JP2012042458A - Oxygen sensor - Google Patents

Oxygen sensor Download PDF

Info

Publication number
JP2012042458A
JP2012042458A JP2011153973A JP2011153973A JP2012042458A JP 2012042458 A JP2012042458 A JP 2012042458A JP 2011153973 A JP2011153973 A JP 2011153973A JP 2011153973 A JP2011153973 A JP 2011153973A JP 2012042458 A JP2012042458 A JP 2012042458A
Authority
JP
Japan
Prior art keywords
measurement electrode
gas
oxygen sensor
closed end
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011153973A
Other languages
Japanese (ja)
Inventor
Masachika Ito
征親 伊藤
Masanao Kimpara
雅直 金原
Ikuhiko Yanase
育彦 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2011153973A priority Critical patent/JP2012042458A/en
Publication of JP2012042458A publication Critical patent/JP2012042458A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen sensor capable of stably measuring oxygen concentration of gas for measurement in which methane gas is contained.SOLUTION: The oxygen sensor includes: a cylindrical zirconia cell 50 with the bottom; a reference electrode 52 which is installed on the inner surface of a cell closed end 51 of the zirconia cell 50 and contacts reference gas; a measurement electrode 53 which is installed on the outer surface of the cell closed end 51 of the zirconia cell 50 and contacts the gas for measurement; and a cylindrical protective pipe 60 with the bottom which covers the zirconia cell 50. A protrusion 63 which contacts the measurement electrode 53 is provided on an inner surface 62 of the cell closed end 51 of the protective pipe 60. In addition, an introduction port 64 which introduces the gas for measurement to the measurement electrode 53 and becomes a state that the measurement electrode 53 is exposed is provided to the protective pipe 60. Thus, since the measurement electrode 53 is located at a position where the gas for measurement easily passes through and the gas for measurement is supplied to the measurement electrode 53 without remaining, the oxygen concentration of the gas for measurement can be stably measured.

Description

この発明は、熱処理炉等の内部の酸素濃度を測定するために用いる酸素センサに関する。   The present invention relates to an oxygen sensor used for measuring the oxygen concentration inside a heat treatment furnace or the like.

従来、熱処理炉等においては、ジルコニア等の高温において酸素イオン伝導性のある固体電解質体を用いて、電気化学反応を利用した酸素濃淡電池の原理により、炉内雰囲気中の酸素濃度(酸素分圧)を測定する酸素センサが使用されている(例えば、特許文献1参照)。   Conventionally, in a heat treatment furnace or the like, the oxygen concentration (oxygen partial pressure) in the furnace atmosphere is determined according to the principle of an oxygen concentration cell using an electrochemical reaction using a solid electrolyte body having oxygen ion conductivity at a high temperature such as zirconia. ) Is used (see, for example, Patent Document 1).

固体電解質体を用いた酸素センサでは、一般に、有底円筒形状の固体電解質体の閉塞端部の内外両面に一対の白金電極を設ける。この酸素センサは、内側の白金電極を標準ガスとしての大気に接触させて基準電極とするとともに、外側の白金電極を被測定ガスである炉内雰囲気中に接触させて測定電極とする。そして、酸素センサは、これら電極間の酸素分圧の差に基づく起電力を検出することにより、被測定ガスの酸素濃度を測定する。   In an oxygen sensor using a solid electrolyte body, a pair of platinum electrodes is generally provided on both the inner and outer surfaces of the closed end of a bottomed cylindrical solid electrolyte body. In this oxygen sensor, the inner platinum electrode is brought into contact with the atmosphere as a standard gas to serve as a reference electrode, and the outer platinum electrode is brought into contact with the atmosphere in the furnace as the measurement gas to serve as a measurement electrode. The oxygen sensor measures the oxygen concentration of the gas to be measured by detecting an electromotive force based on the difference in oxygen partial pressure between these electrodes.

また、このような酸素センサは、固体電解質体や電極、リード線等を保護するため、これらを収容する金属材料やセラミック材料等で形成された有底円筒形状の外筒管を備えている。酸素センサの測定電極は固定電解質体の先端部と外筒管の閉端部の内面との間で狭圧される構造となっている。   Moreover, in order to protect a solid electrolyte body, an electrode, a lead wire, etc., such an oxygen sensor includes a bottomed cylindrical outer tube formed of a metal material, a ceramic material, or the like that accommodates these. The measurement electrode of the oxygen sensor has a structure in which the pressure is narrowed between the tip of the fixed electrolyte body and the inner surface of the closed end of the outer tube.

特開2004−294330号公報JP 2004-294330 A

ところで、特許文献1に記載の酸素センサでは、炭酸バリウムが担持されたセラミックボールを大量に被測定電極の近傍に設置することで、白金の触媒作用によって被測定ガス中に含まれる炭化水素ガス、例えばメタンガスが分解されて酸素濃度が低下することを抑制している。   By the way, in the oxygen sensor described in Patent Document 1, by placing a large amount of ceramic balls carrying barium carbonate in the vicinity of the electrode to be measured, a hydrocarbon gas contained in the gas to be measured by the catalytic action of platinum, For example, methane gas is decomposed to prevent the oxygen concentration from decreasing.

しかしながら、上記の酸素センサは、測定電極がセラミックボールに覆われているので、被測定ガスはセラミックボールの隙間を通過して測定電極に接触することとなる。このため、被測定ガスが測定電極の周りで滞留することとなり、メタンガスが分解して測定電極に微細な炭素析出が起こるおそれがあった。そして、測定電極に炭素析出が起こると起電力が安定せず、また経時的に炭素析出が起こると測定電極からの出力がドリフトして測定結果が安定しなかった。   However, in the above oxygen sensor, since the measurement electrode is covered with the ceramic ball, the gas to be measured passes through the gap between the ceramic balls and comes into contact with the measurement electrode. For this reason, the gas to be measured stays around the measurement electrode, and the methane gas may be decomposed to cause fine carbon deposition on the measurement electrode. When carbon deposition occurred on the measurement electrode, the electromotive force was not stable, and when carbon deposition occurred over time, the output from the measurement electrode drifted and the measurement result was not stable.

この発明は、こうした実情に鑑みてなされたものであり、その目的は、メタンガスが含まれる被測定ガスの酸素濃度を安定して測定することができる酸素センサを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an oxygen sensor that can stably measure the oxygen concentration of a measurement gas containing methane gas.

