JP2012037308A - Phase advance/delay discrimination apparatus for power-factor indicator - Google Patents

Phase advance/delay discrimination apparatus for power-factor indicator Download PDF

Info

Publication number
JP2012037308A
JP2012037308A JP2010176037A JP2010176037A JP2012037308A JP 2012037308 A JP2012037308 A JP 2012037308A JP 2010176037 A JP2010176037 A JP 2010176037A JP 2010176037 A JP2010176037 A JP 2010176037A JP 2012037308 A JP2012037308 A JP 2012037308A
Authority
JP
Japan
Prior art keywords
current
voltage
data
power factor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176037A
Other languages
Japanese (ja)
Inventor
Jun Kawagoe
越 順 川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electric Meters Inspection Corp JEMIC
Original Assignee
Japan Electric Meters Inspection Corp JEMIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electric Meters Inspection Corp JEMIC filed Critical Japan Electric Meters Inspection Corp JEMIC
Priority to JP2010176037A priority Critical patent/JP2012037308A/en
Publication of JP2012037308A publication Critical patent/JP2012037308A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method capable of measuring advance/delay for phases of a current and a voltage of measured power in simple configuration.SOLUTION: The present invention relates to an apparatus which is used together with a digital power-factor indicator for measuring a power factor of measured power from a voltage and a current and discriminates advance/delay for phases of the current and the voltage, including: a means for detecting digital data in a predetermined term for a period of a predetermined length; a first multiplier for sequentially calculating a first product of multiplying new voltage data and former current data at a predetermined time point in a memory sequentially storing data from the detection means; a second multiplier for sequentially calculating a second product of multiplying new current data and former voltage data at a predetermined time point among data in the memory; an arithmetic circuit for integrating and averaging the first product and the second product, respectively, to determine a first arithmetic value and a second arithmetic value; a subtractor for determining a polarity of a difference of the second arithmetic value from the first arithmetic value; and a discriminator for discriminating advance/delay of the phases of the voltage and current from the polarity of the difference.

Description

本発明は、力率計とともに用いる装置であり、対象とする測定電力の電圧位相に対する電流位相の進み/遅れを判別する装置に関する。   The present invention relates to an apparatus used together with a power factor meter, and relates to an apparatus for discriminating a lead / lag of a current phase with respect to a voltage phase of a target measurement power.

商用電源として供給される交流電力は、負荷の一般的特性として電流位相が電圧位相に遅れて力率が悪化するのが通例である。そこで、力率を測定しその程度に応じて進相コンデンサを作用させることにより力率改善を図ることになる。   The AC power supplied as a commercial power supply usually has a power factor that deteriorates because the current phase is delayed from the voltage phase as a general characteristic of the load. Therefore, the power factor is improved by measuring the power factor and applying a phase advance capacitor according to the measured power factor.

このように、通常の商用電源から電気機器に給電している場合、電流位相は遅れるので、力率は遅れ力率と認識されている。そして、一般に普及している力率計は(遅れ)力率として数値のみを表示するように構成されている。   As described above, when power is supplied from an ordinary commercial power source to an electrical device, the current phase is delayed, so that the power factor is recognized as a delayed power factor. A generally used power factor meter is configured to display only a numerical value as a (delayed) power factor.

特開平8-262073号公報JP-A-8-262073

ところが、自家発電電力を商用電源と併用する状況になると、必ずしも上記の点が該当せず遅れ力率とは限られなくなる可能性がある。   However, when private power generation is used in combination with commercial power, the above point does not necessarily apply and the delay power factor may not be limited.

そのような状況では、単に力率の数値が測定できる力率計では不十分であり、進み/遅れが測定できなければ正しい力率改善処置が採れない。   In such a situation, a power factor meter that can simply measure the power factor value is insufficient, and if the advance / delay cannot be measured, correct power factor correction measures cannot be taken.

しかしながら、従来の力率計は、「数値表示」のみで「進み、遅れ」は表示しない。   However, the conventional power factor meter only displays “numerical value” and does not display “advance and delay”.

