JP2012038041A - Winning and losing line forecasting system - Google Patents
Winning and losing line forecasting system Download PDFInfo
- Publication number
- JP2012038041A JP2012038041A JP2010176688A JP2010176688A JP2012038041A JP 2012038041 A JP2012038041 A JP 2012038041A JP 2010176688 A JP2010176688 A JP 2010176688A JP 2010176688 A JP2010176688 A JP 2010176688A JP 2012038041 A JP2012038041 A JP 2012038041A
- Authority
- JP
- Japan
- Prior art keywords
- prediction
- winning line
- election
- predicted
- calculated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007619 statistical method Methods 0.000 claims abstract description 8
- 238000004364 calculation method Methods 0.000 claims description 25
- 238000004590 computer program Methods 0.000 claims description 8
- 238000000611 regression analysis Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 4
- 230000002596 correlated effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 21
- 238000012545 processing Methods 0.000 description 15
- 238000013500 data storage Methods 0.000 description 10
- 230000001186 cumulative effect Effects 0.000 description 5
- 230000037213 diet Effects 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- 238000005315 distribution function Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013477 bayesian statistics method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
地方議会議員選挙における当選ラインを、統計的手法を用いて投票の開始前に予測するシステムに関するものである。 It is related to a system that predicts the winning line in local council elections before the start of voting using statistical methods.
当落予想のシミュレーションとして、候補者個々の得票予測グラフを作成して当選圏に到達するかどうかをみるシステム・方法が現在運用に供されている。
この方法は、投票数に占める各候補の早い時間での開票結果を土台に、選挙前の情勢調査に基づき残票の獲得率を加味してそれぞれの候補の得票を予測するものである。
即ち、事前確率と事後確率を駆使したベーズ統計学を用いるもので、選挙予測に限らず広い分野で試みられている。また選挙予測に限ると、これにいわゆる出口調査の結果を加えて更に精度を増す手法も行われている。
本発明は、このような既存の方法とは全く異なる統計的手法を用いる。即ち、回帰分析と正規分布近似法とを組み合わせた予測システムである。特許電子図書館にて先行特許文献を検索したところ、本発明のような回帰分析を用いた予測システムは多数出願されていたが、いずれも選挙の当落予想とは無関係な分野に係るシステムであった。
As a simulation of winning predictions, a system and method for creating a vote prediction graph for each candidate and checking whether or not the winning zone is reached are currently in operation.
This method predicts each candidate's vote based on the result of the early vote of each candidate in the number of votes, based on the pre-election situation survey and taking into account the remaining vote acquisition rate.
In other words, it uses Bayesian statistics that make full use of prior probabilities and posterior probabilities, and is being tried in a wide range of fields, not limited to election prediction. For election predictions, there are also methods to increase the accuracy by adding so-called exit survey results.
The present invention uses a statistical method that is completely different from such existing methods. That is, the prediction system combines regression analysis and a normal distribution approximation method. When we searched for prior patent documents in the patent electronic library, many prediction systems using regression analysis such as the present invention were filed, but all of them were systems related to fields unrelated to the election prediction. .
上記の当落予測シミュレーションでは選挙当日、投票が締め切られて投票率が分かってからしか予測できない。しかも、複数の議席を争う議員選挙の場合には、出口調査の実施など更に条件が厳しくなる。
本出願人は、第1に、複数の議席を争う地方議会議員選挙にも適用できること、第2に、立候補予定者等が投票日前に自分の当選ラインを予測できること、という2つの特徴をそなえたシステムの実現を長年模索してきた。
このような問題意識のもと、日本国内において、新憲法下の公職選挙法によって実施された市町村議会議員選挙について分析したところ、第1に、競争率(候補者数÷定数)と当選者が投票数に占める割合(当選者得票率)の間に非常に強い相関関係があることを見出した。第2に、統計解析の手法を援用し候補者の得票数分布が正規分布で近似できることも分かった。
本発明は、この二つの知見を基に、従来は不可能であった市町村議会議員選挙における当選ラインを予測し、候補者等が自らの当落可能性のシミュレーションができるシステムの実現を目的とする。
In the above winning prediction simulation, the prediction can be made only after the vote is closed and the voting rate is known on the election day. In addition, in the case of elections for congressional members competing for multiple seats, conditions such as the implementation of exit surveys become more severe.
The applicant has two characteristics: firstly, it can be applied to local council elections that contend for multiple seats, and secondly, prospective candidates can predict their winning line before the voting date. We have been searching for the realization of the system for many years.
Based on this awareness of issues, we analyzed the municipal assembly elections conducted in Japan under the Public Constitution Election Law under the new constitution. First, the competition rate (number of candidates ÷ constant) and the winners We found that there is a very strong correlation between the percentage of votes cast (winning vote rate). Secondly, it was also found that a candidate's vote distribution can be approximated by a normal distribution with the aid of statistical analysis techniques.
The present invention is based on these two findings and aims to realize a system that predicts a winning line in a municipal assembly election, which was impossible in the past, and enables candidates to simulate their own chances of winning. .
