JP2012038761A - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
JP2012038761A
JP2012038761A JP2010174559A JP2010174559A JP2012038761A JP 2012038761 A JP2012038761 A JP 2012038761A JP 2010174559 A JP2010174559 A JP 2010174559A JP 2010174559 A JP2010174559 A JP 2010174559A JP 2012038761 A JP2012038761 A JP 2012038761A
Authority
JP
Japan
Prior art keywords
processing
gas
plasma
chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010174559A
Other languages
Japanese (ja)
Inventor
Makoto Hiyama
真 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2010174559A priority Critical patent/JP2012038761A/en
Publication of JP2012038761A publication Critical patent/JP2012038761A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate processing device for enhancing decomposition efficiency of processing gas and improving processing speed for a substrate.SOLUTION: The substrate processing device comprises: plasma generating means 9 and 11 provided to surround a plasma generating pipe 6, and forming a plasma producing area 12 at least near an inner wall of the plasma generating pipe 6; gas supplying means 16 for supplying processing gas from an upstream side of the plasma generating pipe 6; a processing chamber 4 adjacently arranged on a downstream side of the plasma generating pipe 6, and processing a substrate 3 with the processing gas which has been changed into plasma; a regulator plate 17 provided between the gas supplying means 16 and an upper end of the plasma producing area 12, and regulating the flow of the processing gas to increase the density of the processing gas near the inner wall of the plasma generating pipe; and exhaust means 28 for exhausting the processing gas from the processing pipe.

Description

本発明は、プラズマを使用してシリコンウェーハ等の基板に薄膜の生成、エッチング、或はアッシング等の基板処理を行い、半導体装置を製造する基板処理装置に関するものである。   The present invention relates to a substrate processing apparatus for manufacturing a semiconductor device by performing plasma processing on a substrate such as a silicon wafer to form a thin film, etching or ashing.

半導体装置を製造する工程には、ガラス基板、シリコンウェーハ等の基板(以下ウェーハ)に薄膜を生成する工程、ウェーハ上に回路パターンを形成するエッチングの工程、或はエッチング後にウェーハ上のレジストを除去するアッシングの工程等があり、斯かる工程を処理するものとして、プラズマCVD装置、プラズマエッチング装置、或はアッシング装置等の基板処理装置がある。   In the process of manufacturing a semiconductor device, a thin film is formed on a substrate such as a glass substrate or a silicon wafer (hereinafter referred to as a wafer), an etching process for forming a circuit pattern on the wafer, or the resist on the wafer is removed after etching. There are ashing processes to be performed, and examples of processes for processing such processes include a plasma CVD apparatus, a plasma etching apparatus, and a substrate processing apparatus such as an ashing apparatus.

先ず、図4に於いて従来の基板処理装置について説明する。   First, a conventional substrate processing apparatus will be described with reference to FIG.

基板処理装置1は、処理容器2と該処理容器2内に画成され、ウェーハ3に対して所定の処理を行う処理室4を有し、該処理室4の下方にはガス排気部5が設けられている。   The substrate processing apparatus 1 includes a processing container 2 and a processing chamber 4 that is defined in the processing container 2 and performs predetermined processing on the wafer 3. A gas exhaust unit 5 is provided below the processing chamber 4. Is provided.

又、前記処理容器2上には石英等で形成された気密なプラズマ発生管6が前記処理室4と連通する様設けられ、前記プラズマ発生管6内にはプラズマ発生室7が画成されている。前記プラズマ発生管6の上部には前記処理室4内に処理ガスを導入するガス導入口8が形成され、前記プラズマ発生管6の周囲には、高周波電源9より高周波電流を印加可能なコイル11が設けられ、該コイル11に高周波電流を印加することで、該コイル11近傍の前記プラズマ発生管6壁面付近のプラズマ生成領域12にプラズマが生成される様になっている。   An airtight plasma generating tube 6 made of quartz or the like is provided on the processing vessel 2 so as to communicate with the processing chamber 4, and a plasma generating chamber 7 is defined in the plasma generating tube 6. Yes. A gas inlet 8 for introducing a processing gas into the processing chamber 4 is formed above the plasma generating tube 6, and a coil 11 to which a high frequency current can be applied from a high frequency power source 9 around the plasma generating tube 6. By applying a high frequency current to the coil 11, plasma is generated in the plasma generation region 12 near the wall surface of the plasma generating tube 6 near the coil 11.

