JP2012041569A - Method for recovering valuable metal - Google Patents

Method for recovering valuable metal Download PDF

Info

Publication number
JP2012041569A
JP2012041569A JP2010180965A JP2010180965A JP2012041569A JP 2012041569 A JP2012041569 A JP 2012041569A JP 2010180965 A JP2010180965 A JP 2010180965A JP 2010180965 A JP2010180965 A JP 2010180965A JP 2012041569 A JP2012041569 A JP 2012041569A
Authority
JP
Japan
Prior art keywords
alloy
valuable metal
valuable metals
waste battery
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180965A
Other languages
Japanese (ja)
Other versions
JP5531851B2 (en
Inventor
Junichi Takahashi
純一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010180965A priority Critical patent/JP5531851B2/en
Publication of JP2012041569A publication Critical patent/JP2012041569A/en
Application granted granted Critical
Publication of JP5531851B2 publication Critical patent/JP5531851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently recovering valuable metals even when large amounts of waste batteries such as lithium ion batteries are to be treated.SOLUTION: The method for recovering valuable metals includes: a dry process of melting waste batteries and flux to recover slugs and an alloy of valuable metals; and a wet process of separating valuable metals from the alloy of valuable metals. The alloy of valuable metals in the dry process is obtained as a granular material, preferably as a granular material having an average surface area of 1 to 300 mm. Thereby, a dissolution rate in the wet process that is a rate-determining step can be improved, so that the treatment speed of the waste batteries as a whole can be improved.

Description

本発明は、例えばリチウムイオン電池などの廃電池に含有する有価金属を回収する方法に関する。   The present invention relates to a method for recovering valuable metals contained in a waste battery such as a lithium ion battery.

リチウムイオン電池などの、使用済みあるいは工程内の不良品である電池(以下廃電池という)をリサイクルし、含有する有価金属を回収しようとする処理方法には、大きく分けて乾式法と湿式法がある。   Treatment methods that recycle used or defective batteries (hereinafter referred to as waste batteries), such as lithium-ion batteries, and recover valuable metals contained in them are roughly divided into dry methods and wet methods. is there.

乾式法は、破砕したバッテリーを焙焼や熔融処理することによって行われ、回収対象であるニッケル、コバルト、銅などの元素を合金として回収し、鉄などの付加価値の低い元素をスラグとして回収するものである。   The dry method is performed by roasting or melting the crushed battery, and the elements such as nickel, cobalt, and copper that are to be recovered are recovered as an alloy, and the low-value-added elements such as iron are recovered as slag. Is.

例えば、特許文献1には、高温の加熱炉を使用し、廃電池にフラックスを添加し、スラグの繰り返し処理をすることで有価金属であるニッケルやコバルトを80%前後回収できる方法が開示されている。   For example, Patent Document 1 discloses a method capable of recovering about 80% of valuable metals such as nickel and cobalt by using a high-temperature heating furnace, adding flux to a waste battery, and repeatedly treating slag. Yes.

米国特許第7169206号公報US Pat. No. 7,169,206

しかしながら、乾式法で得られるのは合金であるため、最終的に有価金属を単独元素として回収するには更なる工程が必要である。この際に湿式工程を行なうことが考えられるが、湿式工程は、乾式工程に比べて溶解、沈殿などの単位操作に処理時間を要することから、単に乾式工程に湿式工程を組み合わせただけでは、湿式工程が生産上の律速段階となり、乾式法のメリットである大量迅速処理を充分に活かしきれないという問題点があった。   However, since what is obtained by the dry method is an alloy, an additional step is required to finally recover the valuable metal as a single element. It is conceivable to perform a wet process at this time. However, since the wet process requires processing time for unit operations such as dissolution and precipitation as compared with the dry process, the wet process is simply combined with the dry process. The process became the rate-limiting step in production, and there was a problem that the mass rapid processing that is the merit of the dry method could not be fully utilized.

そして、乾式工程後の合金からの具体的な有価金属の回収方法という点については上記の特許文献1にも開示されておらず、乾式法を用いて最終的に有価金属を単独元素として回収できる、経済的なシステムが求められている。   Further, the specific method for recovering valuable metals from the alloy after the dry process is not disclosed in the above-mentioned Patent Document 1, and finally the valuable metals can be recovered as a single element using the dry method. There is a need for an economic system.