上記の目的を達成するために、請求項1に記載の発明は、議員選挙における当選ラインの選挙実施前予測を、ユーザ端末と通信可能に接続する選挙予測装置とによって実現するための当選ライン予測システムであって、
前記選挙予測装置は、
当選ラインの予測に必要な数値データ(例えば、議員選挙に関する有権者数、議員定数、候補者数、推定投票率など)を前記ユーザ端末から受信する予測要求受信手段と、
過去の実績データをもとに統計的手法により算出された予測式に基づいて予測当選者得票率を算出する当選者得票率予測値算出手段と、
この算出された予測当選者得票率を正規分布にあてはめて予測当選ラインを算出する当選ライン予測値算出手段と、
算出された予測当選ラインを前記ユーザ端末に送信する予測結果出力手段とを備えることを特徴とする。
「当選者得票率」とは、全当選者の得票数が投票数に占める割合であり、後に詳しく説明するように本発明の予測システムにとって最も重要な概念である。
このように、立候補予定者などのユーザは、例えば有権者数、議員定数などの数値データを入力するだけで当選ラインを予測することが出来る。定性データを用いず定量データのみによる統計的手法を駆使した予測方法を採用するので、ユーザの属性(性別、年齢、所属政党など)や立候補を予定する自治体の属性(地理的位置、都会か地方の別など)によらず、普遍的かつ妥当性のある結果を提供できる。ユーザは数個の入力項目を入力するだけで結果が得られるという簡便さから、候補予定者数や見込み得票数などが変動する度に、本システムを利用して、最新の状況に対応した予測当選ラインを取得できる。
なお、首長選挙や国政選挙では、未だ本アプローチの有効性を検証していない。
In order to achieve the above object, the invention according to
The election prediction device is
Predictive request receiving means for receiving numerical data necessary for prediction of the winning line (for example, the number of voters for the election of members, the number of members, the number of candidates, the estimated vote rate, etc.)
A winner vote rate predicted value calculation means for calculating a predicted winner vote rate based on a prediction formula calculated by a statistical method based on past performance data;
A winning line predicted value calculating means for calculating a predicted winning line by applying the calculated predicted winner percentage to a normal distribution,
And a prediction result output means for transmitting the calculated prediction winning line to the user terminal.
The “winner vote rate” is the ratio of the number of votes of all winners to the number of votes, and is the most important concept for the prediction system of the present invention as will be described in detail later.
In this way, a user such as a candidate for candidate can predict a winning line simply by inputting numerical data such as the number of voters and the number of legislators. Uses a prediction method that uses only statistical data, not qualitative data, so the attributes of the user (gender, age, political party, etc.) and the attributes of the municipality where the candidate is planned (geographical location, urban or local) Universally relevant results, regardless of the other). Because the user can easily obtain results by inputting only a few input items, every time the number of candidate candidates or the expected number of votes fluctuates, this system is used to make predictions corresponding to the latest situation. You can get a winning line.
In addition, the effectiveness of this approach has not yet been verified in the chief or national elections.
上記の目的を達成するために、前記予測要求受信手段が受信するデータには見込み得票数も含まれ、前記予測結果出力手段は、前記入力された見込み得票数と、前記算出された予測当選ラインとを視覚的に対応づけた画面表示データを作成し前記ユーザ端末に送信するとよい。
これにより、容易に予測結果が把握できる。文字・数字のみによる結果表示は、選挙を控えて多忙なユーザの望むところではない。入力の容易さとともに出力のわかりやすさは、精度の高さと並んで重要である。
In order to achieve the above object, the data received by the prediction request receiving means also includes the expected number of votes, and the prediction result output means includes the inputted expected number of votes and the calculated predicted winning line. It is preferable to create screen display data that visually corresponds to and transmit it to the user terminal.
Thereby, a prediction result can be grasped easily. The result display using only letters and numbers is not what a busy user is waiting for the election. The ease of input and the ease of understanding the output are important along with the high accuracy.
上記の目的を達成するために、前記当選者得票率予測値算出手段は、競争率を独立変数とし、当選者得票率を従属変数として回帰分析を行うことで算出されたパラメータを用いるとよい。
ここで、「競争率」とは、候補者数を議員定数で除した値である。
In order to achieve the above object, the winning voter predicted value calculation means may use parameters calculated by performing regression analysis with the competition rate as an independent variable and the winners vote rate as a dependent variable.
Here, the “competition rate” is a value obtained by dividing the number of candidates by a member of the Diet.
立候補者等が、注目する自治体における議員選挙で、選挙実施前に、所定の項目を入力すれば瞬時に当選ラインの予測値を計算し、見込み得票数が当選ラインを基準にどの位置にくるかを表示することができる。
なお、本発明のシステムを試作し、日本国内に千数百ある自治体の議員選挙のうち最近実施された462の選挙で検証したところ、信頼度95%で実用に耐える当選ラインの予測ができることが確認できた。
Candidates, etc., in the electoral elections in the municipality to which attention is paid, calculate the predicted value of the winning line instantly if the specified items are entered before the election, and where the expected number of votes will be based on the winning line Can be displayed.
In addition, when the system of the present invention was prototyped and verified in the 462 elections recently conducted among the elections of a few hundred local governments in Japan, it was possible to predict a winning line that could withstand practical use with 95% reliability. It could be confirmed.
本発明の一実施の形態のシステム(以下、本システム)について、図面を参照しながら説明する。 A system according to an embodiment of the present invention (hereinafter, this system) will be described with reference to the drawings.
