguide of each layer That is.

さらにまた、単純に同じ回折格子結合器を多層積層するだけの多層光配線用光入出力構造においては、入射光は回折格子結合器を上層から下層へと通過するたびに光結合によって光出力が減少していくため、下層の回折格子結合器によって取り出される光出力は小さくなっていく。   Furthermore, in an optical input / output structure for a multilayer optical interconnection in which the same diffraction grating coupler is simply laminated, incident light is optically coupled by optical coupling each time it passes through the diffraction grating coupler from the upper layer to the lower layer. Since it decreases, the light output taken out by the lower diffraction grating coupler becomes smaller.

そこで本発明では、各層の光回路に分配する光量を、光回路の位置の上層下層に関わらずに自由に設定できるような構造も提供することにある。   Therefore, the present invention is to provide a structure in which the amount of light distributed to the optical circuit of each layer can be freely set regardless of the upper and lower layers of the position of the optical circuit.

さらにまた、単純に同じ周期の回折格子結合器を多層積層するだけの多層光配線用光入出力構造においては、回折される光の波長はどの層においても同じであるから、層ごとに別々の光信号をやり取りすることはできない。   Furthermore, in the optical input / output structure for a multi-layer optical wiring in which diffraction grating couplers having the same period are simply stacked in multiple layers, the wavelength of the diffracted light is the same in every layer. Optical signals cannot be exchanged.

そこで本発明では、各層の光回路に分配する光信号を、層ごとに異なる信号をやり取りできるような構造も提供することにある。   Accordingly, the present invention is to provide a structure in which an optical signal distributed to the optical circuit of each layer can be exchanged for a different signal for each layer.

本発明の多層光配線用光入出力構造は、基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、隣り合う層の光回路における回折格子結合器の光路長が、nλ/2(λは、前記隣り合う層の内、上層の光回路に導く光の真空中の波長、nは、自然数)に相当することにより、前述した課題を解決したものである。 In the optical input / output structure for multilayer optical wiring of the present invention, a plurality of diffraction grating couplers that diffract a light beam incident on the substrate from the vertical direction in the in-plane direction of the substrate are stacked in multiple stages in the thickness direction of the substrate. A plurality of optical waveguides for guiding the light diffracted by the plurality of diffraction grating couplers to each layer optical circuit, and the optical path length of the diffraction grating coupler in the optical circuit of the adjacent layer is n 1 λ It corresponds to 1/2 (λ 1 is the wavelength in the vacuum of light guided to the upper optical circuit among the adjacent layers, and n 1 is a natural number), thereby solving the above-mentioned problem.

本発明の多層光配線用光入出力構造は、基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路と、前記複数の回折格子結合器の最下部に配置され、前記複数の回折格子結合器を透過した入射光を反射し、前記複数の回折格子結合器の内の少なくとも1つに入射光を再結合させる反射器を備え、前記反射器と前記再結合させる回折格子結合器との間の光路長が、(n+1/2)λ/2(λは、前記再結合させる回折格子の光回路に導く光の真空中の波長、nは、自然数)に相当することにより、前述した課題を解決したものである。 In the optical input / output structure for multilayer optical wiring of the present invention, a plurality of diffraction grating couplers that diffract a light beam incident on the substrate from the vertical direction in the in-plane direction of the substrate are stacked in multiple stages in the thickness direction of the substrate. A plurality of optical waveguides for guiding the light diffracted by the plurality of diffraction grating couplers to respective layer optical circuits, and the plurality of diffraction grating couplings disposed at the bottom of the plurality of diffraction grating couplers. A reflector for reflecting incident light transmitted through the reflector and recombining the incident light to at least one of the plurality of diffraction grating couplers, and between the reflector and the diffraction grating coupler to be recombined the optical path length, (n 2 +1/2) λ 2 /2 (λ 2 is the wavelength in vacuum of the light guided to the optical circuit of the diffraction grating to the recombining, n 2 is a natural number) by corresponding to This solves the aforementioned problems.

本発明の多層光配線用光入出力構造は、基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、前記複数の回折格子結合器の内、回折格子の周期が同じ回折格子結合器が少なくとも2つ以上あり、前記同一周期の複数の回折格子のライン部の位置とスペース部の位置関係が、上下の層間でずれていることにより、前述した課題を解決したものである。   In the optical input / output structure for multilayer optical wiring of the present invention, a plurality of diffraction grating couplers that diffract a light beam incident on the substrate from the vertical direction in the in-plane direction of the substrate are stacked in multiple stages in the thickness direction of the substrate. A plurality of optical waveguides for guiding the light diffracted by the plurality of diffraction grating couplers to each layer optical circuit, and among the plurality of diffraction grating couplers, the diffraction grating coupling has the same period of the diffraction gratings There are at least two units, and the positional relationship between the line portions and the space portions of the plurality of diffraction gratings having the same period is shifted between the upper and lower layers, thereby solving the above-described problem.

本発明の多層光配線用光入出力構造は、前記同一周期の複数の回折格子のライン部の位置とスペース部の位置関係が、上下の層間で、前記光の入射方向から見て互いに重ならないように少しずつずらして配置されていることにより、前述した課題を解決したものである。   In the optical input / output structure for multilayer optical wiring according to the present invention, the positional relationship between the line portions and the space portions of the plurality of diffraction gratings having the same period does not overlap each other when viewed from the light incident direction between the upper and lower layers. In this way, the above-described problems are solved by shifting the positions little by little.

本発明の多層光配線用光入出力構造は、前記同一周期の複数の回折格子結合器のライン部とスペース部の幅を、回折周期を一定に保ちながら各層間で変化を持たせることにより、各層の光導波路に結合する光の量を制御することにより、前述した課題を解決したものである。   The light input / output structure for a multilayer optical wiring of the present invention has a width between the line part and the space part of the plurality of diffraction grating couplers having the same period, while keeping the diffraction period constant, to have a change between the respective layers, By controlling the amount of light coupled to the optical waveguide of each layer, the above-described problems are solved.

本発明の多層光配線用光入出力構造は、前記同一周期の各回折格子結合器における回折格子のライン幅は、より上層の回折格子のライン幅の方が、より下層の回折格子のライン幅より狭いことにより、前述した課題を解決したものである。   In the optical input / output structure for multilayer optical wiring according to the present invention, the line width of the diffraction grating in each diffraction grating coupler having the same period is larger than the line width of the upper diffraction grating. By narrower, the above-mentioned problems are solved.

本発明の多層光配線用光入出力構造は、基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、前記複数の回折格子結合器の回折格子の周期を各層間で異ならせることにより、異なる波長の光を用いて、回折格子の周期に対応する波長帯の光のみを回折させることによって、各層の光回路の間で独立に光信号の入出力を行うことができることにより、前述した課題を解決したものである。   In the optical input / output structure for multilayer optical wiring of the present invention, a plurality of diffraction grating couplers that diffract a light beam incident on the substrate from the vertical direction in the in-plane direction of the substrate are stacked in multiple stages in the thickness direction of the substrate. A plurality of optical waveguides for guiding the light diffracted by the plurality of diffraction grating couplers to the respective layer optical circuits, and the periods of the diffraction gratings of the plurality of diffraction grating couplers being different between the layers. By diffracting only light in the wavelength band corresponding to the period of the diffraction grating using light of different wavelengths, optical signals can be input and output independently between the optical circuits in each layer, as described above. It solves the problem.