本発明は以上の課題を解決するためになされたものであり、その目的は、乾式法のメリットを生かしてトータルの処理速度を向上させる廃電池からの有価金属の回収方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for recovering valuable metals from a waste battery that improves the total processing speed by taking advantage of the dry method. .

本発明者らは、大量処理が可能な乾式工程の後に湿式工程を組み合わせることに着目し、更に、この際に乾式工程での合金形状を選択することで、後の湿式工程での溶解速度を大幅に向上させることが可能な方法を見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors pay attention to combining a wet process after a dry process capable of mass processing, and further, at this time, by selecting an alloy shape in the dry process, the dissolution rate in the subsequent wet process can be reduced. The present inventors have found a method that can be greatly improved and have completed the present invention. More specifically, the present invention provides the following.

(1) 廃電池からの有価金属回収方法であって、
前記廃電池とフラックスとを熔融して、スラグと、有価金属の合金と、を回収する乾式工程と、
前記有価金属の合金から有価金属を分離する湿式工程と、を備え、
前記乾式工程における前記有価金属の合金を粒状物として得ることを特徴とする有価金属回収方法。
(1) A method for recovering valuable metals from waste batteries,
A dry process of melting the waste battery and flux to recover slag and an alloy of valuable metals;
A wet process for separating the valuable metal from the alloy of the valuable metal,
A valuable metal recovery method characterized in that the valuable metal alloy in the dry process is obtained as a granular material.

(2) 前記粒状物の平均表面積が1mmから300mmである(1)記載の有価金属回収方法。 (2) The valuable metal recovery method according to (1), wherein the granular material has an average surface area of 1 mm 2 to 300 mm 2 .

(3) 前記廃電池がリチウムイオン電池である(1)又は(2)記載の有価金属回収方法。   (3) The valuable metal recovery method according to (1) or (2), wherein the waste battery is a lithium ion battery.

(4) 前記廃電池の処理量が1日あたり1t以上である(1)から(3)いずれか記載の有価金属回収方法。   (4) The valuable metal recovery method according to any one of (1) to (3), wherein a processing amount of the waste battery is 1 t or more per day.

本発明によれば、乾式工程における有価金属の合金を粒状物、すなわちショット化合金として得ることによって、湿式工程での溶解性を向上させ、乾式法の長所を充分に生かして廃電池の処理能力を大幅に向上できる。   According to the present invention, by obtaining an alloy of valuable metals in the dry process as a granular material, that is, a shot alloy, the solubility in the wet process is improved, and the processing capacity of the waste battery is fully exploited by the advantages of the dry process. Can be greatly improved.

本発明の一例である、廃電池からの有価金属回収方法を示すフローチャートである。It is a flowchart which shows the valuable metal collection | recovery method from a waste battery which is an example of this invention. 湿式工程の一例を示すフローチャートである。It is a flowchart which shows an example of a wet process.

以下、本発明の一実施形態について図面を参照しながら説明する。図1は、廃電池からの有価金属回収方法の一例を示すフローチャートである。本実施形態においては、廃電池がリチウムイオン電池である場合について説明するが、本発明はこれに限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an example of a valuable metal recovery method from a waste battery. In the present embodiment, a case where the waste battery is a lithium ion battery will be described, but the present invention is not limited to this.

<全体プロセス>
図1に示すように、この有価金属回収方法は、廃電池前処理工程ST10と、乾式工程S20と、湿式工程S30とからなる。このように、本発明においては乾式工程S20において合金を得て、その後に湿式工程S30によって有価金属元素を分離回収するトータルプロセスである。なお、本発明における廃電池とは、使用済み電池のみならず、工程内の不良品なども含む意味である。また、処理対象に廃電池を含んでいればよく、廃電池以外のその他の金属や樹脂などを適宜加えることを排除するものではない。その場合にはその他の金属や樹脂を含めて本発明の廃電池である。
<Overall process>
As shown in FIG. 1, this valuable metal recovery method includes a waste battery pretreatment process ST10, a dry process S20, and a wet process S30. Thus, the present invention is a total process in which an alloy is obtained in the dry process S20, and then valuable metal elements are separated and recovered in the wet process S30. In addition, the waste battery in the present invention means not only a used battery but also a defective product in the process. Moreover, what is necessary is just to include a waste battery in the process target, and adding other metals, resin, etc. other than a waste battery suitably is not excluded. In that case, it is a waste battery of the present invention including other metals and resins.

<廃電池前処理工程ST10>
廃電池前処理工程ST10は、廃電池の爆発防止を目的として行われる。すなわち、廃電池は密閉系であり内部に電解液などを有しているため、このまま乾式の熔融処理を行なうと爆発の恐れがあり危険である。このため、何らかの方法でガス抜きのための開孔処理を施す必要がある。これが廃電池前処理工程ST10を行う目的である。
<Waste battery pretreatment step ST10>
The waste battery pretreatment step ST10 is performed for the purpose of preventing explosion of the waste battery. That is, since the waste battery is a closed system and has an electrolytic solution or the like inside, if the dry melting process is performed as it is, there is a risk of explosion and it is dangerous. For this reason, it is necessary to perform an opening process for degassing by some method. This is the purpose of performing the waste battery pretreatment step ST10.

廃電池前処理工程ST10の具体的な方法は特に限定されないが、例えば針状の刃先で廃電池に物理的に開孔すればよい。なお、本発明においては後の乾式処理において熔融工程を経るために、個々の部材の分離などは不要である。   Although the specific method of waste battery pre-processing process ST10 is not specifically limited, For example, what is necessary is just to physically open a hole in a waste battery with a needle-shaped blade edge. In the present invention, since a melting process is performed in the subsequent dry processing, it is not necessary to separate individual members.

<乾式工程20>
乾式工程S20においては、廃電池前処理工程ST10で得られた前処理済廃電池を1500℃付近で熔融する熔融工程ST21を行う。熔融工程ST21は従来公知の電気炉などで行うことができる。
<Dry process 20>
In the dry process S20, a melting process ST21 is performed in which the pretreated waste battery obtained in the waste battery pretreatment process ST10 is melted at around 1500 ° C. Melting process ST21 can be performed with a conventionally known electric furnace or the like.

なお、ここで酸化度を調整してニッケル、コバルト、銅の回収率を向上するために空気あるいは酸素あるいは酸素富化空気を吹き込む。例えばリチウムイオン電池の正極材料には、アルミ箔が使用されている。また、負極材料としては、カーボンが用いられている。さらに電池の外部シェルは鉄製あるいはアルミ製であり、集合電池の外部パッケージにはプラスチックが用いられている。これらの材質は基本的に還元剤として作用する。このためこれらの材料を熔融しガスやスラグ化するトータルの反応は酸化反応になる。そのため、系内に酸素導入が必要となる。熔融工程ST21において空気を導入しているのはこのためである。   Here, air, oxygen, or oxygen-enriched air is blown in order to adjust the degree of oxidation and improve the recovery rate of nickel, cobalt, and copper. For example, aluminum foil is used as a positive electrode material for lithium ion batteries. Carbon is used as the negative electrode material. Further, the outer shell of the battery is made of iron or aluminum, and plastic is used for the outer package of the assembled battery. These materials basically act as a reducing agent. For this reason, the total reaction of melting these materials into gas or slag is an oxidation reaction. Therefore, it is necessary to introduce oxygen into the system. This is why air is introduced in the melting step ST21.

他に、熔融工程ST21では、後述するスラグ分離ST22で分離されるスラグの融点低下のためにSiO及びCaOなどをフラックスとして添加する。 In addition, in the melting step ST21, SiO 2, CaO, or the like is added as a flux in order to lower the melting point of the slag separated in the slag separation ST22 described later.