本システムの構成および処理を詳しく説明する前に、本システムに係る当選ライン予測の概念について説明する。
この予測システムは、1)当選者得票率の予測、2)候補者得票数の正規分布による近似という2段階からなる。
Before describing the configuration and processing of the system in detail, the concept of winning line prediction according to the system will be described.
This prediction system has two stages: 1) prediction of the winning voter rate, and 2) approximation by the normal distribution of the number of candidate votes.
まず、当選者得票率の予測について述べる。
このシステムの開発のきっかけは、本出願人が選挙の「競争率(候補者数÷定数)」と「当選者全員の総得票数が有効投票数に占める割合(当選者得票率)」との関係に注目したところにある。
旭川市を例に取ると、戦後の市議会議員選挙の競争率と当選者得票率は表1のようになっている。
The reason for the development of this system is that the applicant is the “competition rate (number of candidates) / constant number” of the election and “the ratio of the total number of votes of all the winners to the number of effective votes (winning vote rate)”. There is a place to pay attention to the relationship.
Taking Asahikawa City as an example, Table 1 shows the competition rate and the winning voter rate of post-war city council members.
競争率を横軸に、得票率を縦軸にプロットすると、両者に相関関係が認められ,これに近似曲線をあてはめたのが図1のグラフである。
近似曲線を式(1)とし、表1の実績データの競争率を独立変数xとし、実績データの当選者得票率を従属変数yとして対数線形回帰を行い、当選者得票率の予測値を求めるための式(1)の係数aとbを算出し、a=1.0017、b=−0.5729を得た。なお、この算出方法は公知なので、説明は省略する。
Using the approximate curve as equation (1), the competition rate of the actual data in Table 1 as the independent variable x, and the logarithmic linear regression with the winner vote rate of the actual data as the dependent variable y, the predicted value of the winner vote rate is obtained. Thus, the coefficients a and b of the formula (1) for calculating the above were obtained, and a = 1.0017 and b = −0.5729 were obtained. Since this calculation method is publicly known, description thereof is omitted.
このときの決定係数は R2=0.9787であることから、非常に高い相関関係があることが分かる。
競争率と当選者得票率との強い関係は旭川市に限らず、他の市についても認められ、上記の式(1)の各パラメータは、a≒1であり、bについては-0.6前後の値となった。任意に抽出した北海道の19の自治体についてそれぞれbの値を算出してその平均値を求めたところ−0.5785であった。そこで式(2)を、当選者得票率を求める近似式として用いることにし、北海道以外の自治体についても計算してみた。
The strong relationship between the competitive rate and the winning voter rate is not limited to Asahikawa City, but is also recognized in other cities. Each parameter in the above equation (1) is a≈1, and b is around -0.6. Value. It was -0.5785 when the value of b was calculated and the average value was calculated | required, respectively about 19 local governments of Hokkaido extracted arbitrarily. Therefore, I decided to use equation (2) as an approximate expression for calculating the winning voter rate, and calculated for local governments other than Hokkaido.
たとえば、2007年の宇都宮市議会選挙では、競争率が1.18であり、実際の当選者得票率は0.92であった。
上記の式(2)にx=1.18を代入したところy=0.91となった。予測値・実測値比は0.99(=0.91/0.92)となり、非常に良好な結果が得られた。宇都宮市に限らず、他の自治体についても同様の結果が得られた。
これにより、市町村議会の議員選挙において、パラメータa,bの値を適切に決めれば、式(1)は十分精度の良い予測値を与えることが分かった。
For example, in the 2007 Utsunomiya City Council election, the competition rate was 1.18, and the actual winners vote rate was 0.92.
When x = 1.18 was substituted into the above equation (2), y = 0.91 was obtained. The predicted value / actual value ratio was 0.99 (= 0.91 / 0.92), and a very good result was obtained. Similar results were obtained not only in Utsunomiya City but also in other municipalities.
As a result, it was found that if the values of the parameters a and b are appropriately determined in the municipal assembly election, Equation (1) gives a sufficiently accurate predicted value.
続いて、候補者得票数の正規分布による近似について述べる。
実際の市町村議会選挙における候補者の得票数の分布について考えると、自治体や選挙の実施年にかかわりなく、一般に高い得票の候補者や低い得票の候補者は少なく、中間の票数を得た候補者が多くなっていることが分かる。図2には、1999年の函館市議選のヒストグラムを例示するが、この例にかぎらず、基本的に高得票、低得票の候補者が少なく、中間得票の候補者が多い、いわば富士山型の分布を示す。そこで「市町村議会議員選挙候補者の得票分布は正規分布で近似できる」と仮定して考えることとした。
Next, an approximation by the normal distribution of the number of candidate votes will be described.
Considering the distribution of the votes of candidates in actual municipal assembly elections, there are generally few high-voting candidates and low-voting candidates, regardless of the local government or the year of the election, and candidates with intermediate votes. It turns out that there are many. Fig. 2 illustrates the Hakodate City Election Histogram in 1999, but this is not the only example. Basically, there are few high- and low-voting candidates and many intermediate-voting candidates. Show the distribution. Therefore, we decided to assume that “the distribution of votes for municipal election candidates can be approximated by a normal distribution”.