本発明は上述の点を考慮してなされたもので、簡単な構成で測定電力の電流位相が電圧位相に対する進み/遅れを測定し得る装置および方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an apparatus and method that can measure the advance / lag of the current phase of the measured power with respect to the voltage phase with a simple configuration.

上記目的達成のため、本発明では、
力率を測定すべき測定電力における電圧、電流のデジタルデータが与えられ、前記測定電力の力率を測定するデジタル力率計とともに用いられて前記電流の位相が前記電圧の位相に対して進んでいるか遅れているかを判別する装置であって、
前記デジタルデータを所定の長さの期間にわたり所定周期で検出する検出手段と、
前記検出手段から与えられたデータを逐次蓄積していくメモリーと、
前記メモリーに蓄積されたデータのうち、所定の新しい電圧データと所定の古い電流データとを乗算して所定時点における電圧と電流との第1積を順次算出する第1乗算器と、
前記メモリーに蓄積されたデータのうち、所定の新しい電流データと所定の古い電圧データとを乗算して前記所定時点における電流と電圧との第2積を順次算出する第2乗算器と、
前記第1積および前記第2積を各別に積分し平均化して第1演算値および第2演算値を求める演算回路と、
前記第1演算値から前記第2演算値を差し引いて得られる差の極性を求める減算器と、
前記差の極性から前記電圧の位相に対する前記電流の位相の進みまたは遅れを判別する判別器と
をそなえたことを特徴とする力率計用位相判別装置、
を提供するものである。
In order to achieve the above object, in the present invention,
The digital data of the voltage and current at the measured power to be measured for the power factor is given and used together with the digital power factor meter for measuring the power factor of the measured power so that the phase of the current advances with respect to the phase of the voltage A device for determining whether or not it is late,
Detecting means for detecting the digital data in a predetermined cycle over a period of a predetermined length;
A memory for sequentially accumulating data given from the detection means;
A first multiplier that sequentially calculates a first product of a voltage and a current at a predetermined time by multiplying predetermined new voltage data and predetermined old current data among the data stored in the memory;
A second multiplier for sequentially calculating a second product of current and voltage at the predetermined time by multiplying predetermined new current data and predetermined old voltage data among the data stored in the memory;
An arithmetic circuit that integrates and averages the first product and the second product separately to obtain a first arithmetic value and a second arithmetic value, and
A subtractor for obtaining a polarity of a difference obtained by subtracting the second calculated value from the first calculated value;
A power discriminator phase discriminator comprising: a discriminator for discriminating the advance or delay of the phase of the current with respect to the phase of the voltage from the polarity of the difference;
Is to provide.

本発明は上述のように、デジタル力率計に検出手段以下の各要素を付加することにより構成をさほど複雑化することなく電圧に対する電流の位相の進み、遅れを判定することができるため、測定すべき電力が如何なるものであっても力率改善のための適切な対応を執ることができる。   As described above, the present invention can determine the advance and delay of the phase of the current with respect to the voltage without adding any complexity to the configuration by adding each element below the detection means to the digital power factor meter. Regardless of the power to be used, appropriate measures for power factor improvement can be taken.

一般的なデジタル力率計の構成を示す説明図。Explanatory drawing which shows the structure of a general digital power factor meter. 図1の力率計に位相の進み/遅れ測定機能を付加した一構成例を示す説明図。FIG. 2 is an explanatory diagram showing a configuration example in which a phase advance / lag measurement function is added to the power factor meter of FIG. 1; 図1の力率計に位相の進み/遅れ測定機能を付加した他の構成例を示す説明図。FIG. 3 is an explanatory diagram showing another configuration example in which a phase advance / lag measurement function is added to the power factor meter of FIG. 1; 本発明の一実施例の構成を示す説明図。Explanatory drawing which shows the structure of one Example of this invention. 図4に示した実施例に用いるシフトレジスタの構成を示す説明図。FIG. 5 is an explanatory diagram illustrating a configuration of a shift register used in the embodiment illustrated in FIG. 4. 図4に示した実施例の動作を示す説明図。Explanatory drawing which shows operation | movement of the Example shown in FIG.