本発明の多層光配線用光入出力構造によれば、上層の回折格子結合器の下に、下層の回折格子結合器を配置することで、上層の回折格子結合器を透過した光を下層の回折格子結合器で受けることができるので、1つの光ファイバからの光を上下に配置された多層の光回路に同時に入出射させることができる。   According to the optical input / output structure for multilayer optical wiring of the present invention, the lower layer diffraction grating coupler is disposed under the upper layer diffraction grating coupler so that the light transmitted through the upper diffraction grating coupler can be transmitted to the lower layer diffraction grating coupler. Since it can be received by the diffraction grating coupler, the light from one optical fiber can be made to enter and exit simultaneously into the multilayer optical circuits arranged above and below.

また、隣り合う層の光回路における回折格子結合器の光路長を、nλ/2(λは、前記隣り合う層の内、上層の光回路に導く光の真空中の波長、nは、自然数)に相当するように設定することにより、一の回折格子結合器の上方より入射する光の位相と、下方の回折格子結合器により反射され下方から入射する光との位相を合わせることにより、高効率で光入出射が可能となる。 Further, the optical path length of the diffraction grating coupler in the optical circuit of the adjacent layer, n 1 λ 1/2 ( λ 1 , of the adjacent layer, the wavelength in vacuum of the light guided to the upper layer of the optical circuit, n 1 is a natural number) so that the phase of light incident from above one diffraction grating coupler and the phase of light reflected from the lower diffraction grating coupler and incident from below are matched. As a result, light incidence and emission can be performed with high efficiency.

また、反射器と再結合させる回折格子結合器との間の光路長を、(n+1/2)λ/2(λは、前記再結合させる回折格子の光回路に導く光の真空中の波長、nは、自然数)に相当するように設定することにより、回折格子結合器の上方より入射する光の位相と、下方の反射器により反射され下方から入射する光との位相を合わせることにより、高効率で光入出射が可能となる。 Further, the optical path length between the diffraction grating coupler for recombining a reflector, (n 2 +1/2) λ 2 /2 (λ 2 , the vacuum of the light guided to the optical circuit of the diffraction grating to the recombining The phase of the light incident from above the diffraction grating coupler and the phase of the light reflected from the lower reflector and incident from below are set by setting so as to correspond to the middle wavelength, n 2 is a natural number). By combining them, it is possible to enter and exit light with high efficiency.

また、複数の回折格子結合器のライン部のスペース部の位置関係をずらして設定することにより、下層に届く入射光の波面の乱れを抑制することができ、下層の回折格子結合器においても十分な回折効率を得ることができる。   In addition, by shifting the positional relationship of the space portions of the line portions of the plurality of diffraction grating couplers, it is possible to suppress the disturbance of the wave front of the incident light reaching the lower layer, which is sufficient even in the lower diffraction grating couplers. Diffraction efficiency can be obtained.

また、複数の回折格子のライン部の位置をピッチ方向に調整することで、一の回折格子結合器により回折された回折光の位相と、他の回折格子結合器により回折された回折光との間で位相の調整を図ることができる。   Also, by adjusting the position of the line part of the plurality of diffraction gratings in the pitch direction, the phase of the diffracted light diffracted by one diffraction grating coupler and the diffracted light diffracted by another diffraction grating coupler The phase can be adjusted between.

また、同一周期の複数の回折格子結合器のライン部とスペース部の幅を、回折周期を一定に保ちながら各層間で変化を持たせることにより、各層の光導波路に結合する光の量を制御することができる。   In addition, the amount of light coupled to the optical waveguide of each layer is controlled by changing the width of the line and space of multiple diffraction grating couplers with the same period between layers while keeping the diffraction period constant. can do.

また、より上層の回折格子のライン幅の方がより下層の回折格子のライン幅より狭くなるように設定することにより、上層の回折格子結合器の回折効率を下げるとともに、上層の回折格子結合器の回折効率を上げることが可能であるため、上層の回折光と下層の回折光の強さを均等にすることができ、垂直方向から入射された光を上層の光回路と下層の光回路とに均等に分配することができる。   In addition, by setting the line width of the upper diffraction grating to be narrower than the line width of the lower diffraction grating, the diffraction efficiency of the upper diffraction grating coupler is lowered and the upper diffraction grating coupler is reduced. Therefore, the intensity of the diffracted light in the upper layer and the diffracted light in the lower layer can be made uniform, and the light incident from the vertical direction can be changed between the upper optical circuit and the lower optical circuit. Can be evenly distributed.

また、複数の回折格子結合器の回折格子の周期を各層間で異なるものとすることにより、異なる波長を含む入射光に対して、各層の回折格子結合器の周期に対応する波長の光のみを回折させることによって、各層の光回路の間で独立に光信号の入出力を行うことができる。
従って、波長多重化された入射光を用いれば、各層の光回路間で独立に光信号のやり取りができる。
In addition, by making the period of the diffraction gratings of the plurality of diffraction grating couplers different between the respective layers, only light having a wavelength corresponding to the period of the diffraction grating couplers of the respective layers can be applied to incident light including different wavelengths. By diffracting, optical signals can be input and output independently between the optical circuits of each layer.
Therefore, if wavelength-multiplexed incident light is used, optical signals can be exchanged independently between optical circuits in each layer.

本発明の第1実施例としての多層光配線用光入出力構造の概略図である。1 is a schematic diagram of an optical input / output structure for multilayer optical wiring as a first embodiment of the present invention. 本発明の第2実施例としての多層光配線用光入出力構造の概略図である。It is the schematic of the optical input-output structure for multilayer optical wiring as 2nd Example of this invention. 上層と下層の回折格子結合器の結合光量を異ならせた第2実施例の変形例を示す概略図である。It is the schematic which shows the modification of 2nd Example which varied the coupling light quantity of the diffraction grating coupler of an upper layer and a lower layer. 本発明の第3実施例としての多層光配線用光入出力構造の概略図である。It is the schematic of the optical input-output structure for multilayer optical wiring as 3rd Example of this invention. 異なる波長の光を用いて、回折格子の周期に対応する波長帯の光のみを回折させる本発明の変形例を示す概略図である。It is the schematic which shows the modification of this invention which diffracts only the light of the wavelength band corresponding to the period of a diffraction grating using the light of a different wavelength. 従来の光結合構造を示す概略図である。It is the schematic which shows the conventional optical coupling structure.

以下に、本発明の多層光配線用光入出力構造について、図面に基づいて好適な実施形態を詳細に説明する。   Hereinafter, preferred embodiments of the optical input / output structure for multilayer optical wiring of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1実施例としての多層光配線用光入出力構造の概略図である。   FIG. 1 is a schematic diagram of an optical input / output structure for multilayer optical wiring as a first embodiment of the present invention.