前記ガス導入口8から導入された処理ガスは、高周波電流が印加された前記コイル11によって発生される誘導電磁界によって励起、電離、乖離されプラズマ化された後、前記処理室4内のウェーハ3表面に到達する。該ウェーハ3表面に到達した反応性活性種は、ドライエッチング、ドライアッシング及び化学気相堆積(CVD)の処理に寄与した後、前記ガス排気部5より排気される。   The processing gas introduced from the gas inlet 8 is excited, ionized, separated from the processing gas by the induction electromagnetic field generated by the coil 11 to which a high-frequency current is applied, and then converted into plasma, and then the wafer 3 in the processing chamber 4. Reach the surface. The reactive active species that have reached the surface of the wafer 3 contribute to dry etching, dry ashing, and chemical vapor deposition (CVD), and are then exhausted from the gas exhaust unit 5.

ウェーハ3表面に到達する処理ガス中の反応性活性種の割合は、前記プラズマ生成領域12を通過する処理ガスが励起される割合、即ち分解効率に依存しており、エッチレートやアッシングレート、成膜速度等の処理速度を向上させる上で重要な要素となっている。   The ratio of reactive active species in the processing gas that reaches the surface of the wafer 3 depends on the ratio at which the processing gas passing through the plasma generation region 12 is excited, that is, the decomposition efficiency. This is an important factor in improving the processing speed such as the film speed.

然し乍ら、前記プラズマ発生室7内で発生するプラズマは、前記プラズマ発生室7の全域ではなく、前記プラズマ生成領域12に生成される。従って、前記プラズマ発生管6内に一様に処理ガスを導入した場合、図5に示される様に、処理ガスは前記プラズマ発生管6の中央で流速が最大となり、処理ガスの大部分が分解効率の低い前記プラズマ発生管6の中央部を通過するので、処理ガスを効率的に分解することができず、ウェーハ3表面に到達し、反応に寄与する反応性活性種が少なくなるという問題があった。   However, the plasma generated in the plasma generation chamber 7 is generated not in the entire plasma generation chamber 7 but in the plasma generation region 12. Therefore, when the processing gas is uniformly introduced into the plasma generation tube 6, the processing gas has a maximum flow velocity at the center of the plasma generation tube 6 as shown in FIG. Since it passes through the central portion of the plasma generating tube 6 with low efficiency, the processing gas cannot be decomposed efficiently, and there is a problem that the reactive active species that reaches the surface of the wafer 3 and contributes to the reaction is reduced. there were.

特開2008−91836号公報JP 2008-91836 A 特開平11−3799号公報Japanese Patent Laid-Open No. 11-3799

本発明は斯かる実情に鑑み、プラズマ密度の高いプラズマ発生室内壁近傍に供給する処理ガスを増加させることで、処理ガスの分解効率を上げ、基板に対する処理速度の向上を図る基板処理装置を提供するものである。   In view of such circumstances, the present invention provides a substrate processing apparatus that increases the processing gas supplied to the vicinity of the plasma generation chamber inner wall having a high plasma density, thereby improving the decomposition efficiency of the processing gas and improving the processing speed for the substrate. To do.

本発明は、プラズマ発生室を囲む様に設けられ、少なくとも該プラズマ発生室の内壁近傍にプラズマ領域を生成するプラズマ発生手段と、前記プラズマ発生室の上流側から処理ガスを供給するガス供給手段と、前記プラズマ発生室の下流側に隣設され、プラズマ化された処理ガスによって基板を処理する処理室と、前記ガス供給手段と前記プラズマ領域上端の間に設けられ、前記プラズマ発生室の内壁近傍の処理ガス密度が濃くなる様処理ガスの流れを整える整流板と、前記処理室から処理ガスを排気する排気手段とを具備する基板処理装置に係るものである。   The present invention is provided so as to surround the plasma generation chamber, and generates a plasma region at least in the vicinity of the inner wall of the plasma generation chamber; and a gas supply unit that supplies a processing gas from the upstream side of the plasma generation chamber. A processing chamber that is adjacent to the downstream side of the plasma generation chamber and processes the substrate with a plasma processing gas; and is provided between the gas supply means and the upper end of the plasma region, in the vicinity of the inner wall of the plasma generation chamber The present invention relates to a substrate processing apparatus including a rectifying plate that regulates a flow of a processing gas so that the processing gas density of the gas increases, and an exhaust unit that exhausts the processing gas from the processing chamber.