以下、添付図面を参照してまず本発明の基礎をなす技術を説明し、次いで本発明の実施の形態を説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the technology that forms the basis of the present invention will be described with reference to the accompanying drawings, and then embodiments of the present invention will be described.

一般的力率計General power factor meter

図1は、一般的なデジタル力率計の構成を示すブロック図である。力率をPFと表記すれば、

Figure 2012037308
ここで、P=測定電力
U=電圧
I=電流
と表される。 FIG. 1 is a block diagram showing a configuration of a general digital power factor meter. If the power factor is expressed as PF,
Figure 2012037308
Where P = measured power
U = Voltage
I = current.

そして、電圧Uおよび電流IをサンプリングによりA/D変換して形成したデジタル信号とする場合、電圧U、電流Iおよび電力Pはそれぞれ次のように表される。

Figure 2012037308
When the voltage U and the current I are digital signals formed by A / D conversion by sampling, the voltage U, the current I, and the power P are expressed as follows.
Figure 2012037308

図1は、このデジタル信号を用いて力率PFを求める一般的なデジタル力率計の構成を示している。この回路では、交流電圧uおよび交流電流iが入力として与えられ、電圧uは変圧回路11で変圧した上でA/D変換回路12でデジタル化してデジタル演算回路30に与え、電流iは変流回路21aで変流してから電圧変換回路21bで電圧に変えてA/D変換回路22でデジタル化しデジタル演算回路30に与える。   FIG. 1 shows a configuration of a general digital power factor meter that obtains a power factor PF using this digital signal. In this circuit, an alternating voltage u and an alternating current i are given as inputs, the voltage u is transformed by the transformer circuit 11, digitized by the A / D converter circuit 12, and given to the digital arithmetic circuit 30, and the current i is converted into current. The current is converted by the circuit 21 a, converted to a voltage by the voltage conversion circuit 21 b, digitized by the A / D conversion circuit 22, and supplied to the digital arithmetic circuit 30.

デジタル演算回路30は、2つのA/D変換回路12,22にサンプリングクロックを与えてデジタル化を行わせて得た2つのデジタル信号に基づいて力率演算を行い、測定結果である力率信号を出力する。   The digital arithmetic circuit 30 performs a power factor calculation based on two digital signals obtained by applying a sampling clock to the two A / D conversion circuits 12 and 22 and digitizing them, and a power factor signal as a measurement result. Is output.

ただし、この力率信号は力率の大きさだけを示すものであって位相成分、つまり進み、遅れを含まない。これは、商用電源の場合、電流位相が遅れになることが通例であり進み、遅れを測定するまでもないからである。しかし、需要家が発電設備を持ち電力会社に売電することもある現況では、電流位相が進んだ測定電力の力率を測定する場合もあり得る。   However, this power factor signal indicates only the magnitude of the power factor and does not include phase components, that is, advance and delay. This is because, in the case of a commercial power supply, the current phase is usually delayed and it is not necessary to measure the delay. However, in the present situation where a customer has a power generation facility and sells power to an electric power company, the power factor of the measured power with the advanced current phase may be measured.

図2は、図1の回路に移相回路を付加して位相の進み、遅れをも測定し得るように構成した回路構成例を示している。そのために、図1の回路に対して移相回路41および移相回路41で移相された電圧信号をデジタル化するA/D変換回路42を付加した構成としている。   FIG. 2 shows a circuit configuration example in which a phase shift circuit is added to the circuit of FIG. 1 so that phase advance and delay can be measured. For this purpose, a phase shift circuit 41 and an A / D conversion circuit 42 for digitizing the voltage signal phase shifted by the phase shift circuit 41 are added to the circuit of FIG.

図3は、図2の回路における移相回路41およびA/D変換回路42に替えてPLL回路40を設けたものである。この図3の回路は、離散フーリエ変換に基づいて位相角を測定するものである。この離散フーリエ変換を用いるということは、測定信号の1周期当りのサンプル数を一定のN回に保つことを意味し、そのため、測定信号の周波数に対してN倍の周波数を持つサンプリングクロックを生成するPLL回路を使用して測定信号の周波数に同期したA/D変換を行なう。   3 is provided with a PLL circuit 40 in place of the phase shift circuit 41 and the A / D conversion circuit 42 in the circuit of FIG. The circuit of FIG. 3 measures the phase angle based on the discrete Fourier transform. Using this discrete Fourier transform means that the number of samples per cycle of the measurement signal is kept at a constant N times, and therefore a sampling clock having a frequency N times the frequency of the measurement signal is generated. A / D conversion is performed in synchronization with the frequency of the measurement signal using the PLL circuit.