本発明の第1実施例である多層光配線用光入出力構造は、二層の光配線用の光入出力構造であり、図1に示すように、光回路面に対して垂直方向(入射方向)X1から照射された入射光(光ビーム)10を回折する回折格子結合器1−1、及び、回折格子結合器1−1で回折した回折光11−1を導くコア2−1からなる上層の光回路と、回折格子結合器1−1の下部に配置されて回折格子結合器1−1を透過した入射光10を回折する回折格子結合器1−2、及び、回折格子結合器1−2で回折した回折光11−2を導くコア2−2からなる下層の光回路と、回折格子結合器1−1、1−2及びコア2−1、2−2の周囲を覆うクラッド3と、回折格子結合器1−1及び1−2を透過した入射光10を反射する反射器4とを備えている。   The optical input / output structure for multilayer optical wiring according to the first embodiment of the present invention is an optical input / output structure for two-layer optical wiring, and is perpendicular to the optical circuit plane (incident as shown in FIG. 1). Direction) comprising a diffraction grating coupler 1-1 that diffracts incident light (light beam) 10 irradiated from X1, and a core 2-1 that guides the diffracted light 11-1 diffracted by the diffraction grating coupler 1-1. The upper layer optical circuit, the diffraction grating coupler 1-2 that is disposed below the diffraction grating coupler 1-1, and diffracts the incident light 10 transmitted through the diffraction grating coupler 1-1, and the diffraction grating coupler 1 -2 is a lower-layer optical circuit composed of a core 2-2 that guides the diffracted light 11-2 diffracted at -2, and a cladding 3 that covers the periphery of the diffraction grating couplers 1-1 and 1-2 and the cores 2-1 and 2-2. And a reflector 4 for reflecting the incident light 10 transmitted through the diffraction grating couplers 1-1 and 1-2.

ベースとなる光導波路としては、コア2−1、2−2及びクラッド3共に、SiO2からなるシリカ系光導波路であってもよく、コア2−1、2−2がSi、クラッド3がSiO2からなるシリコン系光導波路であっても構わない。
当然シリコン系光導波路の場合は、動作波長はSiによる光の吸収の無い波長1μm以上に限られる。
As the base optical waveguide, both the cores 2-1 and 2-2 and the cladding 3 may be silica-based optical waveguides made of SiO2, the cores 2-1 and 2-2 are made of Si, and the cladding 3 is made of SiO2. A silicon optical waveguide may be used.
Naturally, in the case of a silicon-based optical waveguide, the operating wavelength is limited to a wavelength of 1 μm or more without light absorption by Si.

各回折格子結合器1−1、1−2は、図1に示すように、所定ピッチPで並列する複数のライン部1−1a、1−2aと、ライン部1−1a、1−2a間に位置する複数のスペース部1−1b、1−2bとから構成されている。
一般に、回折格子結合器1−1、1−2のライン部1−1a、1−2aは、光導波路のコア2−1、2−2と同じ屈折率の高い材料で形成され、回折格子結合器1−1、1−2のスペース部1−1b、1−2bは、光導波路のクラッド3と同じ屈折率の低い材料で形成されている。
As shown in FIG. 1, each diffraction grating coupler 1-1, 1-2 includes a plurality of line portions 1-1a, 1-2a arranged in parallel at a predetermined pitch P and between the line portions 1-1a, 1-2a. It is comprised from several space part 1-1b and 1-2b located in.
In general, the line portions 1-1a and 1-2a of the diffraction grating couplers 1-1 and 1-2 are formed of the same high refractive index material as the cores 2-1 and 2-2 of the optical waveguide. The space portions 1-1b and 1-2b of the devices 1-1 and 1-2 are formed of the same low refractive index material as that of the cladding 3 of the optical waveguide.

なお、本発明で言うところのピッチ(格子ピッチ)Pとは、図1等に示すように、回折格子結合器1−1、1−2のライン部1−1a、1−2aのピッチ方向X2における中央位置から、当該ライン部1−1a、1−2aにピッチ方向X2に隣接するライン部1−1a、1−2aのピッチ方向X2における中央位置までの寸法を意味している。   The pitch (grating pitch) P referred to in the present invention is the pitch direction X2 of the line portions 1-1a and 1-2a of the diffraction grating couplers 1-1 and 1-2, as shown in FIG. Means the dimension from the center position in FIG. 1 to the center position in the pitch direction X2 of the line portions 1-1a, 1-2a adjacent to the line portions 1-1a, 1-2a in the pitch direction X2.

また、回折格子結合器1−1、1−2に入射する光の一部は、回折格子結合器1−1、1−2と結合せずに透過して出てくるが、屈折率の高いライン部1−1a、1−2aよりも、屈折率の低いスペース部1−1b、1−2bのほうがスリットのように通過しやすいため、スペース部1−1b、1−2bからより多くの光量が透過して出てくる。   Further, a part of the light incident on the diffraction grating couplers 1-1 and 1-2 is transmitted without being coupled to the diffraction grating couplers 1-1 and 1-2, but has a high refractive index. Since the space portions 1-1b and 1-2b having a lower refractive index pass more easily like slits than the line portions 1-1a and 1-2a, more light is emitted from the space portions 1-1b and 1-2b. Comes out transparently.

また、スペース部1−1b、1−2bを透過した光と、ライン部1−1a、1−2aを透過した光では、屈折率の違いにより位相差を生じ、波面が乱れることがある。   In addition, the light transmitted through the space portions 1-1b and 1-2b and the light transmitted through the line portions 1-1a and 1-2a may cause a phase difference due to a difference in refractive index, thereby disturbing the wavefront.

本実施例では、図1に示すように、回折格子結合器1−1の複数のライン部1−1a間におけるピッチPと、回折格子結合器1−2の複数のライン部1−2a間におけるピッチPとは、同じ寸法で設定されている。
また、回折格子結合器1−1のライン部1−1aのピッチ方向X2におけるライン幅W1と、回折格子結合器1−2のライン部1−2aのピッチ方向X2におけるライン幅W2とは、同じ寸法で設定されている。
また、ライン幅W1及びライン幅W2は、ピッチPの半分の寸法で設定されている。
そして、回折格子結合器1−1のライン部1−1aのピッチ方向(光導波路の長手方向)X2における位置と、回折格子結合器1−2のライン部1−2aのピッチ方向X2における位置とは、図1に示すように、ピッチ方向X2にピッチPの半分の長さ分だけ互いにずらして配置され、すなわち、回折格子結合器1−1のライン部1−1aと回折格子結合器1−2のライン部1−2aとは、入射方向X1に互いに重ならないように配置されている。
In this embodiment, as shown in FIG. 1, the pitch P between the plurality of line portions 1-1a of the diffraction grating coupler 1-1, and between the plurality of line portions 1-2a of the diffraction grating coupler 1-2. The pitch P is set with the same dimensions.
The line width W1 in the pitch direction X2 of the line part 1-1a of the diffraction grating coupler 1-1 is the same as the line width W2 in the pitch direction X2 of the line part 1-2a of the diffraction grating coupler 1-2. It is set with dimensions.
Further, the line width W1 and the line width W2 are set to be half the pitch P.
And the position in the pitch direction (longitudinal direction of the optical waveguide) X2 of the line part 1-1a of the diffraction grating coupler 1-1, and the position in the pitch direction X2 of the line part 1-2a of the diffraction grating coupler 1-2 1, are shifted from each other by half the length of the pitch P in the pitch direction X2, that is, the line portion 1-1a of the diffraction grating coupler 1-1 and the diffraction grating coupler 1- The second line portion 1-2a is arranged so as not to overlap with the incident direction X1.