以下、上記目的を達成するための手段及びその作用効果について説明する。
請求項1に記載の発明は、有底円筒形状の固体電解質体と、当該固体電解質体の閉端部の内外両面に対向する一対の電極と、前記固体電解質体を収容するとともに、被測定ガスの導入口を有する有底円筒形状の外筒管とを備え、前記閉端部の内面の電極が基準ガスに接触する基準電極として機能し、前記閉端部の外面の電極が前記被測定ガスに接触する測定電極として機能し、前記閉端部の外面と前記外筒管の閉端部の内面とによって前記測定電極を狭圧する酸素センサにおいて、前記固体電解質体の閉端部及び前記測定電極が露出するように前記外筒管に前記導入口を形成したことをその要旨としている。
In the following, means for achieving the above object and its operational effects will be described.
The invention described in claim 1 includes a bottomed cylindrical solid electrolyte body, a pair of electrodes opposed to the inner and outer surfaces of the closed end of the solid electrolyte body, and the gas to be measured. A bottomed cylindrical outer tube having an inlet for the gas flow, and an electrode on the inner surface of the closed end portion functions as a reference electrode in contact with a reference gas, and an electrode on the outer surface of the closed end portion is the gas to be measured In the oxygen sensor that functions as a measurement electrode that contacts the outer surface of the closed end and the inner surface of the closed end of the outer tube, the closed end of the solid electrolyte body and the measurement electrode The gist is that the introduction port is formed in the outer tube so as to be exposed.

同構成によれば、固体電解質体の先端である閉端部及び測定電極が外筒管の導入口において露出、言い換えれば見える状態に外筒管に導入口が形成されるので、被測定ガスが測定電極に容易に接触させることができるとともに、測定電極の周囲に滞留することを抑制できる。よって、被測定ガスに含まれるメタンガスが分解することによる炭素析出が抑制されるので、測定電極が劣化することがなく、測定結果を安定させることが可能となる。   According to this configuration, the closed end portion that is the tip of the solid electrolyte body and the measurement electrode are exposed at the introduction port of the outer tube, in other words, the introduction port is formed in the outer tube so as to be visible. While being able to contact a measurement electrode easily, it can suppress staying around a measurement electrode. Therefore, carbon deposition due to decomposition of methane gas contained in the gas to be measured is suppressed, so that the measurement electrode is not deteriorated and the measurement result can be stabilized.

請求項2に記載の発明は、請求項1に記載の酸素センサにおいて、前記外筒管の閉端部の内面に前記測定電極側へ突出する突部を設け、前記突部と前記閉端部の外面とによって前記測定電極を狭圧することをその要旨としている。   According to a second aspect of the present invention, in the oxygen sensor according to the first aspect, a protrusion projecting toward the measurement electrode is provided on the inner surface of the closed end of the outer tube, and the protrusion and the closed end The gist of the invention is to narrow the pressure of the measurement electrode with the outer surface.

同構成によれば、外筒管の閉端部の内面に突部を設けたので、測定電極を閉端部の内面から離れた位置に設置することが可能となる。このため、被測定ガスが滞留する可能性がある外筒管の閉端部の内面から測定電極が離れるので、測定電極の周囲に被測定ガスが滞留することを更に抑制することができる。よって、測定結果を更に安定させることが可能となる。   According to this configuration, since the protrusion is provided on the inner surface of the closed end portion of the outer tube, the measurement electrode can be installed at a position away from the inner surface of the closed end portion. For this reason, since a measurement electrode leaves | separates from the inner surface of the closed end part of an outer cylinder pipe | tube with which measurement gas may retain, it can further suppress that measurement gas retains around a measurement electrode. Therefore, the measurement result can be further stabilized.

請求項3に記載の発明は、請求項1又は2に記載の酸素センサにおいて、前記測定電極は、前記閉端部の外面に設置される主測定電極と該主測定電極の外面に設置される補助測定電極とを備え、前記補助測定電極を前記主測定電極よりも大きく形成したことをその要旨としている。   According to a third aspect of the present invention, in the oxygen sensor according to the first or second aspect, the measurement electrode is disposed on the outer surface of the closed end portion and the outer surface of the main measurement electrode. The auxiliary measurement electrode is provided, and the auxiliary measurement electrode is formed larger than the main measurement electrode.

同構成によれば、主測定電極よりも外側に位置し、主測定電極よりも大きく形成した補助測定電極が触媒部材となり被測定ガスに含まれるメタンガスを主測定電極に到達する前に分解する。よって、測定結果を更に安定させることが可能である。   According to this configuration, the auxiliary measurement electrode positioned outside the main measurement electrode and formed larger than the main measurement electrode serves as a catalyst member, and decomposes methane gas contained in the gas to be measured before reaching the main measurement electrode. Therefore, it is possible to further stabilize the measurement result.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の酸素センサにおいて、前記外筒管の先端には、外面から内面へ貫通する貫通孔を形成したことをその要旨としている。   The invention according to claim 4 is the oxygen sensor according to any one of claims 1 to 3, wherein a through-hole penetrating from the outer surface to the inner surface is formed at the tip of the outer tube. It is said.

同構成によれば、外筒管の先端に貫通孔を形成したので、外筒管内に流入する被測定ガスを更に増やすことが可能となる。このため、外筒管内に被測定ガスの流れを作ることができ、測定電極の周囲に被測定ガスが滞留することを更に抑制することができる。よって、測定結果を更に安定させることが可能となる。   According to this configuration, since the through hole is formed at the tip of the outer tube, it is possible to further increase the gas to be measured flowing into the outer tube. For this reason, the flow of the gas to be measured can be made in the outer tube, and the measurement gas can be further prevented from staying around the measurement electrode. Therefore, the measurement result can be further stabilized.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の酸素センサにおいて、前記外筒管の内面及び外面の少なくとも一方に触媒部材を設けたことをその要旨としている。   The gist of the invention described in claim 5 is that, in the oxygen sensor according to any one of claims 1 to 4, a catalyst member is provided on at least one of the inner surface and the outer surface of the outer tube.

同構成によれば、外筒管内に被測定ガスが進入する際に、触媒部材が被測定ガスに含まれるメタンガスを分解するので、測定結果を安定させることが可能である。
請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の酸素センサにおいて、前記固体電解質体は、センサ本体に対して気密構造の気密ケースを介して取り付けたことをその要旨としている。
According to this configuration, when the gas to be measured enters the outer tube, the catalyst member decomposes the methane gas contained in the gas to be measured, so that the measurement result can be stabilized.
According to a sixth aspect of the present invention, in the oxygen sensor according to any one of the first to fifth aspects, the solid electrolyte body is attached to the sensor body via an airtight case having an airtight structure. It is a summary.

同構成によれば、固体電解質体が酸素センサの本体に気密構造の気密ケースを介して取り付けられるので、固体電解質体にクラックが発生した際に、酸素センサが設置された炉内に酸素センサから流入する基準ガスを気密ケースの体積分に抑えることが可能となる。   According to this configuration, since the solid electrolyte body is attached to the main body of the oxygen sensor via an airtight case having an airtight structure, when a crack occurs in the solid electrolyte body, the oxygen sensor is installed in the furnace in which the oxygen sensor is installed. It is possible to suppress the inflowing reference gas to the volume fraction of the airtight case.

