JP2012040530A - Separation and recovering method of phosphorus component in wastewater and sewage - Google Patents

Separation and recovering method of phosphorus component in wastewater and sewage Download PDF

Info

Publication number
JP2012040530A
JP2012040530A JP2010185675A JP2010185675A JP2012040530A JP 2012040530 A JP2012040530 A JP 2012040530A JP 2010185675 A JP2010185675 A JP 2010185675A JP 2010185675 A JP2010185675 A JP 2010185675A JP 2012040530 A JP2012040530 A JP 2012040530A
Authority
JP
Japan
Prior art keywords
sewage
water
alkaline electrolyzed
component
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010185675A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kato
信行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INARI TEKKO KK
Original Assignee
INARI TEKKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INARI TEKKO KK filed Critical INARI TEKKO KK
Priority to JP2010185675A priority Critical patent/JP2012040530A/en
Publication of JP2012040530A publication Critical patent/JP2012040530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Fertilizers (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and efficient method in which the phosphorus component contained by high-concentration in wastewater and sewage is separated and collected simply and efficiently, and by the result, the phosphorus component concentration in the wastewater and sewage is reduced to about one severalth.SOLUTION: The method comprises such that an alkaline electrolytic water is made to act in the phosphorus component containing wastewater and sewage, thereby the phosphorus component is made to deposit as potassium dihydrogenphosphate and is separated and collected. A precipitate which makes the potassium dihydrogenphosphate obtained by the separation and collection a principal component is disclosed. In addition, a ferroelectric, piezoelectric element, electrooptical element, laser beam harmonic generating element, battery material or fertilizer which includes the potassium dihydrogenphosphate extracted from the precipitate as one component is disclosed.

Description

本発明は、排水・汚水中のリン成分をアルカリ電解水のみでの処理により分離・回収し、該リン成分を産業上有用なリン酸二水素カリウムとして回収・再利用する方法等に関する。   The present invention relates to a method for separating and recovering a phosphorus component in wastewater and sewage by treatment with only alkaline electrolyzed water, and recovering and reusing the phosphorus component as industrially useful potassium dihydrogen phosphate.

汚水・排水・汚泥の処理方法において、リン成分を除去・回収する試みが従来から行われてきた。   Attempts have been made to remove and collect phosphorus components in the methods for treating sewage, drainage and sludge.

特許文献1には、排水のリン除去方法が開示されており、該方法においてはジルコニューム・フェライトのようなリン吸着剤に排水のリンを吸着させた後に、該リン吸着剤に水酸化ナトリウムを作用させてリン酸を脱着し、得られたpH12〜13程度の強アルカリ性着脱液を冷却してリン酸ナトリウムを晶出し回収している。又、水酸化カリウムを作用させた場合には、得られるリン酸三カリウムの溶解度が高いので冷却しても晶出せず、着脱液をそのまま液体肥料として使用し得る、と記載されている。 Patent Document 1 discloses a method for removing phosphorus from wastewater. In this method, after phosphorus in wastewater is adsorbed to a phosphorus adsorbent such as zirconium ferrite, sodium hydroxide is allowed to act on the phosphorus adsorbent. Then, phosphoric acid is desorbed, and the obtained strong alkaline detachment liquid having a pH of about 12 to 13 is cooled to crystallize and collect sodium phosphate. Further, it is described that when potassium hydroxide is allowed to act, the resulting tripotassium phosphate has high solubility, so that it does not crystallize even when cooled, and the removable liquid can be used as it is as a liquid fertilizer.

特許文献2には汚水の生物処理から発生する余剰汚泥の処理方法が開示されており、該汚泥由来のリン可溶化液に塩化ナトリウム又は塩化カリウムを含む塩水を電気分解して得られる強アルカリ水を添加して中和しリンを再不溶化させて沈殿分離することが記載されている。   Patent Document 2 discloses a method for treating surplus sludge generated from biological treatment of sewage, and strongly alkaline water obtained by electrolyzing salt water containing sodium chloride or potassium chloride in phosphorus-solubilized liquid derived from the sludge. Is added to neutralize, re-insolubilize phosphorus, and precipitate separation is described.

更に、特許文献3には下水の処理に用いる微生物から脱水機で除去された脱離液等の被処理水中のリン晶析除去方法が開示されており、被該方法は塩化ナトリウムを加えた水道水を電気分解して得られる強アルカリ水を用いて処理水をアルカリ性に調整し、MAP法又はHAP法により、夫々、リン酸マグネシウムアンモニウム又はヒドロキシアパタイトを生成させるリン晶析反応を行うことを特徴とする。 Furthermore, Patent Document 3 discloses a method for removing phosphorus crystallization from water to be treated, such as a detachment liquid removed from microorganisms used for sewage treatment by a dehydrator, and the method is a tap water to which sodium chloride is added. It is characterized by adjusting the treated water to be alkaline using strong alkaline water obtained by electrolyzing water, and performing phosphorous crystallization reaction to produce magnesium ammonium phosphate or hydroxyapatite by MAP method or HAP method, respectively. And

又、特許文献4には、炭酸カリウムを含む電解質水溶液から強アルカリ性電解水を作製する方法が開示されている。 Patent Document 4 discloses a method for producing strong alkaline electrolyzed water from an aqueous electrolyte solution containing potassium carbonate.