そのため、回折格子結合器1−1のスペース部1−1bを透過した入射光10は、回折格子結合器1−2のライン部1−2aで強く結合できるので、光を効率的に利用することができる。   Therefore, since the incident light 10 transmitted through the space 1-1b of the diffraction grating coupler 1-1 can be strongly coupled by the line 1-2a of the diffraction grating coupler 1-2, the light can be used efficiently. Can do.

また、図1に示すように、回折格子結合器1−1のライン部1−1aを透過した光は、回折格子結合器1−2ではスペース部1−2bを通り、回折格子結合器1−1のスペース部1−1bを透過した光は、回折格子結合器1−2ではライン部1−2aを通る。   Further, as shown in FIG. 1, the light transmitted through the line part 1-1a of the diffraction grating coupler 1-1 passes through the space part 1-2b in the diffraction grating coupler 1-2, and passes through the diffraction grating coupler 1-. The light transmitted through the one space portion 1-1b passes through the line portion 1-2a in the diffraction grating coupler 1-2.

そのため、回折格子結合器1−1と回折格子結合器1−2を透過した光は、屈折率の違いにより生じる位相差を打消し合い、波面が揃うため、反射器4により反射されて回折格子結合器1−2に再度結合する際には、波面が揃うことになる。   Therefore, the light transmitted through the diffraction grating coupler 1-1 and the diffraction grating coupler 1-2 cancels out the phase difference caused by the difference in refractive index, and the wave fronts are aligned. When coupling to the coupler 1-2 again, the wave fronts are aligned.

また、回折格子結合器1−1を透過した入射光10の一部は、回折格子結合器1−2で反射されて回折格子結合器1−1に戻るが、同様に、屈折率の違いにより生じる位相差を打消し合い、波面が揃うため、回折格子結合器1−1に再結合する際には、波面が揃うことになる。   A part of the incident light 10 transmitted through the diffraction grating coupler 1-1 is reflected by the diffraction grating coupler 1-2 and returns to the diffraction grating coupler 1-1. Since the generated phase difference is canceled and the wavefronts are aligned, the wavefronts are aligned when recombining with the diffraction grating coupler 1-1.

ここで、回折格子結合器1−1と回折格子結合器1−2との光路長L1を、nλ/2(λは、隣り合う層の内、上層の光回路に導く光の真空中の波長、nは、自然数)に相当するように設定することで、入射光10の一部が、回折格子結合器1−1を透過し、回折格子結合器1−2で反射されて回折格子結合器1−1に再結合する際には、波面が揃うだけでなく、入射光10と同相となるので、入射光10が最初に回折格子結合器1−1で回折された回折光と、回折格子結合器1−1に再結合した回折光とは強め合う。 Here, the optical path length L1 between the diffraction grating coupler 1-1 and the diffraction grating coupler 1-2, n 1 λ 1/2 (λ 1 , of the adjacent layer, of the light guided to the upper layer of the optical circuit By setting so as to correspond to the wavelength in vacuum, n 1 is a natural number), a part of the incident light 10 is transmitted through the diffraction grating coupler 1-1 and reflected by the diffraction grating coupler 1-2. When recombining with the diffraction grating coupler 1-1, the wavefronts are not only aligned but in phase with the incident light 10, so that the incident light 10 is first diffracted by the diffraction grating coupler 1-1. The light and the diffracted light recombined with the diffraction grating coupler 1-1 are intensified.

また、ここで、回折格子結合器1−2と反射器4との光路長L2を、(n+1/2)λ/2(λは、再結合させる回折格子の光回路に導く光の真空中の波長、nは、自然数)に相当するように設定することで、入射光10の一部が、回折格子結合器1−1及び回折格子結合器1−2を透過し、反射器4で反射され回折格子結合器1−2で再結合する際には、波面が揃うだけでなく、入射光10の一部が回折格子結合器1−2に最初に入射する際と同相となるので、入射光10の一部が最初に回折格子結合器1−2で回折された回折光と、回折格子結合器1−2に再結合した回折光とは強め合う。 Also, here, the optical path length L2 of a diffraction grating coupler 1-2 and the reflector 4, leading to (n 2 +1/2) λ 2/ 2 (λ 2 , the optical circuit of the diffraction grating for recombining light Is set so as to correspond to the wavelength in vacuum, and n 2 is a natural number), so that a part of the incident light 10 is transmitted through and reflected by the diffraction grating coupler 1-1 and the diffraction grating coupler 1-2. When the light is reflected by the unit 4 and recombined by the diffraction grating coupler 1-2, not only the wave fronts are aligned, but also the same phase as when a part of the incident light 10 first enters the diffraction grating coupler 1-2. Therefore, a part of the incident light 10 is first diffracted by the diffraction grating coupler 1-2, and the diffracted light recombined with the diffraction grating coupler 1-2 is strengthened.

また、上記例では、回折格子結合器1−1、1−2のスペース部1−1b、1−2bは、完全にコア2−1、2−2の材質がない状態としたが、ライン部1−1a、1−2aより厚みの薄い状態としても良く、その場合も、同様に光学的距離で考えればよいことは明らかである。   In the above example, the space portions 1-1b and 1-2b of the diffraction grating couplers 1-1 and 1-2 are completely free of the materials of the cores 2-1 and 2-2. It is obvious that the thickness may be smaller than that of 1-1a and 1-2a, and in that case, the optical distance may be considered similarly.

以上の構成により、上層の回折格子結合器1−1と下層の回折格子結合器1−2のライン部1−1a、1−2aの幅が回折格子周期の半分で、また、互いのライン部1−1a、1−2aの位置関係が、回折格子周期の半分だけずれて配置されている場合には、垂直方向X1から入射された光を上層の光回路と下層の光回路とで、効果的に利用できるような光入出力構造を提供できる。   With the above configuration, the widths of the line portions 1-1a and 1-2a of the upper diffraction grating coupler 1-1 and the lower diffraction grating coupler 1-2 are half the diffraction grating period, and the mutual line portions When the positional relationship between 1-1a and 1-2a is shifted by half of the diffraction grating period, the light incident from the vertical direction X1 is effective between the upper optical circuit and the lower optical circuit. It is possible to provide an optical input / output structure that can be used in a practical manner.