正規分布の特徴は、中心軸から標準偏差sの何倍離れているかによって、全体に占める割合が求められるということであり、これに前述のとおり当選者得票率が推定できることを適用すれば、当選者と落選者の得票の境界値が推定できることになる。
図3は標準正規分布の確率密度関数と累積分布関数を表すグラフである。たとえば、A市の議会議員選挙で当選者得票率が85%(落選者得票率は15%)とすれば縦軸の0.15に対応する累積分布関数のz≒−1.004が求められる。中心軸は候補者得票の平均値(μ)に対応するので、本来の正規分布(平均μ、標準偏差s)に変換すると式(3)になる。Tが、求めるべき予測当選ラインである。
FIG. 3 is a graph showing a probability density function and a cumulative distribution function of a standard normal distribution. For example, if the electoral voter rate is 85% in the A-city parliamentary elections (the lost voter voter rate is 15%), the cumulative distribution function corresponding to 0.15 on the vertical axis is calculated as z≈−1.004. . Since the central axis corresponds to the average value (μ) of the candidate vote, when converted to the original normal distribution (average μ, standard deviation s), Equation (3) is obtained. T is a prediction winning line to be obtained.
上記は当選者得票率が85%の計算例であったが、一般の場合には標準正規分布表のサーチによってzを求める。一般形は、式(4)となる。
次に、標準偏差sについて考える。図3のグラフからも分かるように、中心値から離れるほど得票分布度数が減少し、sの3倍を超えるあたりからほぼ0(両裾野あわせて1%以下)になる。しかし、選挙では制度上、最下位候補者が得票ゼロの場合もあり得るので、累積分布関数の値が実質的に0になるz=−5を起点とすれば、μ=5sということになる。これからs=μ÷5でこのシステムで使う標準偏差を求める。求めるべきTは、式(5)で算出できる。
このようにして、本システムのユーザが知りたいと思う当選ラインの予測値Tが算出される。非常にシンプルな式を用い、少数の定量データを入力するだけで、高い精度の予測が実現できる。
In this way, the predicted value T of the winning line that the user of this system wants to know is calculated. Predictions with high accuracy can be realized by using a very simple formula and inputting a small amount of quantitative data.
次に、本実施形態の構成について、図4のシステム構成図および図5の選挙予測装置2の機能ブロック図を参照しながら説明する。
図4に示すように、本システム1は、選挙予測装置2にインターネットNを介してアクセスしたユーザ端末3が、選挙予測装置2から当選ラインの予測値を得るものである。
Next, the configuration of the present embodiment will be described with reference to the system configuration diagram of FIG. 4 and the functional block diagram of the
As shown in FIG. 4, in the
ユーザ端末3は、ユーザ即ち本システムを利用し選挙予測に役立てようとする専ら立候補者(予定者も含む)及びその関係者、或いは報道機関が利用する端末である。このユーザ端末3は、いわゆるパーソナルコンピュータ、携帯電話機、PDA(Personal Digital
Assistant)等により構成することができ、各種のデータを入力するためのキーボードやタッチパネル、当該入力したデータやネットワークを介して受信したデータ等を出力するディスプレイ等を備え、所定のプロトコルに従ってデータの送受信を行うことができる。
本システムでは選挙予測装置2にデータを送信したり、予測結果を受信したりする際、Webページを介して行う。そのため、ユーザ端末3は、HTMLなどで記述されたWebページを画面表示するソフトウェア(ブラウザ)がインストールされていることが必要である。
図4には、2台のユーザ端末3があるが、台数に制限はない。
The
Assistant), etc., equipped with a keyboard and touch panel for inputting various data, a display for outputting the input data and data received via the network, etc., and transmitting and receiving data according to a predetermined protocol It can be performed.
In this system, when data is transmitted to the
Although there are two
選挙予測装置2は、CPU(Central Processing Unit)、CPUが実行するコンピュータプログラム、コンピュータプログラムや所定のデータを記憶するRAM(Random Access Memory)やROM(Read Only Memory)などの内部メモリ、及びハードディスクドライブなどの外部記憶装置により、記憶部4、処理部5を構成する。他に、通信インターフェース部6、マウスやキーボードなどの入力手段、ディスプレイやプリンタなどの出力手段も備える。
なお、図4では、1台しか記載がないが、1台でその処理を実行するとは限らず、複数の情報処理装置が連携してその処理を実行してもよい。例えば、記憶部4のうち、実績データ記憶手段8は、選挙予測装置2に内蔵するハードディスクやケーブルで接続する外付けハードディスクに設けてもよいが、選挙予測装置2とは別のコンピュータをデータベースサーバとして用いても良い。
The
Although only one device is shown in FIG. 4, the processing is not necessarily performed by one device, and a plurality of information processing apparatuses may execute the processing in cooperation. For example, the performance data storage means 8 in the storage unit 4 may be provided in a hard disk built in the
記憶部4には、ユーザ情報記憶手段7と、実績データ記憶手段8と、パラメータ記憶手段9と、プログラム記憶手段10と、算出データ記憶手段11と、その他の記憶手段が含まれる。その他の記憶手段には、標準正規分布表やユーザによる入力が無いときのデフォルト値や各種定数、ユーザ端末3に送信する画面データのテンプレート等が格納される。
処理部5には、ユーザ情報管理手段12と、回帰式算出手段13と、予測要求受信手段14と、当選者得票率予測値算出手段15と、当選ライン予測値算出手段16と、予測結果出力手段17と、その他の処理手段が含まれる。ただし、これらの処理部5の各手段の分類はあくまで説明の便宜上であって、実際にこの実施の形態での実現の方法を規定しているわけではない。要するにここで説明されている機能が実現できればよい。また、各手段は、プログラム記憶手段10に格納されているコンピュータプログラムをOSがメモリ上に展開し、CPUが実行する。
The storage unit 4 includes user information storage means 7, performance data storage means 8, parameter storage means 9, program storage means 10, calculation data storage means 11, and other storage means. The other storage means stores a standard normal distribution table, default values when there is no user input, various constants, a screen data template to be transmitted to the
