JP2012043816A - Sample potential information detection method and charged particle beam device - Google Patents

Sample potential information detection method and charged particle beam device Download PDF

Info

Publication number
JP2012043816A
JP2012043816A JP2011264205A JP2011264205A JP2012043816A JP 2012043816 A JP2012043816 A JP 2012043816A JP 2011264205 A JP2011264205 A JP 2011264205A JP 2011264205 A JP2011264205 A JP 2011264205A JP 2012043816 A JP2012043816 A JP 2012043816A
Authority
JP
Japan
Prior art keywords
sample
charged particle
potential
charged
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264205A
Other languages
Japanese (ja)
Other versions
JP5470360B2 (en
Inventor
Minoru Yamazaki
実 山崎
Akira Ikegami
明 池上
Hideyuki Kazumi
秀之 数見
Osamu Nasu
修 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011264205A priority Critical patent/JP5470360B2/en
Publication of JP2012043816A publication Critical patent/JP2012043816A/en
Application granted granted Critical
Publication of JP5470360B2 publication Critical patent/JP5470360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device each detecting a compensation value of changes of device condition to be changed by potential measurement on a surface of a sample by using charged particle beams or sample charging, while suppressing potential changes of the sample induced by irradiation of the charged particle beams.SOLUTION: For achieving above purposes, each of a method and a device applies, in a state in which charged particle beams are applied onto a sample, voltage to the sample so as to get a state (hereinafter referred to as a mirror state) in which the charged particle beams do not reach the sample, and detects information about the sample potential by using signals obtained at that time.

Description

本発明は、試料に荷電粒子線を照射する荷電粒子線の照射方法、及び荷電粒子線装置に係り、特に、試料電位を測定するのに好適な試料電位情報検出方法、及び試料電位を検出する荷電粒子線装置に関するものである。   The present invention relates to a charged particle beam irradiation method and a charged particle beam apparatus for irradiating a sample with a charged particle beam, and in particular, a sample potential information detection method suitable for measuring a sample potential and a sample potential detection. The present invention relates to a charged particle beam apparatus.

昨今、特に半導体デバイスの進歩に伴って、半導体の測定・検査技術は益々、その重要性を増している。CD−SEM(Critical Dimension-Scanning Electron Microscope)に代表される走査電子顕微鏡は、電子ビームを試料上に走査し、試料から放出される二次
電子等の電子を検出することによって、半導体デバイスに形成されたパターンの測定を行うための装置である。このような装置において、高精度な測定,検査を行うためには、装置の条件を適正に設定する必要があるが、昨今のデバイスの中には、電子ビームの照射、或いは半導体プロセスの影響によって帯電が付着する試料がある。特にレジスト,絶縁膜,Low−k材等の絶縁試料は、帯電が付着し易い試料として知られている。
In recent years, especially with the advancement of semiconductor devices, semiconductor measurement / inspection technology has become increasingly important. A scanning electron microscope represented by a CD-SEM (Critical Dimension-Scanning Electron Microscope) is formed on a semiconductor device by scanning an electron beam on the sample and detecting electrons such as secondary electrons emitted from the sample. This is a device for measuring the measured pattern. In such an apparatus, in order to perform high-precision measurement and inspection, it is necessary to set the conditions of the apparatus appropriately. However, in recent devices, there is an electron beam irradiation or an influence of a semiconductor process. There is a sample to which electrification adheres. In particular, insulating samples such as resists, insulating films, and low-k materials are known as samples that are easily charged.

試料が帯電していると、電子の軌道が曲げられ、非点や画像のぼけの原因となる。このような帯電した試料に対して、適正に焦点を合わせるために、帯電量を測定し、帯電の影響をキャンセルするように、試料に印加する電圧を制御する技術が、特許文献1,特許文献2,特許文献3に説明されている。   If the sample is charged, the electron trajectory is bent, causing astigmatism and image blurring. In order to properly focus on such a charged sample, a technique for measuring the amount of charge and controlling the voltage applied to the sample so as to cancel the influence of charging is disclosed in Patent Document 1 and Patent Document 2, described in Patent Document 3.

また、試料電位を非接触で測定するために、先端が尖った金属針から放出されるフィールドエミッション電流、或いはトンネル電流を検出する技術が特許文献4に説明されている。   Patent Document 4 describes a technique for detecting a field emission current or a tunnel current emitted from a metal needle having a sharp tip in order to measure a sample potential in a non-contact manner.

特開平4−229541号公報JP-A-4-229541 特開平10−125271号公報Japanese Patent Laid-Open No. 10-125271 特開2001−236915号公報JP 2001-236915 A 特開平1−214769号公報JP-A-1-214769

特許文献1乃至3に記載の技術は、いずれも試料上の帯電量を測定し、その測定に基づいて装置条件を調整する技術に関するものであるが、試料に対する電子ビームの照射に基づいて得られる信号を検出することで、帯電量を測定しているため、電子ビームの照射によって帯電を誘起してしまうことになり、電子ビーム照射前の帯電量を測定することが困難であるという問題がある。   Each of the techniques described in Patent Documents 1 to 3 relates to a technique for measuring the charge amount on a sample and adjusting the apparatus conditions based on the measurement, and is obtained based on irradiation of an electron beam to the sample. Since the amount of charge is measured by detecting the signal, charging is induced by irradiation of the electron beam, and there is a problem that it is difficult to measure the amount of charge before irradiation of the electron beam. .

一方、特許文献4に記載の技術によれば、電子ビームによる帯電の誘起なしに、試料表面の電位測定が可能であるが、金属針を試料に近づけることによる試料電位の変化や、帯電量が大きいときは放電の問題がある。   On the other hand, according to the technique described in Patent Document 4, it is possible to measure the potential of the sample surface without inducing charging by an electron beam. When it is large, there is a problem of discharge.

本発明の目的は、荷電粒子線の照射によって誘起される試料の電位変化を抑制しつつ、荷電粒子線を用いた試料表面の電位測定、或いは試料帯電によって変化する装置条件の変動の補償値を検出する方法、及び装置の提供にある。   The object of the present invention is to suppress the potential change of the sample induced by the irradiation of the charged particle beam, while measuring the potential of the sample surface using the charged particle beam, or to provide a compensation value for fluctuations in apparatus conditions that change due to the sample charging. It is in the provision of a method and apparatus for detection.

上記目的を達成するために、本発明によれば、荷電粒子線を試料に向けて照射している状態において、当該荷電粒子線が試料へ到達しない状態(以下ミラー状態と称することもある)となるように、試料に電圧を印加し、そのときに得られる信号を用いて、試料電位に関する情報を検出する方法、及び装置を提供する。   In order to achieve the above object, according to the present invention, in a state where a charged particle beam is irradiated toward a sample, the charged particle beam does not reach the sample (hereinafter also referred to as a mirror state) and Thus, a method and an apparatus for detecting information on a sample potential by applying a voltage to a sample and using a signal obtained at that time are provided.

本発明の好適な一例では、荷電粒子源から放出される荷電粒子線が試料に向かって照射されている状態で、前記試料に到達することなく反射される荷電粒子に基づいて、前記試料の電位を求める試料電位測定方法において、当該荷電粒子源から放出される荷電粒子線を加速させる加速電圧の値よりも、前記荷電粒子線を減速させるリターディング電圧の値が大きいときに、前記荷電粒子源と、前記荷電粒子線を集束する対物レンズとの間に配置された荷電粒子検出器に検出される前記荷電粒子の軌道に関する情報と、所定の試料電位において前記荷電粒子検出器に検出される荷電粒子の軌道に関する情報との違いに基づいて、前記試料の電位を求める方法、及び装置を提供する。   In a preferred example of the present invention, the charged particle beam emitted from the charged particle source is irradiated toward the sample, and the potential of the sample is based on the charged particles reflected without reaching the sample. In the sample potential measurement method for obtaining the charged particle source, when the value of the retarding voltage for decelerating the charged particle beam is larger than the value of the acceleration voltage for accelerating the charged particle beam emitted from the charged particle source. And information on the trajectory of the charged particles detected by the charged particle detector disposed between the charged particle beam and the objective lens for focusing the charged particle beam, and the charge detected by the charged particle detector at a predetermined sample potential Provided is a method and apparatus for determining the potential of the sample based on the difference from the information on the trajectory of particles.