また、上層の回折格子結合器1−1を透過し下層の回折格子結合器1−2で反射された光や、上層の回折格子結合器1−1及び下層の回折格子結合器1−2を透過し反射器4で反射された光の波面が揃うだけでなく、また、回折格子結合器1−1、1−2と再結合する際の回折光と、最初の回折光とが同相となり、出力を強めることができるので、効率的な光入出力構造を提供できる。   Further, the light transmitted through the upper diffraction grating coupler 1-1 and reflected by the lower diffraction grating coupler 1-2, or the upper diffraction grating coupler 1-1 and the lower diffraction grating coupler 1-2 are transmitted. Not only are the wavefronts of the light transmitted and reflected by the reflector 4 aligned, but the diffracted light when recombining with the diffraction grating couplers 1-1 and 1-2 and the first diffracted light are in phase, Since the output can be strengthened, an efficient optical input / output structure can be provided.

尚、上層の回折格子結合器1−1のライン部1−1aとスペース部1−1bの位置と、下層にある回折格子結合器1−2のライン部1−2aとスペース部1−2bの位置により、各々の層の光導波路に導く光波の位相関係が決まるため、互いの位置関係を任意にずらすことにより、各々の層の光導波路に導く光波の位相関係を任意に調整することができる。   In addition, the position of the line part 1-1a and the space part 1-1b of the upper diffraction grating coupler 1-1, and the line part 1-2a and the space part 1-2b of the lower diffraction grating coupler 1-2. Since the phase relationship of the light waves guided to the optical waveguide of each layer is determined depending on the position, the phase relationship of the light waves guided to the optical waveguide of each layer can be arbitrarily adjusted by arbitrarily shifting the mutual positional relationship. .

従って、ある入射光10に対して、上層にある回折格子結合器1−1によって回折されて光導波路に導かれた光と、下層にある回折格子結合器1−2によって回折されて光導波路に導かれた光との位相関係を、同相にすることも、逆相にすることも、或いはπ/2だけずらすことも、各層間での回折格子結合器1−1、1−2のライン部1−1a、1−2aとスペース部1−1b、1−2bの位置関係によって自由に制御できる。   Accordingly, the incident light 10 is diffracted by the diffraction grating coupler 1-1 in the upper layer and guided to the optical waveguide, and is diffracted by the diffraction grating coupler 1-2 in the lower layer to enter the optical waveguide. Whether the phase relationship with the guided light is in phase, out of phase, or shifted by π / 2, the line portions of the diffraction grating couplers 1-1 and 1-2 between the layers It can be freely controlled by the positional relationship between 1-1a and 1-2a and the space portions 1-1b and 1-2b.

従って、各層の光を最終的に合波して1本の光導波路に導くような場合は、同相になるようにずらせばよい。   Therefore, when the light beams of the layers are finally combined and guided to one optical waveguide, they may be shifted so as to be in phase.

また、1つの場所で上下の光回路に光を供給できるので、小さな光入出力構造を提供でき、コネクタなども安価にできる。   In addition, since light can be supplied to the upper and lower optical circuits at one place, a small optical input / output structure can be provided, and a connector and the like can be made inexpensive.

また、上記説明では、入力側の光入出力構造として説明したが、出力側の光入出力構造として使用してもなんら問題はなく、同様に効率的な出力を得ることができる。   In the above description, the optical input / output structure on the input side has been described. However, there is no problem even if it is used as the optical input / output structure on the output side, and an efficient output can be obtained similarly.

つぎに、本発明の第2実施例である多層光配線用光入出力構造について、図2に基づいて説明する。
ここで、本発明の第2実施例である多層光配線用光入出力構造の回折格子結合器の具体的設計や回折格子結合器間の配置関係など以外の構成は、前述した第1実施例の多層光配線用光入出力構造と全く同じであるため、第1実施例の多層光配線用光入出力構造との間の相違点のみを説明する。
Next, an optical input / output structure for multilayer optical wiring that is a second embodiment of the present invention will be described with reference to FIG.
Here, the configuration of the second embodiment of the present invention other than the specific design of the diffraction grating coupler of the optical input / output structure for multilayer optical wiring and the arrangement relationship between the diffraction grating couplers is the same as the first embodiment described above. Since this is exactly the same as the optical input / output structure for multilayer optical wiring, only differences from the optical input / output structure for multilayer optical wiring of the first embodiment will be described.

第2実施例の多層光配線用光入出力構造は、図2に示すように、図1に示す第1実施例の多層光配線用光入出力構造とほぼ同様の構成であるが、上層の回折格子結合器1−1のライン幅W1に比べて、下層の回折格子結合器1−2のライン幅W2を広くしている。   As shown in FIG. 2, the optical input / output structure for the multilayer optical wiring of the second embodiment is substantially the same as the optical input / output structure for the multilayer optical wiring of the first embodiment shown in FIG. The line width W2 of the lower diffraction grating coupler 1-2 is made wider than the line width W1 of the diffraction grating coupler 1-1.

この場合も、ライン幅W1とライン幅W2の和を図1の例と同様に回折格子結合器1−1、1−2のピッチPと等しくしているため、上層の回折格子結合器1−1のライン部1−1aのピッチ方向X2における中央位置と、下層の回折格子結合器1−2のライン部1−2aのピッチ方向X2における中央位置とを、ピッチPの半分の寸法だけピッチ方向X2にずらすことで、上層の回折格子結合器1−1のライン部1−1aと下層の回折格子結合器1−2のライン部1−2aの位置が、入射方向X1に重ならないようになっている。   Also in this case, the sum of the line width W1 and the line width W2 is made equal to the pitch P of the diffraction grating couplers 1-1 and 1-2 as in the example of FIG. The center position in the pitch direction X2 of the first line portion 1-1a and the center position in the pitch direction X2 of the line portion 1-2a of the lower diffraction grating coupler 1-2 are pitch directions by a dimension half the pitch P. By shifting to X2, the positions of the line portion 1-1a of the upper diffraction grating coupler 1-1 and the line portion 1-2a of the lower diffraction grating coupler 1-2 are prevented from overlapping with the incident direction X1. ing.

下層の回折格子結合器1−2では、上層の回折格子結合器1−1で回折しきれずに透過した光を利用しているため、上層の回折格子結合器1−1の回折効率と下層の回折格子結合器1−2の回折効率を同じにすると、上層での回折光11−1のほうが、下層の回折光11−2に比べ大きくなる。   Since the lower-layer diffraction grating coupler 1-2 uses light that has not been diffracted by the upper-layer diffraction grating coupler 1-1, the diffraction efficiency of the upper-layer diffraction grating coupler 1-1 is reduced. When the diffraction efficiency of the diffraction grating coupler 1-2 is the same, the diffracted light 11-1 in the upper layer is larger than the diffracted light 11-2 in the lower layer.