本発明によれば、メタンガスが含まれる被測定ガスの酸素濃度を安定して測定することができる。   According to the present invention, it is possible to stably measure the oxygen concentration of a measurement gas containing methane gas.

酸素センサの全体断面図。The whole oxygen sensor sectional view. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. (a)酸素センサの先端側面図、(b)酸素センサの先端正面図。(A) Front end side view of oxygen sensor, (b) Front end front view of oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor. 酸素センサの先端断面図。The front end sectional view of an oxygen sensor.

以下、本発明の一実施形態について図1〜図3を参照して説明する。
図1に示されるように、酸素センサ1は、基端側から順に、図示しない測定器等に接続するためのコネクタ10と、同コネクタ10と接続される円筒形状のケース20とを備えている。そして、酸素センサ1は、ケース20に接続されるとともに、有底円筒形状のジルコニアセル50を保持する円筒形状のセル保持部材40と、同ジルコニアセル50を覆う円筒形状の保護管60とを備えている。なお、ケース20とセル保持部材40とが気密ケースとして機能する。また、保護管60が外筒管に相当する。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the oxygen sensor 1 includes, in order from the base end side, a connector 10 for connecting to a measuring instrument (not shown) and a cylindrical case 20 connected to the connector 10. . The oxygen sensor 1 includes a cylindrical cell holding member 40 that is connected to the case 20 and holds the bottomed cylindrical zirconia cell 50, and a cylindrical protective tube 60 that covers the zirconia cell 50. ing. The case 20 and the cell holding member 40 function as an airtight case. The protective tube 60 corresponds to an outer tube.

コネクタ10は、フランジと一体に形成されたコネクタフランジ11に設けられている。コネクタ10の内面には、気密構造であるハーメチックシール12を介して複数の接続端子13が設けられている。接続端子13のケース20側には、リード線33が接続されている。一方、ケース20の基端外面には、コネクタフランジ11と接続されるケース接続フランジ21が溶接によって密着固定されている。コネクタフランジ11とケース接続フランジ21とは、ボルト22によって締結されている。コネクタフランジ11とケース接続フランジ21との間にメタルパッキン14が挟まれることで、コネクタフランジ11とケース接続フランジ21との間は気密構造となっている。なお、メタルパッキン14に限らず、Oリング等を採用してもよい。   The connector 10 is provided on a connector flange 11 formed integrally with the flange. A plurality of connection terminals 13 are provided on the inner surface of the connector 10 via a hermetic seal 12 having an airtight structure. A lead wire 33 is connected to the case 20 side of the connection terminal 13. On the other hand, a case connection flange 21 connected to the connector flange 11 is fixed to the outer surface of the base end of the case 20 by welding. The connector flange 11 and the case connection flange 21 are fastened by bolts 22. Since the metal packing 14 is sandwiched between the connector flange 11 and the case connection flange 21, an airtight structure is formed between the connector flange 11 and the case connection flange 21. In addition, you may employ | adopt not only the metal packing 14 but an O-ring.

ケース20の側面には、基準ガスとしての大気を供給する円筒形状の供給路2と、センサ内に供給された大気を排出する円筒形状の排出路3とが側面に対して垂直に突出した状態で溶接によって密着固定されている。これら供給路2と排出路3との基端には、ガス流を止める手段として図示しない電磁弁が設けられている。   On the side surface of the case 20, a cylindrical supply path 2 that supplies the atmosphere as a reference gas and a cylindrical discharge path 3 that discharges the atmosphere supplied into the sensor protrude perpendicularly to the side surface. It is firmly fixed by welding. At the base ends of the supply path 2 and the discharge path 3, an electromagnetic valve (not shown) is provided as means for stopping the gas flow.

ケース20の先端外面には、ケース20とセル保持部材40と密着させるためのケース接続フランジ23が溶接によって密着固定されている。一方、セル保持部材40の基端外面には、ケース接続フランジ23と接続される気密保持フランジ25が溶接によって密着固定されている。気密保持フランジ25のケース接続フランジ23に対向する面には、Oリング24を保持するリング溝26が形成されている。ケース接続フランジ23と気密保持フランジ25とは、リング溝26にOリング24が設置された状態でボルト27とナット28とによって締結されている。ケース接続フランジ23と気密保持フランジ25とは、Oリング24によって気密構造となっている。   A case connection flange 23 for closely contacting the case 20 and the cell holding member 40 is fixed to the outer surface of the front end of the case 20 by welding. On the other hand, an airtight holding flange 25 connected to the case connection flange 23 is tightly fixed to the outer surface of the base end of the cell holding member 40 by welding. A ring groove 26 that holds the O-ring 24 is formed on the surface of the airtight holding flange 25 that faces the case connection flange 23. The case connection flange 23 and the airtight holding flange 25 are fastened by a bolt 27 and a nut 28 in a state where the O-ring 24 is installed in the ring groove 26. The case connection flange 23 and the airtight holding flange 25 have an airtight structure by an O-ring 24.

セル保持部材40の先端には、凹部41が形成されるとともに、同凹部41の内面に保護管60の基端外面が溶接によって密着固定されている。保護管60の外面には、酸素センサ1を熱処理炉に取り付ける際に、熱処理炉の炉壁に取り付ける炉取付フランジ66が溶接によって密着固定されている。   A concave portion 41 is formed at the distal end of the cell holding member 40, and the proximal end outer surface of the protective tube 60 is tightly fixed to the inner surface of the concave portion 41 by welding. When the oxygen sensor 1 is attached to the heat treatment furnace, a furnace attachment flange 66 attached to the furnace wall of the heat treatment furnace is fixed to the outer surface of the protective tube 60 by welding.

セル保持部材40の基端内面には、ケース20の内部に延出する円筒形状のアダプタ30の先端外面が接続固定されている。セル保持部材40及びアダプタ30は、導電性の金属材料で形成されている。アダプタ30の内部には、供給路2からジルコニアセル50の閉端部内面まで延出して、基準ガスをジルコニアセル50の先端内部に送る基準エア管31が設けられている。ここで、基準エア管31によってジルコニアセル50の先端内部に供給された基準ガスは、ジルコニアセル50内を基端側へ排出されて、続いてアダプタ30及び取付金具34内を通過してケース20内に排出され、排出路3から外部へ排出される。   A distal end outer surface of a cylindrical adapter 30 extending inside the case 20 is connected and fixed to the inner surface of the base end of the cell holding member 40. The cell holding member 40 and the adapter 30 are made of a conductive metal material. Inside the adapter 30, a reference air pipe 31 is provided that extends from the supply path 2 to the inner surface of the closed end portion of the zirconia cell 50 and sends a reference gas to the inside of the tip of the zirconia cell 50. Here, the reference gas supplied into the tip end of the zirconia cell 50 by the reference air pipe 31 is discharged to the proximal end side through the zirconia cell 50, and then passes through the adapter 30 and the mounting bracket 34 to the case 20. And discharged from the discharge path 3 to the outside.