以上のような構成によれば、試料に荷電粒子線を照射しない状態にて得られる情報から、試料電位、或いは装置の調整条件を検出しているため、試料の電位変化を抑制しつつ、試料電位等の検出が可能となる。   According to the configuration as described above, the sample potential or the adjustment condition of the apparatus is detected from the information obtained without irradiating the sample with the charged particle beam. Detection of potential or the like is possible.

走査電子顕微鏡の概略を説明する図。The figure explaining the outline of a scanning electron microscope. 走査電子顕微鏡の他の構成を説明する図。The figure explaining other structures of a scanning electron microscope. ミラー電子によって形成される画像の帯電電位による変化を表す図。The figure showing the change by the charging potential of the image formed by a mirror electron. ミラー電子のずれ量を検出する方法を説明する図(実施例3)。FIG. 10 is a diagram for explaining a method for detecting a shift amount of mirror electrons (Example 3); ミラー電子のずれ量を検出する方法を説明する図(実施例4)。FIG. 10 is a diagram for explaining a method for detecting the amount of deviation of mirror electrons (Example 4). ミラー電子のずれ量を検出する方法を説明する図(実施例5)。FIG. 10 is a diagram for explaining a method for detecting the amount of deviation of mirror electrons (Example 5). ミラー電子のずれ量を検出する方法を説明する図(実施例6)。FIG. 10 is a diagram for explaining a method for detecting the amount of deviation of mirror electrons (Example 6). ミラー電子のずれ量を検出する方法を説明する図(実施例7)。(Example 7) explaining the method to detect the deviation | shift amount of a mirror electron. 走査電子顕微鏡の更に他の構成を説明する図。The figure explaining further another structure of a scanning electron microscope. 加工信号形成方法の例を示す図。The figure which shows the example of the processing signal formation method. ミラー電子を用いた電位測定の原理を説明する図。The figure explaining the principle of the electric potential measurement using a mirror electron.

昨今、ULSI素子の微細化や高集積化が急速に進められ、加工寸法が数10nmのデバイス加工が行われつつある。また高速化のために低誘電率膜やメタルゲート膜の採用,対エッチング耐性を高めるための3層レジストなど、多種類の新材料を用いた多層化が進行している。そのために、ULSI加工時の寸法精度(CD)管理に対する要請が厳しくなっている。   In recent years, miniaturization and high integration of ULSI elements have been rapidly advanced, and device processing with a processing size of several tens of nanometers is being performed. In addition, multilayering using a variety of new materials is progressing, such as the adoption of a low dielectric constant film and a metal gate film for speeding up, and a three-layer resist for enhancing resistance to etching. For this reason, there is a strict requirement for dimensional accuracy (CD) management during ULSI processing.

レジストや絶縁膜,Low−k材等の絶縁体は半導体加工工程で多く用いられているが、この絶縁体表面は、電子線照射により帯電する。帯電すると試料表面から脱出しようとする2次電子の量を変えたり、また1次電子線の軌道を曲げたりするため、走査電子顕微鏡の画像を歪ませることになる。その結果として、真の加工寸法や形状を測定することが困難になっている。例えばArFレジストでは、エッチング工程でラインエッジラフネス(LER)が発生したのか、また電子顕微鏡での帯電による寸法の誤測定なのかの判定ができなくなる。また高アスペクトのコンタクトホール観察では、コンタクトホールの形状が歪んで観測されたり、ホールの上部径と下部径の識別が困難となったりする問題が発生する。   Insulators such as resists, insulating films, and low-k materials are often used in semiconductor processing processes, but the surface of the insulator is charged by electron beam irradiation. When charged, the amount of secondary electrons trying to escape from the sample surface is changed, or the trajectory of the primary electron beam is bent, so that the image of the scanning electron microscope is distorted. As a result, it is difficult to measure true processing dimensions and shapes. For example, with an ArF resist, it becomes impossible to determine whether line edge roughness (LER) has occurred in the etching process or whether the dimension is incorrectly measured by charging with an electron microscope. In addition, in high-aspect contact hole observation, there are problems that the shape of the contact hole is distorted and that it is difficult to distinguish between the upper and lower diameters of the hole.

帯電は電子の移動・拡散による空間的変化に加え、ホール・電子再結合などによる減衰など、空間的/時間的に変化する。また試料表面に入射する電子のエネルギーによって、正に帯電したり、負に帯電したりする。そのために、帯電を制御することが重要になっている。帯電によって電子の軌道が曲げられる結果、像を結ぶことができない箇所(非点)や画像のボケが発生したりする。電子を所定位置に集束させて、自動的にフォーカスを合わせる(オートフォーカス)機能も帯電によって、当初のフォーカス位置からずれるなどの問題が生じ、フォーカスを合わせるのに時間が掛かっている。帯電電位の大きさや分布を知ることが重要になっている。   In addition to spatial changes due to electron movement / diffusion, charging changes spatially / temporally, such as decay due to hole / electron recombination. Moreover, it is positively charged or negatively charged by the energy of electrons incident on the sample surface. Therefore, it is important to control charging. As a result of the bending of the electron trajectory due to electrification, a portion where the image cannot be formed (astigmatism) or blurring of the image occurs. The function of focusing the electrons at a predetermined position and automatically adjusting the focus (autofocus) also causes problems such as deviation from the original focus position due to charging, and it takes time to adjust the focus. It is important to know the magnitude and distribution of the charging potential.

以下に図面を用いて、本発明の好適な実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、走査電子顕微鏡の概略を説明する図である。なお、以下の説明では電子ビームを試料上にて走査する走査電子顕微鏡(Scanning Electron Microscope:SEM)を例にとって説明するが、これに限られることはなく、例えばFIB(Focused Ion beam)装置
(集束イオンビーム装置)等の他の荷電粒子線装置にも適用することも可能である。但し、ビームの電荷の極性によって、試料に印加する電圧の極性を変化させる必要がある。また、図1は走査電子顕微鏡の一例を説明しているに過ぎず、図1とは異なる構成からなる走査電子顕微鏡においても、発明の趣旨を変えない範囲において、本発明の適用が可能である。
FIG. 1 is a diagram illustrating an outline of a scanning electron microscope. In the following description, a scanning electron microscope (SEM) that scans an electron beam on a sample will be described as an example. However, the present invention is not limited to this. For example, a FIB (Focused Ion beam) apparatus (focusing) is used. It can also be applied to other charged particle beam devices such as ion beam devices. However, it is necessary to change the polarity of the voltage applied to the sample depending on the polarity of the beam charge. FIG. 1 only illustrates an example of a scanning electron microscope, and the present invention can be applied to a scanning electron microscope having a configuration different from that shown in FIG. 1 as long as the gist of the invention is not changed. .

図1に説明する走査電子顕微鏡では、電界放出陰極11と、引出電極12との間に引出電圧が印加され、一次電子ビームが引き出される。   In the scanning electron microscope described in FIG. 1, an extraction voltage is applied between the field emission cathode 11 and the extraction electrode 12, and a primary electron beam is extracted.