そこで、上層の回折格子結合器1−1のライン幅W1と下層の回折格子結合器1−2のライン幅W2を調節して、それぞれの回折格子結合器の回折効率を変えることにより、図2に示すように、上層と下層の回折格子結合器1−1、1−2の結合光量を等しくすることもできるし、図3に示すように、敢えて異なるようにする、すなわち、下層の回折格子結合器1−2の結合光量を上層の回折格子結合器1−1の結合光量より大きくすることもできる。   Therefore, by adjusting the line width W1 of the upper diffraction grating coupler 1-1 and the line width W2 of the lower diffraction grating coupler 1-2 to change the diffraction efficiency of each diffraction grating coupler, FIG. As shown in FIG. 3, the combined light amounts of the upper and lower diffraction grating couplers 1-1 and 1-2 can be made equal, or as shown in FIG. The coupling light quantity of the coupler 1-2 can be made larger than the coupling light quantity of the upper diffraction grating coupler 1-1.

例えば、図2に示すように、上層の回折格子結合器1−1のライン幅W1を狭くして回折効率を下げ、反対に下層の回折格子結合器1−2のライン幅W2を広くして回折効率を高くすることで、上層の回折光11−1と下層の回折光11−2の強さを均等にすることもできるので、多層光配線の利用がしやすくなる。   For example, as shown in FIG. 2, the line width W1 of the upper diffraction grating coupler 1-1 is reduced to lower the diffraction efficiency, and conversely, the line width W2 of the lower diffraction grating coupler 1-2 is increased. By increasing the diffraction efficiency, the intensity of the diffracted light 11-1 in the upper layer and the intensity of the diffracted light 11-2 in the lower layer can be made uniform, so that the multilayer optical wiring can be easily used.

以上の構成により、上層の回折格子結合器1−1のライン幅W1と下層の回折格子結合器1−2のライン幅W2を調節して、上層の回折格子結合器1−1と下層の回折格子結合器1−2の結合光量を等しくすることもできるし、敢えて異なるようにすることもできる。   With the above configuration, the line width W1 of the upper diffraction grating coupler 1-1 and the line width W2 of the lower diffraction grating coupler 1-2 are adjusted, and the upper diffraction grating coupler 1-1 and the lower diffraction grating are adjusted. The coupling light quantity of the grating coupler 1-2 can be made equal or different.

例えば、上層の回折格子結合器1−1のライン幅W1に比べ、下層の回折格子結合器1−2のライン幅W2を広くして回折効率を高めることができるので、図1に示す第1実施例の多層光配線用光入出力構造の効果に加えて、垂直方向X1から入射された光を上層の光回路と下層の光回路とに均等に分配することができる多層光配線用光入出力構造を提供できる。   For example, compared to the line width W1 of the upper diffraction grating coupler 1-1, the line width W2 of the lower diffraction grating coupler 1-2 can be increased to increase the diffraction efficiency. In addition to the effect of the optical input / output structure for the multilayer optical wiring of the embodiment, the light input for the multilayer optical wiring capable of evenly distributing the light incident from the vertical direction X1 to the upper optical circuit and the lower optical circuit. An output structure can be provided.

つぎに、本発明の第3実施例である多層光配線用光入出力構造について、図4に基づいて説明する。
ここで、本発明の第3実施例である多層光配線用光入出力構造の回折格子結合器の設置数や回折格子結合器の具体的設計や回折格子結合器間の配置関係など以外の構成は、前述した第1実施例の多層光配線用光入出力構造と全く同じであるため、第1実施例の多層光配線用光入出力構造との間の相違点のみを説明する。
Next, an optical input / output structure for multilayer optical wiring that is a third embodiment of the present invention will be described with reference to FIG.
Here, the configuration of the third embodiment of the present invention other than the number of installed diffraction grating couplers of the optical input / output structure for multilayer optical wiring, the specific design of the diffraction grating couplers, the arrangement relationship between the diffraction grating couplers, etc. Since this is exactly the same as the optical input / output structure for multilayer optical wiring of the first embodiment described above, only the differences from the optical input / output structure for multilayer optical wiring of the first embodiment will be described.

図4に示す第3実施例の多層光配線用光入出力構造は、三層の光配線用の光結合構造であり、上層の光回路、中層の光回路、下層の光回路に光を導く3つの回折格子結合器1−1、1−2、1−3を有し、これら回折格子結合器1−1、1−2、1−3のライン部1−1a、1−2a、1−3aの各ライン幅W1、W2、W3の合計は、図1及び図2に示す実施例と同様に、回折格子結合器1−1、1−2、1−3のピッチPと同等である。   The optical input / output structure for multilayer optical wiring of the third embodiment shown in FIG. 4 is an optical coupling structure for three-layer optical wiring, and guides light to the upper layer optical circuit, the middle layer optical circuit, and the lower layer optical circuit. It has three diffraction grating couplers 1-1, 1-2, 1-3, and line sections 1-1a, 1-2a, 1- of the diffraction grating couplers 1-1, 1-2, 1-3. The total of the line widths W1, W2, and W3 of 3a is equal to the pitch P of the diffraction grating couplers 1-1, 1-2, and 1-3, as in the embodiment shown in FIGS.

また、各層の回折格子結合器1−1、1−2、1−3のライン幅W1、W2、W3を上層から下層に向かって順次広くすると共に、各ライン部1−1a、1−2a、1−3aのピッチ方向X2の位置を、ピッチ方向X2にずらすことにより、上層、中層、下層の各ライン部1−1a、1−2a、1−3aの位置が入射方向X1に重ならないようになっている。   In addition, the line widths W1, W2, and W3 of the diffraction grating couplers 1-1, 1-2, and 1-3 of each layer are gradually increased from the upper layer to the lower layer, and the line portions 1-1a, 1-2a, By shifting the position of the pitch direction X2 of 1-3a in the pitch direction X2, the positions of the upper, middle, and lower line portions 1-1a, 1-2a, and 1-3a do not overlap with the incident direction X1. It has become.

したがって、入射光10を、各回折格子結合器1−1、1−2、1−3によって、それぞれのコア2−1、2−2、2−3に、均等の強さの回折光11−1、11−2、11−3として効率的に分配することができる。   Therefore, the incident light 10 is diffracted light 11- of equal intensity to the respective cores 2-1, 2-2, 2-3 by the diffraction grating couplers 1-1, 1-2, 1-3. 1, 11-2 and 11-3 can be efficiently distributed.

上記の第3実施例では、三層の光配線としたが、各ライン幅の関係と各ラインのピッチ方向の位置を同様に設定すれば、更なる多層の光配線にも適用が可能となる。   In the third embodiment, the optical wiring has three layers. However, if the relationship between the line widths and the position in the pitch direction of each line are set in the same manner, it can be applied to further multilayer optical wiring. .