アダプタ30の内部には、基準エア管31を連結支持するエア管連結部材32がアダプタ30の内壁に沿って摺動可能に嵌装されている。アダプタ30の基端内面には、コネクタ10に接続されたリード線33が取り付けられる導電性の金属材料からなる取付金具34が接続固定されている。取付金具34とエア管連結部材32との間には、基準エア管31をジルコニアセル50側へ付勢する付勢ばね35が設置されている。この付勢ばね35の付勢力によって基準エア管31の先端がジルコニアセル50の閉端部内面に当接されている。なお、ジルコニアセル50が固体電解質体として機能する。   An air tube connecting member 32 that connects and supports the reference air tube 31 is slidably fitted along the inner wall of the adapter 30 inside the adapter 30. A fitting 34 made of a conductive metal material to which the lead wire 33 connected to the connector 10 is attached is connected and fixed to the inner surface of the proximal end of the adapter 30. A biasing spring 35 that biases the reference air pipe 31 toward the zirconia cell 50 is installed between the mounting bracket 34 and the air pipe connecting member 32. Due to the biasing force of the biasing spring 35, the tip of the reference air tube 31 is in contact with the inner surface of the closed end portion of the zirconia cell 50. The zirconia cell 50 functions as a solid electrolyte body.

また、セル保持部材40の内部には、ジルコニアセル50を嵌装する保持空間42が形成されている。この保持空間42には、ジルコニアセル50の基端側が嵌装されるとともに、3個のバックアップリング43と2個のOリング44とが交互に設置されている。なお、セル保持部材40とジルコニアセル50との間は、バックアップリング43とOリング44とによって気密構造となっている。アダプタ30の先端内面には、ジルコニアセル50を保護管60の閉端部61側へ付勢して抑えるセル抑え部材36がアダプタ30の内壁に沿って摺動可能に嵌装されている。アダプタ30の基端側内面には、セル抑え部材36を先端側へ付勢するセル付勢ばね37を支持するばね取付突部38が全周に亘って形成されている。そして、このばね取付突部38とセル抑え部材36との間には、ジルコニアセル50を保護管60の閉端部61側へ付勢するセル付勢ばね37が設置されている。このセル付勢ばね37の付勢力によってジルコニアセル50の先端が保護管60の閉端部61内面に当接されている。   A holding space 42 into which the zirconia cell 50 is fitted is formed inside the cell holding member 40. In the holding space 42, the base end side of the zirconia cell 50 is fitted, and three backup rings 43 and two O-rings 44 are alternately installed. The cell holding member 40 and the zirconia cell 50 have an airtight structure with a backup ring 43 and an O-ring 44. A cell restraining member 36 that urges the zirconia cell 50 toward the closed end portion 61 side of the protective tube 60 and slidably fits along the inner wall of the adapter 30 is fitted on the inner surface of the distal end of the adapter 30. A spring mounting projection 38 that supports a cell biasing spring 37 that biases the cell restraining member 36 toward the distal end is formed on the inner surface of the proximal end side of the adapter 30 over the entire circumference. A cell urging spring 37 that urges the zirconia cell 50 toward the closed end 61 of the protective tube 60 is installed between the spring mounting protrusion 38 and the cell holding member 36. The tip of the zirconia cell 50 is in contact with the inner surface of the closed end 61 of the protective tube 60 by the biasing force of the cell biasing spring 37.

ここで、ジルコニアセル50の先端側のセル閉端部51の内外両面には、対向する一対の電極が設置されている。すなわち、セル閉端部51の内面には、基準ガスに晒される白金からなる基準電極52が塗布されている。この基準電極52には、基準エア管31内に挿入されて、ジルコニアセル50のセル閉端部51の内面に配線されたリード線33が接続されている。一方、セル閉端部51の外面には、被測定ガスに晒される白金からなる測定電極53が形成されている。この測定電極53は、リード線33が取り付けられた取付金具34、アダプタ30、セル保持部材40、及び保護管60を介して通電される。   Here, a pair of opposing electrodes are provided on both the inner and outer surfaces of the cell closed end portion 51 on the tip side of the zirconia cell 50. That is, the reference electrode 52 made of platinum exposed to the reference gas is applied to the inner surface of the cell closed end portion 51. Connected to the reference electrode 52 is a lead wire 33 which is inserted into the reference air tube 31 and wired on the inner surface of the cell closed end portion 51 of the zirconia cell 50. On the other hand, a measurement electrode 53 made of platinum exposed to the gas to be measured is formed on the outer surface of the cell closed end portion 51. The measurement electrode 53 is energized through the mounting bracket 34 to which the lead wire 33 is attached, the adapter 30, the cell holding member 40, and the protective tube 60.

図2に示されるように、ジルコニアセル50のセル閉端部51の内面に設置される基準電極52は、白金のペーストをμmオーダで貼り付けた白金ペースト52aからなる。また、ジルコニアセル50のセル閉端部51の外面に設置される測定電極53は、セル閉端部51の外面に貼り付けられる主測定電極53aと、この主測定電極53aに貼り付けられる補助測定電極53bとを備えている。主測定電極53aは、被測定ガスの濃度測定を行う。また、補助測定電極53bは、後述する突部63と主測定電極53aとの接触安定性の向上のために設けられている。主測定電極53aは、白金のペーストをμmオーダで貼り付けた白金ペーストである。補助測定電極53bは、主測定電極53aの外面にメッシュ状の白金を貼り付けた白金メッシュである。   As shown in FIG. 2, the reference electrode 52 installed on the inner surface of the cell closed end portion 51 of the zirconia cell 50 is made of a platinum paste 52 a in which a platinum paste is pasted on the order of μm. The measurement electrode 53 installed on the outer surface of the cell closed end portion 51 of the zirconia cell 50 includes a main measurement electrode 53a attached to the outer surface of the cell closed end portion 51 and an auxiliary measurement attached to the main measurement electrode 53a. And an electrode 53b. The main measurement electrode 53a measures the concentration of the gas to be measured. Further, the auxiliary measurement electrode 53b is provided for improving the contact stability between the protrusion 63 described later and the main measurement electrode 53a. The main measurement electrode 53a is a platinum paste in which a platinum paste is pasted on the order of μm. The auxiliary measurement electrode 53b is a platinum mesh in which mesh-like platinum is attached to the outer surface of the main measurement electrode 53a.