このようにして引き出された一次電子ビーム1は、加速電極13によって加速され、コンデンサレンズ14による集束と、上走査偏向器21、及び下走査偏向器22による走査偏向を受ける。上走査偏向器21、及び下走査偏向器22の偏向強度は、対物レンズ17のレンズ中心を支点として試料23上を二次元走査するように調整されている。   The primary electron beam 1 thus extracted is accelerated by the acceleration electrode 13 and is subjected to focusing by the condenser lens 14 and scanning deflection by the upper scanning deflector 21 and the lower scanning deflector 22. The deflection intensities of the upper scanning deflector 21 and the lower scanning deflector 22 are adjusted so as to scan the sample 23 two-dimensionally with the lens center of the objective lens 17 as a fulcrum.

偏向を受けた一次電子ビーム1は、対物レンズ17の通路に設けられた加速円筒18でさらに後段加速電圧19の加速をうける。後段加速された一次電子ビーム1は、対物レンズ17のレンズ作用で絞られる。筒状円筒20は、接地されており、加速円筒18との間に、一次電子ビーム1を加速させる電界を形成する。   The deflected primary electron beam 1 is further accelerated by a subsequent acceleration voltage 19 in an acceleration cylinder 18 provided in the path of the objective lens 17. The post-accelerated primary electron beam 1 is narrowed by the lens action of the objective lens 17. The cylindrical cylinder 20 is grounded, and forms an electric field that accelerates the primary electron beam 1 between the cylindrical cylinder 20 and the acceleration cylinder 18.

試料から放出された二次電子や後方散乱電子等の電子は、試料に印加される負電圧(以下リターディング電圧と称することもある)と、加速円筒18との間に形成される電界によって、一次電子ビーム1の照射方向とは逆の方向に加速され、検出器29によって検出される。   Electrons such as secondary electrons and backscattered electrons emitted from the sample are caused by an electric field formed between a negative voltage (hereinafter also referred to as a retarding voltage) applied to the sample and the accelerating cylinder 18. It is accelerated in the direction opposite to the irradiation direction of the primary electron beam 1 and detected by the detector 29.

検出器29にて検出された電子は、走査偏向器に供給される走査信号と同期して図示しない画像表示装置上に表示される。また、得られた画像は図示しないフレームメモリに記憶される。なお、図1に示す走査電子顕微鏡の各構成要素に供給,印加する電流或いは電圧は、走査電子顕微鏡本体とは別に設けた制御装置を用いて、制御するようにしても良い。   The electrons detected by the detector 29 are displayed on an image display device (not shown) in synchronization with the scanning signal supplied to the scanning deflector. The obtained image is stored in a frame memory (not shown). The current or voltage supplied to and applied to each component of the scanning electron microscope shown in FIG. 1 may be controlled using a control device provided separately from the main body of the scanning electron microscope.

以下に、電子ビームを用いて、試料の電位を測定する方法、及びそれを実現するための装置について説明する。   A method for measuring the potential of a sample using an electron beam and an apparatus for realizing the method will be described below.

まず、電子の加速エネルギーをEe、試料電位をVrとすると、|−Vr|をEeより大きい状態に設定する。加速エネルギーEeは、電界放射陰極11と加速電極13との間の電位差によって決定される。   First, assuming that the acceleration energy of electrons is Ee and the sample potential is Vr, | −Vr | is set to a state larger than Ee. The acceleration energy Ee is determined by the potential difference between the field emission cathode 11 and the acceleration electrode 13.

この状態で電子ビームを試料に向かって出射すると、入射電子は試料に入射することなく、直上で反射される(この電子をミラー電子と呼ぶ)。反射されたミラー電子は、レンズ系の中を反対方向に移動して行く。レンズ系に検出器を配置してミラー電子の到達位置を検出し、入射電子の通過位置とミラー電子の到達位置の差『ずれ』を検出する。試料帯電がなければ、入射電子と同じ軌道を辿って、電子が反射されるため、このずれ量は、試料電位Vrの値を反映していることになる。よってずれ量とVrの関係を、予め測定しておくことによって、ずれ量から試料電位を求めることが可能となる。   When the electron beam is emitted toward the sample in this state, the incident electrons are reflected immediately above without entering the sample (this electron is called a mirror electron). The reflected mirror electrons move in the opposite direction in the lens system. A detector is arranged in the lens system to detect the arrival position of the mirror electrons, and the difference “shift” between the passing position of the incident electrons and the arrival position of the mirror electrons is detected. If there is no sample charging, the electron follows the same trajectory as the incident electrons and is reflected, so this deviation amount reflects the value of the sample potential Vr. Therefore, by measuring the relationship between the deviation amount and Vr in advance, the sample potential can be obtained from the deviation amount.

なお、本例における『ずれ』(違い)は、検出器に投影されるミラー電子の広がりや位置の変化、或いはミラー電子によって形成される画像の二次元的なずれを検出することによって得られる。また、画像間の回転や画像のぼけの違いを検出することによっても、試料電位を求めることが可能である。   Note that the “deviation” (difference) in this example is obtained by detecting the spread and position change of the mirror electrons projected on the detector, or the two-dimensional deviation of the image formed by the mirror electrons. It is also possible to obtain the sample potential by detecting the rotation between images and the difference in image blur.

ずれ量と試料電位の関係は、例えば次のようにして求めることができる。試料の高さをZ、試料電位をVr1にした時の物点の位置をZcとし、この状態でレンズ系のパラメータを調整してフォーカスが合った状態にする。   The relationship between the deviation amount and the sample potential can be obtained, for example, as follows. The object position when the sample height is Z and the sample potential is Vr1 is Zc. In this state, the parameters of the lens system are adjusted to bring the lens into focus.

検出器の位置は高さ方向z1の位置にあるとする。この時のミラー電子の検出位置をZr1(x1,y1,z1)とする。これを基準値として用いる。次に試料電位をVr2に設定して、同じエネルギーでビームを出射し、この時のミラー電子の到達位置Zr2(x2,y2,z1)を検出器から求める。Zr1とZr2のずれ量を求め、この差と電位との相関を表すVr−Zr相関曲線を求める。この際、(Vr,Zr)のデータの組の数が多い程、より高い精度の相関曲線を得ることができる。この状態で、帯電した試料を観察した時のミラー電子の到達位置がZr3であるとすると、Vr−Zr相関曲線から試料電位を求めることができる。試料には電子線を入射させないので、状態を変えることなく帯電電位が測定できることになる。   The position of the detector is assumed to be in the height direction z1. The detection position of the mirror electrons at this time is assumed to be Zr1 (x1, y1, z1). This is used as a reference value. Next, the sample potential is set to Vr2, the beam is emitted with the same energy, and the arrival position Zr2 (x2, y2, z1) of the mirror electrons at this time is obtained from the detector. A deviation amount between Zr1 and Zr2 is obtained, and a Vr-Zr correlation curve representing a correlation between the difference and the potential is obtained. At this time, as the number of data sets (Vr, Zr) increases, a correlation curve with higher accuracy can be obtained. In this state, if the arrival position of the mirror electrons when observing the charged sample is Zr3, the sample potential can be obtained from the Vr-Zr correlation curve. Since no electron beam is incident on the sample, the charged potential can be measured without changing the state.