以上の構成により、上層の回折格子結合器1−1(1−2)のライン幅W1(W2)に比べ、より下層の回折格子結合器1−2(1−3)のライン幅W2(W3)を順次広くしていくと共に、各ライン部1−1a、1−2a、1−3aのピッチ方向X2の位置が入射方向X1に重ならないように順次ずらしているので、垂直方向X1から入射された入射光10を各光配線層に効率的に、また、均等の光量を分配することができる多層光配線用光入出力構造を提供できる。   With the above configuration, the line width W2 (W3) of the lower diffraction grating coupler 1-2 (1-3) is compared with the line width W1 (W2) of the upper diffraction grating coupler 1-1 (1-2). ), And the positions of the line portions 1-1a, 1-2a, and 1-3a in the pitch direction X2 are sequentially shifted so as not to overlap the incident direction X1, so that the light is incident from the vertical direction X1. Thus, it is possible to provide an optical input / output structure for a multilayer optical wiring that can efficiently and uniformly distribute the incident light 10 to each optical wiring layer.

なお、上述した図1乃至図4に示す実施例の説明に於いて、光は単一波長として説明したが、図5に示すように、複数の波長を用いて、それぞれの波長に対応した回折格子周期を有する複数の回折格子結合器1−1、1−2、1−3を組み合わせることにより、異なる波長10−1、10−2、10−3を含み波長多重化された入射光10を、その波長に対応する異なる層の光回路に、異なる波長の回折光11−1、11−2、11−3として導くような多層光配線用光入出力構造も実現できる。   In the description of the embodiment shown in FIGS. 1 to 4 described above, the light is described as having a single wavelength. However, as shown in FIG. 5, a plurality of wavelengths are used and diffraction corresponding to each wavelength is used. By combining a plurality of diffraction grating couplers 1-1, 1-2, and 1-3 having a grating period, the incident light 10 that is wavelength-multiplexed and includes different wavelengths 10-1, 10-2, and 10-3 can be obtained. Also, it is possible to realize an optical input / output structure for multilayer optical wiring that guides the diffracted light beams 11-1, 11-2, and 11-3 having different wavelengths to optical circuits of different layers corresponding to the wavelengths.

また、複数の波長の回折格子結合器を用いる場合には、互いのライン部やスペース部の影響を極力抑えるために、回折格子結合器の向きを変えて、回折方向を変えることは有効な手段である。   In addition, when using a diffraction grating coupler with a plurality of wavelengths, it is an effective means to change the diffraction direction by changing the direction of the diffraction grating coupler in order to suppress the influence of the mutual line portion and space portion as much as possible. It is.

特に、2つの波長を用いる場合には、互いの回折格子結合器の向きを直交させて回折方向を90度異なる方向にするのは、有効な手段である。   In particular, when two wavelengths are used, it is an effective means to make the directions of the diffraction grating couplers orthogonal to each other so that the diffraction directions are different by 90 degrees.

特に、2つの波長の差が少ない場合には、互いの回折格子結合器の向きを直交させて回折方向を90度異なる方向にすることは、必須の条件ともなる。   In particular, when the difference between the two wavelengths is small, it is an indispensable condition to make the directions of the diffraction grating couplers orthogonal to each other so that the diffraction directions are different by 90 degrees.

1−1、1−2、1−3 ・・・ 回折格子結合器
1−1a、1−2a、1−3a ・・・ ライン部
1−1b、1−2b、1−3b ・・・ スペース部
2−1、2−2、2−3 ・・・ コア
3 ・・・ クラッド
4 ・・・ 反射器
10 ・・・ 入射光
11−1、11−2、11−3 ・・・ 回折光
W1、W2、W3 ・・・ ライン幅
L1、L2、L3 ・・・ 光路長
X1 ・・・ 入射方向(垂直方向、基板の厚み方向)
X2 ・・・ ピッチ方向(光導波路の長手方向)
1-1, 1-2, 1-3 ... Diffraction grating coupler 1-1a, 1-2a, 1-3a ... Line part 1-1b, 1-2b, 1-3b ... Space part 2-1, 2-2, 2-3 ... core 3 ... clad 4 ... reflector 10 ... incident light 11-1, 11-2, 11-3 ... diffracted light W1, W2, W3 ... Line width L1, L2, L3 ... Optical path length X1 ... Incident direction (vertical direction, thickness direction of substrate)
X2 ... Pitch direction (longitudinal direction of optical waveguide)

Claims (7)

基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、
隣り合う層の光回路における回折格子結合器の光路長が、nλ/2(λは、前記隣り合う層の内、上層の光回路に導く光の真空中の波長、nは、自然数)に相当することを特徴とする多層光配線用光入出力構造。
A plurality of diffraction grating couplers that diffract a light beam incident on the substrate from a vertical direction in the in-plane direction of the substrate are stacked in multiple stages with respect to the thickness direction of the substrate, and are diffracted by the plurality of diffraction grating couplers. A plurality of optical waveguides that guide light to each layer optical circuit,
The optical path length of the diffraction grating coupler in the optical circuit of the adjacent layers, n 1 λ 1/2 ( λ 1 , of the adjacent layer, the wavelength in vacuum of the light guided to the upper layer of the optical circuit, n 1 is , An optical input / output structure for multilayer optical wiring, characterized by
基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路と、前記複数の回折格子結合器の最下部に配置され、前記複数の回折格子結合器を透過した入射光を反射し、前記複数の回折格子結合器の内の少なくとも1つに入射光を再結合させる反射器を備え、
前記反射器と前記再結合させる回折格子結合器との間の光路長が、(n+1/2)λ/2(λは、前記再結合させる回折格子の光回路に導く光の真空中の波長、nは、自然数)に相当することを特徴とする多層光配線用光入出力構造。
A plurality of diffraction grating couplers that diffract a light beam incident on the substrate from a vertical direction in the in-plane direction of the substrate are stacked in multiple stages with respect to the thickness direction of the substrate, and are diffracted by the plurality of diffraction grating couplers. A plurality of optical waveguides for guiding the light to each layer optical circuit, and the bottom of the plurality of diffraction grating couplers, and reflecting incident light transmitted through the plurality of diffraction grating couplers; A reflector for recombining incident light into at least one of the grating couplers;
Optical path length between the grating coupler for the recombination and the reflector, (n 2 +1/2) λ 2 /2 (λ 2 , the vacuum of the light guided to the optical circuit of the diffraction grating to the recombining An optical input / output structure for multilayer optical wiring, characterized in that the middle wavelength, n 2 is a natural number).
基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、
前記複数の回折格子結合器の内、回折格子の周期が同じ回折格子結合器が少なくとも2つ以上あり、前記同一周期の複数の回折格子のライン部の位置とスペース部の位置関係が、上下の層間でずれていることを特徴とする多層光配線用光入出力構造。
A plurality of diffraction grating couplers that diffract a light beam incident on the substrate from a vertical direction in the in-plane direction of the substrate are stacked in multiple stages with respect to the thickness direction of the substrate, and are diffracted by the plurality of diffraction grating couplers. A plurality of optical waveguides that guide light to each layer optical circuit,
Among the plurality of diffraction grating couplers, there are at least two or more diffraction grating couplers having the same period of the diffraction grating, and the positional relationship between the line part and the space part of the plurality of diffraction gratings having the same period is An optical input / output structure for multilayer optical wiring, characterized by being shifted between layers.
前記同一周期の複数の回折格子のライン部の位置とスペース部の位置関係が、上下の層間で、前記光の入射方向から見て互いに重ならないように少しずつずらして配置されていることを特徴とする請求項3に記載の多層光配線用光入出力構造。   The positional relationship between the line portions and the space portions of the plurality of diffraction gratings having the same period is arranged so as to be slightly shifted between the upper and lower layers so as not to overlap each other when viewed from the incident direction of the light. The optical input / output structure for multilayer optical wiring according to claim 3. 前記同一周期の複数の回折格子結合器のライン部とスペース部の幅を、回折周期を一定に保ちながら各層間で変化を持たせることにより、各層の光導波路に結合する光の量を制御することを特徴とする請求項3に記載の多層光配線用光入出力構造。   The amount of light coupled to the optical waveguide of each layer is controlled by changing the width of the line part and the space part of the plurality of diffraction grating couplers having the same period between the respective layers while keeping the diffraction period constant. The optical input / output structure for multilayer optical wiring according to claim 3. 前記同一周期の各回折格子結合器における回折格子のライン幅は、より上層の回折格子のライン幅の方が、より下層の回折格子のライン幅より狭いことを特徴とする講求項3乃至請求項5のいずれか1項に記載の多層光配線用光入出力構造。   The line width of a diffraction grating in each diffraction grating coupler having the same period is narrower than that of a lower diffraction grating. 6. The optical input / output structure for multilayer optical wiring according to any one of 5 above. 基板に垂直方向から入射する光ビームを基板面内方向に回折させる複数の回折格子結合器が、基板の厚み方向に対して多段に積層されており、前記複数の回折格子結合器によって回折された光を、各々の層光回路へと導く複数の光導波路を備え、前記複数の回折格子結合器の回折格子の周期を各層間で異ならせることにより、異なる波長の光を用いて、回折格子の周期に対応する波長帯の光のみを回折させることによって、各層の光回路の間で独立に光信号の入出力を行うことができることを特徴とする多層光配線用光入出力構造。   A plurality of diffraction grating couplers that diffract a light beam incident on the substrate from a vertical direction in the in-plane direction of the substrate are stacked in multiple stages with respect to the thickness direction of the substrate, and are diffracted by the plurality of diffraction grating couplers. A plurality of optical waveguides for guiding light to each layer optical circuit are provided, and the diffraction grating periods of the plurality of diffraction grating couplers are made different between the layers, so that light of different wavelengths can be used. An optical input / output structure for multilayer optical wiring, wherein optical signals can be input / output independently between optical circuits in each layer by diffracting only light in a wavelength band corresponding to a period.
JP2010187909A 2010-08-25 2010-08-25 Light input/output structure for multilayer optical wiring Withdrawn JP2012047855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187909A JP2012047855A (en) 2010-08-25 2010-08-25 Light input/output structure for multilayer optical wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187909A JP2012047855A (en) 2010-08-25 2010-08-25 Light input/output structure for multilayer optical wiring