本発明によれば、プラズマ発生室を囲む様に設けられ、少なくとも該プラズマ発生室の内壁近傍にプラズマ領域を生成するプラズマ発生手段と、前記プラズマ発生室の上流側から処理ガスを供給するガス供給手段と、前記プラズマ発生室の下流側に隣設され、プラズマ化された処理ガスによって基板を処理する処理室と、前記ガス供給手段と前記プラズマ領域上端の間に設けられ、前記プラズマ発生室の内壁近傍の処理ガス密度が濃くなる様処理ガスの流れを整える整流板と、前記処理室から処理ガスを排気する排気手段とを具備するので、プラズマ密度の高い前記プラズマ発生室の内壁近傍に密度の高い処理ガスを供給することができ、処理ガスの分解効率を向上させ、基板の処理速度の向上を図ることができるという優れた効果を発揮する。   According to the present invention, the plasma generating means is provided so as to surround the plasma generating chamber and generates a plasma region at least in the vicinity of the inner wall of the plasma generating chamber, and the gas supply for supplying the processing gas from the upstream side of the plasma generating chamber Means, a processing chamber adjacent to the downstream side of the plasma generation chamber and processing the substrate with the plasma-ized processing gas, and provided between the gas supply means and the upper end of the plasma region, A flow straightening plate that regulates the flow of the processing gas so that the processing gas density near the inner wall becomes dense and an exhaust means for exhausting the processing gas from the processing chamber are provided, so that the density is increased in the vicinity of the inner wall of the plasma generation chamber where the plasma density is high. High processing gas can be supplied, and the decomposition efficiency of the processing gas can be improved and the processing speed of the substrate can be improved. .

本発明に係る基板処理装置を示す概略図である。It is the schematic which shows the substrate processing apparatus which concerns on this invention. 本発明の基板処理装置に係るプラズマ密度及びガス流速と、プラズマ発生管中央からの距離との関係の分布を示すグラフである。It is a graph which shows the distribution of the relationship between the plasma density and gas flow velocity which concern on the substrate processing apparatus of this invention, and the distance from the plasma generation tube center. 本発明に係る整流板とプラズマ生成領域間の助走距離Bと、アッシング処理を行った際のアッシングレートとの関係を示すグラフである。It is a graph which shows the relationship between the run-up distance B between the baffle plate which concerns on this invention, and a plasma production area | region, and the ashing rate at the time of performing an ashing process. 従来の基板処理装置を示す概略図である。It is the schematic which shows the conventional substrate processing apparatus. 従来の基板処理装置に係るプラズマ密度及びガス流速と、プラズマ発生管中央からの距離との関係の分布を示すグラフである。It is a graph which shows the distribution of the relationship between the plasma density and gas flow velocity concerning the conventional substrate processing apparatus, and the distance from the plasma generation tube center.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、図1に於いて、本発明に係る基板処理装置の一例として、アッシング装置について説明する。尚、図1中、図4中と同等のものには同符号を付し、その説明を省略する。   First, referring to FIG. 1, an ashing apparatus will be described as an example of a substrate processing apparatus according to the present invention. In FIG. 1, the same components as those in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.

密閉された容器である処理容器2の上に、例えば石英製で有天筒状のプラズマ発生管6が同心に立設されている。該プラズマ発生管6の周囲には、プラズマ発生用のコイル11が設けられ、該コイル11は高周波電源9に接続されており、前記コイル11と前記高周波電源9とでプラズマ発生手段を構成している。   On the processing vessel 2 which is a sealed vessel, a plasma generating tube 6 made of quartz, for example, is formed concentrically. A plasma generating coil 11 is provided around the plasma generating tube 6, and the coil 11 is connected to a high frequency power source 9. The coil 11 and the high frequency power source 9 constitute plasma generating means. Yes.

又、前記コイル11は遮蔽体13に囲繞され、該遮蔽体13は前記コイル11に流れる高周波電流が装置の周囲に影響を与えない様になっている。   The coil 11 is surrounded by a shield 13, and the shield 13 is configured so that a high-frequency current flowing through the coil 11 does not affect the surroundings of the apparatus.