これら図2および図3の回路は、力率を電流位相の進み遅れ付きで測定できるものではあるが、この進み遅れ測定機能のために図1の回路に比べて構成がかなり複雑になる、という問題がある。   These circuits in FIGS. 2 and 3 can measure the power factor with the advance and delay of the current phase, but this lead and lag measurement function makes the configuration considerably more complicated than the circuit of FIG. There's a problem.

本発明は、この問題を解決するためになされたもので、簡単な回路構成で位相の進み遅れ測定機能付き力率計を提供するものである。   The present invention has been made to solve this problem, and provides a power factor meter with a phase advance / delay measurement function with a simple circuit configuration.

図4は、本発明に係る、電流位相の進み遅れ測定機能付き力率計の回路構成を示したものである。この回路では、測定された電圧および電流がデジタル化されており、入力端子INにはそのデジタル信号が与えられる。   FIG. 4 shows a circuit configuration of a power factor meter with a current phase advance / delay measurement function according to the present invention. In this circuit, the measured voltage and current are digitized, and the digital signal is given to the input terminal IN.

図4において、図示下部すなわち一点鎖線から下はより詳細な構成として図示してはいるが、図1に示したデジタル演算回路30と同等の構成、つまり力率計の一部を示したものであり、一点鎖線から上が本発明で新たに追加した回路構成、つまり位相進み遅れ測定回路である。   In FIG. 4, the lower part of the drawing, that is, the one below the one-dot chain line is shown as a more detailed configuration, but shows a configuration equivalent to the digital arithmetic circuit 30 shown in FIG. 1, that is, a part of the power factor meter. There is a circuit configuration newly added in the present invention from the one-dot chain line, that is, a phase advance / delay measurement circuit.

まず力率計に関しては、入力端子INから与えられた電圧デジタル信号u(k)および電流デジタル信号i(k)が乗算器101,201および301に与えられ、電圧2乗値u、電流2乗値i、および電圧と電流との乗算値u・iを得て演算器102,202および302により積分した上で平均値を求める。 First, regarding the power factor meter, the voltage digital signal u (k) and the current digital signal i (k) given from the input terminal IN are given to the multipliers 101, 201 and 301, and the voltage square value u 2 , current 2 The multiplication value i 2 and the multiplication value u · i of the voltage and current are obtained and integrated by the computing units 102, 202 and 302, and the average value is obtained.

次いで、演算器102,202の出力u,iは、ルート演算器103,203に与えられてそれぞれのルート値が算出され、乗算器303に与えられて両者の積U・Iが割算器304に与えられる。割算器304には演算器302から測定電力値Pが与えられ、力率P/U・Iが算出されて出力端子OUT1に測定力率値として送出される。 Next, the outputs u 2 and i 2 of the computing units 102 and 202 are given to the route computing units 103 and 203 to calculate the respective root values, and are given to the multiplier 303 to divide the product U · I between them. Is provided to the vessel 304. The divider 304 is supplied with the measured power value P from the calculator 302, calculates the power factor P / U · I, and sends it to the output terminal OUT1 as the measured power factor value.

一方、位相進み遅れ測定回路は、メモリーとしてのシフトレジスタ1に時系列信号が順次蓄積されていき、このシフトレジスタ1の最古のデータu(k-M),i(k-M)と入力端子INに与えられた最新のデータu(k),i(k)とが乗算器2a,2bに与えられる。   On the other hand, the phase lead / lag measuring circuit sequentially stores time series signals in the shift register 1 as a memory, and supplies the oldest data u (kM), i (kM) of the shift register 1 to the input terminal IN. The latest data u (k) and i (k) thus obtained are given to the multipliers 2a and 2b.