The processing unit 5 includes a user
ユーザ情報記憶手段7には、本システムのユーザに関する情報がユーザ情報管理手段12によって格納され管理される。本システムでは、選挙とは無関係な者による興味本位の利用を防ぐため及び課金のために、予め登録したユーザに限って本システムを利用できるようにすることが望ましい。そのため、ユーザ情報記憶手段7には、ユーザ名、パスワード、連絡先、クレジットカード情報などがユーザIDと対応づけて記憶されている。
In the user information storage unit 7, information related to the user of this system is stored and managed by the user
実績データ記憶手段8は、過去の地方議会選挙に関するデータを記憶する手段である。自治体名と選挙のあった年度と競争率と当選者得票率とが少なくとも対応づけて記憶されている。
回帰式算出手段13は、この実績データ記憶手段8から取得したデータの統計的な処理を行い、当選者得票率の予測値算出に用いられる近似曲線のパラメータ(式(1)のa,b)を算出し、パラメータ記憶手段9に記憶する。
回帰式算出手段13による近似曲線のパラメータ算出は、然るべきタイミングで実績データに基づいて行われる。予測式は精度の高い予測値が算出できることが重要であり、実績データの収集は各地で選挙が行われる都度蓄積していく。必要に応じて古いデータは予測式算出の基礎データから除外する。このように最新の情報を取り込んでパラメータを算出するならば、一層精度の高い予測が実現できることになる。
これらの実績データの収集および近似曲線の算出処理は、本システムの目的である当選ライン予測処理とは別個独立に、適当なタイミングで行われる。
The performance data storage means 8 is means for storing data relating to past local assembly elections. The local government name, the year of the election, the competition rate, and the winning voter rate are stored in association with each other.
The regression equation calculation means 13 performs statistical processing on the data acquired from the result data storage means 8 and approximate curve parameters (a and b in the expression (1)) used for calculating the predicted value of the winning voter percentage. Is calculated and stored in the parameter storage unit 9.
The approximate curve parameter calculation by the regression equation calculation means 13 is performed based on the actual data at an appropriate timing. It is important that prediction formulas can be used to calculate highly accurate prediction values, and collection of performance data is accumulated every time elections are held in various locations. If necessary, old data is excluded from the basic data for calculating the prediction formula. Thus, if the latest information is taken in and parameters are calculated, prediction with higher accuracy can be realized.
The collection of the actual data and the calculation process of the approximate curve are performed at an appropriate timing independently of the winning line prediction process that is the object of the present system.
予測要求受信手段14は、ユーザ端末3からの予測処理要求を受信し、有権者数などの受信データを当選者得票率予測値算出手段15に渡す。
当選者得票率予測値算出手段15は、ユーザ端末3から受信した候補者数と議員定数から競争率を算出し、パラメータ記憶手段9から取得したパラメータに基づいて当選者得票率の予測値を算出する。
当選ライン予測値算出手段16は、正規分布を用いて当選ラインの予測値を算出する。これらの処理の経過で算出された値は、算出データ記憶手段11にその都度書き込み、後の処理で用いることとする。
予測結果出力手段17は、グラフ上に予測当選ラインを表示し、ユーザが入力した見込み得票数をあわせて画面に表示するための出力データを作成し、ユーザ端末3に送信する。
The prediction
The winner vote rate predicted value calculation means 15 calculates the competition rate from the number of candidates received from the
The winning line predicted value calculation means 16 calculates the predicted value of the winning line using a normal distribution. Values calculated in the course of these processes are written to the calculated data storage unit 11 each time and used in subsequent processes.
The prediction result output means 17 displays the predicted winning line on the graph, creates output data for displaying the expected number of votes inputted by the user on the screen, and transmits it to the
次に、本実施形態の選挙予測装置2による当選ライン予測処理の処理手順について、図6を参照しながら説明する。
予測要求受信手段14は、ユーザ端末3からの予測処理要求を受信する(ステップS1)。同時に受信したユーザIDとパスワードに基づきユーザ認証を行う。ユーザ情報記憶手段7を検索して一致するユーザIDとパスワードが見つかったことを確認後、入力項目の入力画面をユーザ端末3に送信する(ステップS2)。
図7に例示するような入力画面を介してユーザ端末3から有権者数(I1)、議員定数(I2)、候補者数(I3)、推定投票率(I4)、見込み得票数(I5)が送信されると、これを受信する(ステップS3)。受信した数値については適宜数値範囲チェックを行うことが望ましい。例えば、議員定数が0といったありえない値が送信されたときは、ユーザ端末3に再入力を促す画面データを送信する。
なお、図6では、エラー処理の記載を省略しているが、ユーザ認証に失敗した場合、入力データおよび算出データの範囲エラーが発生した場合などは、予め定められた処理が行われることは言うまでもない。
Next, the process procedure of the winning line prediction process by the
The prediction
The number of voters (I1), the number of legislators (I2), the number of candidates (I3), the estimated vote rate (I4), and the expected number of votes (I5) are transmitted from the
In FIG. 6, the description of error processing is omitted, but it goes without saying that predetermined processing is performed when user authentication fails or when a range error of input data and calculation data occurs. Yes.