前記プラズマ発生管6の天板中央部には、ガス導入口8が形成され、該ガス導入口8にはガス供給管14が接続され、該ガス供給管14は流量制御手段15を介してガス供給手段16に接続されている。該ガス供給手段16は、処理ガス(例えば酸素ガスに所定割合のフッ素系ガスを添加した混合ガス)、フォーミングガス(例えば窒素ガスに所定割合の水素ガスを添加した混合ガス)、不活性ガス、或はシーズニング用ガス(例えば酸素ガス)を前記ガス供給管14、前記ガス導入口8を介して前記プラズマ発生管6の内部に供給可能となっている。   A gas introduction port 8 is formed in the central portion of the top plate of the plasma generation tube 6, and a gas supply tube 14 is connected to the gas introduction port 8, and the gas supply tube 14 is connected to a gas through a flow rate control means 15. Connected to the supply means 16. The gas supply means 16 includes a processing gas (for example, a mixed gas obtained by adding a predetermined ratio of a fluorine-based gas to oxygen gas), a forming gas (for example, a mixed gas obtained by adding a predetermined ratio of hydrogen gas to nitrogen gas), an inert gas, Alternatively, a seasoning gas (for example, oxygen gas) can be supplied into the plasma generation tube 6 through the gas supply tube 14 and the gas inlet 8.

該プラズマ発生管6の内部の上端側には、例えば石英製で円盤状の整流板17が、前記プラズマ発生管6の天板に設けられた支持柱18を介して前記プラズマ発生管6と同心に設けられ、前記整流板17の下端とプラズマ生成領域12の上端との間は助走距離B分だけ離れている。又、前記整流板17により前記プラズマ発生管6の内部の空間は、前記整流板17の上側のガス溜め部19と、下側の前記プラズマ発生室7とに仕切られている。   On the upper end side inside the plasma generation tube 6, for example, a disc-shaped rectifying plate 17 made of quartz is concentric with the plasma generation tube 6 via a support column 18 provided on the top plate of the plasma generation tube 6. The lower end of the current plate 17 and the upper end of the plasma generation region 12 are separated by a run-up distance B. The space inside the plasma generating tube 6 is partitioned by the rectifying plate 17 into an upper gas reservoir 19 of the rectifying plate 17 and a lower plasma generating chamber 7.

前記整流板17の直径は、前記プラズマ発生管6の内径よりも僅かに小さく、該プラズマ発生管6の内周面と前記整流板17の外周面との間には間隙21が形成され、該間隙21を介して前記ガス溜め部19と前記プラズマ発生室7とが連通している。   The diameter of the rectifying plate 17 is slightly smaller than the inner diameter of the plasma generating tube 6, and a gap 21 is formed between the inner peripheral surface of the plasma generating tube 6 and the outer peripheral surface of the rectifying plate 17. The gas reservoir 19 and the plasma generation chamber 7 communicate with each other through a gap 21.

前記プラズマ発生管6は下端部が開放されると共に、前記処理容器2の天板の中央部には、前記プラズマ発生管6と同心且つ該プラズマ発生管6の内径と略同径の開口部22が形成されている。   The lower end of the plasma generation tube 6 is opened, and an opening 22 that is concentric with the plasma generation tube 6 and substantially the same diameter as the inner diameter of the plasma generation tube 6 is provided at the center of the top plate of the processing vessel 2. Is formed.

前記処理容器2の内部は、ガラス基板、或はシリコンウェーハ等の基板であるウェーハ3に所定の処理を行う空間である処理室4となっており、該処理室4と前記プラズマ発生室7とは前記開口部22を介して連通している。   The inside of the processing container 2 is a processing chamber 4 that is a space for performing predetermined processing on a wafer 3 that is a glass substrate or a substrate such as a silicon wafer, and the processing chamber 4, the plasma generation chamber 7, Are communicated through the opening 22.

前記処理室4には、基板保持台23が前記プラズマ発生管6と同心に設置され、前記基板保持台23の上面にはウェーハ3を前記基板保持台23と同心に載置可能となっている。該基板保持台23は、図示しない加熱手段を具備し、該加熱手段は載置されたウェーハ3を所望の処理温度に加熱できる様になっている。   In the processing chamber 4, a substrate holder 23 is installed concentrically with the plasma generation tube 6, and the wafer 3 can be placed concentrically with the substrate holder 23 on the upper surface of the substrate holder 23. . The substrate holding table 23 includes a heating unit (not shown), and the heating unit can heat the mounted wafer 3 to a desired processing temperature.

前記基板保持台23の周囲には円環状の空間が形成され、該空間はガス排気部5となっており、該ガス排気部5には前記基板保持台23の外周面と前記処理容器2の内周面とに亘って例えばアルミニウム製の排気抵抗板24が設けられ、該排気抵抗板24には通気孔25が所要数穿設されている。前記排気抵抗板24は、前記通気孔25の数と内径により排気抵抗を調整可能である。   An annular space is formed around the substrate holding table 23, and the space serves as a gas exhaust unit 5. The gas exhaust unit 5 includes the outer peripheral surface of the substrate holding table 23 and the processing container 2. An exhaust resistance plate 24 made of, for example, aluminum is provided over the inner peripheral surface, and a required number of vent holes 25 are formed in the exhaust resistance plate 24. The exhaust resistance plate 24 can adjust the exhaust resistance according to the number and inner diameter of the vent holes 25.