保護管60の閉端部61の内面62には、保護管60の基端側、言い換えればジルコニアセル50側へ突出する半球状の突部63が設けられている。この突部63には、セル付勢ばね37によって突部63側へ付勢されたジルコニアセル50の先端、言い換えれば測定電極53が押し付けられる。よって、測定電極53と突部63とは点接触に近い状態となり、測定電極53がジルコニアセル50のセル閉端部51の外面と突部63とによって、しっかりと狭圧されている。   The inner surface 62 of the closed end 61 of the protective tube 60 is provided with a hemispherical protrusion 63 that protrudes toward the proximal end of the protective tube 60, in other words, toward the zirconia cell 50. The tip of the zirconia cell 50 urged toward the projection 63 by the cell urging spring 37, in other words, the measurement electrode 53 is pressed against the projection 63. Therefore, the measurement electrode 53 and the protrusion 63 are in a state close to point contact, and the measurement electrode 53 is firmly narrowed by the outer surface of the cell closed end 51 of the zirconia cell 50 and the protrusion 63.

図3(a)に併せて示されるように、保護管60の閉端部61側の側面には、被測定ガスを保護管60内に導入する2個の導入口64が対向して設けられている。これら導入口64の基端側端面64aは測定電極53の位置よりも基端側に位置するとともに、これら導入口64の閉端部側端面64bは測定電極53の位置よりも閉端部61側に位置している。すなわち、導入口64を介して保護管60内を覗くと、測定電極53が十分見える露出した状態となっている。また、これら導入口64のセル閉端部51の閉端部側端面64bと閉端部61の内面62とは同じ位置に設定されており、被測定ガスが滞留し難くなっている。   As shown in FIG. 3A, two inlets 64 for introducing the gas to be measured into the protective tube 60 are provided on the side surface of the protective tube 60 on the closed end 61 side so as to face each other. ing. The base end side end surfaces 64 a of these introduction ports 64 are located on the base end side with respect to the position of the measurement electrode 53, and the closed end side end surfaces 64 b of these introduction ports 64 are on the closed end 61 side of the position of the measurement electrode 53. Is located. That is, when looking into the protective tube 60 through the introduction port 64, the measurement electrode 53 is sufficiently exposed. Further, the closed end side end face 64b of the closed end 51 of the introduction port 64 and the inner face 62 of the closed end 61 are set at the same position, so that the gas to be measured is difficult to stay.

また、図3(b)に併せて示されるように、保護管60の閉端部61には、先端から保護管60内に貫通する貫通孔65が4個設けられている。これら貫通孔65は、突部63の周囲に突部63を囲んで配置されている。よって、被測定ガスが測定電極53に十分に導入されて、被測定ガスが測定電極53の周囲に滞留することを抑制することができる。   Further, as shown in FIG. 3B, the closed end portion 61 of the protective tube 60 is provided with four through holes 65 penetrating into the protective tube 60 from the tip. These through holes 65 are arranged around the protrusion 63 so as to surround the protrusion 63. Therefore, it can be suppressed that the measurement gas is sufficiently introduced into the measurement electrode 53 and the measurement gas stays around the measurement electrode 53.

次に、前述のように構成された酸素センサ1の動作について説明する。
酸素センサ1は、保護管60に設けられた導入口64及び貫通孔65を介して熱処理炉内の被測定ガスが保護管60内に導入されて、ジルコニアセル50の先端と突部63との間に介挿された測定電極53が被測定ガスに接触する。また、ジルコニアセル50のセル閉端部51内面に設けられた基準電極52が基準エア管31によって供給された基準ガスに接触する。なお、供給路2及び排出路3の電磁弁が開くと、基準エア管31、ひいてはジルコニアセル50内に基準ガスが供給される。そして、基準ガスに接触する基準電極52と被測定ガスに接触する測定電極53との間の酸素分圧の差に基づいて起電力が発生することにより、被測定ガスの酸素濃度を測定する。
Next, the operation of the oxygen sensor 1 configured as described above will be described.
In the oxygen sensor 1, the gas to be measured in the heat treatment furnace is introduced into the protective tube 60 through the introduction port 64 and the through-hole 65 provided in the protective tube 60, and the tip of the zirconia cell 50 and the protrusion 63 are connected. A measurement electrode 53 interposed therebetween contacts the gas to be measured. Further, the reference electrode 52 provided on the inner surface of the cell closed end portion 51 of the zirconia cell 50 comes into contact with the reference gas supplied by the reference air pipe 31. When the solenoid valves of the supply path 2 and the discharge path 3 are opened, the reference gas is supplied into the reference air pipe 31 and thus into the zirconia cell 50. Then, an electromotive force is generated based on a difference in oxygen partial pressure between the reference electrode 52 in contact with the reference gas and the measurement electrode 53 in contact with the measurement gas, thereby measuring the oxygen concentration of the measurement gas.

さて、本実施形態の酸素センサ1の保護管60には、突部63が設けられ、測定電極53が閉端部61の内面62から遠ざけられているので、被測定ガスが通過し易い位置に測定電極53が設置される。また、保護管60には、測定電極53が露出した状態に導入口64が設けられるとともに、閉端部61の先端から内部に貫通する貫通孔65が設けられるので、被測定ガスを滞留させることなく、測定電極53に供給させることができる。このため、測定電極53の周囲に被測定ガスが滞留することによって起きる炭化水素ガスの分解、ひいてはメタンガスの炭素析出が抑制され、起電力を安定させることができる。よって、被測定ガスの酸素濃度を安定して測定することができる。   Now, since the protective tube 60 of the oxygen sensor 1 of the present embodiment is provided with a protrusion 63 and the measurement electrode 53 is kept away from the inner surface 62 of the closed end portion 61, it is at a position where the gas to be measured can easily pass. A measurement electrode 53 is installed. Further, the protective tube 60 is provided with an introduction port 64 in a state where the measurement electrode 53 is exposed, and is provided with a through hole 65 penetrating from the tip of the closed end portion 61 to the inside, so that the gas to be measured is retained. And can be supplied to the measurement electrode 53. For this reason, the decomposition of the hydrocarbon gas caused by the residence of the gas to be measured around the measurement electrode 53, and hence the carbon deposition of the methane gas, is suppressed, and the electromotive force can be stabilized. Therefore, the oxygen concentration of the gas to be measured can be stably measured.

以上、説明した実施形態によれば、以下の作用効果を奏することができる。
(1)ジルコニアセル50のセル閉端部51及び測定電極53が保護管60の導入口64において露出、言い換えれば見える状態に保護管60に導入口64が形成されるので、被測定ガスが測定電極53に容易に接触させることができるとともに、測定電極53の周囲に滞留することを抑制できる。よって、被測定ガスに含まれるメタンガスが分解することによる炭素析出が抑制されるので、測定電極53が劣化することがなく、測定結果(起電力)を安定させることができる。
As described above, according to the embodiment described above, the following effects can be obtained.
(1) Since the cell closed end portion 51 and the measurement electrode 53 of the zirconia cell 50 are exposed at the introduction port 64 of the protection tube 60, in other words, the introduction port 64 is formed in the protection tube 60 in a visible state, the gas to be measured is measured. While being able to contact the electrode 53 easily, staying around the measurement electrode 53 can be suppressed. Therefore, carbon deposition due to decomposition of methane gas contained in the gas to be measured is suppressed, so that the measurement electrode 53 is not deteriorated and the measurement result (electromotive force) can be stabilized.