ここでは、相関曲線を得る方法としてVrを変化させたが、他にも方法がある。例えば対物レンズが磁場コイルで構成されている場合、像面位置Zと対物レンズを励磁する零時電流Icとの関係は既知となっていると考えられるので、基準値でのミラー電子のZr1だけ測定しておけば、励磁電流を変化させたときのずれ量の変化から、任意の帯電状態Vr3を推定することができる。この他にも、試料高さやブースタ電圧Vb,対物レンズに対する一次電子の物点位置、その他のパラメータを変えたりしても、Vr−Zr相関曲線が得られる。   Here, Vr is changed as a method of obtaining the correlation curve, but there are other methods. For example, when the objective lens is composed of a magnetic field coil, it is considered that the relationship between the image plane position Z and the zero-time current Ic that excites the objective lens is known, so only Zr1 of the mirror electrons at the reference value. If measured, an arbitrary charged state Vr3 can be estimated from a change in the amount of deviation when the exciting current is changed. In addition, the Vr-Zr correlation curve can be obtained by changing the sample height, the booster voltage Vb, the object point position of the primary electrons with respect to the objective lens, and other parameters.

検出器に投影されるビームの広がりやずれを検出する場合、検出器は複数の検出素子が二次元的に拡がったものを用いることが望ましい。これら複数の検出素子の出力信号からミラー電子の到達位置、もしくは分布を求め、基準値からのずれを求めることが可能となる。   When detecting the spread or deviation of the beam projected on the detector, it is desirable to use a detector in which a plurality of detection elements are two-dimensionally expanded. The arrival position or distribution of the mirror electrons can be obtained from the output signals of the plurality of detection elements, and the deviation from the reference value can be obtained.

また、画像を用いてずれ量を検出するようにすれば、より簡単にずれ量を検出することができる。ミラー電子は、試料直上で反射され、レンズ系の中を通過する際に、ビームの通路や構造物の影響を受ける。画像を取得するためには、入射ビームの位置を走査させてもよい。これによってビームの経路の構造物の形状が、画像として形成される。   Further, if the shift amount is detected using an image, the shift amount can be detected more easily. The mirror electrons are reflected just above the sample and are affected by the beam path and structure when passing through the lens system. In order to acquire an image, the position of the incident beam may be scanned. Thereby, the shape of the structure of the beam path is formed as an image.

更に画像の回転を検出する場合には、投影される画像内に表示される構造物の回転量をモニタする。具体的には、基準のミラー条件で構造物に励磁電流を変化させフォーカスを合わせた時の回転角度から試料電位を求める方法や、基準条件から励磁電流を変化させた時の回転角の変化量(dθ/dIobj) から試料電位を求める方法がある。対物レンズの励磁電流−回転角度の関係を利用した方法について上述したが、励磁電流を試料電位Vr若しくは一次電子の物点位置,ブースタ電圧,試料高さ等、ミラーリング時の光学条件に関係するパラメータに置き換えても試料電位を計測することができる。また、構造物の形状は、片矢印や「上」の字のような対照性の少ない形状が望ましい。更に回転量と試料電位の相関を求めておくことで、モニタによって得られた複数の条件下の回転量から試料電位を推定すれば、より精度良く試料電位を測定できる。また、試料への印加電圧を調整することによって、電子ビームの焦点が変化するため、画像のぼけの程度と、試料電位との相関を予め求めておけば、ぼけの程度に応じた試料電位を検出することができる。ボケの検出は、複数の検出器を二次元上に配置することで、1.直接検出面のビーム分布を測定する方法と、2.検出面のスポット系と同程度の大きさの構造物のエッジだれを利用する方法がある。2.の方法を用いた場合、複数の大きさの構造物を配置すれば、広範囲のボケ量を高精度に測定できる。 Further, when detecting the rotation of the image, the amount of rotation of the structure displayed in the projected image is monitored. Specifically, a method of obtaining the sample potential from the rotation angle when the focus is adjusted by changing the excitation current to the structure under the reference mirror condition, or the amount of change in the rotation angle when the excitation current is changed from the reference condition There is a method for obtaining the sample potential from (dθ / dI obj ). Although the method using the relationship between the excitation current and the rotation angle of the objective lens has been described above, the parameters related to the optical conditions at the time of mirroring, such as the sample current Vr or the object point position of the primary electrons, the booster voltage, and the sample height. The sample potential can be measured even if it is replaced with. In addition, the shape of the structure is preferably a shape with little contrast, such as a single arrow or an “upper” character. Further, by obtaining the correlation between the amount of rotation and the sample potential, if the sample potential is estimated from the amount of rotation under a plurality of conditions obtained by the monitor, the sample potential can be measured with higher accuracy. In addition, since the focus of the electron beam changes by adjusting the voltage applied to the sample, if the correlation between the degree of image blur and the sample potential is obtained in advance, the sample potential corresponding to the degree of blur is set. Can be detected. The blur is detected by arranging a plurality of detectors in two dimensions. 1. a method for directly measuring the beam distribution on the detection surface; There is a method of using the edge of a structure having the same size as the spot system on the detection surface. 2. When this method is used, a wide range of blur amounts can be measured with high accuracy by arranging a plurality of sizes of structures.

以上のように、回転量,ぼけ,倍率,画像歪み、或いはこれらの複合的な情報等をモニタすることによって、試料電位を特定することができる。   As described above, the sample potential can be specified by monitoring the rotation amount, blur, magnification, image distortion, or a combination of these information.

以下、図面に沿って、試料電位を測定するための好適な一例を説明する。   A preferred example for measuring the sample potential will be described below with reference to the drawings.

試料23がある電位に帯電しているとする。ステージ電圧制御系43で、試料に電位Vrを与える。ここでVrは電子の加速エネルギーEeよりも十分大きいように与える。なお、ここで言うところの加速エネルギーEeとは、試料に印加された電圧によって減速される前の値を示す。例えばEeが2keVの時は、−2200V程度より大きく与える。試料帯電量は、マイナス数百から大きくともプラス200V程度と考えられるので、−2200Vよりも絶対値が大きければよい。こうすると、試料より上の位置に−2000Vの等電位面2ができる。この電位面はミラー面と呼び、ここで一次電子ビームは反射されて上方に戻ることになる。   It is assumed that the sample 23 is charged to a certain potential. A stage voltage control system 43 applies a potential Vr to the sample. Here, Vr is given so as to be sufficiently larger than the acceleration energy Ee of electrons. The acceleration energy Ee referred to here indicates a value before being decelerated by the voltage applied to the sample. For example, when Ee is 2 keV, it is larger than about −2200V. Since the sample charge amount is considered to be about minus 200 V at most from minus several hundred, it is sufficient that the absolute value is larger than −2200 V. In this way, an equipotential surface 2 of −2000 V is formed at a position above the sample. This potential surface is called a mirror surface, where the primary electron beam is reflected and returned upward.

この電子をミラー電子3と呼ぶことにする。レンズ系を通過したミラー電子3は検出器29に到達する。検出器29はミラー電子3の位置Zr3(x3,y3,zr)を検出する。ここでzrは高さ方向の位置である。演算器40はこのZr3の情報を、予め用意してある基準値Zr1からの‘ずれ’を算出する。この‘ずれ’量から‘ミラー電子位置と電位の相関曲線’を基に、試料の帯電電位Vr3を算出する。この情報は分析器41に送られ、その中で帯電状態を制御するために、制御系のパラメータの信号を設定する。制御系としては、例えば対物レンズ制御系42,ステージ電圧制御系43,加速電圧制御系44があり、各々励磁電流や、ステージ電圧,電子の引出し/加速エネルギーの設定を行い、これによって帯電状態を制御する。   This electron is called a mirror electron 3. The mirror electrons 3 that have passed through the lens system reach the detector 29. The detector 29 detects the position Zr3 (x3, y3, zr) of the mirror electron 3. Here, zr is a position in the height direction. The computing unit 40 calculates the “deviation” from the reference value Zr1 prepared in advance for the information of Zr3. The charged potential Vr3 of the sample is calculated from this “deviation” amount based on the “correlation curve between mirror electron position and potential”. This information is sent to the analyzer 41, and a control system parameter signal is set in order to control the charged state therein. As the control system, for example, there are an objective lens control system 42, a stage voltage control system 43, and an acceleration voltage control system 44, which respectively set an excitation current, a stage voltage, and electron extraction / acceleration energy, thereby changing the charged state. Control.