前記ガス排気部5は、前記排気抵抗板24を介して排気管26に接続され、該排気管26は圧力調整弁27を介して例えば真空ポンプ等の排気手段28に接続され、該排気手段28は前記処理室4のガスを前記排気抵抗板24、前記排気管26を介して強制的に排気可能である。又、前記圧力調整弁27により排気流量を調整することで、前記処理室4内及び前記プラズマ発生室7内の圧力を所定の圧力値に調整できる。   The gas exhaust section 5 is connected to an exhaust pipe 26 via the exhaust resistance plate 24, and the exhaust pipe 26 is connected to an exhaust means 28 such as a vacuum pump via a pressure regulating valve 27. The gas in the processing chamber 4 can be forcibly exhausted through the exhaust resistance plate 24 and the exhaust pipe 26. Further, by adjusting the exhaust flow rate by the pressure adjusting valve 27, the pressure in the processing chamber 4 and the plasma generation chamber 7 can be adjusted to a predetermined pressure value.

前記高周波電源9、前記流量制御手段15、前記排気手段28は、制御部29に接続され、該制御部29は前記高周波電源9を制御し、該高周波電源9は前記コイル11に高周波電流を所望のタイミングで供給可能であり、又前記制御部29は前記流量制御手段15を制御し、該流量制御手段15は前記ガス供給管14を流れるガスの流量を所望の流量に調整可能であり、又前記制御部29は前記排気手段28を制御し、該排気手段28は排気流量を所望の流量に調整可能となっている。   The high-frequency power source 9, the flow rate control means 15, and the exhaust means 28 are connected to a control unit 29. The control unit 29 controls the high-frequency power source 9, and the high-frequency power source 9 supplies a high frequency current to the coil 11. The control unit 29 controls the flow rate control means 15, and the flow rate control means 15 can adjust the flow rate of the gas flowing through the gas supply pipe 14 to a desired flow rate. The controller 29 controls the exhaust means 28, and the exhaust means 28 can adjust the exhaust flow rate to a desired flow rate.

尚、前記処理容器2の所要箇所には、図示しない基板搬入搬出口が開設され、該基板搬入搬出口には図示しないゲートバルブが設置され、該ゲートバルブは前記基板搬入搬出口を気密に閉塞可能であると共に開放可能であり、該基板搬入搬出口を介してウェーハ3を前記処理室4に搬入、搬出できる様になっている。   A substrate loading / unloading port (not shown) is opened at a required location of the processing container 2, and a gate valve (not shown) is installed at the substrate loading / unloading port, and the gate valve closes the substrate loading / unloading port in an airtight manner. The wafer 3 can be opened and opened, and the wafer 3 can be loaded into and unloaded from the processing chamber 4 via the substrate loading / unloading port.

又、前記プラズマ発生管6の内径の一例として、8インチのウェーハ3を処理するアッシング装置の場合、200mm〜235mmが好ましい。又、混合ガスの一例として、酸素にフレオン(フッ素系ガス)を2%添加したものが使用される。   Further, as an example of the inner diameter of the plasma generating tube 6, in the case of an ashing apparatus that processes an 8-inch wafer 3, 200 mm to 235 mm is preferable. As an example of the mixed gas, oxygen containing 2% freon (fluorine gas) is used.

次に、上記したアッシング装置によるアッシング処理について説明する。   Next, ashing processing by the above ashing device will be described.

前記基板保持台23上にはウェーハ3が載置され、ウェーハ3は前記加熱手段(図示せず)によって所定の処理温度に加熱されている。又、ウェーハ3の表面には、前工程であるエッチング処理で使用したレジストが付着している。   A wafer 3 is placed on the substrate holder 23, and the wafer 3 is heated to a predetermined processing temperature by the heating means (not shown). Further, the resist used in the etching process, which is the previous process, is attached to the surface of the wafer 3.