特開2002−370086号公報Japanese Patent Laid-Open No. 2002-370086 特開2005−305254号公報JP 2005-305254 A 特開2007−105707号公報JP 2007-105707 A 特開2004−275841号公報JP 2004-275841 A

本発明は、排水・汚水中のリン成分を分離・回収するための簡便で効率的な方法を提供することを目的とする。 An object of this invention is to provide the simple and efficient method for isolate | separating and collect | recovering the phosphorus components in waste_water | drain / sewage.

すなわち、本発明は以下の各態様に係るものである。
[態様1]リン成分含有排水・汚水中にアルカリ電解水を作用させることによって、該リン成分をリン酸二水素カリウムとして析出させて分離回収する方法。
[態様2]リン成分含有排水が下水処理場またはゴミ処理場における燃焼装置より排出される燃焼スラグの冷却水に由来する、態様1記載の方法。
[態様3]アルカリ電解水が炭酸カリウムを電解質として用いる水の電気分解によって調製されたものである、態様1または2記載の方法。
[態様4]アルカリ電解水が以下の物理化学的性質を有する、態様3記載の方法。
(1)pH:11.50〜13.20
(2)電導率:2,000〜2,700mS/m
(3)起電力:-220〜-310mV
(4)溶解成分:KOH1%未満
(5)比重:1
[態様5]排水・汚水とアルカリ電解水との反応時のpHが6〜6.5であることを特徴とする、態様1ないし4のいずれか一項に記載の方法。
[態様6]リン成分含有排水・汚水に対して15〜50倍量のアルカリ電解水を添加混合することを特徴とする、態様1ないし5のいずれか一項に記載の方法。
[態様7]下水処理又はゴミ処理方法であって、態様1〜6のいずれか一項に記載の方法において析出したリン酸二水素カリウムを分離回収した後に得られる廃液を下水処理場又はゴミ処理場内で再利用することを特徴とする、前記方法。
[態様8]態様1〜7のいずれか一項に記載の方法において分離回収して得られたリン酸二水素カリウムを主成分とする析出物。
[態様9]態様8記載の析出物から抽出されたリン酸二水素カリウムを一成分として含有する、強誘電体、圧電素子、電気光学素子、レーザー光高調波発生素子、電池素材、又は、肥料。
That is, the present invention relates to the following aspects.
[Aspect 1] A method in which alkaline electrolyzed water is allowed to act on phosphorus component-containing wastewater / sewage to precipitate and separate and recover the phosphorus component as potassium dihydrogen phosphate.
[Aspect 2] The method according to Aspect 1, wherein the phosphorus component-containing wastewater is derived from cooling water of combustion slag discharged from a combustion device in a sewage treatment plant or a waste disposal plant.
[Aspect 3] The method according to Aspect 1 or 2, wherein the alkaline electrolyzed water is prepared by electrolysis of water using potassium carbonate as an electrolyte.
[Aspect 4] The method according to Aspect 3, wherein the alkaline electrolyzed water has the following physicochemical properties.
(1) pH: 11.50-13.20
(2) Conductivity: 2,000-2,700mS / m
(3) Electromotive force: -220 to -310mV
(4) Dissolved component: less than 1% KOH (5) Specific gravity: 1
[Aspect 5] The method according to any one of Aspects 1 to 4, wherein the pH at the time of the reaction between the waste water / sewage water and the alkaline electrolyzed water is 6 to 6.5.
[Aspect 6] The method according to any one of Aspects 1 to 5, wherein 15 to 50 times the amount of alkaline electrolyzed water is added to and mixed with the phosphorus component-containing wastewater / sewage.
[Aspect 7] A sewage treatment or garbage treatment method, wherein a waste liquid obtained after separating and recovering potassium dihydrogen phosphate precipitated in the method according to any one of aspects 1 to 6 is treated as a sewage treatment plant or garbage treatment. Said method characterized in that it is reused in the field.
[Aspect 8] A precipitate mainly composed of potassium dihydrogen phosphate obtained by separation and recovery in the method according to any one of Aspects 1 to 7.
[Aspect 9] Ferroelectric material, piezoelectric element, electro-optical element, laser light harmonic generation element, battery material, or fertilizer containing potassium dihydrogen phosphate extracted from the precipitate according to aspect 8 as one component .

本発明方法を用いてアルカリ電解水のみで排水・汚水を処理することによって、これらに高濃度で含まれているリン成分を簡便で効率的に分離・回収し、その結果、排水・汚水中のリン成分濃度を数分の一程度まで低下させることに成功した。更に、本発明方法によって、該リン成分は産業上有用なリン酸二水素カリウムとして回収・再利用することが可能となった。 By treating drainage and sewage with only alkaline electrolyzed water using the method of the present invention, phosphorus components contained in these in a high concentration can be easily and efficiently separated and recovered. We succeeded in reducing the phosphorus component concentration to a fraction of a fraction. Furthermore, according to the method of the present invention, the phosphorus component can be recovered and reused as industrially useful potassium dihydrogen phosphate.