ここで、最新のデータu(k),i(k)は、測定電圧および電流の最新値または現在値ともいうべきもので、一方、最古のデータu(k-M),i(k-M)は、現在から所定位相に相当する期間先行する時点での電圧および電流のデータ(値)である。所定位相としては、例えば90度先行する時点を選ぶ。   Here, the latest data u (k), i (k) should be called the latest value or current value of the measured voltage and current, while the oldest data u (kM), i (kM) is This is data (values) of voltage and current at a time point preceding a period corresponding to a predetermined phase from the present time. As the predetermined phase, for example, a time point preceding by 90 degrees is selected.

図5(a),(b)は、シフトレジスタ1におけるデータの蓄積状態を示したもので、図5(a)は更新前の状態を、図5(b)は更新後の状態をそれぞれ示している。図5(a)に示すように、最新のデータu(k),i(k)はシフトレジスタ1に対して図示上方から与えられ、図5(b)に示すように、最古のデータu(k-M),i(k-M)が図示下方から取り出される。   5 (a) and 5 (b) show the data accumulation state in the shift register 1, FIG. 5 (a) shows the state before update, and FIG. 5 (b) shows the state after update. ing. As shown in FIG. 5 (a), the latest data u (k), i (k) is given to the shift register 1 from above, and the oldest data u is shown in FIG. 5 (b). (kM) and i (kM) are taken out from the lower part of the figure.

そして、シフトレジスタ1におけるこれら最新のデータu(k),i(k)および最古のデータu(k-M),i(k-M)を用いて、乗算器2aではu(k)・i(k-M)が、また乗算器2bではi(k)・u(k-M)が算出される。   Then, using the latest data u (k), i (k) and the oldest data u (kM), i (kM) in the shift register 1, the multiplier 2a uses u (k) · i (kM). However, i (k) · u (kM) is calculated in the multiplier 2b.

すなわち、乗算器2aでは、最新の電圧信号と最古の電流信号との積、乗算器2bでは最新の電流信号と最古の電圧信号との積が求められて演算器3a,3bに与えられる。演算器3a,3bでは、下記式(5),(6)により測定信号u(k)i(k-M),u(k-M)i(k)の所定期間に亘る積分値を平均した値が求められる。

Figure 2012037308
両演算器3a,3bの出力LD,LGが減算器4に与えられて

D=LD−LG (7)

が算出され、得られた差Dは判定器5に送られ「進み」、「遅れ」あるいは「進みも遅れもなし」が判定されて出力端子OUT2に出力される。 That is, in the multiplier 2a, the product of the latest voltage signal and the oldest current signal is obtained, and in the multiplier 2b, the product of the latest current signal and the oldest voltage signal is obtained and given to the arithmetic units 3a and 3b. . In the arithmetic units 3a and 3b, values obtained by averaging the integrated values over a predetermined period of the measurement signals u (k) i (kM) and u (kM) i (k) are obtained by the following equations (5) and (6). .
Figure 2012037308
The outputs LD and LG of both arithmetic units 3a and 3b are given to the subtractor 4.

D = LD−LG (7)

Is calculated, and the obtained difference D is sent to the determiner 5 to determine “advance”, “delay” or “no advance or delay” and output to the output terminal OUT2.

この結果、2つの出力端子OUT1,OUT2の出力から力率値と位相の進み、遅れが表示され、力率改善のためには、どのようなリアクタンスをどの程度用いる必要があるかが判明する。   As a result, the power factor value and the phase advance and delay are displayed from the outputs of the two output terminals OUT1 and OUT2, and it becomes clear what reactance needs to be used and how much to improve the power factor.

図6は、図5に示した回路のうち位相進み遅れ測定回路(図4上部)の動作を示したフローチャートである。図4に示した回路において、入力端子INに与えられた電圧u(k)、電流i(k)は、最新のデータとして共にシフトレジスタ1に対として蓄積される(ステップS1)。   FIG. 6 is a flowchart showing the operation of the phase advance / delay measurement circuit (upper part of FIG. 4) in the circuit shown in FIG. In the circuit shown in FIG. 4, the voltage u (k) and current i (k) applied to the input terminal IN are stored as a pair in the shift register 1 as the latest data (step S1).