前記制御部29が前記流量制御手段15を制御することでガス流量を制御し、前記ガス供給管14及び前記ガス導入口8を介して、酸素ガスにフッ素系ガスを添加した混合ガスである処理ガスが前記ガス溜め部19に供給される。処理ガスは、前記間隙21を通り、前記プラズマ発生管6の内周面に沿う様に降下し、前記プラズマ発生室7に供給される。   The control unit 29 controls the flow rate control means 15 to control the gas flow rate, and the process is a mixed gas obtained by adding a fluorine-based gas to the oxygen gas through the gas supply pipe 14 and the gas introduction port 8. Gas is supplied to the gas reservoir 19. The processing gas passes through the gap 21 and descends along the inner peripheral surface of the plasma generation tube 6 and is supplied to the plasma generation chamber 7.

前記コイル11に前記高周波電源9より高周波電流が印加され、処理ガス中にプラズマが発生し、反応性活性種であるラジカル状態の酸素(ラジカル酸素)等が生成され、プラズマ生成領域12が形成される。   A high-frequency current is applied to the coil 11 from the high-frequency power source 9, plasma is generated in the processing gas, radical oxygen (radical oxygen) that is a reactive active species is generated, and a plasma generation region 12 is formed. The

ラジカル酸素を含む処理ガスは、前記プラズマ発生室7を降下し、前記処理室4へ供給され、前記ガス排気部5、前記排気管26を介して前記排気手段28によって排気ガスとして排気される。該排気手段28が排気ガスを所定の流量で排気すると共に、前記排気抵抗板24によって排気抵抗が調整されることで、前記プラズマ発生室7内及び前記処理室4内の圧力は所定の処理圧に調整される。尚、図中の矢印は上記のガスの流れを示している。   A processing gas containing radical oxygen descends in the plasma generation chamber 7, is supplied to the processing chamber 4, and is exhausted as exhaust gas by the exhaust means 28 through the gas exhaust section 5 and the exhaust pipe 26. The exhaust means 28 exhausts the exhaust gas at a predetermined flow rate, and the exhaust resistance is adjusted by the exhaust resistance plate 24, so that the pressure in the plasma generation chamber 7 and the processing chamber 4 becomes a predetermined processing pressure. Adjusted to In addition, the arrow in a figure has shown the flow of said gas.

処理ガス中のラジカル酸素がウェーハ3に接触し、ラジカル酸素によってウェーハ3表面のレジストが酸化され、レジストは二酸化炭素、水等となり、ウェーハ3表面から除去され、排気ガスと共に前記処理室4より排気される。   The radical oxygen in the processing gas comes into contact with the wafer 3, and the resist on the surface of the wafer 3 is oxidized by the radical oxygen, and the resist becomes carbon dioxide, water, etc., removed from the surface of the wafer 3, and exhausted from the processing chamber 4 together with the exhaust gas. Is done.

尚、上述したアッシング処理に於ける処理室温度、ガス流量、処理室圧力の一例としては、処理室温度は250℃、ガス流量は常温常圧状態で1L/min以上、好ましくは3L/min〜15L/min、処理室圧力は133Pa〜665Paである。   In addition, as an example of the processing chamber temperature, gas flow rate, and processing chamber pressure in the ashing process described above, the processing chamber temperature is 250 ° C., and the gas flow rate is 1 L / min or more, preferably 3 L / min. 15 L / min and the processing chamber pressure are 133 Pa to 665 Pa.

図2は、上記したアッシング処理を行った際の、A断面(図1参照)に於けるプラズマ密度及びガス流速(ガス密度)と、前記プラズマ発生管6中央からの距離の関係を表した分布図である。   FIG. 2 is a distribution showing the relationship between the plasma density and gas flow velocity (gas density) in the A section (see FIG. 1) and the distance from the center of the plasma generating tube 6 when the ashing process is performed. FIG.

尚、図中では、助走距離B、即ち前記整流板17下端から前記プラズマ生成領域12上端迄の距離が5mmである場合の分布と、助走距離Bが30mmである場合の分布の2つのガス流速分布が示されている。   In the figure, two gas flow rates are shown: a run-up distance B, that is, a distribution when the distance from the lower end of the rectifying plate 17 to the upper end of the plasma generation region 12 is 5 mm, and a distribution when the run-up distance B is 30 mm. Distribution is shown.

プラズマ密度は、前記プラズマ発生室7の中央に近づくにつれて低く、該プラズマ発生室7の内壁近傍に近づくにつれて高くなっており、プラズマ発生手段である前記コイル11に近い程高くなっているのが分る。又、ガス流速に関してもプラズマ密度と同様の傾向が見られるが、助走距離Bを30mmとした場合よりも、助走距離Bを5mmとした場合の方が、より前記プラズマ発生室7の内壁近傍の流速が高くなっているのが分る。   The plasma density decreases as it approaches the center of the plasma generation chamber 7, increases as it approaches the vicinity of the inner wall of the plasma generation chamber 7, and increases as it approaches the coil 11 serving as plasma generation means. The In addition, the same tendency as the plasma density is observed with respect to the gas flow velocity, but the case where the run distance B is 5 mm is closer to the inner wall of the plasma generation chamber 7 than the case where the run distance B is 30 mm. You can see that the flow rate is high.