下水処理場における処理フローを示す。The process flow in a sewage treatment plant is shown. 燃焼処理装置(設備)におけるリン成分含有排水の発生過程を示す。The generation | occurrence | production process of the phosphorus component containing waste_water | drain in a combustion processing apparatus (equipment) is shown. 定量貯水循環方式によるアルカリ電解水の製造方法・装置を示す。A method and apparatus for producing alkaline electrolyzed water by a fixed water storage circulation system is shown. リン酸二水素カリウムの分離回収方法の一例を示す。An example of a method for separating and recovering potassium dihydrogen phosphate will be described. 本発明方法で析出した物質のX線解析分析により得られたデータを示す。The data obtained by the X-ray analysis analysis of the substance deposited by the method of the present invention are shown.

本発明は、リン成分含有排水・汚水中にアルカリ電解水を作用させることによって、該リン成分をリン酸二水素カリウムとして析出させて分離回収する方法に係る。 The present invention relates to a method in which alkaline electrolyzed water is allowed to act on phosphorus component-containing wastewater / sewage so that the phosphorus component is precipitated and separated and recovered as potassium dihydrogen phosphate.

ここで、「リン成分含有排水・汚水」とは、例えば、化学、食品、肥料及び医薬品などの各種産業分における製造過程から出る排水;下水処理場又はゴミ処理場における燃焼装置より排出される燃焼スラグの冷却水に由来するもの;並びに、酪農及び畜産場から出る糞尿水であって、リンをオルトリン酸イオン、有機又はポリリン酸イオン等の各種形態のリンを数万〜数十万mg/Lの高含有量で含んでいる強酸性リン酸含有液を意味する。   Here, “phosphorus component-containing wastewater / sewage” means, for example, wastewater from the manufacturing process in various industries such as chemicals, foods, fertilizers, and pharmaceuticals; combustion discharged from a combustion device in a sewage treatment plant or a waste disposal plant Derived from cooling water of slag; and manure water from dairy farms and livestock farms, phosphorus in various forms such as orthophosphate, organic or polyphosphate ions, tens of thousands to hundreds of thousands of mg / L It means a strongly acidic phosphoric acid-containing liquid containing a high content of

例えば、下水処理場における処理フローは図1に示すようなものである。ここで、燃焼処理装置(設備)におけるリン成分含有排水の発生過程は図2に示される。燃焼処理装置より排出される燃焼スラグは水で冷却された後に廃棄されるが、燃焼スラグには前工程で非常に濃縮されたリンが含まれており、このリン成分が冷却される際に冷却水中に大量に溶出されるのである。その結果、このような処理水は強酸性高含有リン成分のために再使用が不可能であり、従来は廃棄処分されている。   For example, the treatment flow in a sewage treatment plant is as shown in FIG. Here, the generation | occurrence | production process of the phosphorus component containing waste water in a combustion processing apparatus (equipment) is shown by FIG. Combustion slag discharged from the combustion treatment device is discarded after being cooled with water, but the combustion slag contains phosphorus that is highly concentrated in the previous process. It is eluted in large quantities in water. As a result, such treated water is not reusable due to the strong acid and high phosphorus content, and is conventionally disposed of.

さて、アルカリ電解水は電解質を添加した水を電気分解することにおいて陰極で生成され、優れた洗浄・除菌効果を有する物質として公知である。本発明で使用するアルカリ電解水としては、炭酸カリウムを電解質として用いる水の電気分解によって調製されたアルカリ電解水が好適である。これは、例えば、上記特許文献4に記載された装置・方法、又は、本明細書の図3に示すような定量貯水循環方式(インフィールドロータリー電解方式)によって製造することができる。 Alkaline electrolyzed water is known as a substance that is produced at the cathode by electrolyzing water to which an electrolyte has been added, and has an excellent cleaning and disinfecting effect. The alkaline electrolyzed water used in the present invention is preferably alkaline electrolyzed water prepared by electrolysis of water using potassium carbonate as an electrolyte. This can be produced, for example, by the apparatus / method described in the above-mentioned Patent Document 4 or a fixed water storage circulation system (in-field rotary electrolysis system) as shown in FIG. 3 of this specification.