シフトレジスタ1には、サンプリングクロックの周期で順次最新のデータが与えられ、電圧u(k-1),u(k-2),u(k-3),…として蓄積されていき、最古のデータu(k-M)、i(k-M)までM対のデータが蓄積されている。   The shift register 1 is sequentially given the latest data in the sampling clock cycle, and is stored as voltages u (k-1), u (k-2), u (k-3),. M pairs of data are stored up to u (kM) and i (kM).

このようにして得られた最新のデータ、つまり電圧u(k)および電流i(k)ならびに最古のデータ、つまり電圧u(k-M)および電流i(k-M)が乗算器2a,2bに与えられる(ステップS2)。そして、乗算器2aでは電圧u(k)と電流i(k-M)との乗算が行なわれ、また乗算器2bでは電圧u(k-M)と電流i(k)との乗算が行なわれる(ステップS3)。   The latest data thus obtained, that is, voltage u (k) and current i (k) and the oldest data, that is, voltage u (kM) and current i (kM) are applied to multipliers 2a and 2b. (Step S2). Multiplier 2a multiplies voltage u (k) and current i (kM), and multiplier 2b multiplies voltage u (kM) and current i (k) (step S3). .

これら乗算器2a,2bの乗算結果は、演算器3a,3bに与えられてステップS4ないしS7に示す演算が行われる。すなわち、乗算器2aの乗算結果である第1積u(k)・i(k-M)、および乗算器2bの乗算結果である第2積u(k-M)・i(k)は各別に積分される(ステップS4)。   The multiplication results of the multipliers 2a and 2b are given to the calculators 3a and 3b, and the calculations shown in steps S4 to S7 are performed. That is, the first product u (k) · i (kM) that is the multiplication result of the multiplier 2a and the second product u (kM) · i (k) that is the multiplication result of the multiplier 2b are integrated separately. (Step S4).

ステップS1ないしS4の動作が、「k←k+1」により順次切り換えられつつN回繰り返される(ステップS5)。そして、この繰り返し動作中の第1積および第2積についての平均値、すなわち第1演算値および第2演算値が求められ(ステップS7)、上記式(5)および(6)によるLD,LGが求められた上で(ステップS8)、減算器4に送られる。   The operations in steps S1 to S4 are repeated N times while being sequentially switched by “k ← k + 1” (step S5). Then, average values for the first product and the second product during the repetitive operation, that is, the first calculation value and the second calculation value are obtained (step S7), and LD, LG according to the above formulas (5) and (6) are obtained. Is obtained (step S8) and sent to the subtractor 4.

減算器4では、D=LD-LGが演算され(ステップS9)、得られた差Dが判定器5に与えられる。判定器5では、D>0(遅れ)、D=0(同相つまり進み遅れなし)、D<0(進み)の判定がなされる(ステップS10,S11,S12,S13,S14)。   In the subtracter 4, D = LD-LG is calculated (step S9), and the obtained difference D is given to the determiner 5. The determination unit 5 determines D> 0 (delay), D = 0 (in-phase, that is, no advance delay), and D <0 (advance) (steps S10, S11, S12, S13, S14).

この判定結果に応じて電流位相が遅れていれば進相用コンデンサにより、またもし進んでいれば遅相用インダクタンスにより位相調整を行なって力率を改善する。   If the current phase is delayed in accordance with this determination result, the power factor is improved by phase adjustment using a phase advance capacitor, and if it is advanced, phase adjustment is performed using a phase delay inductance.