以上のことより、助走距離Bは小さい方がガス流速を前記プラズマ発生室7内壁近傍で高めることができ、又ガス流速の分布形状をプラズマ密度の分布形状により近づけることができるのが分る。   From the above, it can be seen that the gas flow velocity can be increased in the vicinity of the inner wall of the plasma generation chamber 7 and the gas flow velocity distribution shape can be made closer to the plasma density distribution shape when the running distance B is smaller.

図3は、助走距離Bと、アッシング処理に於けるアッシングレートとの関係を示したグラフであり、助走距離Bが小さくなる程アッシングレートが向上しているのが分る。又、図中より、助走距離Bが30mm以下である場合に、アッシングレートの向上が顕著になっている為、助走距離Bは、B≦30mmであることが望ましい。   FIG. 3 is a graph showing the relationship between the approaching distance B and the ashing rate in the ashing process. It can be seen that the ashing rate is improved as the approaching distance B is decreased. Further, from the figure, when the run-up distance B is 30 mm or less, the improvement of the ashing rate is remarkable, and therefore the run-up distance B is preferably B ≦ 30 mm.

尚、図示はしないが、例えば助走距離Bを0mmとした場合、前記整流板17によりA部に於けるプラズマ生成が阻害され、プラズマの生成効率が低下する為、助走距離Bの大きさは、プラズマの生成を阻害しない大きさであることが望ましい。   Although not shown in the figure, for example, when the running distance B is set to 0 mm, the rectifying plate 17 inhibits the plasma generation in the portion A and the plasma generation efficiency is lowered. It is desirable that the size does not hinder the generation of plasma.

図2、図3より、ガス流速の分布形状は、助走距離Bを小さくする程プラズマ密度の分布形状に近づいていくと予想できる。従って、助走距離Bを小さくすることで前記プラズマ生成領域12を通過する処理ガスの量を増加させることができ、処理ガスの分解効率を向上させ、ウェーハ3に対する処理速度の向上を図ることができる。   From FIG. 2 and FIG. 3, it can be predicted that the distribution shape of the gas flow velocity approaches the distribution shape of the plasma density as the approach distance B is reduced. Therefore, the amount of the processing gas passing through the plasma generation region 12 can be increased by reducing the running distance B, the decomposition efficiency of the processing gas can be improved, and the processing speed for the wafer 3 can be improved. .

(付記)
又、本発明は以下の実施の態様を含む。
(Appendix)
The present invention includes the following embodiments.

(付記1)プラズマ発生室を囲む様に設けられ、少なくとも該プラズマ発生室の内壁近傍にプラズマ領域を生成するプラズマ発生手段と、前記プラズマ発生室の上流側から処理ガスを供給するガス供給手段と、前記プラズマ発生室の下流側に隣設され、プラズマ化された処理ガスによって基板を処理する処理室と、前記ガス供給手段と前記プラズマ領域上端の間に設けられ、前記プラズマ発生室の内壁近傍の処理ガス密度が濃くなる様処理ガスの流れを整える整流板と、前記処理室から処理ガスを排気する排気手段とを具備することを特徴とする基板処理装置。   (Supplementary Note 1) Plasma generating means provided so as to surround the plasma generation chamber and generating a plasma region at least near the inner wall of the plasma generation chamber; and gas supply means for supplying a processing gas from the upstream side of the plasma generation chamber; A processing chamber that is adjacent to the downstream side of the plasma generation chamber and processes the substrate with a plasma processing gas; and is provided between the gas supply means and the upper end of the plasma region, in the vicinity of the inner wall of the plasma generation chamber A substrate processing apparatus comprising: a rectifying plate that regulates a flow of the processing gas so that the processing gas density of the gas increases; and an exhaust unit that exhausts the processing gas from the processing chamber.

(付記2)前記プラズマ発生手段は、前記プラズマ発生室内壁近傍に該プラズマ発生室中央よりも密度の高いプラズマを発生させ、前記整流板は前記プラズマ発生室内壁近傍に該プラズマ発生室中央よりも高いガス流速を発生させる付記1の基板処理装置。   (Appendix 2) The plasma generating means generates plasma having a density higher than that of the center of the plasma generation chamber near the inner wall of the plasma generation chamber, and the rectifying plate is closer to the wall of the plasma generation chamber than the center of the plasma generation chamber. The substrate processing apparatus according to appendix 1, which generates a high gas flow rate.