アルカリ電解水としては、特に、以下の物理化学的性質を有するものが好ましい。
(1)pH:11.50〜13.20、特に、pH13程度
(2)電導率:2,000〜2,700mS/m
(3)起電力:-220〜-310mV
(4)溶解成分:KOH1%未満
(5)比重:1
(6)その他の性状:無色液体、溶解性:水に易溶、揮発性・可燃性・発火性・爆発性:無し、PRTR法の抵触無し
As the alkaline electrolyzed water, those having the following physicochemical properties are particularly preferable.
(1) pH: 11.50-13.20, especially about pH 13 (2) Conductivity: 2,000-2,700 mS / m
(3) Electromotive force: -220 to -310mV
(4) Dissolved component: less than 1% KOH (5) Specific gravity: 1
(6) Other properties: colorless liquid, solubility: readily soluble in water, volatile, flammable, ignitable, explosive: none, no conflict with the PRTR method

リン成分含有排水・汚水中にアルカリ電解水を作用させるには、当業者に公知の任意の手段・方法で実施することが出来る。例えば、混合槽のような適当な容器内でリン成分含有排水・汚水とアルカリ電解水を混合させ、適当な時間反応させる方法を挙げることが出来る。ここで、排水・汚水のアルカリ電解水との反応時のpHを当業者に公知の適当な方法・手段、例えば、アルカリ電解水をビーカー等に入れ排水・汚水をスポイト等により滴下投入し、pH値を徐々に中性付近(pH6〜6.5程度)へ調整していくこと等によって、リン酸二水素カリウムの析出量(析出率)及び析出速度等を最適にすることが出来る。リン成分含有排水・汚水に添加混合するアルカリ電解水の割合は、排水・汚水中のリン成分、pH値及びその他の各種成分の含有量・組成、アルカリ電解水の組成及びpH値等の性状、並びに、反応温度等に応じて適宜選択することが出来る。通常、pH1程度の排水・汚水に対して、数十倍量、例えば、15〜50倍量のアルカリ電解水を添加混合することが好ましい。   Alkaline electrolyzed water is allowed to act on the phosphorus component-containing wastewater / sewage by any means / method known to those skilled in the art. For example, a method of mixing phosphorus component-containing waste water / sewage water and alkaline electrolyzed water in an appropriate container such as a mixing tank and reacting them for an appropriate time can be mentioned. Here, the pH at the time of reaction with wastewater / sewage alkaline electrolyzed water is an appropriate method / means known to those skilled in the art, for example, alkaline electrolyzed water is put into a beaker, etc. The amount of precipitation (precipitation rate) and precipitation rate of potassium dihydrogen phosphate can be optimized by gradually adjusting the value to near neutrality (about pH 6 to 6.5). The proportion of alkaline electrolyzed water to be added to and mixed with phosphorus component-containing wastewater / sewage is the content of phosphorus component, pH value and other various components / composition of wastewater / sewage, properties such as alkaline electrolyzed water composition and pH In addition, it can be appropriately selected according to the reaction temperature and the like. Usually, it is preferable to add and mix several tens of times, for example, 15 to 50 times the amount of alkaline electrolyzed water with respect to drainage / sewage having a pH of about 1.

本発明方法でリン酸二水素カリウムとして析出されたリン成分は、例えば、混合槽の底に沈殿した析出物を固液分離により回収する(この操作は数回行うことも可能である)等の、当業者に公知の任意の方法で分離回収することが出来、更に、リン酸二水素カリウムを分離回収した後に得られる廃液はリン酸濃度が非常に低減されているので、下水処理場又はゴミ処理場内で浄化された場内・構内水等再利用することが可能となる。このように、本発明方法を従来の下水処理又はゴミ処理方法に導入し、析出したリン酸二水素カリウムを分離回収した後に得られる廃液を下水処理場又はゴミ処理場内で再利用することが可能となる(図4)。 For example, the phosphorus component precipitated as potassium dihydrogen phosphate by the method of the present invention is recovered by solid-liquid separation of the precipitate precipitated at the bottom of the mixing tank (this operation can be performed several times). The waste liquid obtained after separating and recovering potassium dihydrogen phosphate can be separated and recovered by any method known to those skilled in the art, and since the phosphoric acid concentration is extremely reduced, It is possible to reuse the water in the premises and on premises that has been purified in the treatment plant. In this way, it is possible to reuse the waste liquid obtained after introducing the method of the present invention into a conventional sewage treatment or waste treatment method and separating and recovering the precipitated potassium dihydrogen phosphate in the sewage treatment plant or the waste treatment plant. (FIG. 4).

更に、本発明は、このような方法で分離回収して得られたリン酸二水素カリウムを主成分とする析出物自体にも係るものである。このような析出物から、必要に応じて適当な精製方法等で抽出されたリン酸二水素カリウムは、各種産業分野における材料、例えば、強誘電体、圧電素子、電気光学素子、レーザー光高調波発生素子、電池素材、又は、肥料の一成分として利用することが出来る。   Furthermore, the present invention also relates to a precipitate itself composed mainly of potassium dihydrogen phosphate obtained by separation and recovery by such a method. Potassium dihydrogen phosphate extracted from such precipitates by an appropriate purification method, if necessary, is used in various industrial fields such as ferroelectrics, piezoelectric elements, electro-optic elements, laser light harmonics. It can be used as a component of a generating element, battery material, or fertilizer.