(2)保護管60の閉端部61の内面62に突部63を設けたので、測定電極53を閉端部61の内面62から離れた位置に設置することが可能となる。このため、被測定ガスが滞留する可能性がある閉端部61の内面62から測定電極53が離れるので、測定電極53の周囲に被測定ガスが滞留することを更に抑制することができる。よって、測定結果を更に安定させることが可能となる。   (2) Since the protrusion 63 is provided on the inner surface 62 of the closed end 61 of the protective tube 60, the measurement electrode 53 can be installed at a position away from the inner surface 62 of the closed end 61. For this reason, since the measurement electrode 53 is separated from the inner surface 62 of the closed end portion 61 in which the measurement gas may stay, the measurement gas can be further prevented from staying around the measurement electrode 53. Therefore, the measurement result can be further stabilized.

(3)保護管60の先端に貫通孔65を形成したので、保護管60内に流入する被測定ガスを更に増やすことが可能となる。このため、保護管60内に被測定ガスの流れを作ることができ、測定電極53の周囲に被測定ガスが滞留することを更に抑制することができる。よって、測定結果を更に安定させることが可能となる。   (3) Since the through-hole 65 is formed at the tip of the protective tube 60, it is possible to further increase the gas to be measured flowing into the protective tube 60. For this reason, the flow of the gas to be measured can be made in the protective tube 60, and the measurement gas can be further prevented from staying around the measurement electrode 53. Therefore, the measurement result can be further stabilized.

(4)ジルコニアセル50が酸素センサ1の本体に気密構造のケース20及びセル保持部材40を介して取り付けられるので、ジルコニアセル50にクラックが発生した際に、酸素センサ1が設置された炉内に酸素センサ1から流入する基準ガスをケース20の体積分に抑えることができる。   (4) Since the zirconia cell 50 is attached to the main body of the oxygen sensor 1 via the case 20 and the cell holding member 40 having an airtight structure, when a crack occurs in the zirconia cell 50, the inside of the furnace in which the oxygen sensor 1 is installed The reference gas flowing in from the oxygen sensor 1 can be suppressed to the volume of the case 20.

(5)突部63を半球状にしてその先端で測定電極53を点接触にて挟持するので、測定電極53を確実に押圧することが可能となり、セル抵抗を安定させることができる。また、突部63を半球状にしたため挟持圧による応力破損を抑制できる。   (5) Since the projection 63 is hemispherical and the measurement electrode 53 is pinched by the tip of the projection 63, the measurement electrode 53 can be reliably pressed and the cell resistance can be stabilized. Moreover, since the protrusion 63 is hemispherical, stress breakage due to clamping pressure can be suppressed.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
・上記実施形態では、補助測定電極53bの外径を主測定電極53aの円形よりも小さく形成したが、図4に示されるように、補助測定電極53bの外径を主測定電極53aの円形よりも大きく形成してもよい。同構成によれば、主測定電極53aよりも大きく形成した補助測定電極53bが触媒部材となり、被測定ガスに含まれるメタンガスを主測定電極に到達する前に分解するので、測定結果を安定させることができる。
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
In the above embodiment, the outer diameter of the auxiliary measuring electrode 53b is smaller than the circular shape of the main measuring electrode 53a. However, as shown in FIG. 4, the outer diameter of the auxiliary measuring electrode 53b is smaller than the circular shape of the main measuring electrode 53a. May be formed larger. According to this configuration, the auxiliary measurement electrode 53b formed larger than the main measurement electrode 53a serves as a catalyst member, and methane gas contained in the gas to be measured is decomposed before reaching the main measurement electrode, so that the measurement result is stabilized. Can do.

・また、図5に示されるように、補助測定電極53bをキャップ形状に形成してもよい。すなわち、補助測定電極53bの外径端部を、セル閉端部51を覆うように形成する。同構成によれば、補助測定電極53bがセル閉端部51を覆うので、主測定電極に到達する前に被測定ガスに含まれるメタンガスをより分解して、測定結果を安定させることができる。   -Moreover, as FIG. 5 shows, you may form the auxiliary | assistant measurement electrode 53b in a cap shape. That is, the outer diameter end portion of the auxiliary measurement electrode 53 b is formed so as to cover the cell closed end portion 51. According to this configuration, since the auxiliary measurement electrode 53b covers the cell closed end portion 51, the methane gas contained in the measurement gas can be further decomposed before reaching the main measurement electrode, and the measurement result can be stabilized.

・上記構成において、図6及び図7に示されるように、保護管60の内面及び外面の一方に導入口64を覆うように白金メッシュ等よりなる触媒部材67を設けてもよい。すなわち、触媒部材67はガス経路の測定電極53の前段に設置されている。同構成によれば、導入口64から保護管60内に被測定ガスが進入する際に、触媒部材67が主測定電極に到達する前に被測定ガスに含まれるメタンガスを分解するので、測定結果を安定させることができる。また、図6及び図7に示されるように、保護管60の内面及び外面の一方に導入口64を覆うように白金メッシュ等よりなる触媒部材67を設けたが、内面と外面の両方に設けても良い。同構成によれば、メタンガスを一層分解するので、測定結果を更に安定させることができる。   In the above configuration, as shown in FIGS. 6 and 7, a catalyst member 67 made of platinum mesh or the like may be provided on one of the inner surface and the outer surface of the protective tube 60 so as to cover the introduction port 64. That is, the catalyst member 67 is installed in front of the measurement electrode 53 in the gas path. According to this configuration, when the gas to be measured enters the protective tube 60 from the introduction port 64, the methane gas contained in the gas to be measured is decomposed before the catalyst member 67 reaches the main measurement electrode. Can be stabilized. Further, as shown in FIGS. 6 and 7, the catalyst member 67 made of platinum mesh or the like is provided on one of the inner surface and the outer surface of the protective tube 60 so as to cover the introduction port 64, but is provided on both the inner surface and the outer surface. May be. According to this configuration, methane gas is further decomposed, so that the measurement result can be further stabilized.

・また、図8に示されるように、保護管60の内面に触媒部材67は白金等を塗布した繊維体や他の担持体を用いてもよい。同構成によれば、繊維体の隙間はメッシュよりも狭いので、被測定ガスとの接触をより増加させることができる。   -Moreover, as FIG. 8 shows, the catalyst member 67 may use the fiber body which apply | coated platinum etc. to the inner surface of the protective tube 60, and another support body. According to this configuration, since the gap between the fibrous bodies is narrower than the mesh, the contact with the gas to be measured can be further increased.