当選者得票率予測値算出手段15は、次の手順で当選者得票率の予測値(P)を算出する。まず、ユーザ端末3から受信した候補者数(I3)を議員定数(I2)で除して競争率(Q)を計算する(ステップS4)。次に、パラメータ記憶手段9から近似曲線のパラメータa,bを取り出し、当選者得票率の予測式を決定する(ステップS5)。この式に競争率(Q)を代入して、予測値(P)を算出する(ステップS6)。この予測値のような処理の途中経過において算出された値は、算出データ記憶手段11に書き込まれる。
The winner vote rate predicted value calculation means 15 calculates the predicted value (P) of the winner vote rate in the following procedure. First, the competition rate (Q) is calculated by dividing the number of candidates (I3) received from the
続いて、当選ライン予測値算出手段16による当選ラインの予測が次の手順で行われる。
まず、候補者得票分布を正規分布で近似する(ステップS7)。正規分布の平均(μ)を候補者得票の平均値、即ち推定投票者数(J)/候補者数(I3)で計算し、正規分布の標準偏差(s)はμ/5で近似し、μとsの値を算出データ記憶手段11に書き込む。ここで、推定投票者数(J)は、〔有権者数(I1)×推定投票率(I4)〕である。
続いて、標準正規分布を使用して予測当選ライン(T)を算出する(ステップS8)。 即ち、縦軸の(1−P)に対応する累積度数分布表のzを標準正規分布表から求め、式(5)でTを算出する。
Subsequently, the winning line prediction by the winning line predicted value calculation means 16 is performed in the following procedure.
First, the candidate vote distribution is approximated by a normal distribution (step S7). The average (μ) of the normal distribution is calculated by the average value of the candidate votes, that is, the estimated number of votes (J) / the number of candidates (I3), and the standard deviation (s) of the normal distribution is approximated by μ / 5, The values of μ and s are written in the calculated data storage unit 11. Here, the estimated number of voters (J) is [the number of voters (I1) × the estimated vote rate (I4)].
Subsequently, a predicted winning line (T) is calculated using the standard normal distribution (step S8). That is, z of the cumulative frequency distribution table corresponding to (1-P) on the vertical axis is obtained from the standard normal distribution table, and T is calculated by the equation (5).
予測結果出力手段17は、算出した予測当選ライン(T)とユーザ本人が入力した自分の見込み得票数(I5)とを一見して対比できるようにグラフやカラー表示を用いた画面表示のためのデータを作成して、ユーザ端末3に送信する(ステップS9)。これを受信したユーザ端末3はウェブブラウザの機能により、画面に表示する。図8は、画面表示例を示すものである。
ユーザは、候補者数(I3)、見込み得票数(I5)に変更がある度に、本システムを利用して予測当選ラインを取得するとよい。また、投票日当日の天気などによる投票率の変動を考慮して推定投票率(I4)を何通りも入力し、目標とすべき得票数を推定するなど、本システムを活用するとよい。
The prediction result output means 17 is used for screen display using a graph or color display so that the calculated predicted winning line (T) and the expected number of votes (I5) input by the user can be compared at a glance. Data is created and transmitted to the user terminal 3 (step S9). The
The user may obtain a predicted winning line using this system every time there is a change in the number of candidates (I3) and the expected number of votes (I5). In addition, this system may be used, for example, by inputting various estimated vote rates (I4) in consideration of fluctuations in the vote rate due to the weather on the day of the vote, and estimating the number of votes to be targeted.
本発明は、議員選挙の実施前に所定の項目を入力すると予測当選ラインを算出し、その結果をグラフ等で表示する点に特徴がある。したがって、上記の実施の形態は、あくまで例示であり、特許請求の範囲内でさまざまな変形例が考えられる。 The present invention is characterized in that a prediction winning line is calculated when a predetermined item is input before a member of the Diet election, and the result is displayed in a graph or the like. Therefore, the above embodiment is merely an example, and various modifications can be considered within the scope of the claims.