上述のように、本発明では、簡単な回路構成でありながら、力率の数値に加えて電流位相の進み、遅れも表示することができる。すなわち、図1の回路と比較したとき、本発明で必要とする演算回路LD,LGはデジタル演算回路30の部分的利用で足り、シフトレジスタ1は力率計に既設のメモリーを流用することで足りる。また、図2の回路と比較したとき、移相回路11が不要でA/D変換回路も一部省略できる。さらに、図3の回路と比べるとPLL回路40が不要であり、デジタル演算回路30を大幅に簡単化できる。   As described above, the present invention can display the advance and delay of the current phase in addition to the numerical value of the power factor, while having a simple circuit configuration. That is, when compared with the circuit of FIG. 1, the arithmetic circuits LD and LG required in the present invention need only partially use the digital arithmetic circuit 30, and the shift register 1 uses the existing memory for the power factor meter. It ’s enough. Further, when compared with the circuit of FIG. 2, the phase shift circuit 11 is unnecessary and a part of the A / D conversion circuit can be omitted. Furthermore, the PLL circuit 40 is not necessary as compared with the circuit of FIG. 3, and the digital arithmetic circuit 30 can be greatly simplified.

変形例Modified example

上記実施例では、時系列データを形成するためにシフトレジスタを用いたが、このような処理は一連のデジタルデータからソフトウェア処理により行なってもよい。また、その後のデータ処理についてもソフトウェアにより行なうこともできる。   In the above embodiment, a shift register is used to form time-series data. However, such processing may be performed by software processing from a series of digital data. The subsequent data processing can also be performed by software.

1 シフトレジスタ、2 乗算器、3 演算器、4 減算器、5 判定器、
101 乗算器、102 演算器、103 ルート演算器、201 乗算器、202 演算器、203 ルート演算器、301 乗算器、302 演算器、303 乗算器、304 演算器。
1 shift register, 2 multiplier, 3 operator, 4 subtractor, 5 determiner,
101 multiplier, 102 calculator, 103 root calculator, 201 multiplier, 202 calculator, 203 root calculator, 301 multiplier, 302 calculator, 303 multiplier, 304 calculator.

Claims (4)

力率を測定すべき測定電力における電圧、電流のデジタルデータが与えられ、前記測定電力の力率を測定するデジタル力率計とともに用いられて前記電流の位相が前記電圧の位相に対して進んでいるか遅れているかを判別する装置であって、
前記デジタルデータを所定の長さの期間にわたり所定周期で検出する検出手段と、
前記検出手段から与えられたデータを逐次蓄積していくメモリーと、
前記メモリーに蓄積されたデータのうち、所定の新しい電圧データと所定の古い電流データとを乗算して所定時点における電圧と電流との第1積を順次算出する第1乗算器と、
前記メモリーに蓄積されたデータのうち、所定の新しい電流データと所定の古い電圧データとを乗算して前記所定時点における電流と電圧との第2積を順次算出する第2乗算器と、
前記第1積および前記第2積を各別に積分し平均化して第1演算値および第2演算値を求める演算回路と、
前記第1演算値から前記第2演算値を差し引いて得られる差の極性を求める減算器と、
前記差の極性から前記電圧の位相に対する前記電流の位相の進みまたは遅れを判別する判別器と
をそなえたことを特徴とする力率計用位相判別装置。
The digital data of the voltage and current at the measured power to be measured for the power factor is given and used together with the digital power factor meter for measuring the power factor of the measured power so that the phase of the current advances with respect to the phase of the voltage A device for determining whether or not it is late,
Detecting means for detecting the digital data in a predetermined cycle over a period of a predetermined length;
A memory for sequentially accumulating data given from the detection means;
A first multiplier that sequentially calculates a first product of a voltage and a current at a predetermined time by multiplying predetermined new voltage data and predetermined old current data among the data stored in the memory;
A second multiplier for sequentially calculating a second product of current and voltage at the predetermined time by multiplying predetermined new current data and predetermined old voltage data among the data stored in the memory;
An arithmetic circuit that integrates and averages the first product and the second product separately to obtain a first arithmetic value and a second arithmetic value, and
A subtractor for obtaining a polarity of a difference obtained by subtracting the second calculated value from the first calculated value;
And a discriminator for discriminating the advance or delay of the phase of the current with respect to the phase of the voltage from the polarity of the difference.
請求項1記載の力率計用位相判別装置において、
前記所定の新しい電圧データおよび前記所定の新しい電流データとは、前記測定電圧および電流の最新値である力率計用位相判別装置。
In the phase determination device for power factor meter according to claim 1,
The predetermined new voltage data and the predetermined new current data are a phase determination device for a power factor meter which is the latest value of the measured voltage and current.
請求項1記載の力率計用位相判別装置において、
前記所定の古い電圧データおよび前記所定の古い電流データとは、前記測定電圧および電流における所定位相に相当する期間先行する時点でのデータである力率計用位相判別装置。
The phase determination device for a power factor meter according to claim 1,
The predetermined old voltage data and the predetermined old current data are power factor phase discriminating devices that are data at a time point preceding a predetermined phase in the measurement voltage and current.
請求項1記載の力率計用位相判別装置において、
前記メモリーは、シフトレジスタであることを特徴とする力率計用位相判別装置。
The phase determination device for a power factor meter according to claim 1,
A phase determination apparatus for a power factor meter, wherein the memory is a shift register.
JP2010176037A 2010-08-05 2010-08-05 Phase advance/delay discrimination apparatus for power-factor indicator Pending JP2012037308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176037A JP2012037308A (en) 2010-08-05 2010-08-05 Phase advance/delay discrimination apparatus for power-factor indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176037A JP2012037308A (en) 2010-08-05 2010-08-05 Phase advance/delay discrimination apparatus for power-factor indicator