以下、実施例を参照して本発明を説明する。尚、本発明の技術的範囲はこれら実施例の記載に限定されるものではなく、これら記載に基づき当業者が適宜変更・修正した技術も本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described with reference to examples. It should be noted that the technical scope of the present invention is not limited to the description of these examples, and techniques that are appropriately changed and modified by those skilled in the art based on these descriptions are also included in the technical scope of the present invention.

アルカリ電解水(酸性水循環生成アルカリ電解水)は、定量貯水循環方式アルカリ電解水生成装置(インフィールドロータリー電解方式)を使用し、電解質として炭酸カリウム(食品添加物用高級グレード仕様)を用いて製造した。その物理化学的性質は以下の通り。 Alkaline electrolyzed water (acidic acid circulation generated alkaline electrolyzed water) is produced using a quantitative water storage and circulation type alkaline electrolyzed water generating device (in-field rotary electrolysis system) and using potassium carbonate (high-grade specification for food additives) as the electrolyte. did. Its physicochemical properties are as follows.

(1)pH:13.16
(2)電導率:2,000mS/m
(3)起電力:-220〜-310mV
(4)溶解成分:KOH1%未満
(5)比重:1
(6)その他の性状:無色液体、溶解性:水に易溶、揮発性・可燃性・発火性・爆発性:無し、PRTR法の抵触無し
(1) pH: 13.16
(2) Conductivity: 2,000mS / m
(3) Electromotive force: -220 to -310mV
(4) Dissolved component: less than 1% KOH (5) Specific gravity: 1
(6) Other properties: colorless liquid, solubility: readily soluble in water, volatile, flammable, ignitable, explosive: none, no conflict with the PRTR method

下水処理場内より提供された排水(リン濃度90,000〜95,000mg/L、pH0.92)及びアルカリ電解水をそれぞれ別のビーカーに約2,500cc用意し、排水が入っているビーカーにアルカリ電解水を排水が飛び散らない程度に注意しゆっくりと投入した。その結果、アルカリ電解水投入と同時に先ず液中がもやもやとし、更に投入していくと白い雲状の浮遊物(温泉の湯ノ花に似ている)が現れた。白い雲状の浮遊物は時間経過とともにビーカーの底に沈んでいった。排水pH値は0.92から1.20程度まで上昇した。 About 2,500 cc of drainage (phosphorus concentration 90,000-95,000 mg / L, pH 0.92) and alkaline electrolyzed water provided in the sewage treatment plant are prepared in separate beakers, and the alkaline electrolyzed water is drained into the beaker containing the wastewater. Be careful not to splatter and throw in slowly. As a result, at the same time as the alkaline electrolyzed water was added, the liquid first became hazy, and when it was further added, white cloud-like floating matter (similar to Yunohana of a hot spring) appeared. The white cloud-like floats sank to the bottom of the beaker over time. The drainage pH value rose from 0.92 to about 1.20.

次に、実施例1で使用した排水に同じく実施例1で調製したアルカリ電解水を投入し、排水のpH値を中性pH6.5まで高めた。即ち、排水100cc対してスポイトを用いて1回につき3ccのアルカリ電解水を徐々に添加していきpHが6.5となる添加量の総計を測定した。その結果、2,500ccのアルカリ電解水(混合容量比、排水:アルカリ電解水=1:25)が必要であった。又、実施例1と同様の析出物が生じた。この結果、排水中に最初に含まれていたリン成分濃度(約90,000mg/L)が約4分の1程度(約25,000mg/L)まで低下した。 Next, the alkaline electrolyzed water prepared in Example 1 was added to the wastewater used in Example 1, and the pH value of the wastewater was increased to neutral pH 6.5. That is, 3 cc of alkaline electrolyzed water was gradually added to 100 cc of wastewater at once using a dropper, and the total amount of addition at which pH became 6.5 was measured. As a result, 2,500 cc of alkaline electrolyzed water (mixing volume ratio, drainage: alkaline electrolyzed water = 1: 25) was required. Moreover, the same precipitate as Example 1 was produced. As a result, the phosphorus component concentration (about 90,000 mg / L) initially contained in the wastewater was reduced to about a quarter (about 25,000 mg / L).

尚、溶液中のリン成分濃度の測定は、常法(吸光光度法 JIS-K-0102.46)に従い、溶液中のリン化合物に試薬を加えて光(紫外線・可視光)を当て、濃度に応じて吸収された光を測定することで測定した(測定器:HORIBA TPNA-300) 。 In addition, the phosphorus component concentration in the solution is measured according to the usual method (absorptiometry JIS-K-0102.46), adding a reagent to the phosphorus compound in the solution, applying light (ultraviolet light / visible light), and depending on the concentration It was measured by measuring the absorbed light (measuring instrument: HORIBA TPNA-300).

次に、実施例1で調製したアルカリ電解水を純水にて希釈してそのpH値を0.5刻みで調整した9種類の異なるpHを有するアルカリ電解水(容量は200cc)を準備し、それぞれに実施例1の排水を50cc投入し、形成されるフロックの状況、沈降速度及び沈降高さを計測した。 Next, alkaline electrolyzed water (capacity is 200 cc) having nine different pHs prepared by diluting the alkaline electrolyzed water prepared in Example 1 with pure water and adjusting the pH value in 0.5 increments, 50 cc of the waste water of Example 1 was added to each, and the state of the floc formed, the sedimentation speed, and the sedimentation height were measured.

尚、実施例1及び実施例2と同様に生成した析出物量の比較は析出反応が安定した時の容器中の析出物高さを測定した。析出速度については析出反応が安定する時間を計測した。その結果を以下の表1に示す。 In addition, the comparison of the amount of the precipitate produced | generated like Example 1 and Example 2 measured the deposit height in a container when precipitation reaction was stabilized. Regarding the deposition rate, the time during which the precipitation reaction was stabilized was measured. The results are shown in Table 1 below.

Figure 2012040530
Figure 2012040530

こうして析出した物質の成分を分析した結果を以下の表2に示す。この結果から、析出物の主成分はリン酸二水素カリウム(KHPO)又はリン酸水素二カリウム(KHPO)であるものと推測された。 Table 2 below shows the results of analyzing the components of the substances thus deposited. From this result, it was estimated that the main component of the precipitate was potassium dihydrogen phosphate (KH 2 PO 4 ) or dipotassium hydrogen phosphate (K 2 HPO 4 ).

Figure 2012040530
Figure 2012040530

更に、析出した物質の成分を同定するために、以下の要領で析出した物質をX線解析分析((株)リガク製 RINT2500H型 X線回折装置)にかけた。その解析パターンを図5に示す。得られた解析パターンから、特定波長のX線を結晶体に照射し回折させ被験体のピーク値とKHPOの標準ピーク値がどのくらいマッチングしているかについて検索・解析した結果から、X線回折の結果から、KH2PO4標準ピーク値と細部までにおいてマッチングしていることから主成分はリン酸二水素カリウム(KHPO)であると分析した。 Further, in order to identify the components of the precipitated substance, the precipitated substance was subjected to X-ray analysis analysis (RINT2500H type X-ray diffractometer manufactured by Rigaku Corporation) in the following manner. The analysis pattern is shown in FIG. From the obtained analysis pattern, X-rays with a specific wavelength are irradiated and diffracted, and the results of searching and analyzing how much the subject's peak value matches the standard peak value of KH 2 PO 4 are obtained. From the result of diffraction, it was analyzed that the main component was potassium dihydrogen phosphate (KH 2 PO 4 ) because it matched to the KH 2 PO 4 standard peak value in detail.

比較例1:排水と炭酸カリウム(K CO 粉末タイプ)水溶液との混合
実施例1で使用した排水300ccに炭酸カリウム水50cc(濃度:30%:pH14.00)を混合した。尚、炭酸カリウム(製造メーカー:旭硝子(株)AGC化学品カンパニー)は一般工業用及び食品添加物用(高級グレード仕様)の2種類用意した。ぞれぞれ食品添加物可使用のものである。一般用は粒子が粗く比重は2.5g/cm3また高級グレード仕様はそれと比べるとややパウダー状で比重も1.25g/cm3となる。その結果、白濁物が析出した。又、排水pH値は0.92から3.21程度まで上昇した。但し、反応中に炭酸ガス系の有臭ガスが発生し、反応時発熱反応を起こした。又、反応中に気泡が発生し一時的に容量が増えて容器から溢れた。上記反応状況より炭酸カリウムでの析出は安全に施工できないと判断した。析出物分析結果ではKHPO(非結晶質)であり、再利用するには不向きであると判断した。
Comparative Example 1: Drainage and potassium carbonate (K 2 CO 3 powder type) mixed <br/> Example 1 aqueous potassium carbonate 50 cc (concentration: 30%: pH14.00) in wastewater 300cc used in the aqueous solution was mixed with . In addition, potassium carbonate (manufacturer: Asahi Glass Co., Ltd. AGC Chemicals Company) prepared two types for general industrial use and food additives (high-grade grade specifications). Each one can use food additives. For general use, the particles are coarse and the specific gravity is 2.5 g / cm 3, and the high grade specification is slightly powdery and the specific gravity is 1.25 g / cm 3 . As a result, a cloudy product was precipitated. Further, the pH value of the drainage rose from 0.92 to about 3.21. However, carbon dioxide-based odorous gas was generated during the reaction, causing an exothermic reaction during the reaction. In addition, bubbles were generated during the reaction, and the capacity temporarily increased and overflowed from the container. From the above reaction situation, it was judged that precipitation with potassium carbonate could not be safely performed. The precipitate analysis result was KH 2 PO 4 (non-crystalline), which was judged unsuitable for reuse.

比較例2:排水と苛性ソーダ(NaOH)水溶液との混合
実施例1で使用した排水にアルカリ電解水のカリウム濃度と同じ0.1%苛性ソーダ溶液(pH値14.67)を投入し反応状況を確認した。尚、排水とアルカリ電解水との混合容量比は実施例2と同様にした(排水:アルカリ電解水=1:25)。その結果、pH値の調整(排水pH0.92から7.80)は出来るものの、反応時液自体がモヤモヤして析出物発生には至らなかった。更に、反応中に塩素系ガスが発生した。又、反応時発熱反応を起こした。
Comparative example 2: Mixing of waste water and aqueous caustic soda (NaOH) solution The waste water used in Example 1 was charged with 0.1% caustic soda solution (pH value 14.67) equal to the potassium concentration of alkaline electrolyzed water. The reaction status was confirmed. The mixing volume ratio between the waste water and the alkaline electrolyzed water was the same as that in Example 2 (drain water: alkaline electrolyzed water = 1: 25). As a result, although the pH value could be adjusted (drainage pH 0.92 to 7.80), the reaction solution itself was dull and precipitation did not occur. Furthermore, chlorine gas was generated during the reaction. In addition, an exothermic reaction occurred during the reaction.

比較例3:排水と市販アルカリ整水器水との混合
アルカリレベル1(pH値7.80)の市販アルカリ整水器水(パナソニック製 TH720)に実施例1で使用した排水を投入し(混合比 排水:アルカリ整水器=1:25)、反応状況を確認した。使用したアルカリ整水器水を作製する際に使用されているアルカリ電解質はグリセロリン酸カルシウム(リン酸カルシウムの一種)である。その結果、pH値は0.92から2.82に上昇した。析出反応が起きたが、析出物はヒドロキシアパタイト様であった。
Comparative Example 3: Mixing of Wastewater and Commercial Alkaline Water Supply Water The wastewater used in Example 1 was introduced into a commercial alkaline water supply water (TH720 made by Panasonic) with an alkali level 1 (pH value 7.80) (mixing) Specific wastewater: alkaline water conditioner = 1: 25), the reaction status was confirmed. The alkaline electrolyte used when producing the used alkaline water conditioner water is calcium glycerophosphate (a kind of calcium phosphate). As a result, the pH value increased from 0.92 to 2.82. A precipitation reaction occurred, but the precipitate was hydroxyapatite-like.

リン酸二水素カリウムは強誘電体であり、例えば、圧電素子、電気光学素子、レーザー光高調波発生素子、各種電池(リン酸型燃料電池、アルカリ電解質型電池等)素材、又は、肥料等の多岐に亘る産業分野で有用な機能性化合物として非常に有用な化合物である。従来は、リン酸と塩化カリムとを強熱してメタリン酸化イルムを生成させた後、これを金属板上で急冷し、次に、水に溶解させた後に蒸発濃縮して結晶化させて製造されている。本発明によって、このような有用な化合物であるリン酸二水素カリウムを、リン成分を含有する排水・汚水から経済的に且つ効率的に分離回収して提供することが出来る。 Potassium dihydrogen phosphate is a ferroelectric, such as a piezoelectric element, an electro-optical element, a laser beam harmonic generation element, various battery (phosphoric acid fuel cell, alkaline electrolyte type battery, etc.) materials, or fertilizers. It is a very useful compound as a functional compound useful in various industrial fields. Conventionally, phosphoric acid and kalim chloride are ignited to form a metaphosphoric acid film, which is then rapidly cooled on a metal plate, then dissolved in water, evaporated and concentrated to crystallize. ing. According to the present invention, potassium dihydrogen phosphate, which is such a useful compound, can be economically and efficiently separated and provided from wastewater and sewage containing a phosphorus component.

Claims (9)

リン成分含有排水・汚水中にアルカリ電解水を作用させることによって、該リン成分をリン酸二水素カリウムとして析出させて分離回収する方法。 A method in which alkaline electrolyzed water is allowed to act on phosphorus component-containing wastewater / sewage to deposit and separate and recover the phosphorus component as potassium dihydrogen phosphate. リン成分含有排水が下水処理場またはゴミ処理場における燃焼装置より排出される燃焼スラグの冷却水に由来する、請求項1記載の方法。 The method according to claim 1, wherein the phosphorus component-containing wastewater is derived from combustion slag cooling water discharged from a combustion device in a sewage treatment plant or a waste disposal plant. アルカリ電解水が炭酸カリウムを電解質として用いる水の電気分解によって調製されたものである、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the alkaline electrolyzed water is prepared by electrolysis of water using potassium carbonate as an electrolyte. アルカリ電解水が以下の物理化学的性質を有する、請求項3記載の方法。
(1)pH:11.50〜13.20
(2)電導率:2,000〜2,700mS/m
(3)起電力:-220〜-310mV
(4)溶解成分:KOH1%未満
(5)比重:1
The method according to claim 3, wherein the alkaline electrolyzed water has the following physicochemical properties.
(1) pH: 11.50-13.20
(2) Conductivity: 2,000-2,700mS / m
(3) Electromotive force: -220 to -310mV
(4) Dissolved component: less than 1% KOH (5) Specific gravity: 1
排水・汚水とアルカリ電解水との反応時のpHが6〜6.5であることを特徴とする、請求項1ないし4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the pH during the reaction between the waste water / sewage and the alkaline electrolyzed water is 6 to 6.5. リン成分含有排水・汚水に対して15〜50倍量のアルカリ電解水を添加混合することを特徴とする、請求項1ないし5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein 15 to 50 times the amount of alkaline electrolyzed water is added to and mixed with the phosphorus component-containing waste water / sewage. 下水処理又はゴミ処理方法であって、請求項1〜6のいずれか一項に記載の方法において析出したリン酸二水素カリウムを分離回収した後に得られる廃液を下水処理場又はゴミ処理場内で再利用することを特徴とする、前記方法。 A sewage treatment or garbage treatment method, wherein the waste liquid obtained after separating and recovering potassium dihydrogen phosphate precipitated in the method according to any one of claims 1 to 6 is recycled in a sewage treatment plant or a garbage treatment plant. Said method, characterized in that it is used. 請求項1〜7のいずれか一項に記載の方法において分離回収して得られたリン酸二水素カリウムを主成分とする析出物。 The deposit which has as a main component potassium dihydrogen phosphate obtained by isolate | separating in the method as described in any one of Claims 1-7. 請求項8記載の析出物から抽出されたリン酸二水素カリウムを一成分として含有する、強誘電体、圧電素子、電気光学素子、レーザー光高調波発生素子、電池素材、又は、肥料。 A ferroelectric substance, a piezoelectric element, an electro-optic element, a laser beam harmonic generation element, a battery material, or a fertilizer containing potassium dihydrogen phosphate extracted from the precipitate according to claim 8 as one component.
JP2010185675A 2010-08-21 2010-08-21 Separation and recovering method of phosphorus component in wastewater and sewage Pending JP2012040530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185675A JP2012040530A (en) 2010-08-21 2010-08-21 Separation and recovering method of phosphorus component in wastewater and sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185675A JP2012040530A (en) 2010-08-21 2010-08-21 Separation and recovering method of phosphorus component in wastewater and sewage

Publications (1)

Publication Number Publication Date
JP2012040530A true JP2012040530A (en) 2012-03-01

Family

ID=45897425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185675A Pending JP2012040530A (en) 2010-08-21 2010-08-21 Separation and recovering method of phosphorus component in wastewater and sewage

Country Status (1)

Country Link
JP (1) JP2012040530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967417A (en) * 2016-05-19 2016-09-28 浙江永泉化学有限公司 Treatment method of phosphorus-containing wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967417A (en) * 2016-05-19 2016-09-28 浙江永泉化学有限公司 Treatment method of phosphorus-containing wastewater

Similar Documents

Publication Publication Date Title
Lei et al. Calcium carbonate packed electrochemical precipitation column: new concept of phosphate removal and recovery
Lei et al. Electrochemical induced calcium phosphate precipitation: importance of local pH
US8877690B2 (en) Treatment of gas well production wastewaters
Crutchik et al. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater
US10336624B2 (en) Method of producing high-plurality lithium carbonate by controlling particle size, particle size distribution, and particle shape
US9580343B2 (en) Treatment of gas well production wastewaters
Lei et al. Electrochemical recovery of phosphorus from acidic cheese wastewater: Feasibility, quality of products, and comparison with chemical precipitation
Stratful et al. Conditions influencing the precipitation of magnesium ammonium phosphate
KR101670373B1 (en) Phosphate recovery from sludge
Kaikake et al. Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash
CN104641018B (en) Method and apparatus for being produced from metal salt solution or reclaiming hydrochloric acid
RU2732034C2 (en) Method and device for salt extraction
CN106532172A (en) Method for selectively leaching lithium from anode material of failed lithium iron phosphate battery
Blatter et al. Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations
CN106006681B (en) A kind of method of high slat-containing wastewater recycling treatment
Oliveira et al. A novel approach for nutrients recovery from municipal waste as biofertilizers by combining electrodialytic and gas permeable membrane technologies
CN102874983B (en) Method for treating N-Phosphonomethyl iminodiacetic acid (PMIDA) mother liquid
JP4391429B2 (en) Treatment and recycling method of fluorine-containing wastewater containing nitric acid and its recycling method
JP2010260015A (en) Dephosphorizing material, dephosphorizing apparatus, and dephosphorizing by-product
CN105906129A (en) Method for reutilization of water resources and transformation and utilization of salt in waste water
JP6129533B2 (en) Waste water treatment method and waste water treatment apparatus
Sui et al. Elemental sulfur redox bioconversion for selective recovery of phosphorus from Fe/Al-bound phosphate-rich anaerobically digested sludge: Sulfur oxidation or sulfur reduction?
KR101153739B1 (en) Recovering Method of Phosphate Compound from Waste Water
JP2012040530A (en) Separation and recovering method of phosphorus component in wastewater and sewage
CN115340240B (en) Comprehensive treatment method for nickel-cobalt-manganese ternary lithium battery wastewater