1 基板処理装置
3 ウェーハ
4 処理室
6 プラズマ発生管
7 プラズマ発生室
9 高周波電源
11 コイル
12 プラズマ生成領域
17 整流板
28 排気手段
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 3 Wafer 4 Processing chamber 6 Plasma generating tube 7 Plasma generating chamber 9 High frequency power supply 11 Coil 12 Plasma generating area 17 Current plate 28 Exhaust means

Claims (1)

プラズマ発生室を囲む様に設けられ、少なくとも該プラズマ発生室の内壁近傍にプラズマ領域を生成するプラズマ発生手段と、前記プラズマ発生室の上流側から処理ガスを供給するガス供給手段と、前記プラズマ発生室の下流側に隣設され、プラズマ化された処理ガスによって基板を処理する処理室と、前記ガス供給手段と前記プラズマ領域上端の間に設けられ、前記プラズマ発生室の内壁近傍の処理ガス密度が濃くなる様処理ガスの流れを整える整流板と、前記処理室から処理ガスを排気する排気手段とを具備することを特徴とする基板処理装置。   Plasma generating means provided to surround the plasma generating chamber and generating a plasma region at least in the vicinity of the inner wall of the plasma generating chamber, gas supply means for supplying a processing gas from the upstream side of the plasma generating chamber, and the plasma generating A processing chamber adjacent to the downstream side of the chamber and processing the substrate with the plasmaized processing gas; and a processing gas density near the inner wall of the plasma generation chamber provided between the gas supply means and the upper end of the plasma region A substrate processing apparatus, comprising: a rectifying plate that adjusts a flow of a processing gas so that the concentration of the processing gas is increased; and an exhaust unit that exhausts the processing gas from the processing chamber.
JP2010174559A 2010-08-03 2010-08-03 Substrate processing device Pending JP2012038761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174559A JP2012038761A (en) 2010-08-03 2010-08-03 Substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174559A JP2012038761A (en) 2010-08-03 2010-08-03 Substrate processing device

Publications (1)

Publication Number Publication Date
JP2012038761A true JP2012038761A (en) 2012-02-23

Family

ID=45850481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174559A Pending JP2012038761A (en) 2010-08-03 2010-08-03 Substrate processing device

Country Status (1)

Country Link
JP (1) JP2012038761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008986A (en) * 2017-06-23 2019-01-17 東京エレクトロン株式会社 Exhaust plate and plasma processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008986A (en) * 2017-06-23 2019-01-17 東京エレクトロン株式会社 Exhaust plate and plasma processing device

Similar Documents

Publication Publication Date Title
WO2020022318A1 (en) Film deposition method and film deposition device
US10253412B2 (en) Deposition apparatus including edge plenum showerhead assembly
TWI383448B (en) Method and apparatus for forming silicon-containing insulating film
TWI443714B (en) Film formation apparatus and method for using the same
US10781516B2 (en) Chemical deposition chamber having gas seal
TWI409879B (en) Oxidation method and apparatus for semiconductor process
JP2004343017A (en) Plasma treatment device
US10633737B2 (en) Device for atomic layer deposition
JP5055114B2 (en) Plasma doping method
KR20160094306A (en) Method of processing target object
JP5767199B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP2018064058A (en) Film deposition device, method for cleaning the same, and storage medium
US20100240225A1 (en) Microwave plasma processing apparatus, microwave plasma processing method, and microwave-transmissive plate
JP2009088315A (en) Substrate processing apparatus
JP2017066438A (en) Film deposition device
TWI602214B (en) Substrate processing apparatus, method of manufacturing semiconductor device, program, and recording medium
JP2014053136A (en) Atmospheric pressure plasma processing apparatus
JP2008235611A (en) Plasma processing equipment and method for processing plasma
CN109686643B (en) Processing apparatus and member having diffusion path
JP2012038761A (en) Substrate processing device
US9142435B2 (en) Substrate stage of substrate processing apparatus and substrate processing apparatus
JP2019046853A (en) Etching method and etching apparatus
JP6317921B2 (en) Plasma processing equipment
JP2008091836A (en) Substrate processing equipment
KR101435866B1 (en) Substrate processing apparatus and method of manufacturing semiconductor device