ずれ量と試料電位の関係は、例えば次のようにして求めることができる。試料の高さをZ、試料電位をVr1にした時の物点の位置をZcとし、この状態でレンズ系のパラメータを調整してフォーカスが合った状態にする。検出器の位置は高さ方向z1の位置にあるとする。図11に示すように、この時のミラー電子の検出位置をZr1(x1,y1,z1)とする。これを基準値として用いる。この時試料は帯電しないもしくはしない導体や半導体の試料を用いる方がよい。次に試料電位をVr2に設定して、同じエネルギーでビームを出射し、この時のミラー電子の到達位置Zr2(x2,y2,z1)を検出器から求める。   The relationship between the deviation amount and the sample potential can be obtained, for example, as follows. The object position when the sample height is Z and the sample potential is Vr1 is Zc. In this state, the parameters of the lens system are adjusted to bring the lens into focus. The position of the detector is assumed to be in the height direction z1. As shown in FIG. 11, the detection position of the mirror electrons at this time is Zr1 (x1, y1, z1). This is used as a reference value. At this time, it is better to use a conductor or semiconductor sample which is not charged or not charged. Next, the sample potential is set to Vr2, the beam is emitted with the same energy, and the arrival position Zr2 (x2, y2, z1) of the mirror electrons at this time is obtained from the detector.

Zr1とZr2のずれ量を求め、この差と電位との相関を表すVr−Zr相関曲線を求める。この際、(Vr,Zr)のデータの組が多くあれば、より高い精度の相関曲線を得ることができる。この状態で、帯電した試料を観察した時のミラー電子の到達位置がZr3であるとすると、Vr−Zr相関曲線から試料電位を求めることができる。   A deviation amount between Zr1 and Zr2 is obtained, and a Vr-Zr correlation curve representing a correlation between the difference and the potential is obtained. At this time, if there are many (Vr, Zr) data sets, a correlation curve with higher accuracy can be obtained. In this state, if the arrival position of the mirror electrons when observing the charged sample is Zr3, the sample potential can be obtained from the Vr-Zr correlation curve.

上記の基準値での画像をS1として、これを参照画像とする。上記と同様に、参照画像として、試料電位Vr2に変化させた時の画像も取得して、Vr−S相関曲線を作成しておく。この状態にして、測定すべき試料での画像信号を検出器で検出し、その画像S3を、先の参照画像と比較することで、帯電電位Vr3を算出する。   An image with the above standard value is set as S1, and this is set as a reference image. Similarly to the above, an image obtained when the sample potential Vr2 is changed is also acquired as a reference image, and a Vr-S correlation curve is created. In this state, the image signal of the sample to be measured is detected by the detector, and the charged potential Vr3 is calculated by comparing the image S3 with the previous reference image.

入射位置からのずれを画像で検出する場合、上述のように、走査電子顕微鏡の構成に応じて、様々な検出画像対象が考えられる。   When the deviation from the incident position is detected by an image, various detection image objects can be considered according to the configuration of the scanning electron microscope as described above.

例えば、穴や構造物の位置,穴や構造物の画像のボケ具合を穴や構造物のエッジ部のコントラストの変化量から求める。他には穴や構造物のボケ具合を、その面積変化から求めることが考えられる。また、穴や構造物の基準画像からの回転角を検出することが考えられる。他に画像全体の輝度を見ることも考えられる。   For example, the position of the hole or structure and the degree of blurring of the image of the hole or structure are obtained from the amount of contrast change at the edge of the hole or structure. In addition, it is conceivable to determine the degree of blurring of holes and structures from the area change. It is also conceivable to detect the rotation angle from the reference image of the hole or structure. Another possibility is to look at the brightness of the entire image.

レンズ系の他にも、反射板(本例の説明では、リターディング電圧によって加速された電子を衝突させるための電極であって、別に設けられた二次電子検出器によって発生した二次電子が検出される。)やメッシュなどの構造物も対象にしても良いし、また意図的に目印になるもの、例えば参照用として穴形状を三角形や多角形にしたり、レンズ系の中に矢印を置いても良い。   In addition to the lens system, a reflector (in this example, an electrode for causing electrons accelerated by the retarding voltage to collide with secondary electrons generated by a separately provided secondary electron detector) Or structures such as meshes, or objects that are intentionally marked, for example, the hole shape is made triangular or polygonal for reference, or an arrow is placed in the lens system. May be.

以下の実施例では、ずれを検出するための他の手法について、具体的に説明する。   In the following embodiment, another method for detecting the deviation will be specifically described.

図2は試料電位を検出するための第2の実施例を説明するための図である。コンデンサレンズ14で集束され、絞り15を通過した一次電子ビーム1を上走査偏向器21及び下走査偏向器22を用いて偏向させる。   FIG. 2 is a diagram for explaining a second embodiment for detecting the sample potential. The primary electron beam 1 focused by the condenser lens 14 and passing through the stop 15 is deflected by using the upper scanning deflector 21 and the lower scanning deflector 22.

この際も上記実施例1と同じく、対物レンズ17を通過する時の一次電子ビーム1の加速エネルギーよりも、試料電圧の絶対値が大きくなるように試料に掛ける電位を設定しておく。一次電子ビーム1は試料23に到達することなく、ミラー面2で反射され、ミラー電子3となって検出器29の方へ戻る。一次電子ビーム1を上走査偏向器21及び下走査偏向器22で偏向させると、ミラー電子3の戻る軌道も変化するので、検出器29で検出し、演算器40で画像化すると、ミラー電子が通過した穴や構造物の形状が画像に反映される。   At this time, as in the first embodiment, the potential applied to the sample is set so that the absolute value of the sample voltage is larger than the acceleration energy of the primary electron beam 1 when passing through the objective lens 17. The primary electron beam 1 does not reach the sample 23, is reflected by the mirror surface 2, and returns to the detector 29 as mirror electrons 3. When the primary electron beam 1 is deflected by the upper scanning deflector 21 and the lower scanning deflector 22, the return trajectory of the mirror electrons 3 also changes. Therefore, when the primary electron beam 1 is detected by the detector 29 and imaged by the computing unit 40, the mirror electrons are transformed. The shape of the hole or structure passed through is reflected in the image.

例えばレンズ系の中にメッシュ30(エネルギーフィルタを構成する)を置き、また検出器29にビームの透過口31があると、ミラー電子3が通過することにより、図3のようなメッシュや穴が写った画像が得られる。   For example, if a mesh 30 (which constitutes an energy filter) is placed in the lens system, and the detector 29 has a beam transmission port 31, the mesh electrons and holes shown in FIG. A captured image is obtained.

図3(a)は試料の帯電電位を、帯電電位=試料電位−試料の設定電位で定義した時の帯電電位が0の状態を示している。   FIG. 3A shows a state where the charging potential is 0 when the charging potential of the sample is defined as charging potential = sample potential−set potential of the sample.