Publications (1)

Publication Number Publication Date
JP2012037308A true JP2012037308A (en) 2012-02-23

Family

ID=45849465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176037A Pending JP2012037308A (en) 2010-08-05 2010-08-05 Phase advance/delay discrimination apparatus for power-factor indicator

Country Status (1)

Country Link
JP (1) JP2012037308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336447A1 (en) * 2016-05-17 2017-11-23 V Square/R Llc Systems and Methods for Determining a Load Condition of an Electric Device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108543A (en) * 1974-01-31 1975-08-27
JPS63243886A (en) * 1987-03-31 1988-10-11 Hioki Denki Kk Power-factor meter
JPH05333067A (en) * 1992-06-02 1993-12-17 Mitsubishi Electric Corp Electronic watt-hour meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50108543A (en) * 1974-01-31 1975-08-27
JPS63243886A (en) * 1987-03-31 1988-10-11 Hioki Denki Kk Power-factor meter
JPH05333067A (en) * 1992-06-02 1993-12-17 Mitsubishi Electric Corp Electronic watt-hour meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336447A1 (en) * 2016-05-17 2017-11-23 V Square/R Llc Systems and Methods for Determining a Load Condition of an Electric Device

Similar Documents

Publication Publication Date Title
EP3006947B1 (en) Leakage current calculation device and method for calculating leakage current
KR101688824B1 (en) Ac impedance measuring device
US9869704B2 (en) Power measurement device, determination method, and recording medium for identification of current detection element disposed in an incorrect direction
JP2015527044A (en) Input power and current measurement system and method
JP5940389B2 (en) AC resistance measuring device and AC resistance measuring method
JP6219201B2 (en) AC impedance measuring apparatus and AC impedance measuring method
JP2010008062A (en) Wattmeter
JP2006098287A (en) Harmonic component measuring apparatus
JP5758941B2 (en) Measuring device, measuring method, and program
JP2012037308A (en) Phase advance/delay discrimination apparatus for power-factor indicator
JP2002286769A (en) Power measuring instrument
JP6304956B2 (en) Resistance measuring device and resistance measuring method
JP5489238B2 (en) Power measuring apparatus, power measuring method and program
US9863986B2 (en) Electric power measuring system
JP2005172617A (en) Leakage current measuring device
JP2008064493A (en) Measuring device
JP6199109B2 (en) Electricity meter weighing test equipment
CN110927452B (en) Phase difference measuring method and device based on instantaneous reactive power
JP3047036B2 (en) Power measurement device
JP4996992B2 (en) Impedance measuring device
KR20150108150A (en) A generator of the RMS value of the AC signal based on digital implementation
JP3856710B2 (en) Electronic AC ammeter
CN107923953B (en) System and method for sampling current measurements in an energy storage device
JP2020141490A (en) Connection phase estimation device, connection phase estimation program, and connection phase estimation method
JP2016057077A (en) Measurement device and signal category determination method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120928