熔融工程ST21によって、有価金属たるニッケル、コバルト、銅の合金と、鉄やアルミなどの酸化物であるスラグとが生成する。両者は比重が異なるために、両者はそれぞれスラグ分離S22、合金分離ST23でそれぞれ回収される。このとき、スラグ中に酸化され易いアルミが含まれると、高融点で高粘度のスラグとしてアルミナが生成するが、上記のように熔融工程ST21においてスラグの融点低下のためにSiO2及びCaOを添加しているために、スラグの融点低下による低粘性化を図ることができる。このためスラグ分離22を効率的に行なうことができる。なお、熔融工程ST21における粉塵や排ガスなどは、従来公知の排ガス処理ST24において無害化処理される。   Through the melting step ST21, an alloy of nickel, cobalt, and copper, which are valuable metals, and slag, which is an oxide such as iron or aluminum, are generated. Since they have different specific gravities, they are recovered respectively by slag separation S22 and alloy separation ST23. At this time, when aluminum that is easily oxidized is contained in the slag, alumina is produced as a slag having a high melting point and a high viscosity. As described above, SiO2 and CaO are added to lower the melting point of the slag in the melting step ST21. Therefore, the viscosity can be reduced by lowering the melting point of the slag. For this reason, the slag separation 22 can be performed efficiently. Note that dust, exhaust gas, and the like in the melting step ST21 are detoxified in a conventionally known exhaust gas treatment ST24.

合金分離ST23を経た後、更に得られた合金から脱リン工程ST25を行なう。リチウムイオン電池においては、有機溶剤に炭酸エチレンや炭酸ジエチルなど、リチウム塩としてLiPF(ヘキサフルオロリン酸リチウム)などが電解質として使用される。このLiPF中のリンは比較的酸化されやすい性質を有するものの、鉄、コバルト、ニッケルなど鉄族元素との親和力も比較的高い性質がある。合金中のリンは、乾式処理で得た合金から各元素を金属として回収する後工程の湿式工程での除去が難しく、不純物として処理系内に蓄積するために操業の継続ができなくなる。このため、この脱リン工程ST25で除去する。 After the alloy separation ST23, a dephosphorization step ST25 is further performed from the obtained alloy. In a lithium ion battery, an organic solvent such as ethylene carbonate or diethyl carbonate, LiPF 6 (lithium hexafluorophosphate) or the like is used as an electrolyte as a lithium salt. Although phosphorus in this LiPF 6 has the property of being relatively easily oxidized, it has a property of relatively high affinity with iron group elements such as iron, cobalt and nickel. Phosphorus in the alloy is difficult to remove in the subsequent wet process of recovering each element as a metal from the alloy obtained by the dry process, and accumulates as impurities in the processing system, so that the operation cannot be continued. For this reason, it is removed in this dephosphorization step ST25.

具体的には、反応によりCaOを生じる石灰など添加し、空気などの酸素含有ガスを吹き込むことで合金中のリンを酸化してCaO中に吸収させることができる。   Specifically, lime that generates CaO by reaction is added and oxygen-containing gas such as air is blown to oxidize phosphorus in the alloy and absorb it in CaO.

このようにして得られる合金は、廃電池がリチウムイオン電池の場合、正極材物質由来のコバルト、ニッケル、電解質由来のリチウム、負極材導電物質由来の銅などが成分となる。   When the waste battery is a lithium ion battery, the alloy obtained in this way is composed of cobalt, nickel derived from the positive electrode material, lithium derived from the electrolyte, copper derived from the conductive material of the negative electrode, and the like.

<合金ショット化工程S26>
次に、本発明の特徴である合金ショット化工程ST26について説明する。本発明においては乾式工程S20の最後に合金を冷却して得る際に、これを粒状物(ショット化合金又は単にショットとも言う)として得る。これにより、後の湿式工程S30における溶解工程ST31を短時間で行なうことができる。
<Alloy shot process S26>
Next, the alloy shot forming step ST26 that is a feature of the present invention will be described. In the present invention, when the alloy is cooled and obtained at the end of the dry step S20, it is obtained as a granular material (also called a shot alloy or simply a shot). Thereby, melt | dissolution process ST31 in subsequent wet process S30 can be performed in a short time.

後述するように、本発明は乾式工程を広義の前処理とすることで不純物の少ない合金を得るとともに湿式工程に投入する処理量も大幅に減らすことで、乾式工程と湿式工程とを組み合わせることを可能とする。しかしながら、湿式工程は基本的に大量処理に向かない複雑なプロセスであるので、乾式工程と組み合わせるためには湿式工程の処理時間、なかでも溶解工程ST31を短時間で行なう必要がある。そこで、本発明においては合金を粒状物化することによって溶解時間を短縮することができる。   As will be described later, the present invention combines the dry process and the wet process by making the dry process a pretreatment in a broad sense to obtain an alloy with few impurities and greatly reducing the amount of processing to be put into the wet process. Make it possible. However, since the wet process is basically a complicated process that is not suitable for mass processing, it is necessary to perform the processing time of the wet process, especially the dissolution process ST31 in a short time in order to combine with the dry process. Therefore, in the present invention, the melting time can be shortened by granulating the alloy.

ここで、粒状物とは、表面積で言えば平均表面積が1mmから300mmであることが好ましく、平均重量で言えば0.4mgから2.2gの範囲であることが好ましい。この範囲の下限未満であると、粒子が細かすぎて取り扱いが困難になること、さらに反応が早すぎて過度の発熱により一度に溶解することができ難くなるという問題が生じるので好ましくなく、この範囲の上限を超えると、後の湿式工程での溶解速度が低下するので好ましくない。合金をショット化して粒状化する方法は、従来公知の流水中への熔融金属の流入による急冷という方法を用いることができる。 Here, the granules, it is preferable that the average surface area in terms of the surface area is 300 mm 2 from 1 mm 2, it is preferable from 0.4mg Speaking in average weight in the range of 2.2 g. If it is less than the lower limit of this range, it is not preferable because the particles are too fine and difficult to handle, and further, the reaction is too early and it becomes difficult to dissolve at once due to excessive heat generation. If the upper limit is exceeded, the dissolution rate in the subsequent wet process decreases, which is not preferable. As a method of granulating the alloy by shot, a conventionally known method of quenching by inflow of molten metal into flowing water can be used.

<湿式工程S30> <Wet process S30>

廃電池からの有価金属回収プロセスは、特許文献1のように合金として回収したままでは意味がなく、有価金属元素として回収する必要がある。そして、本発明においては、廃電池を乾式工程であらかじめ処理することによって、湿式では取り除き難いリンなどの不純物を低減している。そして、上記のような有価金属のみの合金とすることで、後の湿式工程を単純化することができる。このとき、この湿式での処理量は投入廃電池の量にくらべて質量比で1/4から1/3程度まで少なくなっていることも湿式工程との組み合わせを有利にする。   The valuable metal recovery process from the waste battery is meaningless if it is recovered as an alloy as in Patent Document 1, and needs to be recovered as a valuable metal element. In the present invention, waste batteries are treated in advance in a dry process to reduce impurities such as phosphorus that are difficult to remove by a wet process. And the latter wet process can be simplified by setting it as the alloy only of the above valuable metals. At this time, it is also advantageous for the combination with the wet process that the wet processing amount is reduced from about ¼ to about 3 in mass ratio as compared with the amount of the input waste battery.

このように、本発明は、乾式工程を広義の前処理とすることで不純物の少ない合金を得るとともに処理量も大幅に減らすことで、乾式工程と湿式工程を組み合わせることを工業的に可能とする点に特徴がある。   As described above, the present invention makes it possible to industrially combine a dry process and a wet process by obtaining an alloy with few impurities by making the dry process a pretreatment in a broad sense and greatly reducing the processing amount. There is a feature in the point.

湿式工程は従来公知の方法を用いることができ、特に限定されない。一例を挙げれば、廃電池がリチウムイオン電池の場合の、コバルト、ニッケル、銅、鉄からなる合金の場合、図2に示すように、酸溶解(溶解工程ST31)の後、脱鉄、銅分離回収、ニッケル/コバルト分離、ニッケル回収及び、コバルト回収という手順で元素分離工程ST32経ることにより有価金属元素を回収することができる。そして、本発明においては、溶解工程ST31に投入する合金が粒状物のショット化合金であるため、速やかな酸溶解が可能となる。この点については実施例において説明する。   A conventionally well-known method can be used for a wet process, and it does not specifically limit. For example, in the case where the waste battery is a lithium ion battery, in the case of an alloy made of cobalt, nickel, copper, and iron, as shown in FIG. The valuable metal element can be recovered through the element separation step ST32 in the procedure of recovery, nickel / cobalt separation, nickel recovery, and cobalt recovery. And in this invention, since the alloy thrown into melt | dissolution process ST31 is a granular shot-ized alloy, rapid acid melt | dissolution is attained. This point will be described in Examples.

<処理量>
本発明の方法は大量処理に向く乾式工程と少量処理に向く湿式工程を組み合わせた従来にない廃電池のリサイクル方法である。そして、乾式工程を最初に行なうために大量処理が可能である。少なくとも1日あたり1t以上、好ましくは1日あたり10t以上である場合に本発明を好適に使用できる。
<Processing amount>
The method of the present invention is an unprecedented method for recycling waste batteries, which combines a dry process suitable for large-scale treatment and a wet process suitable for small-scale treatment. And a large amount of processing is possible to perform the dry process first. The present invention can be suitably used when it is at least 1 t or more per day, preferably 10 t or more per day.

廃電池の種類は特に限定されないが、コバルトやリチウムという稀少金属が回収でき、その使用用途も自動車用電池などに拡大されており、大規模な回収工程が必要となるリチウムイオン電池が本発明の処理対象として好ましく例示できる。   The type of waste battery is not particularly limited, but a rare metal such as cobalt or lithium can be recovered, and its use has been expanded to batteries for automobiles. A lithium ion battery that requires a large-scale recovery process is the present invention. It can illustrate preferably as a process target.

以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

<実施例1>
電気炉内に設置したアルミナ製るつぼ内において、廃リチウム電池をフラックスとともに1450℃で熔融し、酸素を融体中へ吹き込むことにより酸化して得られた合金を、注射器の先にシリコンチューブで繋げた内径約4mmの石英管内に吸い上げ、金属性容器内に張った約20Lの水中に水を攪拌させながら投下した。1回の合金投下量は約3gであった。この操作を数回繰り返した後、水を抜いて、容器底部で粒状になった合金を回収した。合金は球状のショットになっており、粒径はほぼ全量1〜3mmの範囲内(表面積で3.1mmから28.3mmの範囲内)にあった。このショット化合金約15gを200mlの濃度60重量%の硫酸溶液に入れ、約60℃で溶解処理を行ったところ、1時間以内に全量が溶解した。
<Example 1>
In an alumina crucible installed in an electric furnace, an alloy obtained by melting a waste lithium battery with a flux at 1450 ° C and oxidizing it by blowing oxygen into the melt is connected to the tip of a syringe with a silicon tube. The sample was sucked into a quartz tube having an inner diameter of about 4 mm and dropped while stirring water in about 20 L of water stretched in a metallic container. The amount of dropped alloy at one time was about 3 g. After repeating this operation several times, water was drained and the alloy which became granular at the bottom of the container was recovered. Alloy has become spherical shot, the particle size was approximately within the range of the total amount 1 to 3 mm (in the range from 3.1 mm 2 to 28.3 mm 2 in surface area). About 15 g of this shot alloy was put into 200 ml of a 60 wt% sulfuric acid solution and dissolved at about 60 ° C., and the entire amount was dissolved within 1 hour.

<比較例1>
実施例1と同様の条件で熔融、酸化処理を行った後、そのまま炉内で冷却した後、スラグと分離して得られたボタン状の合金16.5gに対し、実施例1と同様の溶解処理を行ったところ、8時間以上経っても未溶解合金が残留していた。
<Comparative Example 1>
After melting and oxidizing treatment under the same conditions as in Example 1, after cooling in the furnace as it is, 16.5 g of a button-like alloy obtained by separating from slag was dissolved in the same way as in Example 1. When the treatment was performed, the undissolved alloy remained even after 8 hours or more.

ST10 廃電池前処理工程
S20 乾式工程
ST21 熔融工程
ST22 スラグ分離
ST23 合金分離
ST24 排ガス処理
ST25 脱リン工程
ST26 合金ショット化工程
S30 湿式工程
ST31 溶解工程
ST32 元素分離工程
ST10 Waste battery pretreatment process S20 Dry process ST21 Melting process ST22 Slag separation ST23 Alloy separation ST24 Exhaust gas treatment ST25 Dephosphorization process ST26 Alloy shot process S30 Wet process ST31 Dissolution process ST32 Element separation process

Claims (4)

廃電池からの有価金属回収方法であって、
前記廃電池とフラックスとを熔融して、スラグと、有価金属の合金と、を回収する乾式工程と、
前記有価金属の合金から有価金属を分離する湿式工程と、を備え、
前記乾式工程における前記有価金属の合金を粒状物として得ることを特徴とする有価金属回収方法。
A method for recovering valuable metals from waste batteries,
A dry process of melting the waste battery and flux to recover slag and an alloy of valuable metals;
A wet process for separating the valuable metal from the alloy of the valuable metal,
A valuable metal recovery method characterized in that the valuable metal alloy in the dry process is obtained as a granular material.
前記粒状物の平均表面積が1mmから300mmである請求項1記載の有価金属回収方法。 The valuable metal recovery method according to claim 1, wherein the granular material has an average surface area of 1 mm 2 to 300 mm 2 . 前記廃電池がリチウムイオン電池である請求項1又は2に記載の有価金属回収方法。   The valuable metal recovery method according to claim 1, wherein the waste battery is a lithium ion battery. 前記廃電池の処理量が1日あたり1t以上である請求項1から3いずれか記載の有価金属回収方法。   The valuable metal recovery method according to any one of claims 1 to 3, wherein a processing amount of the waste battery is 1 t or more per day.
JP2010180965A 2010-08-12 2010-08-12 Valuable metal recovery method Active JP5531851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180965A JP5531851B2 (en) 2010-08-12 2010-08-12 Valuable metal recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180965A JP5531851B2 (en) 2010-08-12 2010-08-12 Valuable metal recovery method

Publications (2)

Publication Number Publication Date
JP2012041569A true JP2012041569A (en) 2012-03-01
JP5531851B2 JP5531851B2 (en) 2014-06-25

Family

ID=45898209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180965A Active JP5531851B2 (en) 2010-08-12 2010-08-12 Valuable metal recovery method

Country Status (1)

Country Link
JP (1) JP5531851B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092826A1 (en) 2017-11-09 2019-05-16 株式会社Subaru Processing method
JP2020029586A (en) * 2018-08-21 2020-02-27 住友金属鉱山株式会社 Method for separating copper, nickel and cobalt
JP2021070843A (en) * 2019-10-30 2021-05-06 住友金属鉱山株式会社 Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery
WO2022019172A1 (en) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 Method for recovering valuable metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092826A1 (en) 2017-11-09 2019-05-16 株式会社Subaru Processing method
JP2020029586A (en) * 2018-08-21 2020-02-27 住友金属鉱山株式会社 Method for separating copper, nickel and cobalt
JP7052635B2 (en) 2018-08-21 2022-04-12 住友金属鉱山株式会社 Separation method of copper, nickel and cobalt
JP2021070843A (en) * 2019-10-30 2021-05-06 住友金属鉱山株式会社 Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery
JP7341395B2 (en) 2019-10-30 2023-09-11 住友金属鉱山株式会社 Method for recovering copper, nickel, and cobalt from waste lithium-ion batteries
WO2022019172A1 (en) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 Method for recovering valuable metal

Also Published As

Publication number Publication date
JP5531851B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5434934B2 (en) Valuable metal recovery method
JP5360118B2 (en) Valuable metal recovery method
JP5853585B2 (en) Valuable metal recovery method
JP5621437B2 (en) Cobalt recovery method
WO2013080266A1 (en) Method for recovering valuable metal
KR102606562B1 (en) Method for producing precursor compounds for lithium battery cathodes
Dobó et al. A review on recycling of spent lithium-ion batteries
JP5625767B2 (en) Valuable metal recovery method
JP5569457B2 (en) Valuable metal recovery method
WO2012111693A1 (en) Valuable metal recovery method
CN110719963B (en) Treatment method of lithium ion battery waste
JP2012251220A (en) Method for recovering valuable metal
JP7338326B2 (en) Methods of recovering valuable metals
JP5531851B2 (en) Valuable metal recovery method
JP5434935B2 (en) Valuable metal recovery method
JP2021031762A (en) Process for recovering valuable metal
WO2021205903A1 (en) Method for recovering valuable metal
JP2021066903A (en) Method for recovering valuable metal
JP7363206B2 (en) How to recover valuable metals
JP2022547698A (en) How to dispose of waste batteries
JP7342989B2 (en) Manufacturing method of valuable metals
WO2023228537A1 (en) Lithium-containing slag, and method for producing valuable metal
JP2023035435A (en) Manufacturing method of valuable metal
CN117500948A (en) Method for recovering battery material by reductive pyrometallurgical treatment
CN117500949A (en) Method for recovering battery material by hydrometallurgical treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5531851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150