すなわち帯電していない時の画像であり、図3(b)は帯電電位が100Vの時の画像である。電位を変えるもしくは変わると、中心部の穴の位置やメッシュの影の部分が移動することを示している。これらの画像は、電位が既知の画像(参照画像)として、演算器40にその情報を予め登録しておく。   That is, it is an image when it is not charged, and FIG. 3B is an image when the charging potential is 100V. When the electric potential is changed or changed, the position of the hole in the center and the shaded portion of the mesh move. These images are registered in advance in the computing unit 40 as images (reference images) with known potentials.

次に電位が未知の試料23に対して、一次電子ビーム1を走査して、ミラー電子3の画像を取得する。この画像を上記参照画像とを比較し、演算することで試料23の電位を求める。   Next, the primary electron beam 1 is scanned with respect to the sample 23 whose potential is unknown, and an image of the mirror electrons 3 is acquired. The potential of the sample 23 is obtained by comparing this image with the reference image and calculating.

なお、本例ではミラー電子を検出することによって得られるメッシュ像と、予め取得されているメッシュ像とを比較し、そのずれ量を検出することによって、帯電量を検出している。この際、ずれ量と試料電位の相関を示す近似関数に、検出されたずれ量を代入することで、試料電位を測定することができる。   In this example, the charge amount is detected by comparing a mesh image obtained by detecting mirror electrons with a mesh image acquired in advance and detecting the amount of deviation. At this time, the sample potential can be measured by substituting the detected shift amount into an approximate function indicating the correlation between the shift amount and the sample potential.

この際、比較の対象となる画像は、ずれ量を検出する意味では試料電位が0Vの時に得られた画像とすることが望ましいが、これに限られることはなく、例えば試料電位が100Vのときに得られる画像と、検出された画像を比較することによって、実質的に、試料電位が0Vのときに得られる画像とのずれ量を求めるようにしても良い。   At this time, the image to be compared is preferably an image obtained when the sample potential is 0 V in the sense of detecting the shift amount, but is not limited to this. For example, when the sample potential is 100 V By comparing the obtained image with the detected image, the amount of deviation from the image obtained when the sample potential is 0 V may be obtained.

図4は試料電位を検出するための第3の実施例を説明するための図である。電位が既知の参照画像の内、例えば、ビーム通過口の画像50a,メッシュの画像50bを観察しておく、これに対して電位が未知の試料23を観察し、画像(ビーム通過口の画像51a,メッシュの画像51b)を得る。穴の位置の移動距離lを検出し、予め準備している相関曲線より帯電電位φを求める。ここでは移動距離として穴の中心位置を取ったが、メッシュの特定箇所の移動距離でもよい。   FIG. 4 is a diagram for explaining a third embodiment for detecting the sample potential. Among the reference images with known potentials, for example, the image 50a of the beam passage opening and the mesh image 50b are observed. On the other hand, the sample 23 with an unknown potential is observed, and the image (image 51a of the beam passage opening) is observed. , A mesh image 51b) is obtained. The movement distance l of the hole position is detected, and the charging potential φ is obtained from a correlation curve prepared in advance. Although the center position of the hole is taken here as the movement distance, the movement distance of a specific part of the mesh may be used.

図5は試料電位を検出するための第4の実施例を説明する図であり、帯電によって生じるずれを求める方法を説明するためのものである。本例ではずれを、画像の輝度Iの分布変化から求める。ビーム通過口の画像51aを横切る方向をxとして、この方向の輝度Iの分布を求める。このとき、表示された穴のエッジ部Xmaxでの強度をImax、穴の中心部Xminの強度をIminとして求め、画像強度Iが、(Imax+Imin)/2に等しくなる箇所をXhを求める。Δx=|Xmax−Xh|と定義すると、Δxは半値幅となる。   FIG. 5 is a diagram for explaining a fourth embodiment for detecting the sample potential, and is for explaining a method for obtaining a deviation caused by charging. In this example, the deviation is obtained from the distribution change of the luminance I of the image. The distribution of the luminance I in this direction is obtained by setting x as the direction crossing the beam passage image 51a. At this time, the intensity at the edge part Xmax of the displayed hole is determined as Imax, the intensity at the center part Xmin of the hole is determined as Imin, and a part where the image intensity I is equal to (Imax + Imin) / 2 is determined as Xh. If Δx = | Xmax−Xh | is defined, Δx is a half width.

このΔxをずれ量の判定値とする。ここで、帯電電位が変わると(下のグラフ)、半値幅Δxも変化する。信号強度の反値幅Δxの変化を検出器29及び演算器40を用いて求めると、帯電電位を求めることができる。輝度の半値幅の代わりに、ビーム通過開口の画像51aに表示された穴の半径を用いても良い。   This Δx is used as a judgment value for the deviation amount. Here, when the charging potential changes (lower graph), the half-value width Δx also changes. When the change of the inverse value Δx of the signal intensity is obtained using the detector 29 and the computing unit 40, the charging potential can be obtained. Instead of the half width of the luminance, the radius of the hole displayed in the image 51a of the beam passage aperture may be used.

図6は試料電位を検出するための第5の実施例を説明する図であり、帯電によるずれを求める方法を説明するためのものである。ずれの指標として、画像の面積の変化を用いる。電位が既知の参照画像内のビーム通過口の画像50aもしくはメッシュの画像50b輪郭の面積S0を、電圧を数種類変えて求めておく。   FIG. 6 is a diagram for explaining a fifth embodiment for detecting the sample potential, and for explaining a method for obtaining a deviation due to charging. A change in the area of the image is used as an index of displacement. The area S0 of the contour of the beam passing port image 50a or the mesh image 50b in the reference image with a known potential is obtained by changing several types of voltages.

電位が未知の試料23に対して、一次電子ビーム1を走査し、ミラー電子3が作る画像を取得する。この時のビーム通過開口の画像51a内の穴もしくはメッシュの画像51b輪郭の面積S1を求める。この面積を上記S0とを演算器40で比較し、演算することで試料23の電位を求める。   The primary electron beam 1 is scanned with respect to the sample 23 whose potential is unknown, and an image formed by the mirror electrons 3 is acquired. At this time, an area S1 of a hole in the image 51a of the beam passage opening or the outline of the mesh image 51b is obtained. The area is compared with the above S0 by the calculator 40, and the potential of the sample 23 is obtained by calculating.

図7は、試料電位を検出するための第6の実施例を説明する図であり、帯電によるずれを求める方法を説明するためのものである。画像で得られた穴や、構造物の特定箇所の位置の画像から、その回転角を検出する。電位が既知の試料23を数種類用意して、ミラー電子3による画像を取得する。例えば電位測定時のビーム通過口位置53の電位変化に伴うビーム通過口の変化位置52a,52b及び52cを取得し、ビーム通過口の位置の軌跡54をフィッティングした曲線から、曲率半径R及び中心位置Oを求めておく。   FIG. 7 is a diagram for explaining a sixth embodiment for detecting the sample potential, and is for explaining a method for obtaining a deviation due to charging. The rotation angle is detected from the image of the hole obtained by the image or the position of the specific location of the structure. Several types of samples 23 with known potentials are prepared, and an image by the mirror electrons 3 is acquired. For example, the change positions 52a, 52b and 52c of the beam passage opening accompanying the potential change of the beam passage opening position 53 at the time of the potential measurement are obtained, and the curvature radius R and the center position are obtained from the curve obtained by fitting the locus 54 of the beam passage opening position. Find O.

帯電電位が未知の試料の場合、走査して得られた電位測定時のビーム通過口位置53を検出し、電位測定時のビーム通過口位置53の電位変化に伴うビーム通過口の変化位置52aからの角度θを求める。   In the case of a sample whose charging potential is unknown, the beam passage opening position 53 at the time of potential measurement obtained by scanning is detected, and from the change position 52a of the beam passage opening accompanying the potential change of the beam passage opening position 53 at the time of potential measurement. Is obtained.