Publications (1)

Publication Number Publication Date
JP2012047855A true JP2012047855A (en) 2012-03-08

Family

ID=45902831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187909A Withdrawn JP2012047855A (en) 2010-08-25 2010-08-25 Light input/output structure for multilayer optical wiring

Country Status (1)

Country Link
JP (1) JP2012047855A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105063A1 (en) * 2014-01-07 2015-07-16 技術研究組合光電子融合基盤技術研究所 Grating coupler and production method therefor
JP2020056885A (en) * 2018-10-01 2020-04-09 株式会社豊田中央研究所 Optical device, and laser radar device
CN111492301A (en) * 2017-12-22 2020-08-04 迪斯帕列斯有限公司 Multi-pupil waveguide display element and display device
CN113534342A (en) * 2021-06-22 2021-10-22 北京工业大学 Lithium niobate thin film waveguide-based high-coupling-efficiency non-uniform grating coupler
WO2022179534A1 (en) * 2021-02-24 2022-09-01 The Chinese University Of Hong Kong High coupling efficiency blazed waveguide grating coupler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105063A1 (en) * 2014-01-07 2015-07-16 技術研究組合光電子融合基盤技術研究所 Grating coupler and production method therefor
JPWO2015105063A1 (en) * 2014-01-07 2017-03-23 技術研究組合光電子融合基盤技術研究所 Grating coupler and manufacturing method thereof
CN111492301A (en) * 2017-12-22 2020-08-04 迪斯帕列斯有限公司 Multi-pupil waveguide display element and display device
US11366317B2 (en) 2017-12-22 2022-06-21 Dispelix Oy Multipupil waveguide display element and display device
JP2020056885A (en) * 2018-10-01 2020-04-09 株式会社豊田中央研究所 Optical device, and laser radar device
JP7159763B2 (en) 2018-10-01 2022-10-25 株式会社デンソー Optical device and laser radar device
WO2022179534A1 (en) * 2021-02-24 2022-09-01 The Chinese University Of Hong Kong High coupling efficiency blazed waveguide grating coupler
CN113534342A (en) * 2021-06-22 2021-10-22 北京工业大学 Lithium niobate thin film waveguide-based high-coupling-efficiency non-uniform grating coupler
CN113534342B (en) * 2021-06-22 2024-03-15 北京工业大学 High coupling efficiency segmented uniform grating coupler based on lithium niobate thin film waveguide

Similar Documents

Publication Publication Date Title
US9575270B2 (en) Wavelength-division multiplexing for use in multi-chip systems
US7961990B2 (en) Multi-chip system including capacitively coupled and optical communication
US7889996B2 (en) Optical-signal-path routing in a multi-chip system
US9645321B2 (en) Optical signal processing device
US8320761B2 (en) Broadband and wavelength-selective bidirectional 3-way optical splitter
JP2010524022A (en) Multiplexer waveguide coupling method and system
JP2012047855A (en) Light input/output structure for multilayer optical wiring
JP4705067B2 (en) 3D crossed waveguide
US7587112B2 (en) Optical device and light control method
EP3026472B1 (en) Optical transmitter provided to opto-electric hybrid board
Ura Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects
JP6238413B2 (en) Optical signal processor
US20090162008A1 (en) Polarization-independent two-dimensional photonic crystal multiplexer/demultiplexer
JP3703401B2 (en) Lightwave circuit module
US20150172794A1 (en) Switch device
JP2000329962A (en) Optical branching device and optical bus circuit using the same
JP3968743B2 (en) In-board optical interconnection method and apparatus
Ura et al. Integrated-optic free-space-wave coupler for package-level on-board optical interconnects
JP2015043018A (en) Optical signal processor
JP6898553B2 (en) Optical signal processor
KR102088999B1 (en) Optical multiplexer to multiplex optical signals using an optical waveguide block including laminated layers
WO2022001685A1 (en) Optical waveguide structure and manufacturing method, optical waveguide module, optical switching device, and system
JP5251826B2 (en) Optical device, optical branching device, and optical wavelength multiplexer / demultiplexer
JP4839691B2 (en) Optical device, optical branching device, and optical wavelength multiplexer / demultiplexer
JP2019174684A (en) Optical multiplexer/demultiplexer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105