・また、図6及び図8において、保護管60の閉端部61に貫通孔65が設けられた場合、保護管60の内面に貫通孔65を覆うように白金メッシュや白金等を塗布した繊維体や他の担持体よりなる触媒部材67を設けてもよい。同構成によれば、導入口64や貫通孔65から保護管60内に被測定ガスが進入する際に、触媒部材67が主測定電極に到達する前に被測定ガスに含まれるメタンガスを分解するので、測定結果を一層安定させることができる。   6 and 8, when the through-hole 65 is provided in the closed end portion 61 of the protective tube 60, a fiber in which a platinum mesh, platinum, or the like is applied to the inner surface of the protective tube 60 so as to cover the through-hole 65 A catalyst member 67 made of a body or another carrier may be provided. According to this configuration, when the gas to be measured enters the protective tube 60 from the introduction port 64 or the through hole 65, the methane gas contained in the gas to be measured is decomposed before the catalyst member 67 reaches the main measurement electrode. Therefore, the measurement result can be further stabilized.

・上記構成において、触媒部材67は、ジルコニアセル50や保護管60の全周に亘って形成したが、一対の導入口64に対応させてそれぞれ設けてもよい。
・上記構成において、白金に代えて、白金合金を用いてもよい。
In the above configuration, the catalyst member 67 is formed over the entire circumference of the zirconia cell 50 and the protective tube 60, but may be provided in correspondence with the pair of introduction ports 64.
In the above configuration, a platinum alloy may be used instead of platinum.

・保護管60の閉端部61の内面62には、保護管60の基端側へ突出する半球状の突部63を一体に設けるようにしたが、突部63を別体に形成し保護管60の基端側へ突出するように設置してもよい。   The hemispherical protrusion 63 that protrudes toward the base end side of the protective tube 60 is integrally provided on the inner surface 62 of the closed end portion 61 of the protective tube 60. However, the protrusion 63 is formed separately and protected. You may install so that it may protrude to the base end side of the pipe | tube 60. FIG.

・上記実施形態では、突部63を半球状としたが、図9に示されるように、突部63を円錐状としてもよい。すなわち、測定電極を点接触にて挟持することができる形状であれば円柱状、角柱状、角錐状等でも良い。   In the above embodiment, the protrusion 63 is hemispherical, but the protrusion 63 may be conical as shown in FIG. In other words, a columnar shape, a prismatic shape, a pyramid shape, or the like may be used as long as the measurement electrode can be held by point contact.

・上記実施形態では、セル閉端部51の内面に白金を塗布して基準電極52としたが、白金メッシュ、白金板、又は白金泊等を挟圧保持して基準電極としてもよい。
・上記実施形態では、測定電極53を白金ペーストからなる主測定電極53aと白金メッシュからなる補助測定電極53bとから構成したが、白金ペーストからなる主測定電極53aとディスク状の白金ディスクからなる補助測定電極53bとから構成してもよい。また、測定電極53は、セル抵抗を安定させることができる構成であれば、これに限らず採用してもよい。
In the above embodiment, platinum is applied to the inner surface of the cell closed end portion 51 to form the reference electrode 52. However, a platinum mesh, a platinum plate, a platinum plate, or the like may be held under pressure to serve as the reference electrode.
In the above embodiment, the measurement electrode 53 is composed of the main measurement electrode 53a made of platinum paste and the auxiliary measurement electrode 53b made of platinum mesh. However, the main measurement electrode 53a made of platinum paste and the auxiliary electrode made of disc-shaped platinum disk are used. You may comprise from the measurement electrode 53b. The measurement electrode 53 is not limited to this as long as the cell resistance can be stabilized.

・上記実施形態では、保護管60に一対の導入口64を設けたが、測定電極53が露出状態となれば、1個のみ導入口64を設けてもよい。また、保護管60に3個以上の導入口64を設けてもよい。   In the above embodiment, the protective tube 60 is provided with a pair of introduction ports 64. However, if the measurement electrode 53 is exposed, only one introduction port 64 may be provided. Further, three or more introduction ports 64 may be provided in the protective tube 60.

・上記実施形態では、貫通孔65を断面円形状としたが、断面長円形状としてもよい。
・上記実施形態では、保護管60の閉端部61に貫通孔65を4個形成したが、1,2,3個又は、5個以上形成してもよい。
In the above embodiment, the through hole 65 has a circular cross section, but may have an elliptical cross section.
In the above embodiment, the four through holes 65 are formed in the closed end portion 61 of the protective tube 60. However, 1, 2, 3 or 5 or more may be formed.

・上記実施形態では、保護管60の閉端部61に貫通孔65を形成したが、導入口64によって被測定ガスが保護管60内に十分導入されるならば、省略した構成を採用してもよい。   In the above embodiment, the through hole 65 is formed in the closed end portion 61 of the protective tube 60. However, if the gas to be measured is sufficiently introduced into the protective tube 60 by the introduction port 64, the omitted configuration is adopted. Also good.

・上記実施形態では、気密構造であるケース20及びセル保持部材40を介してジルコニアセル50をセンサ本体に取り付けたが、ジルコニアセル50からの基準ガスの漏れを検知して基準ガスの供給を停止できる場合、大気と炉内との圧力差が小さく炉内への漏れが少ない場合、気密構造の必要のない場合等であれば、気密構造を省略してもよい。   In the above embodiment, the zirconia cell 50 is attached to the sensor body via the case 20 having the airtight structure and the cell holding member 40, but the reference gas leakage from the zirconia cell 50 is detected and the supply of the reference gas is stopped. If possible, the airtight structure may be omitted if the pressure difference between the atmosphere and the furnace is small and the leakage into the furnace is small, or if no airtight structure is required.

・上記実施形態では、供給路2と排出路3との基端にガス流を止める手段として図示しない電磁弁を設けたが、逆止弁、過流防止弁、手動バルブ等の何らかのガス流を止める手段が設けられていればよい。   In the above embodiment, an electromagnetic valve (not shown) is provided as a means for stopping the gas flow at the base ends of the supply path 2 and the discharge path 3, but any gas flow such as a check valve, an overflow prevention valve, or a manual valve is provided. It is sufficient that a means for stopping is provided.

1…酸素センサ、20…気密ケース、21,23…ケース接続フランジ、24…Oリング、25…気密保持フランジ、26…リング溝、30…アダプタ、31…基準エア管、32…エア管連結部材、33…リード線、34…取付金具、35…付勢ばね、36…セル抑え部材、37…セル付勢ばね、38…ばね取付突部、40…セル保持部材、41…凹部、42…保持空間、43…バックアップリング、44…Oリング、50…ジルコニアセル、51…セル閉端部、52…基準電極、53…測定電極、53a…主測定電極、53b…補助測定電極、60…保護管、61…閉端部、62…内面、63…突部、64…導入口、64a…基端側端面、64b…閉端部側端面、65…貫通孔、66…炉取付フランジ。   DESCRIPTION OF SYMBOLS 1 ... Oxygen sensor, 20 ... Airtight case, 21, 23 ... Case connection flange, 24 ... O-ring, 25 ... Airtight holding flange, 26 ... Ring groove, 30 ... Adapter, 31 ... Reference air pipe, 32 ... Air pipe connecting member 33 ... Lead wire, 34 ... Mounting bracket, 35 ... Biasing spring, 36 ... Cell restraining member, 37 ... Cell biasing spring, 38 ... Spring mounting projection, 40 ... Cell holding member, 41 ... Recess, 42 ... Holding Space, 43 ... Backup ring, 44 ... O-ring, 50 ... Zirconia cell, 51 ... Cell closed end, 52 ... Reference electrode, 53 ... Measurement electrode, 53a ... Main measurement electrode, 53b ... Auxiliary measurement electrode, 60 ... Protection tube , 61 ... closed end, 62 ... inner surface, 63 ... projection, 64 ... introduction port, 64a ... proximal end side end face, 64b ... closed end side end face, 65 ... through hole, 66 ... furnace mounting flange.

Claims (6)

有底円筒形状の固体電解質体と、当該固体電解質体の閉端部の内外両面に対向する一対の電極と、前記固体電解質体を収容するとともに、被測定ガスの導入口を有する有底円筒形状の外筒管とを備え、前記閉端部の内面の電極が基準ガスに接触する基準電極として機能し、前記閉端部の外面の電極が前記被測定ガスに接触する測定電極として機能し、前記閉端部の外面と前記外筒管の閉端部の内面とによって前記測定電極を狭圧する酸素センサにおいて、
前記固体電解質体の閉端部及び前記測定電極が露出するように前記外筒管に前記導入口を形成した
ことを特徴とする酸素センサ。
A bottomed cylindrical solid electrolyte body, a pair of electrodes facing both inner and outer surfaces of the closed end portion of the solid electrolyte body, and a bottomed cylindrical shape containing the solid electrolyte body and having an inlet for a gas to be measured And the outer electrode of the closed end functions as a reference electrode in contact with a reference gas, and the outer electrode of the closed end functions as a measurement electrode in contact with the gas to be measured. In the oxygen sensor that narrows the measurement electrode by the outer surface of the closed end and the inner surface of the closed end of the outer tube,
The oxygen sensor, wherein the introduction port is formed in the outer tube so that the closed end portion of the solid electrolyte body and the measurement electrode are exposed.
請求項1に記載の酸素センサにおいて、
前記外筒管の閉端部の内面に前記測定電極側へ突出する突部を設け、
前記突部と前記閉端部の外面とによって前記測定電極を狭圧する
ことを特徴とする酸素センサ。
The oxygen sensor according to claim 1, wherein
Providing a protrusion projecting toward the measurement electrode on the inner surface of the closed end of the outer tube,
The oxygen sensor is characterized in that the measurement electrode is narrowed by the protrusion and the outer surface of the closed end.
請求項1又は2に記載の酸素センサにおいて、
前記測定電極は、前記閉端部の外面に設置される主測定電極と該主測定電極の外面に設置される補助測定電極とを備え、
前記補助測定電極を前記主測定電極よりも大きく形成した
ことを特徴とする酸素センサ。
The oxygen sensor according to claim 1 or 2,
The measurement electrode includes a main measurement electrode installed on the outer surface of the closed end and an auxiliary measurement electrode installed on the outer surface of the main measurement electrode,
The oxygen sensor, wherein the auxiliary measurement electrode is formed larger than the main measurement electrode.
請求項1〜3のいずれか一項に記載の酸素センサにおいて、
前記外筒管の先端には、外面から内面へ貫通する貫通孔を形成した
ことを特徴とする酸素センサ。
The oxygen sensor according to any one of claims 1 to 3,
An oxygen sensor characterized in that a through-hole penetrating from the outer surface to the inner surface is formed at the tip of the outer tube.
請求項1〜4のいずれか一項に記載の酸素センサにおいて、
前記外筒管の内面及び外面の少なくとも一方に触媒部材を設けた
ことを特徴とする酸素センサ。
In the oxygen sensor according to any one of claims 1 to 4,
An oxygen sensor, wherein a catalyst member is provided on at least one of an inner surface and an outer surface of the outer tube.
請求項1〜5のいずれか一項に記載の酸素センサにおいて、
前記固体電解質体は、センサ本体に対して気密構造の気密ケースを介して取り付けた
ことを特徴とする酸素センサ。
In the oxygen sensor according to any one of claims 1 to 5,
The oxygen sensor is characterized in that the solid electrolyte body is attached to the sensor body via an airtight case having an airtight structure.
JP2011153973A 2010-07-20 2011-07-12 Oxygen sensor Withdrawn JP2012042458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153973A JP2012042458A (en) 2010-07-20 2011-07-12 Oxygen sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010162920 2010-07-20
JP2010162920 2010-07-20
JP2011153973A JP2012042458A (en) 2010-07-20 2011-07-12 Oxygen sensor

Publications (1)

Publication Number Publication Date
JP2012042458A true JP2012042458A (en) 2012-03-01

Family

ID=45898931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153973A Withdrawn JP2012042458A (en) 2010-07-20 2011-07-12 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP2012042458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432429B2 (en) 2020-04-13 2024-02-16 東京窯業株式会社 solid electrolyte sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432429B2 (en) 2020-04-13 2024-02-16 東京窯業株式会社 solid electrolyte sensor

Similar Documents

Publication Publication Date Title
US8414751B2 (en) Gas sensor with test gas generator
US7607340B2 (en) Gas sensor
JP2009544020A (en) Protective device for humidity sensor in erosive outside air
US7645367B2 (en) Gas-measuring system with gas sensor and gas generator
US10837938B2 (en) Gas sensor element and gas sensor unit
JP2007248313A (en) Constant-potential electrolysis type gas sensor
JP4529140B2 (en) Water vapor sensor
JP2012042458A (en) Oxygen sensor
US20190323986A1 (en) Gas sensor
US6623612B2 (en) Sealing structure of gas sensor
JPWO2013168649A1 (en) Gas sensor
US20190041353A1 (en) Gas sensor
KR20110023408A (en) Pressure sensor with temperature-sensing element and mounting structure of the same
JP6890061B2 (en) Gas sensor
JP2005345300A (en) Pressure measurement instrument
JP2013134092A (en) Gas sensor
KR101081946B1 (en) Pressure sensor with a semi-permeable membrane and mounting structure of the same
JP2016164510A (en) Controlled-potential electrolysis gas sensor
JP4365796B2 (en) Gas analyzer
US20230168220A1 (en) Gas sensor, sensor element containment casing, and sealing method for use in sensor element containment casing
CN108680617B (en) Hydrogen sensor
JP7432429B2 (en) solid electrolyte sensor
EP0057393A1 (en) Probe for measuring partial pressure of oxygen
JP2013044630A (en) Electrochemical oxygen sensor and gas detector
JP2023148444A (en) Gas sensor and sensor element accommodation casing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007