演算器40を用いて、このθに相当するビーム通過口位置の軌跡54から帯電電位を算出する。ここではビームが通過する穴で説明したが、その他の構造物の画像の角度変化から求めてもよい。   Using the computing unit 40, the charging potential is calculated from the locus 54 of the beam passage position corresponding to θ. Here, the hole through which the beam passes has been described, but it may be obtained from the change in the angle of the image of another structure.

図8は、試料電位を検出するための第7の実施例を説明するための図であり、帯電によるずれを求める方法を説明するためのものである。具体的にはミラー電子3の入射位置からのずれを、画像で得られた穴や構造物の輝度の変化から求める方法である。   FIG. 8 is a diagram for explaining a seventh embodiment for detecting the sample potential, and is for explaining a method for obtaining a deviation due to charging. Specifically, this is a method of obtaining the deviation from the incident position of the mirror electrons 3 from the change in luminance of the hole or structure obtained in the image.

穴の画像57のうち、特定箇所55の部分の輝度を積算し、輝度積分値Itを求める。
試料23の電位が異なると特定箇所55の面積や輝度が変化することを利用して、Itの大きさから試料の帯電電位を求める。
In the hole image 57, the luminance of the specific portion 55 is integrated to obtain a luminance integrated value It.
The charging potential of the sample is obtained from the magnitude of It using the fact that the area and brightness of the specific portion 55 change when the potential of the sample 23 is different.

図9は試料電位を検出するための第8の実施例を説明するための図であり、本例における電位測定方法を実施するための走査電子顕微鏡の概略図である。ミラー電子3を検出する位置に複数個の検出器29bを配置し、ミラー電子3の到達位置と量を検出する。   FIG. 9 is a view for explaining an eighth embodiment for detecting the sample potential, and is a schematic view of a scanning electron microscope for carrying out the potential measuring method in this embodiment. A plurality of detectors 29b are arranged at the position where the mirror electrons 3 are detected, and the arrival position and amount of the mirror electrons 3 are detected.

検出した信号は、第2の演算器45に伝達され、信号の加減算やピーク位置Pの検出,フィルタリングを行い、加工信号データを作成する(図10参照)。この信号を演算器40で、基準値の信号と比較,演算して、帯電電位を求める。   The detected signal is transmitted to the second computing unit 45, and addition / subtraction of the signal, detection and filtering of the peak position P are performed, and processed signal data is created (see FIG. 10). This signal is compared and calculated by a calculator 40 with a reference value signal to obtain a charging potential.

以上のように、本発明の好適な実施例によれば、電子ビームを試料に到達させなくとも、帯電量を測定することができるため、電子ビーム照射による新たな帯電を誘起することなく、正確な帯電測定が可能となる。なお、上述の例では、試料電位と、ミラー電子の到達位置との関係などから、帯電量を測定する例について説明しているが、これに限られることはなく、例えばミラー電子の到達位置等と、調整すべき他の装置パラメータとの相関関係を予め求めておくことで、帯電量を測定することなしに、調整すべきパラメータの補償値を検出するようにしても良い。   As described above, according to the preferred embodiment of the present invention, the charge amount can be measured without causing the electron beam to reach the sample. Charge measurement is possible. In the above-described example, the example in which the charge amount is measured based on the relationship between the sample potential and the arrival position of the mirror electrons has been described. However, the present invention is not limited to this example. Then, the compensation value of the parameter to be adjusted may be detected without measuring the charge amount by obtaining a correlation with the other device parameter to be adjusted in advance.

1 一次電子ビーム
2 等電位面(ミラー面)
3 ミラー電子
11 電界放射陰極
12 引出電極
13 加速電極
14 コンデンサレンズ
15 絞り
17 対物レンズ
18 加速円筒
20 筒状円筒
21 上走査偏向器
22 下走査偏向器
23 試料
24 ホルダー
29 検出器
29b 複数の検出器
40 演算器
41 分析器
42 対物レンズ制御系
43 ステージ電圧制御系
44 加速電圧制御系
45 第2の演算器
50a,51a ビーム通過口の画像
50b,51b メッシュの画像
51 電位測定時の画像
52a,52b,52c 電位変化に伴うビーム通過口の変化位置
53 電位測定時のビーム通過口位置
54 ビーム通過口の位置の軌跡
55 特定箇所
58 相関曲線
1 Primary electron beam 2 Equipotential surface (mirror surface)
3 Mirror Electron 11 Field Emission Cathode 12 Extraction Electrode 14 Acceleration Electrode 14 Condenser Lens 15 Aperture 17 Objective Lens 18 Acceleration Cylinder 20 Cylindrical Cylinder 21 Upper Scanning Deflector 22 Lower Scanning Deflector 23 Sample 24 Holder 29 Detector 29b Multiple Detectors 40 computing unit 41 analyzer 42 objective lens control system 43 stage voltage control system 44 acceleration voltage control system 45 second computing unit 50a, 51a beam passage image 50b, 51b mesh image 51 image 52a, 52b at the time of potential measurement , 52c Change position of beam passage opening 53 due to potential change Beam passage opening position 54 when measuring potential Potential locus of beam passage opening 55 Specific location 58 Correlation curve

Claims (8)