たとえば、回帰分析のモデル式は上記の式(1)に限るものではない。過去の実績データをいろいろなモデル式(6)に代入し、予測の精度が高い予測式を採用すればよい。ただし、xとyは前述の変数である。また、a,b,c,・・・は式fに付随するパラメータである。
また、上記の実施の形態では、ユーザに必要な数値を入力させていた。しかし、選挙予測装置2側で把握可能なデータもある。たとえば議員定数、有権者数を自治体名と対応づけてデータベース化しておく。ユーザはユーザ登録時に立候補を予定する自治体名を登録しておくならば、本システムは、ユーザ本人に議員定数、有権者数を入力させなくてよい。
推定投票率についても任意的なユーザ入力項目とすることもできる。ユーザの指定がない場合は、選挙予測装置2側で予め定めたデフォルト値を用いてもよい。このように必須のユーザ入力項目を減らすことで、ユーザの負担は一層軽減される。
Further, in the above embodiment, the user is required to input a numerical value. However, there is also data that can be grasped on the
The estimated vote rate can also be an optional user input item. If there is no user designation, a default value predetermined on the
さらに、上記の実施の形態では、ASP(Application Service Provider)形態を念頭におき、実績データは最新のものを前提としていた。しかし、請求項5から7のいずれか1に記載のコンピュータプログラムをオンラインあるいはパッケージ形態で販売し、ユーザのパソコン上で議員定数などの項目の入力、予測値の算出、予測結果の画面表示までの一連の処理を実行してもよい。最新の実績データはオンライン又はオフラインで提供すればよい。 Further, in the above-described embodiment, the application data provider (ASP) form is taken into consideration, and the result data is based on the latest data. However, the computer program according to any one of claims 5 to 7 is sold on-line or in a package form, and input of items such as parliamentary constants on a user's personal computer, calculation of a predicted value, and display of a prediction result on a screen A series of processes may be executed. The latest performance data may be provided online or offline.
ASP形態や、アプリケーションパッケージ形態で提供するシステムとして、議会議員選挙の立候補者やその関係者あるいは報道機関からの利用が期待できる。
As a system provided in the form of an ASP or application package, it can be expected to be used by a candidate for a member of the Diet, its related parties, or a news agency.
1:選挙予測システム、
2:選挙予測装置、3:ユーザ端末、
4:記憶部、5:処理部、6:通信インターフェース部、
7:ユーザ情報記憶手段、8:実績データ記憶手段、9:パラメータ記憶手段、
10:プログラム記憶手段、11:算出データ記憶手段、
12:ユーザ情報管理手段、13:回帰式算出手段、14:予測要求受信手段、
15:当選者得票率予測値算出手段、16:当選ライン予測値算出手段、17:予測結果出力手段、
N:インターネット
1: Election prediction system,
2: Election prediction device, 3: User terminal,
4: storage unit, 5: processing unit, 6: communication interface unit,
7: user information storage means, 8: performance data storage means, 9: parameter storage means,
10: program storage means, 11: calculation data storage means,
12: user information management means, 13: regression equation calculation means, 14: prediction request receiving means,
15: Winner vote rate prediction value calculation means, 16: Winning line prediction value calculation means, 17: Prediction result output means,
N: Internet
Claims (7)
前記選挙予測装置は、
当選ラインの予測に必要な数値データを前記ユーザ端末から受信する予測要求受信手段と、
過去の実績データをもとに統計的手法により算出された予測式に基づいて予測当選者得票率を算出する当選者得票率予測値算出手段と、
この算出された予測当選者得票率を正規分布にあてはめて予測当選ラインを算出する当選ライン予測値算出手段と、
算出された予測当選ラインを前記ユーザ端末に送信する予測結果出力手段とを備えることを特徴とする当選ライン予測システム。 A winning line prediction system for realizing a pre-election prediction of a winning line in a congressional election by an election predicting device connected to a user terminal in a communicable manner,
The election prediction device is
Prediction request receiving means for receiving numerical data necessary for prediction of the winning line from the user terminal;
A winner vote rate predicted value calculation means for calculating a predicted winner vote rate based on a prediction formula calculated by a statistical method based on past performance data;
A winning line predicted value calculating means for calculating a predicted winning line by applying the calculated predicted winner percentage to a normal distribution,
A winning line prediction system comprising: a prediction result output means for transmitting the calculated predicted winning line to the user terminal.
前記コンピュータに、
当選ラインの予測に必要な数値データを前記入力手段を介して入力するステップと、
過去の実績データをもとに統計的手法により算出された予測式に基づいて予測当選者得票率を算出するステップと、
この算出された予測当選者得票率を正規分布にあてはめて予測当選ラインを算出するステップと、
算出された予測当選ラインを前記画面表示手段に表示するステップとを実行させることを特徴とするコンピュータプログラム。 A computer program for causing a computer having an input means and a screen display means to execute a pre-election prediction of a winning line in a legislator election,
In the computer,
Inputting numerical data necessary for prediction of a winning line through the input means;
Calculating a predicted winner percentage based on a prediction formula calculated by a statistical method based on past performance data;
Applying the calculated predicted winner percentage to a normal distribution to calculate a predicted winning line;
And a step of displaying the calculated predicted winning line on the screen display means.