荷電粒子源から放出される荷電粒子線が試料に向かって照射されている状態で、前記試料に到達することなく反射される荷電粒子に基づいて、前記試料の電位を求める試料電位測定方法において、
当該荷電粒子源から放出される荷電粒子線を加速させる加速電圧の値よりも、
前記荷電粒子線を減速させるリターディング電圧の値が大きいときに、
前記荷電粒子源と、前記荷電粒子線を集束する対物レンズとの間に配置された荷電粒子検出器に検出される前記荷電粒子の軌道に関する情報と、
所定の試料電位において前記荷電粒子検出器に検出される荷電粒子の軌道に関する情報との違いに基づいて、
前記試料の電位を求めることを特徴とする試料電位測定方法。
In a sample potential measurement method for obtaining the potential of the sample based on charged particles reflected without reaching the sample in a state where the charged particle beam emitted from the charged particle source is irradiated toward the sample,
Than the value of the acceleration voltage that accelerates the charged particle beam emitted from the charged particle source,
When the value of the retarding voltage for decelerating the charged particle beam is large,
Information on the trajectory of the charged particles detected by a charged particle detector disposed between the charged particle source and an objective lens that focuses the charged particle beam;
Based on the difference from the information about the trajectory of the charged particles detected by the charged particle detector at a predetermined sample potential,
A method for measuring a sample potential, wherein the potential of the sample is obtained.
請求項1において、
前記荷電粒子の軌道に関する情報は、
前記リターディング電圧により形成された電界によって前記試料に到達することなく反射された荷電粒子の前記荷電粒子検出器に対する到達位置に関する情報であることを特徴とする試料電位測定方法。
In claim 1,
Information on the trajectory of the charged particles is
A method for measuring a sample potential, characterized in that the information is information on a position where a charged particle reflected without reaching the sample by an electric field formed by the retarding voltage reaches the charged particle detector.
請求項2において、
前記荷電粒子の前記荷電粒子検出器に対する到達位置と、前記所定の試料電位において得られた前記荷電粒子の前記粒子検出器に対する到達位置との違いに基づいて、前記試料の電位を求めることを特徴とする試料電位測定方法。
In claim 2,
The potential of the sample is obtained based on the difference between the arrival position of the charged particle with respect to the charged particle detector and the arrival position of the charged particle with respect to the particle detector obtained at the predetermined sample potential. Sample potential measurement method.
請求項2において、
当該反射された荷電粒子の前記荷電粒子検出器に対する到達位置に関する情報は、
前記荷電粒子検出器に投影される前記荷電粒子の広がり、あるいは位置であることを特徴とする試料電位測定方法。
In claim 2,
Information about the arrival position of the reflected charged particles with respect to the charged particle detector is as follows:
A method of measuring a sample potential, which is a spread or position of the charged particles projected on the charged particle detector.
請求項1において、
前記荷電粒子の軌道に関する情報は、
前記荷電粒子検出器に検出された、
前記リターディング電圧により形成された電界によって前記試料に到達することなく反射された荷電粒子に基づいて形成される画像に関するものであることを特徴とする試料電位測定方法。
In claim 1,
Information on the trajectory of the charged particles is
Detected by the charged particle detector,
A sample potential measuring method, which relates to an image formed on the basis of charged particles reflected without reaching the sample by an electric field formed by the retarding voltage.
請求項5において、
前記荷電粒子に基づいて形成される画像と、
前記所定の試料電位で得られた画像間の移動量、ぼけ量、及び/又は回転量の違いに基づいて、
前記試料の電位を求めることを特徴とする試料電位測定方法。
In claim 5,
An image formed based on the charged particles;
Based on the amount of movement, blur, and / or rotation between images obtained at the predetermined sample potential,
A method for measuring a sample potential, wherein the potential of the sample is obtained.
請求項1において、
前記所定の試料電位において前記荷電粒子検出器に検出される荷電粒子の軌道に関する情報と、前記所定の試料電位との関係を予め求めておき、
当該求めた関係に基づいて、前記試料の電位を求めることを特徴とする試料電位測定方法。
In claim 1,
Information regarding the trajectory of the charged particles detected by the charged particle detector at the predetermined sample potential and the relationship between the predetermined sample potential are obtained in advance,
A sample potential measuring method, wherein the potential of the sample is obtained based on the obtained relationship.
荷電粒子源と、
当該荷電粒子源より放出された荷電粒子線を集束する対物レンズと、
前記荷電粒子源と、前記対物レンズとの間に配置された荷電粒子検出器と、
試料に前記荷電粒子線を減速する電圧を印加する電源と、
前記電圧を制御する制御装置を備えた荷電粒子線装置において、
前記制御装置は、
前記荷電粒子源から試料に向かって前記荷電粒子線を照射している状態で、
当該荷電粒子源から放出される荷電粒子線を加速させる加速電圧の値よりも、高い電圧を試料に印加したときに検出される荷電粒子の軌道に関する情報と、
所定の試料電位において検出される荷電粒子の軌道に関する情報との違いに基づいて、
前記試料の電位を求めることを特徴とする荷電粒子線装置。
A charged particle source;
An objective lens for focusing the charged particle beam emitted from the charged particle source;
A charged particle detector disposed between the charged particle source and the objective lens;
A power source for applying a voltage to decelerate the charged particle beam to the sample;
In a charged particle beam apparatus provided with a control device for controlling the voltage,
The controller is
In a state where the charged particle beam is irradiated from the charged particle source toward the sample,
Information on the trajectory of the charged particles detected when a voltage higher than the value of the acceleration voltage for accelerating the charged particle beam emitted from the charged particle source is applied to the sample;
Based on the difference from the information about the trajectory of charged particles detected at a given sample potential,
A charged particle beam apparatus characterized by obtaining a potential of the sample.
JP2011264205A 2011-12-02 2011-12-02 Sample potential information detection method and charged particle beam apparatus Active JP5470360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264205A JP5470360B2 (en) 2011-12-02 2011-12-02 Sample potential information detection method and charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264205A JP5470360B2 (en) 2011-12-02 2011-12-02 Sample potential information detection method and charged particle beam apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006340650A Division JP4969231B2 (en) 2006-12-19 2006-12-19 Sample potential information detection method and charged particle beam apparatus

Publications (2)

Publication Number Publication Date
JP2012043816A true JP2012043816A (en) 2012-03-01
JP5470360B2 JP5470360B2 (en) 2014-04-16

Family

ID=45899832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264205A Active JP5470360B2 (en) 2011-12-02 2011-12-02 Sample potential information detection method and charged particle beam apparatus

Country Status (1)

Country Link
JP (1) JP5470360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002114A (en) * 2013-06-17 2015-01-05 株式会社東芝 Inspecting apparatus and inspecting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014485A (en) * 2002-06-12 2004-01-15 Hitachi High-Technologies Corp Wafer defect inspection method and wafer defect inspection device
JP2004134374A (en) * 2002-07-09 2004-04-30 Leo Elektronenmikroskopie Gmbh Observation method of semiconductor device through electronic microscope, and device for the same
JP2005347281A (en) * 2005-08-18 2005-12-15 Hitachi Ltd Circuit pattern inspection device
JP2005345272A (en) * 2004-06-03 2005-12-15 Hitachi High-Technologies Corp Sample image acquiring method and scanning electron microscope
JP2006260957A (en) * 2005-03-17 2006-09-28 Ebara Corp Electron beam device
JP2006278329A (en) * 2005-03-17 2006-10-12 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Charged particle beam device for high spatial resolution and multi-viewpoint image formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014485A (en) * 2002-06-12 2004-01-15 Hitachi High-Technologies Corp Wafer defect inspection method and wafer defect inspection device
JP2004134374A (en) * 2002-07-09 2004-04-30 Leo Elektronenmikroskopie Gmbh Observation method of semiconductor device through electronic microscope, and device for the same
JP2005345272A (en) * 2004-06-03 2005-12-15 Hitachi High-Technologies Corp Sample image acquiring method and scanning electron microscope
JP2006260957A (en) * 2005-03-17 2006-09-28 Ebara Corp Electron beam device
JP2006278329A (en) * 2005-03-17 2006-10-12 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Charged particle beam device for high spatial resolution and multi-viewpoint image formation
JP2005347281A (en) * 2005-08-18 2005-12-15 Hitachi Ltd Circuit pattern inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002114A (en) * 2013-06-17 2015-01-05 株式会社東芝 Inspecting apparatus and inspecting method

Also Published As

Publication number Publication date
JP5470360B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4969231B2 (en) Sample potential information detection method and charged particle beam apparatus
US9202665B2 (en) Charged particle beam apparatus for removing charges developed on a region of a sample
US9136089B2 (en) Pattern dimension measuring device, charged particle beam apparatus, and computer program
US8304725B2 (en) Charged particle beam system
JP5937171B2 (en) Scanning electron microscope and sample observation method
JP5241168B2 (en) electronic microscope
US7521678B2 (en) Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
KR101685274B1 (en) Charged particle beam device
JP2005292076A (en) Inspection method and inspection device by charged particle beam
JP2008135343A (en) Charged particle beam device, scanning electron microscope, and testpiece observation method
JP6666627B2 (en) Charged particle beam device and method of adjusting charged particle beam device
US8227752B1 (en) Method of operating a scanning electron microscope
JP2007280614A (en) Reflection image forming electron microscope and defect inspecting device using it
US8309922B2 (en) Semiconductor inspection method and device that consider the effects of electron beams
JP5470360B2 (en) Sample potential information detection method and charged particle beam apparatus
JP6116921B2 (en) Charged particle beam equipment
JP2001093950A (en) Method and device for inspecting semiconductor pattern
JP5216371B2 (en) Scanning electron microscope
US20240126057A1 (en) Method of determining a brightness of a charged particle beam, method of determining a size of a source of the charged particle beam, and charged particle beam imaging device
JP2007220317A (en) Electron beam inspection method and device
JP5400339B2 (en) Electron beam application equipment
CN116848613A (en) Charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350