7. The parameter calculated by performing regression analysis using the competition rate as an independent variable and the winner's vote rate as a dependent variable, for calculating the predicted winner vote rate. A computer program according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176688A JP5611711B2 (en) | 2010-08-05 | 2010-08-05 | Winning line prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010176688A JP5611711B2 (en) | 2010-08-05 | 2010-08-05 | Winning line prediction system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012038041A true JP2012038041A (en) | 2012-02-23 |
JP5611711B2 JP5611711B2 (en) | 2014-10-22 |
Family
ID=45849992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010176688A Active JP5611711B2 (en) | 2010-08-05 | 2010-08-05 | Winning line prediction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5611711B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101346868B1 (en) | 2012-11-08 | 2014-02-07 | 경희대학교 산학협력단 | Method for estimating election based on population statistics of selected voter by hour |
JP2015053039A (en) * | 2013-08-05 | 2015-03-19 | 俊明 熊木 | Prediction system of number of seats according to political party based on diet election preliminary survey |
WO2017019509A1 (en) * | 2015-07-27 | 2017-02-02 | Tribune Broadcasting Company, Llc | News production system with dynamic character generator output |
KR101856169B1 (en) * | 2016-03-03 | 2018-05-09 | 서강대학교 산학협력단 | A method for reducing error rate of the real-time winning probability in the ballot counting process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640960A (en) * | 1979-09-08 | 1981-04-17 | Yoshiro Nakamatsu | Election foreseeing system |
JP2003114956A (en) * | 2001-10-05 | 2003-04-18 | Kyodo News Service | Election news report supporting system and device, and method and system for supporting election news report |
-
2010
- 2010-08-05 JP JP2010176688A patent/JP5611711B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640960A (en) * | 1979-09-08 | 1981-04-17 | Yoshiro Nakamatsu | Election foreseeing system |
JP2003114956A (en) * | 2001-10-05 | 2003-04-18 | Kyodo News Service | Election news report supporting system and device, and method and system for supporting election news report |
Non-Patent Citations (2)
Title |
---|
CSNG200300199002; 鈴木 督久: 'モンテカルロ法による衆院議席予測精度の検討' 経営の科学 オペレーションズ・リサーチ 第48巻 第1号, 20030101, pp.11-16, 社団法人日本オペレーションズ・リサーチ学会 * |
JPN6014014772; 鈴木 督久: 'モンテカルロ法による衆院議席予測精度の検討' 経営の科学 オペレーションズ・リサーチ 第48巻 第1号, 20030101, pp.11-16, 社団法人日本オペレーションズ・リサーチ学会 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101346868B1 (en) | 2012-11-08 | 2014-02-07 | 경희대학교 산학협력단 | Method for estimating election based on population statistics of selected voter by hour |
JP2015053039A (en) * | 2013-08-05 | 2015-03-19 | 俊明 熊木 | Prediction system of number of seats according to political party based on diet election preliminary survey |
JP2016035763A (en) * | 2013-08-05 | 2016-03-17 | 熊木 俊明 | Method for estimating statistical population from preliminary sampling survey when situation survey of national election is published |
WO2017019509A1 (en) * | 2015-07-27 | 2017-02-02 | Tribune Broadcasting Company, Llc | News production system with dynamic character generator output |
US9883246B2 (en) | 2015-07-27 | 2018-01-30 | Tribune Broadcasting Company, Llc | News production system with dynamic character generator output |
US10070190B2 (en) | 2015-07-27 | 2018-09-04 | Tribune Broadcasting Company, Llc | News production system with dynamic character generator output |
KR101856169B1 (en) * | 2016-03-03 | 2018-05-09 | 서강대학교 산학협력단 | A method for reducing error rate of the real-time winning probability in the ballot counting process |
Also Published As
Publication number | Publication date |
---|---|
JP5611711B2 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Enikolopov et al. | Social media and protest participation: Evidence from Russia | |
Valliant | Comparing alternatives for estimation from nonprobability samples | |
Dank et al. | Estimating the size and structure of the underground commercial sex economy in eight major US cities | |
Daxecker et al. | Fraud is what people make of it: Election fraud, perceived fraud, and protesting in Nigeria | |
Eom et al. | Twitter-based analysis of the dynamics of collective attention to political parties | |
CN113099475B (en) | Network quality detection method, device, electronic equipment and readable storage medium | |
US20070016468A1 (en) | System, medium, and method for guiding election campaign efforts | |
JP5611711B2 (en) | Winning line prediction system | |
CN111026959A (en) | Prompt message pushing method, device and storage medium | |
Oshri et al. | Risk aversion and the gender gap in the vote for populist radical right parties | |
CN110910201B (en) | Information recommendation control method and device, computer equipment and storage medium | |
US6125340A (en) | System for determining the probability that items of evidence prove a conclusion | |
CN114627330A (en) | Time sequence flow prediction method and device, storage medium and electronic equipment | |
KR102234274B1 (en) | Successful bidding forecasting method based on data | |
Zapp | The legitimacy of science and the populist backlash: Cross-national and longitudinal trends and determinants of attitudes toward science | |
Valliant et al. | Nonprobability sampling | |
KR101346868B1 (en) | Method for estimating election based on population statistics of selected voter by hour | |
Pedrazzani | Wasting or saving time? How government and opposition parties use time during legislative debates. Evidence from the Italian case | |
Steinman et al. | Using administrative data from adult protective services: opportunities and considerations | |
Chang et al. | Detecting log-periodicity in a regime-switching model of stock returns | |
Jin et al. | Research on the evaluation model of rural information demand based on big data | |
JP6961148B1 (en) | Information processing system and information processing method | |
EP3493082A1 (en) | A method of exploring databases of time-stamped data in order to discover dependencies between the data and predict future trends | |
Harkan | Predicting the Results of the 2019 Indonesian Presidential Election with Google Trends | |
Marley | Best-worst scaling: theory and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5611711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |