JP2012036861A - Internal gear type oil pump for vehicle - Google Patents

Internal gear type oil pump for vehicle Download PDF

Info

Publication number
JP2012036861A
JP2012036861A JP2010178992A JP2010178992A JP2012036861A JP 2012036861 A JP2012036861 A JP 2012036861A JP 2010178992 A JP2010178992 A JP 2010178992A JP 2010178992 A JP2010178992 A JP 2010178992A JP 2012036861 A JP2012036861 A JP 2012036861A
Authority
JP
Japan
Prior art keywords
oil passage
discharge oil
oil
pressure discharge
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010178992A
Other languages
Japanese (ja)
Other versions
JP5562170B2 (en
Inventor
Yoshihiro Mizuno
嘉博 水野
Yusuke Ogata
勇介 大形
Ryoji Hanebuchi
良司 羽渕
Masashi Hattori
雅士 服部
Masayasu Ito
正泰 伊藤
Naoki Ogoshi
直樹 大越
Kenichi Mori
賢一 森
Masahiko Suzuki
雅彦 鈴木
Fumitake Suzuki
文武 鈴木
Hidenobu Yamaguchi
秀信 山口
Haruhiko Shibata
春彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
JTEKT Corp
Toyota Motor Corp
Toyooki Kogyo Co Ltd
Original Assignee
Aisin AW Co Ltd
JTEKT Corp
Toyota Motor Corp
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, JTEKT Corp, Toyota Motor Corp, Toyooki Kogyo Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2010178992A priority Critical patent/JP5562170B2/en
Publication of JP2012036861A publication Critical patent/JP2012036861A/en
Application granted granted Critical
Publication of JP5562170B2 publication Critical patent/JP5562170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an internal gear type oil pump for a vehicle capable of reducing pump driving torque while suppressing deterioration of volume efficiency of a high pressure discharge side.SOLUTION: The internal gear type oil pump for a vehicle includes a first oil relief oil path 58 extended in a circumferential direction from one part of an opening edge of a first discharge oil path 50 of a side face 42 of a pump chamber 40 to a front side of a predetermined rotating direction for communicating a predetermined oil pressure chamber 30a with the first discharge oil path when the predetermined oil pressure chamber 30a is positioned between an opening of a high pressure discharge oil path and an opening of a low pressure discharge oil path and not directly communicated with each discharge oil path, and a second oil relief oil path 60 extended in a circumferential direction from one part of an opening edge of a second discharge oil path 52 of the side face 42 of the pump chamber 40 to a rear side of the rotating direction for communicating the predetermined oil pressure chamber 30a with the second discharge oil path.

Description

本発明は、2つの吐出油路を備える車両用内接歯車型オイルポンプに関し、特に、ポンプ駆動トルクを低減するための技術に関するものである。   The present invention relates to a vehicular internal gear type oil pump having two discharge oil passages, and particularly to a technique for reducing pump driving torque.

外周歯を有し、一軸心まわりに回転可能に設けられたドライブギヤと、そのドライブギヤの外周歯に噛み合わされた内周歯を有して前記一軸心から偏心した偏心軸心まわりに回転可能に設けられ、前記ドライブギヤにより回転駆動される円環状のドリブンギヤと、そのドリブンギヤおよび前記ドライブギヤが収容させられたポンプ室と、そのポンプ室内から油を吐出するためにそのポンプ室の側面に周方向の所定の間隔を隔ててそれぞれ開口させられ、前記内周歯と前記外周歯との噛合隙間によって周方向に形成された複数の油圧室が前記ドライブギヤおよび前記ドリブンギヤの回転に伴って所定の回転方向に移動させられるときにおいて、前記油圧室の容積が減少させられる過程でその油圧室に順に連通させられる回転方向前方側の第1吐出油路および回転方向後方側の第2吐出油路を有するハウジングとを、備えた車両用内接歯車型オイルポンプが知られている。たとえば、特許文献1乃至5に記載されたものがそれである。   Around an eccentric shaft center that has an outer peripheral tooth and is eccentric from the single shaft center with a drive gear provided rotatably around a single shaft center and an inner peripheral tooth meshed with the outer peripheral tooth of the drive gear An annular driven gear rotatably provided and driven to rotate by the drive gear, a pump chamber in which the driven gear and the drive gear are accommodated, and a side surface of the pump chamber for discharging oil from the pump chamber And a plurality of hydraulic chambers formed in the circumferential direction by meshing gaps between the inner peripheral teeth and the outer peripheral teeth as the drive gear and the driven gear rotate. When the hydraulic chamber is moved in a predetermined rotational direction, the first discharge on the front side in the rotational direction is sequentially communicated with the hydraulic chamber in the process of reducing the volume of the hydraulic chamber. A housing having an oil passage and the second discharge passage of the rotation direction rear side, the vehicular internal gear type oil pump with are known. For example, those described in Patent Documents 1 to 5.

上記のようなオイルポンプでは、その吐出側に設けられる油圧回路において、相対的に高油圧の作動油の消費量が上記第1吐出油路および第2吐出油路のうちの一方の吐出油路からの吐出量だけで充足される場合には、他方の吐出油路内の作動油が上記一方の吐出油路内の作動油よりも所定圧低い低油圧に維持されて、例えば潤滑や冷却のために用いられる。これによれば、上記他方の吐出油路内の作動油が上記低油圧に維持されることでポンプ駆動トルクが低減し、車両燃費が向上される。   In the oil pump as described above, in the hydraulic circuit provided on the discharge side, the consumption amount of the relatively high hydraulic fluid is one of the first discharge oil passage and the second discharge oil passage. When the amount of discharge from the other discharge oil passage is sufficient, the hydraulic oil in the other discharge oil passage is maintained at a low hydraulic pressure that is a predetermined pressure lower than the hydraulic oil in the one discharge oil passage. Used for. According to this, the hydraulic oil in the other discharge oil passage is maintained at the low hydraulic pressure, whereby the pump driving torque is reduced and the vehicle fuel efficiency is improved.

また、特許文献5のオイルポンプは、所定の油圧室が第1吐出油路と第2吐出油路との間に位置させられてそれら吐出油路と直接的に連通していないときに、上記所定の油圧室と前記他方の吐出油路とを連通させるために、ポンプ室の側面に形成された一対の油逃がし溝を備えている。これら油逃がし溝は、ポンプ室の側面に形成された上記他方の吐出油路の開口縁の一部から上記一方の吐出油路側へそれぞれ延設された一対の周方向溝から成る。これによれば、上記所定の油圧室が第1吐出油路と第2吐出油路との間の閉じ込み位置を通過するときに昇圧しようとするその所定の油圧室内の作動油が、上記油逃がし溝を通じて上記他方の吐出油路へ逃がされるので、閉じ込み状態とされた所定の油圧室内の作動油の圧力値が急激に上昇することを抑制し、その油圧急上昇に起因してポンプ駆動トルクが増大することを抑制することができる。   Further, the oil pump disclosed in Patent Document 5 is configured so that the predetermined hydraulic chamber is positioned between the first discharge oil passage and the second discharge oil passage and is not in direct communication with the discharge oil passage. In order to communicate a predetermined hydraulic chamber and the other discharge oil passage, a pair of oil relief grooves formed on the side surface of the pump chamber is provided. These oil relief grooves comprise a pair of circumferential grooves respectively extending from a part of the opening edge of the other discharge oil passage formed on the side surface of the pump chamber to the one discharge oil passage. According to this, when the predetermined hydraulic chamber passes through the closed position between the first discharge oil passage and the second discharge oil passage, the hydraulic oil in the predetermined hydraulic chamber to be boosted is Since the oil is released to the other discharge oil passage through the escape groove, the pressure value of the hydraulic oil in the predetermined hydraulic chamber in the closed state is suppressed from increasing rapidly, and the pump driving torque is caused by the hydraulic pressure sudden increase. Can be prevented from increasing.

特開2001−123967号公報JP 2001-123967 A 実開平7−42442号公報Japanese Utility Model Publication No. 7-42442 特開平5−240166号公報Japanese Patent Laid-Open No. 5-240166 特開平1−96485号公報JP-A-1-96485 特開2009−127569号公報JP 2009-127469 A

ところで、上記油逃がし溝を備える従来の車両用内接歯車型オイルポンプでは、前記他方の吐出油路内の作動油が前記一方の吐出油路内の作動油よりも所定圧低い低油圧に維持されている場合において、ドリブンギヤおよびドライブギヤの偏心、変形や、油逃がし溝の加工ばらつきで油逃がし溝が長く設定されると、所定の油圧室が第1吐出油路と第2吐出油路との間を通過するときに、その所定の油圧室が上記一方の吐出油路と直接的に連通させられている状態でその所定の油圧室と上記他方の吐出油路とが油逃がし溝を介して連通させられる。そうすると、上記一方の吐出油路内の作動油が所定の油圧室および油逃がし溝を通じて上記他方の吐出油路へ流出し、上記一方の吐出油路側すなわち高圧吐出側の容積効率が低下する。そのため、上記容積効率の低下を抑制するためには、設計上、油逃がし溝を必要以上に上記一方の吐出油路側に長く設定しないことが求められる。   By the way, in the conventional vehicle internal gear type oil pump having the oil relief groove, the hydraulic oil in the other discharge oil passage is maintained at a low hydraulic pressure that is a predetermined pressure lower than the hydraulic oil in the one discharge oil passage. If the oil relief groove is set longer due to eccentricity and deformation of the driven gear and the drive gear and processing variations of the oil relief groove, the predetermined hydraulic chamber is connected to the first discharge oil passage and the second discharge oil passage. When the predetermined hydraulic chamber is in direct communication with the one discharge oil passage, the predetermined hydraulic chamber and the other discharge oil passage pass through an oil relief groove. Communicated. Then, the hydraulic oil in the one discharge oil passage flows out to the other discharge oil passage through a predetermined hydraulic chamber and oil relief groove, and the volumetric efficiency on the one discharge oil passage side, that is, the high pressure discharge side is lowered. Therefore, in order to suppress the decrease in the volumetric efficiency, it is required by design not to set the oil relief groove longer than necessary on the one discharge oil passage side.

これに対して、ドリブンギヤおよびドライブギヤは、ポンプ室または駆動軸に対して微少ながらも径方向に所定の隙間を隔てて設けられており、それらギヤが回転中に偏心または変形することにより、閉じ込み位置に位置する所定の油圧室が油逃がし溝から遠ざかる側へ相対的に移動すると、所定の油圧室が閉じ込み位置に位置するときにおいて、油逃がし溝がドリブンギヤまたはドライブギヤにより塞がれる場合がある。また、油逃がし溝を加工するための加工基準位置が油逃がし溝毎にばらつく可能性があり、それに起因して油逃がし溝が、閉じ込み位置に位置する所定の油圧室から遠ざかる側へ短く加工されると、所定の油圧室が閉じ込み位置に位置するときにおいて、上記短く加工された油逃がし溝がドリブンギヤまたはドライブギヤにより塞がれる場合がある。そのため、油圧室が第1吐出油路と第2吐出油路との間の閉じ込み位置を通過するときにおいて、その油圧室内の作動油が油逃がし溝を通じて上記他方の吐出油路へ逃がされない場合があり、その場合に閉じ込み状態とされた油圧室内の作動油の圧力値が急激に上昇することに起因してポンプ駆動トルクが増大するという問題があった。   On the other hand, the driven gear and the drive gear are provided with a small gap in the radial direction with respect to the pump chamber or the drive shaft, and are closed by eccentricity or deformation during rotation. When the predetermined hydraulic chamber located in the retracted position moves relatively to the side away from the oil relief groove, the oil relief groove is blocked by the driven gear or the drive gear when the predetermined hydraulic chamber is located in the closed position. There is. In addition, there is a possibility that the processing reference position for processing the oil release groove may vary for each oil release groove, and as a result, the oil release groove is shortened to the side away from the predetermined hydraulic chamber located at the closed position. Then, when the predetermined hydraulic chamber is located at the closed position, the oil drain groove that has been shortened may be blocked by the driven gear or the drive gear. Therefore, when the hydraulic chamber passes through the closed position between the first discharge oil passage and the second discharge oil passage, the hydraulic oil in the hydraulic chamber is not released to the other discharge oil passage through the oil release groove. In some cases, there has been a problem that the pump driving torque increases due to a sudden increase in the pressure value of the hydraulic oil in the hydraulic chamber that is closed in that case.

本発明は以上の事情を背景として為されたものであり、その目的とするところは、高圧吐出側の容積効率の低下を抑制しつつ、ポンプ駆動トルクを低減することができる車両用内接歯車型オイルポンプを提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a vehicle internal gear that can reduce pump drive torque while suppressing a decrease in volumetric efficiency on the high-pressure discharge side. Is to provide a mold oil pump.

かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a-1) 外周歯を有し、一軸心まわりに回転可能に設けられたドライブギヤと、(a-2) そのドライブギヤの外周歯に噛み合わされた内周歯を有して前記一軸心から偏心した偏心軸心まわりに回転可能に設けられ、前記ドライブギヤにより回転駆動される円環状のドリブンギヤと、(a-3) そのドリブンギヤおよび前記ドライブギヤが収容させられたポンプ室と、(a-4) そのポンプ室内から油を吐出するためにそのポンプ室の側面に周方向の所定の間隔を隔ててそれぞれ開口させられ、前記内周歯と前記外周歯との噛合隙間によって周方向に形成された複数の油圧室が前記ドライブギヤおよび前記ドリブンギヤの回転に伴って所定の回転方向に移動させられるときにおいて、前記油圧室の容積が減少させられる過程でその油圧室に順に連通させられる回転方向後方側の第1吐出油路および回転方向前方側の第2吐出油路を有するハウジングとを、備えた車両用内接歯車型オイルポンプであって、(b) 前記複数の油圧室のうちの所定の油圧室が前記第1吐出油路の開口と前記第2吐出油路の開口との間に位置させられてそれら吐出油路と直接的に連通していないときにおいて、(b-1) 前記所定の油圧室と前記第1吐出油路とを連通させるために、前記ポンプ室の側面に形成された第1吐出油路の開口縁の一部から前記回転方向の前方側の前記第2吐出油路へ向けて周方向に延設された第1油逃がし油路と、(b-2) 前記所定の油圧室と前記第2吐出油路とを連通させるために、前記ポンプ室の側面に形成された第2吐出油路の開口縁の一部から前記回転方向の後方側の前記第1吐出油路へ向けて周方向に延設された第2油逃がし油路とを、含むことにある。   The gist of the invention according to claim 1 for achieving the above object is as follows: (a-1) a drive gear having outer peripheral teeth and rotatably provided around one axis; ) An annular driven gear that has an inner peripheral tooth meshed with an outer peripheral tooth of the drive gear and is rotatably provided around an eccentric shaft center that is eccentric from the single shaft center, and is driven to rotate by the drive gear; (a-3) a pump chamber in which the driven gear and the drive gear are housed, and (a-4) a predetermined circumferential interval on the side of the pump chamber in order to discharge oil from the pump chamber. When a plurality of hydraulic chambers that are respectively opened and formed in the circumferential direction by the meshing gaps between the inner peripheral teeth and the outer peripheral teeth are moved in a predetermined rotational direction as the drive gear and the driven gear rotate. The oil A vehicle interior having a housing having a first discharge oil passage on the rear side in the rotation direction and a second discharge oil passage on the front side in the rotation direction, which are sequentially communicated with the hydraulic chamber in the process of reducing the volume of the chamber. (B) a predetermined hydraulic chamber of the plurality of hydraulic chambers is positioned between the opening of the first discharge oil passage and the opening of the second discharge oil passage; and (B-1) A first discharge formed on a side surface of the pump chamber in order to connect the predetermined hydraulic chamber and the first discharge oil passage when not in direct communication with the discharge oil passage. A first oil relief oil passage extending in a circumferential direction from a part of an opening edge of the oil passage toward the second discharge oil passage on the front side in the rotation direction; and (b-2) the predetermined hydraulic chamber. And an opening edge of the second discharge oil passage formed on the side surface of the pump chamber to communicate the second discharge oil passage with the second discharge oil passage And a second oil relief oil passage from a portion extending in the said direction of rotation of the first circumferential direction toward the discharge passage of the rear side is to contain.

また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、(a) 前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の前方側へ周方向に延設された外側周方向溝から成り、(b) 前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の後方側へ周方向に延設された内側周方向溝から成ることにある。   The gist of the invention according to claim 2 is that, in the invention according to claim 1, (a) the first oil relief oil path is the inner circumference of the opening edge of the first discharge oil path. (B) the second oil relief oil, comprising an outer circumferential groove extending in a circumferential direction from a portion radially outward from a locus of the closest contact between the tooth and the outer peripheral tooth to the front side in the rotational direction. The path extends in a circumferential direction from a part radially inward of a locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the second discharge oil path to the rear side in the rotational direction. In the inner circumferential groove.

また、請求項3にかかる発明の要旨とするところは、請求項1にかかる発明において、(a) 前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の前方側へ周方向に延設された内側周方向溝から成り、(b) 前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の後方側へ周方向に延設された外側周方向溝から成ることにある。   A gist of the invention according to claim 3 is that, in the invention according to claim 1, (a) the first oil relief oil path is the inner circumference of the opening edge of the first discharge oil path. An inner circumferential groove extending in a circumferential direction from a portion radially inward of a locus of closest contact between the tooth and the outer peripheral tooth to the front side in the rotational direction, and (b) the second oil relief oil The path extends in the circumferential direction from a part radially outside the locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the second discharge oil path to the rear side in the rotational direction. In the outer circumferential groove.

また、請求項4にかかる発明の要旨とするところは、請求項1にかかる発明において、(a) 前記第1油逃がし油路は、前記ポンプ室の一方の側面に形成された前記第1吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の前方側へ周方向に延設された外側周方向溝および内側周方向溝から成り、(b) 前記第2油逃がし油路は、前記ポンプ室の他方の側面に形成された前記第2吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の後方側へ周方向に延設された外側周方向溝および内側周方向溝から成る   A gist of the invention according to claim 4 is that, in the invention according to claim 1, (a) the first oil release oil passage is formed on one side surface of the pump chamber. Out of the opening edge of the oil passage, from the part of the radially outer side and the part of the radially inner side from the locus of the closest point between the inner peripheral tooth and the outer peripheral tooth, respectively, in the circumferential direction toward the front side in the rotational direction. (B) the second oil relief oil passage is formed of an opening edge of the second discharge oil passage formed on the other side surface of the pump chamber. The outer circumferential direction extending in the circumferential direction from the part of the radially outer side and the part of the radially inner side than the locus of the closest contact between the inner peripheral tooth and the outer peripheral tooth to the rear side in the rotational direction, respectively. Consisting of grooves and inner circumferential grooves

また、請求項5にかかる発明の要旨とするところは、請求項1乃至3のいずれか1にかかる発明において、前記第1油逃がし油路および前記第2油逃がし油路は、共通の加工位置基準を用いてそれぞれ溝加工されていることにある。   Further, the gist of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 3, the first oil relief oil passage and the second oil relief oil passage have a common processing position. Each groove is machined using a reference.

請求項1にかかる発明の車両用内接歯車型オイルポンプによれば、複数の油圧室のうちの所定の油圧室が第1吐出油路の開口と第2吐出油路の開口との間に位置させられてそれら吐出油路と直接的に連通していないときにおいて、前記所定の油圧室と前記第1吐出油路とを連通させるために、ポンプ室の側面に形成された第1吐出油路の開口縁の一部から所定の回転方向の前方側の第2吐出油路へ向けて周方向に延設された第1油逃がし油路と、前記所定の油圧室と前記第2吐出油路とを連通させるために、ポンプ室の側面に形成された第2吐出油路の開口縁の一部から前記回転方向の後方側の第1吐出油路へ向けて周方向に延設された第2油逃がし油路とを、含むことから、ドリブンギヤおよびドライブギヤが回転中に偏心または変形することにより、閉じ込み位置に位置する所定の油圧室が油逃がし油路の一方から遠ざかる側へ移動しても、他方の油逃がし油路へ近づく側へ移動することになるので、所定の油圧室が閉じ込み位置に位置するときにおいて、上記一方の油逃がし油路がドリブンギヤまたはドライブギヤにより塞がれても他方の油逃がし油路が塞がれることなく、上記所定の油圧室が吐出油路と連通される。また、各油逃がし油路を加工するための加工基準位置が油逃がし溝毎にばらついて、それに起因して油逃がし油路の一方が、閉じ込み位置に位置する所定の油圧室から遠ざかる側へ短く加工されても、その一方の油逃がし油路に周方向に対向して設けられる他方の油逃がし油路は、上記閉じ込み位置に位置する所定の油圧室から遠ざかる側へ加工されるわけではないので、所定の油圧室が閉じ込み位置に位置するときにおいて、上記短く加工された一方の油逃がし油路がドリブンギヤまたはドライブギヤにより塞がれても他方の油逃がし油路が塞がれることなく、上記所定の油圧室が吐出油路と連通される。そのため、高圧吐出側の容積効率の低下を抑制するために油逃がし油路を必要以上に長く設定しないことが求められるなかで各油逃がし油路を可及的に短く設定した場合であって、ドリブンギヤおよびドライブギヤが回転中に偏心または変形するとき又はそれら各油逃がし油路の加工にばらつきが生じるときであっても、上記所定の油圧室が第1吐出油路と第2吐出油路との間の閉じ込み位置を通過する際には、その所定の油圧室内の作動油が複数の油逃がし油路のうちの少なくとも1つを通じて吐出油路へ逃がされるので、閉じ込み状態とされた所定の油圧室内の作動油の圧力値が急激に上昇することが抑制され、その油圧室内の油圧上昇に起因してポンプ駆動トルクが増大することを抑制することができる。すなわち、高圧吐出側の容積効率の低下を抑制しつつ、ポンプ駆動トルクを低減することができる。また、ドリブンギヤおよびドライブギヤの偏心、変形や、油逃がし溝の加工ばらつきで油逃がし溝が長く設定されたとしても、閉じ込み位置に位置する所定の油圧室が吐出油路と直接的に連通せず、その吐出油路と比べて流通断面積が十分に小さい油逃がし溝を介して連通するので、容積効率低下の影響が少ない。   According to the vehicle internal gear type oil pump of the first aspect of the present invention, the predetermined hydraulic chamber of the plurality of hydraulic chambers is between the opening of the first discharge oil passage and the opening of the second discharge oil passage. A first discharge oil formed on a side surface of the pump chamber to communicate the predetermined hydraulic chamber and the first discharge oil passage when positioned and not in direct communication with the discharge oil passage A first oil relief oil passage extending in a circumferential direction from a part of an opening edge of the passage toward a second discharge oil passage on a front side in a predetermined rotation direction; the predetermined hydraulic chamber; and the second discharge oil. In order to communicate with the passage, it extends in the circumferential direction from a part of the opening edge of the second discharge oil passage formed on the side surface of the pump chamber toward the first discharge oil passage on the rear side in the rotation direction. Since the second oil relief oil passage is included, the driven gear and the drive gear are eccentric or deformed during rotation. Thus, even if the predetermined hydraulic chamber located at the closed position moves to the side away from one of the oil release oil passages, the predetermined hydraulic chamber moves to the side closer to the other oil release oil passage. When the one oil relief oil passage is blocked by the driven gear or the drive gear, the predetermined hydraulic chamber is discharged from the discharge oil passage without being closed by the other oil relief oil passage. Communicated with. Also, the processing reference position for processing each oil release oil passage varies for each oil release groove, and as a result, one of the oil release oil passages moves away from a predetermined hydraulic chamber located at the closed position. Even if it is processed to be short, the other oil relief oil passage provided facing the one oil relief oil passage in the circumferential direction is not processed to the side away from the predetermined hydraulic chamber located in the closed position. Therefore, when the predetermined hydraulic chamber is located at the closed position, even if one of the oil relief oil passages that has been shortened is blocked by the driven gear or the drive gear, the other oil relief oil passage is blocked. Instead, the predetermined hydraulic chamber communicates with the discharge oil passage. Therefore, it is a case where each oil relief oil passage is set as short as possible while it is required not to set the oil escape oil passage longer than necessary in order to suppress a decrease in volumetric efficiency on the high pressure discharge side, Even when the driven gear and the drive gear are decentered or deformed during rotation, or when variations occur in the processing of the oil relief oil passages, the predetermined hydraulic chambers are provided with the first discharge oil passage and the second discharge oil passage. When passing through the closed position between the two, the hydraulic oil in the predetermined hydraulic chamber is released to the discharge oil passage through at least one of the plurality of oil release oil passages. A sudden increase in the pressure value of the hydraulic oil in the hydraulic chamber can be suppressed, and an increase in pump drive torque due to an increase in the hydraulic pressure in the hydraulic chamber can be suppressed. That is, the pump driving torque can be reduced while suppressing a decrease in volumetric efficiency on the high pressure discharge side. Even if the oil relief groove is set longer due to eccentricity or deformation of the driven gear and drive gear, or due to variations in processing of the oil relief groove, the predetermined hydraulic chamber located at the closed position can communicate directly with the discharge oil passage. In addition, since the communication is made through the oil relief groove having a sufficiently small flow cross-sectional area as compared with the discharge oil passage, there is little influence on the volumetric efficiency reduction.

また、請求項2にかかる発明の車両用内接歯車型オイルポンプによれば、前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の前方側へ周方向に延設された外側周方向溝から成り、前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の後方側へ周方向に延設された内側周方向溝から成ることから、第1油逃がし油路を上記最近接点の軌跡の径方向内側に形成する場合よりもその第1油逃がし油路の周長が短くなり、また、第2油逃がし油路を上記最近接点の軌跡の径方向外側に形成する場合よりもその第2油逃がし油路の周長が短くなるので、各油逃がし油路を形成するための加工時間が短縮されると共にその際に用いられる加工工具の寿命が長くなる。   According to the vehicle internal gear type oil pump of the invention according to claim 2, the first oil relief oil passage includes the inner peripheral tooth and the outer peripheral tooth of the opening edge of the first discharge oil passage. The outer circumferential groove extending in the circumferential direction from a portion radially outward from the locus of the closest contact point to the front side in the rotational direction, and the second oil relief oil passage includes the second discharge oil It comprises an inner circumferential groove extending in the circumferential direction from a part radially inward from a locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the road. Therefore, the circumference of the first oil relief oil passage is shorter than that in the case where the first oil relief oil passage is formed on the radially inner side of the locus of the nearest contact point, and the second oil relief oil passage is connected to the latest oil passage. Since the circumference of the second oil relief oil passage is shorter than the case where it is formed on the radially outer side of the contact locus, Life of the relief processing tools used in the conjunction with the processing time for forming the oil passage is reduced becomes longer.

また、請求項3にかかる発明の車両用内接歯車型オイルポンプによれば、前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の前方側へ周方向に延設された内側周方向溝から成り、前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の後方側へ周方向に延設された外側周方向溝から成ることから、ドリブンギヤおよびドライブギヤが回転中に偏心または変形するとき又はそれら各油逃がし油路の加工にばらつきが生じるときであっても、閉じ込み位置に位置する所定の油圧室内の作動油が内側周方向溝および外側周方向溝の少なくとも一方を通じて吐出油路へ逃がされるので、閉じ込み状態とされた所定の油圧室内の作動油の圧力値が急激に上昇することが抑制され、その油圧室内の油圧上昇に起因してポンプ駆動トルクが増大することを抑制することができる。   According to the vehicle internal gear type oil pump of the invention according to claim 3, the first oil relief oil passage includes the inner peripheral tooth and the outer peripheral tooth of the opening edge of the first discharge oil passage. The inner circumferential direction groove extending in the circumferential direction from a part radially inward of the locus of the closest contact point to the front side in the rotational direction, and the second oil relief oil path is the second discharged oil It comprises an outer circumferential groove extending in a circumferential direction from a part radially outside the locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the road to the rear side in the rotational direction. Therefore, even when the driven gear and the drive gear are decentered or deformed during rotation, or when the processing of each oil relief oil passage varies, the hydraulic oil in the predetermined hydraulic chamber located at the closed position remains inside. Through at least one of the circumferential groove and the outer circumferential groove Since the oil is released to the discharge oil passage, the pressure value of the hydraulic oil in the predetermined hydraulic chamber that is closed is prevented from rapidly increasing, and the pump driving torque increases due to the increase in the hydraulic pressure in the hydraulic chamber. This can be suppressed.

また、請求項4にかかる発明の車両用内接歯車型オイルポンプによれば、前記第1油逃がし油路は、前記ポンプ室の一方の側面に形成された前記第1吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の前方側へ周方向に延設された外側周方向溝および内側周方向溝から成り、前記第2油逃がし油路は、前記ポンプ室の他方の側面に形成された前記第2吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の後方側へ周方向に延設された外側周方向溝および内側周方向溝から成ることから、1つの側面に形成される2つの周方向溝は、その側面に開口された1つの吐出油路に対して加工が施されて形成されるので、各油逃がし油路の加工時間が比較的短くなるという利点がある。また、ドリブンギヤおよびドライブギヤの偏心、変形に対してはロバスト性があるという利点がある。因みに、例えば、ポンプ室の一方の側面に第1油逃がし油路および第2油逃がし油路を1つずつ形成し、ポンプ室の他方の側面に第1油逃がし油路および第2油逃がし油路を1つずつ形成する場合においては、1つの側面に形成される2つの周方向溝は、その側面に開口された2つの吐出油路に対してそれぞれ加工を施して形成する必要があり、各油逃がし溝の加工時間が比較的長くなるという欠点がある。   According to the vehicle internal gear type oil pump of the invention according to claim 4, the first oil relief oil passage is an opening edge of the first discharge oil passage formed on one side surface of the pump chamber. Outwardly extending from the part of the radially outer side and the part of the radially inner side with respect to the locus of the closest contact between the inner peripheral tooth and the outer peripheral tooth, respectively, to the front side in the rotational direction. The second oil escaping oil passage is composed of a circumferential groove and an inner circumferential groove, and the inner peripheral tooth and the outer periphery of the opening edge of the second discharge oil passage formed on the other side surface of the pump chamber. An outer circumferential groove and an inner circumferential groove extending in a circumferential direction from a part radially outside and a part radially inward of a locus of the closest contact with the tooth to the rear side in the rotational direction, respectively. Therefore, the two circumferential grooves formed on one side face are opened on the side face. Since processing for one discharge passage which is is formed is subjected, there is an advantage that the processing time of the oil relief oil passage is relatively short. Moreover, there is an advantage that there is robustness against the eccentricity and deformation of the driven gear and the drive gear. Incidentally, for example, one first oil relief oil passage and one second oil relief oil passage are formed on one side surface of the pump chamber, and the first oil relief oil passage and second oil relief oil are formed on the other side surface of the pump chamber. In the case of forming a path one by one, the two circumferential grooves formed on one side face must be formed by processing each of the two discharge oil paths opened on the side face, There is a drawback that the processing time of each oil relief groove is relatively long.

また、請求項5にかかる発明の車両用内接歯車型オイルポンプによれば、第1油逃がし油路および第2油逃がし油路は、共通の加工位置基準を用いてそれぞれ溝加工されたものであることから、上記加工基準位置が個体毎にばらついても、第1油逃がし油路および第2油逃がし油路の先端同士の周方向間隔が略一定に保たれるので、上記ばらつきに起因して油逃がし油路の一方が、閉じ込み位置に位置する所定の油圧室から遠ざかる側へ短く加工されても、他方の油逃がし油路が、上記所定の油圧室に近づく側へ長く加工される。そのため、高圧吐出側の容積効率の低下を抑制するために油逃がし油路を必要以上に長く設定しないことが求められるなかで、各油逃がし油路を可及的に短く設定した場合であって、それら各油逃がし油路の加工位置基準が個体毎にばらついたときであっても、油圧室が第1吐出油路と第2吐出油路との間の閉じ込み位置を通過する際には、その油圧室内の作動油が複数の油逃がし油路のうちの少なくとも1つを通じて吐出油路へ確実に逃がされる。したがって、油逃がし溝の加工ばらつきで一方の油逃がし溝が長く加工されても他方の油逃がし溝が短くされて、一方および他方の油逃がし溝の先端間隔が精度良く保たれるので、油逃がし溝の加工のばらつきに起因するポンプ駆動トルクの増大や高圧吐出油路の容積効率低下が一層抑制される。   According to the vehicle internal gear type oil pump of the invention according to claim 5, the first oil relief oil passage and the second oil relief oil passage are each grooved using a common machining position reference. Therefore, even if the processing reference position varies from individual to individual, the circumferential interval between the tips of the first oil relief oil passage and the second oil relief oil passage is kept substantially constant, which is caused by the variation. Thus, even if one of the oil release oil passages is shortened to the side away from the predetermined hydraulic chamber located at the closed position, the other oil release oil passage is processed longer to the side approaching the predetermined hydraulic chamber. The Therefore, it is a case where each oil relief oil passage is set as short as possible while it is required not to set the oil relief oil passage longer than necessary in order to suppress the decrease in volumetric efficiency on the high pressure discharge side. Even when the processing position reference of each oil relief oil passage varies from individual to individual, when the hydraulic chamber passes through the confined position between the first discharge oil passage and the second discharge oil passage. The hydraulic oil in the hydraulic chamber is surely released to the discharge oil passage through at least one of the plurality of oil escape oil passages. Therefore, even if one oil relief groove is machined longer due to processing variations in the oil relief groove, the other oil relief groove is shortened, and the tip interval between the one and other oil relief grooves is maintained with high accuracy. An increase in pump driving torque and a decrease in volumetric efficiency of the high-pressure discharge oil passage due to the variation in the groove processing are further suppressed.

本発明の一実施例の車両用内接歯車型オイルポンプを示す断面図である。It is sectional drawing which shows the internal gear type oil pump for vehicles of one Example of this invention. 図1のII-II矢視部断面を示す断面図である。It is sectional drawing which shows the II-II arrow part cross section of FIG. 図1のIII-III矢視部断面を示す断面図である。It is sectional drawing which shows the III-III arrow part cross section of FIG. 油圧室の軸心まわりの回転角度とその油圧室の容積との関係を示す図である。It is a figure which shows the relationship between the rotation angle around the axial center of a hydraulic chamber, and the volume of the hydraulic chamber. 図2のポンプボデーだけを示す図であって、各周方向溝の加工について説明するための図である。It is a figure which shows only the pump body of FIG. 2, Comprising: It is a figure for demonstrating the process of each circumferential groove | channel. オイルポンプの各吐出油路から油圧が供給される油圧制御回路の構成の一例を模式的に示す図である。It is a figure which shows typically an example of a structure of the hydraulic control circuit to which hydraulic pressure is supplied from each discharge oil path of an oil pump. ドライブギヤの回転速度と、各吐出油路の油圧値および吐出量との関係を示す図である。It is a figure which shows the relationship between the rotational speed of a drive gear, the hydraulic pressure value of each discharge oil path, and discharge amount. 図2のA矢視部に相当する部分を拡大して示す図であって、第1内側周方向溝が、閉じ込み位置に位置させられた所定の油圧室から遠ざかる周方向へ約1度短く形成された場合を示す図である。FIG. 3 is an enlarged view showing a portion corresponding to a portion indicated by an arrow A in FIG. 2, wherein the first inner circumferential groove is shortened by about 1 degree in a circumferential direction away from a predetermined hydraulic chamber located at a closed position. It is a figure which shows the case where it forms. 図2のA矢視部に相当する部分を拡大して示す図であって、ドライブギヤおよびドリブンギヤが回転中に上方へ偏心させられた場合を示す図である。It is a figure which expands and shows the part corresponded to the A arrow view part of FIG. 2, Comprising: It is a figure which shows the case where the drive gear and the driven gear are decentered upwards during rotation. 本発明の他の実施例のオイルポンプの断面図であって、実施例1における図2に相当する図である。It is sectional drawing of the oil pump of the other Example of this invention, Comprising: It is a figure corresponded in FIG. 本発明の他の実施例のオイルポンプの断面図であって、実施例1における図3に相当する図である。It is sectional drawing of the oil pump of the other Example of this invention, Comprising: It is a figure equivalent to FIG. 図11のポンプカバーだけを示す図であって、各周方向溝の加工について説明するための図である。It is a figure which shows only the pump cover of FIG. 11, Comprising: It is a figure for demonstrating the process of each circumferential groove | channel. 図10のB矢視部に相当する部分を拡大して示す図であって、第2油逃がし油路の各周方向溝が、閉じ込み位置に位置させられた所定の油圧室から遠ざかる周方向へ約1度短く形成された場合を示す図である。It is a figure which expands and shows the part corresponded to the B arrow view part of FIG. 10, Comprising: Each circumferential direction groove | channel of a 2nd oil relief oil path is the circumferential direction which leaves | separates from the predetermined | prescribed hydraulic chamber located in the closed position It is a figure which shows the case where it forms short about 1 degree. 図11のC矢視部に相当する部分を拡大して示す図であって、第2油逃がし油路の各周方向溝が、閉じ込み位置に位置させられた所定の油圧室から遠ざかる周方向へ約1度短く形成された場合を示す図である。It is a figure which expands and shows the part corresponded to the C arrow view part of FIG. 11, Comprising: Each circumferential groove | channel of a 2nd oil relief oil path is the circumferential direction away from the predetermined | prescribed hydraulic chamber located in the closed position It is a figure which shows the case where it forms short about 1 degree. 図10のB矢視部に相当する部分を拡大して示す図であって、ドライブギヤおよびドリブンギヤが回転中に上方へ偏心させられた場合を示す図である。It is a figure which expands and shows the part corresponded to the B arrow part of FIG. 10, Comprising: It is a figure which shows the case where a drive gear and a driven gear are decentered upwards during rotation. 図11のC矢視部に相当する部分を拡大して示す図であって、ドライブギヤおよびドリブンギヤが回転中に上方へ偏心させられた場合を示す図である。It is a figure which expands and shows the part corresponded to the C arrow part of FIG. 11, Comprising: It is a figure which shows the case where a drive gear and a driven gear are decentered upwards during rotation. 従来のオイルポンプの断面図であって、実施例1における図2に相当する図である。It is sectional drawing of the conventional oil pump, Comprising: It is a figure corresponded in FIG. 図17のポンプボデーだけを示す図であって、各周方向溝の加工について説明するための図である。It is a figure which shows only the pump body of FIG. 17, Comprising: It is a figure for demonstrating the process of each circumferential groove | channel. 図17のD矢視部に相当する部分を拡大して示す図であって、第1低圧吐出油路の各周方向溝が、閉じ込み位置に位置させられた所定の油圧室から遠ざかる周方向へ約1度短く形成された場合を示す図である。It is a figure which expands and shows the part corresponded to the arrow D part of FIG. 17, Comprising: The circumferential direction which each circumferential direction groove | channel of a 1st low pressure discharge oil path moves away from the predetermined | prescribed hydraulic chamber located in the closed position It is a figure which shows the case where it forms short about 1 degree. 図17のD矢視部に相当する部分を拡大して示す図であって、ドライブギヤおよびドリブンギヤが回転中に上方へ偏心させられた場合を示す図である。It is a figure which expands and shows the part corresponded to the arrow D part of FIG. 17, Comprising: It is a figure which shows the case where a drive gear and a driven gear are decentered upwards during rotation.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の車両用内接歯車型オイルポンプ(以下、オイルポンプと記載する)10を示す断面図である。図1に示すオイルポンプ10は、たとえば良く知られたトルクコンバータを備え、FF(フロントエンジン・フロントドライブ)型車両に好適に用いられる自動変速機に備えられている。具体的には、主として上記トルクコンバータ等を収容するトランスアクスルハウジング12と、主として変速機構等を収容するトランスアクスルケース14との間に設けられている。   FIG. 1 is a cross-sectional view showing a vehicular internal gear type oil pump (hereinafter referred to as an oil pump) 10 according to an embodiment of the present invention. An oil pump 10 shown in FIG. 1 includes, for example, a well-known torque converter, and is included in an automatic transmission that is suitably used for an FF (front engine / front drive) type vehicle. Specifically, it is provided between a transaxle housing 12 that mainly accommodates the torque converter and the like, and a transaxle case 14 that mainly accommodates a transmission mechanism and the like.

図2は、図1のII-II矢視部断面を示す断面図であり、図3は、図1のIII-III矢視部断面を示す断面図である。オイルポンプ10は、図1に示すように、トランスアクスルハウジング12に複数のボルト16により固設されたハウジング18と、図2および図3に示すように、複数個(本実施例では9個)の外周歯20を有し、図1に示すように、前記トルクコンバータのポンプ翼車の内周端部から軸心(一軸心)C1方向に突設された円筒状のポンプ軸22の先端部の複数(本実施例では2つ)の爪部22aに係合され、そのポンプ軸22と共に軸心C1まわりに回転可能にハウジング18内に収容されたドライブギヤ24と、上記外周歯20に噛み合わされた複数個(本実施例では10個)の内周歯26を有して、軸心C1から偏心した偏心軸心C2まわりに回転可能にハウジング18内に収容され、上記ドライブギヤ24により回転駆動される円環状のドリブンギヤ28とを、備える所謂内接歯車型のものである。上記ドリブンギヤ28は、ハウジング18のギヤ収容部の内周面に対して微少ながらも径方向に所定の隙間を隔てて設けられており、上記ドライブギヤ24は、ポンプ軸22の外周面に対して微少ながらも径方向に所定の隙間を隔てて設けられている。   2 is a cross-sectional view showing a cross section taken along the line II-II in FIG. 1, and FIG. 3 is a cross-sectional view showing a cross section taken along the line III-III in FIG. As shown in FIG. 1, the oil pump 10 includes a housing 18 fixed to the transaxle housing 12 with a plurality of bolts 16, and a plurality of oil pumps 10 (9 in this embodiment) as shown in FIGS. As shown in FIG. 1, the tip of a cylindrical pump shaft 22 that protrudes from the inner peripheral end of the pump impeller of the torque converter in the direction of the axial center (uniaxial center) C1. The drive gear 24 that is engaged with a plurality of (two in this embodiment) claw portions 22 a and is rotatable about the axis C 1 together with the pump shaft 22 and the outer peripheral teeth 20. A plurality of (10 in this embodiment) inner peripheral teeth 26 engaged with each other are housed in the housing 18 so as to be rotatable around an eccentric shaft center C2 eccentric from the shaft center C1. Rotated circle And Jo of the driven gear 28, is of the so-called internal gear where provided. The driven gear 28 is provided with a small gap in the radial direction with respect to the inner peripheral surface of the gear housing portion of the housing 18, and the drive gear 24 is provided with respect to the outer peripheral surface of the pump shaft 22. Although it is very small, it is provided with a predetermined gap in the radial direction.

上記ドライブギヤ24およびドリブンギヤ28は、図2に示すように、外周歯20および内周歯26が下方で互いに噛み合わされている。そして、ドライブギヤ24は、ポンプ軸22により軸心C1まわりの図2に矢印aで示す所定の回転方向に回転駆動され、ドリブンギヤ28は、そのドライブギヤ24により偏心軸心C2まわりの図2に矢印aで示す所定の回転方向に回転駆動されるようになっている。   As shown in FIG. 2, the drive gear 24 and the driven gear 28 have the outer peripheral teeth 20 and the inner peripheral teeth 26 meshed with each other below. The drive gear 24 is rotationally driven by the pump shaft 22 in a predetermined rotation direction indicated by an arrow a in FIG. 2 around the axis C1, and the driven gear 28 is driven by the drive gear 24 in FIG. 2 around the eccentric axis C2. It is driven to rotate in a predetermined rotation direction indicated by an arrow a.

図2に示すように外周歯20と内周歯26との噛合隙間によって周方向に形成された複数個(本実施例では9個)の油圧室30は、ドライブギヤ24およびドリブンギヤ28の回転に伴ってその容積V[cm3]が変化させられつつ前記回転方向へ移動させられる。図4は、上記油圧室30の軸心C1まわりの回転角度θ[度]とその油圧室30の容積Vとの関係を示す図である。図4において、横軸に示す油圧室30の回転角度θの0°(360°)は、図2の下方に位置する外周歯20と内周歯26とが噛み合う周方向位置を表している。図4に示すように、油圧室容積Vは、油圧室30が回転角度θ=0°の周方向位置から前記回転方向に移動させられるに従って増加させられ、油圧室30が回転角度θ=180°の周方向位置に位置させられたときに最大とさせられる。そして、油圧室容積Vは、油圧室30が回転角度θ=180°の周方向位置から前記回転方向に移動させられるに従って減少させられ、油圧室30が回転角度θ=360°の周方向位置に位置させられたときに最小とさせられる。 As shown in FIG. 2, a plurality of (9 in this embodiment) hydraulic chambers 30 formed in the circumferential direction by the meshing gaps between the outer peripheral teeth 20 and the inner peripheral teeth 26 are used to rotate the drive gear 24 and the driven gear 28. Accordingly, the volume V [cm 3 ] is moved in the rotation direction while being changed. FIG. 4 is a diagram showing the relationship between the rotation angle θ [degree] around the axis C1 of the hydraulic chamber 30 and the volume V of the hydraulic chamber 30. As shown in FIG. In FIG. 4, 0 ° (360 °) of the rotation angle θ of the hydraulic chamber 30 shown on the horizontal axis represents a circumferential position where the outer peripheral teeth 20 and the inner peripheral teeth 26 are located below in FIG. As shown in FIG. 4, the hydraulic chamber volume V is increased as the hydraulic chamber 30 is moved in the rotational direction from the circumferential position where the rotational angle θ = 0 °, and the hydraulic chamber 30 has a rotational angle θ = 180 °. It is made the maximum when it is located at the circumferential position. The hydraulic chamber volume V is decreased as the hydraulic chamber 30 is moved in the rotational direction from the circumferential position at the rotational angle θ = 180 °, and the hydraulic chamber 30 is moved to the circumferential position at the rotational angle θ = 360 °. Minimized when positioned.

前記ハウジング18は、図1に示すように、トランスアクスルケース14の円筒状内周面に嵌合された状態で複数のボルト16により締着されたポンプカバー32と、そのポンプカバー32のトランスアクスルハウジング12側に隣接して配設された状態で複数のボルト34により締着されたポンプボデー36とから構成されている。上記ポンプカバー32の内周面には、一端部が図示しない前記トルクコンバータのステータ翼車に連結された円筒状のステータシャフト38の他端部が、一体的に嵌め着けられている。   As shown in FIG. 1, the housing 18 includes a pump cover 32 fastened by a plurality of bolts 16 while being fitted to a cylindrical inner peripheral surface of the transaxle case 14, and a transaxle of the pump cover 32. The pump body 36 is fastened by a plurality of bolts 34 while being disposed adjacent to the housing 12 side. On the inner peripheral surface of the pump cover 32, the other end portion of a cylindrical stator shaft 38 whose one end portion is connected to a stator impeller of the torque converter (not shown) is integrally fitted.

また、ハウジング18は、ポンプボデー36のポンプカバー32側の壁面に形成された有底円筒穴の内周側の空間から成り、ドリブンギヤ28およびドライブギヤ24が収容させられたポンプ室40と、そのポンプ室40内に油を吸入するためにそのポンプ室40のポンプボデー36側の側面42およびポンプカバー32側の側面44にそれぞれ開口させられた第1吸入油路46および第2吸入油路48と、図2に示すように、ポンプ室40内から油を吐出するためにポンプ室40の側面42に周方向の所定の間隔を隔ててそれぞれ開口させられた第1高圧吐出油路50および第1低圧吐出油路52と、図3に示すように、ポンプ室40内から油を吐出するためにポンプ室40の側面44に周方向の所定の間隔を隔ててそれぞれ開口させられた第2高圧吐出油路54および第2低圧吐出油路56とを、備えている。図2および図3にそれら油路の開口縁が破線で示されている。なお、本実施例の第1高圧吐出油路50および第2高圧吐出油路54は、本発明における第1吐出油路に相当し、また、本実施例の第1低圧吐出油路52および第2低圧吐出油路56は、本発明における第2吐出油路に相当するものである。   The housing 18 includes a space on the inner peripheral side of a bottomed cylindrical hole formed on the wall surface of the pump body 36 on the pump cover 32 side, and a pump chamber 40 in which the driven gear 28 and the drive gear 24 are accommodated, and In order to suck oil into the pump chamber 40, a first suction oil passage 46 and a second suction oil passage 48 opened on the side surface 42 on the pump body 36 side and the side surface 44 on the pump cover 32 side of the pump chamber 40, respectively. As shown in FIG. 2, in order to discharge oil from the pump chamber 40, the first high-pressure discharge oil passage 50 and the first high-pressure discharge oil passage 50 opened to the side surface 42 of the pump chamber 40 at predetermined intervals in the circumferential direction, respectively. As shown in FIG. 3, the low pressure discharge oil passage 52 and the side surface 44 of the pump chamber 40 are opened at predetermined intervals in the circumferential direction in order to discharge oil from the pump chamber 40. And a second high pressure discharge passage 54 and the second low-pressure discharge passage 56 includes. In FIG. 2 and FIG. 3, the opening edges of these oil passages are indicated by broken lines. The first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 of the present embodiment correspond to the first discharge oil passage in the present invention, and the first low-pressure discharge oil passage 52 and the second high-pressure discharge oil passage 52 of the present embodiment. The second low pressure discharge oil passage 56 corresponds to the second discharge oil passage in the present invention.

上記第1吸入油路46および第2吸入油路48は、前記油圧室30が前記回転方向に移動させられるに従ってその油圧室30の容積Vが増加する周方向範囲、すなわち図4に示すように油圧室30の回転角度θが0°〜180°である吸入区間のうち、例えば回転角度θが12°〜178°である所定の吸入区間でポンプ室40に開口させられている。これにより、油圧室30がドライブギヤ24およびドリブンギヤ28の回転に伴って前記回転方向へ移動させられるときにおいて、油圧室30の容積Vが増加させられる過程でその油圧室30が第1吸入油路46および第2吸入油路48に連通させられるようになっている。   The first suction oil passage 46 and the second suction oil passage 48 have a circumferential range in which the volume V of the hydraulic chamber 30 increases as the hydraulic chamber 30 is moved in the rotational direction, that is, as shown in FIG. Of the suction section where the rotation angle θ of the hydraulic chamber 30 is 0 ° to 180 °, the pump chamber 40 is opened in a predetermined suction section where the rotation angle θ is 12 ° to 178 °, for example. As a result, when the hydraulic chamber 30 is moved in the rotation direction as the drive gear 24 and the driven gear 28 rotate, the hydraulic chamber 30 is moved to the first intake oil passage in the process of increasing the volume V of the hydraulic chamber 30. 46 and the second intake oil passage 48 are communicated with each other.

前記第1高圧吐出油路50および第2高圧吐出油路54は、前記油圧室30が前記回転方向に移動させられるに従ってその油圧室30の容積Vが減少する周方向範囲、すなわち図4に示すように油圧室30の回転角度θが180°〜360°である吐出区間のうち、例えば回転角度θが212°〜250°である第1吐出区間でポンプ室40に開口させられている。これにより、油圧室30がドライブギヤ24およびドリブンギヤ28の回転に伴って前記回転方向へ移動させられるときにおいて、油圧室30の容積Vが減少させられる過程の前半でその油圧室30が第1高圧吐出油路50および第2高圧吐出油路54に連通させられるようになっている。   The first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 are shown in FIG. 4 as a circumferential range in which the volume V of the hydraulic chamber 30 decreases as the hydraulic chamber 30 is moved in the rotational direction. As described above, among the discharge sections in which the rotation angle θ of the hydraulic chamber 30 is 180 ° to 360 °, for example, the first discharge section in which the rotation angle θ is 212 ° to 250 ° is opened in the pump chamber 40. As a result, when the hydraulic chamber 30 is moved in the rotation direction as the drive gear 24 and the driven gear 28 rotate, the hydraulic chamber 30 becomes the first high pressure in the first half of the process in which the volume V of the hydraulic chamber 30 is reduced. The discharge oil passage 50 and the second high-pressure discharge oil passage 54 are communicated with each other.

前記第1低圧吐出油路52および第2低圧吐出油路56は、前記油圧室30が前記回転方向に移動させられるに従ってその油圧室30の容積Vが減少する周方向範囲、すなわち図4に示すように油圧室30の回転角度θが180°〜360°である吐出区間のうち、例えば回転角度θが289°〜351°である第2吐出区間でポンプ室40に開口させられている。これにより、油圧室30がドライブギヤ24およびドリブンギヤ28の回転に伴って前記回転方向へ移動させられるときにおいて、油圧室30の容積Vが減少させられる過程の後半でその油圧室30が第1低圧吐出油路52および第2低圧吐出油路56に連通させられるようになっている。   The first low-pressure discharge oil passage 52 and the second low-pressure discharge oil passage 56 are shown in FIG. 4 as a circumferential range in which the volume V of the hydraulic chamber 30 decreases as the hydraulic chamber 30 is moved in the rotational direction. Thus, among the discharge sections where the rotation angle θ of the hydraulic chamber 30 is 180 ° to 360 °, for example, the second discharge section whose rotation angle θ is 289 ° to 351 ° is opened to the pump chamber 40. As a result, when the hydraulic chamber 30 is moved in the rotational direction as the drive gear 24 and the driven gear 28 rotate, the hydraulic chamber 30 is moved to the first low pressure in the latter half of the process in which the volume V of the hydraulic chamber 30 is reduced. The discharge oil passage 52 and the second low-pressure discharge oil passage 56 are communicated with each other.

図2および図3に示すように、第1高圧吐出油路50および第2高圧吐出油路54は、第1低圧吐出油路52および第2低圧吐出油路56に対して前記回転方向の後方側に設けられている。そのため、油圧室30がドライブギヤ24およびドリブンギヤ28の回転に伴って前記回転方向へ移動させられるときにおいて、その油圧室30は、第1高圧吐出油路50および第1低圧吐出油路52に順次連通させられると共に、第2高圧吐出油路54および第2低圧吐出油路56に順次連通させられるようになっている。ここで、各吐出油路は、油圧室30が高圧吐出油路と低圧吐出油路との間を通過するときにおいて、低圧吐出油路と直接的に連通させられた油圧室30に対して高圧吐出油路が直接的に連通させられることでその高圧吐出油路内の作動油が低圧吐出油路へ洩れて高圧吐出側の容積効率が低下することのないように設けられている。具体的には、第1高圧吐出油路50および第1低圧吐出油路52は、油圧室30が前記回転方向へ移動させられるときにおいて、油圧室30と第1高圧吐出油路50とが連通させられた状態から、油圧室30と第1高圧吐出油路50および第1低圧吐出油路52とがそれぞれ遮断させられた状態を経て、油圧室30と第1低圧吐出油路52とが連通させられた状態に至るように設けられている。上記のことは、第2高圧吐出油路54および第2低圧吐出油路56についても同様である。   As shown in FIGS. 2 and 3, the first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 are rearward in the rotational direction with respect to the first low-pressure discharge oil passage 52 and the second low-pressure discharge oil passage 56. On the side. Therefore, when the hydraulic chamber 30 is moved in the rotation direction as the drive gear 24 and the driven gear 28 rotate, the hydraulic chamber 30 sequentially moves to the first high-pressure discharge oil passage 50 and the first low-pressure discharge oil passage 52. In addition to being communicated, the second high-pressure discharge oil passage 54 and the second low-pressure discharge oil passage 56 are sequentially communicated. Here, each discharge oil passage has a high pressure with respect to the hydraulic chamber 30 directly connected to the low pressure discharge oil passage when the hydraulic chamber 30 passes between the high pressure discharge oil passage and the low pressure discharge oil passage. The discharge oil passage is directly communicated so that the hydraulic oil in the high pressure discharge oil passage does not leak into the low pressure discharge oil passage and the volume efficiency on the high pressure discharge side is not lowered. Specifically, the first high-pressure discharge oil passage 50 and the first low-pressure discharge oil passage 52 communicate with each other when the hydraulic chamber 30 is moved in the rotation direction. The hydraulic chamber 30 and the first low pressure discharge oil passage 52 are communicated with each other through the state in which the hydraulic chamber 30 and the first high pressure discharge oil passage 50 and the first low pressure discharge oil passage 52 are blocked. It is provided so that it may be made to the state made to. The same applies to the second high-pressure discharge oil passage 54 and the second low-pressure discharge oil passage 56.

また、ハウジング18は、図2および図3に示すように、複数の油圧室30のうちの所定の油圧室30aが第1高圧吐出油路50の開口縁と第1低圧吐出油路52の開口縁との間に位置させられると共に、第2高圧吐出油路54の開口縁と第2低圧吐出油路56の開口縁との間に位置させられて、それら吐出油路と直接的に連通していないときにおいて、上記所定の油圧室30aと第1高圧吐出油路50および第2高圧吐出油路54とをそれぞれ連通させるために、ポンプ室40の側面42および側面44にそれぞれ形成された第1油逃がし油路58と、上記所定の油圧室30aと第1低圧吐出油路52および第2低圧吐出油路56とをそれぞれ連通させるために、ポンプ室40の側面42および側面44にそれぞれ形成された第2油逃がし油路60を備えている。なお、上記所定の油圧室30aは、複数の油圧室30のうち、第1高圧吐出油路50の開口縁と第1低圧吐出油路52の開口縁との間の第1壁面62(図2参照)と、第2高圧吐出油路54の開口縁と第2低圧吐出油路56の開口縁との間の第2壁面64(図3参照)とによって軸心C1方向から挟まれて油密とされた瞬間のものを指す。   As shown in FIGS. 2 and 3, the housing 18 includes a predetermined hydraulic chamber 30 a of the plurality of hydraulic chambers 30 that has an opening edge of the first high-pressure discharge oil passage 50 and an opening of the first low-pressure discharge oil passage 52. And is located between the opening edge of the second high-pressure discharge oil passage 54 and the opening edge of the second low-pressure discharge oil passage 56 and communicates directly with these discharge oil passages. In order to allow the predetermined hydraulic chamber 30a to communicate with the first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 respectively, the first hydraulic pressure chamber 30a and the second high-pressure discharge oil passage 54 are respectively formed on the side surface 42 and the side surface 44 of the pump chamber 40. In order to connect the one oil relief oil passage 58, the predetermined hydraulic chamber 30a, the first low pressure discharge oil passage 52, and the second low pressure discharge oil passage 56, respectively, they are formed on the side surface 42 and the side surface 44 of the pump chamber 40, respectively. Second oil relief And a road 60. The predetermined hydraulic chamber 30a includes a first wall surface 62 (see FIG. 2) between the opening edge of the first high-pressure discharge oil passage 50 and the opening edge of the first low-pressure discharge oil passage 52 among the plurality of hydraulic chambers 30. And a second wall surface 64 (see FIG. 3) between the opening edge of the second high-pressure discharge oil passage 54 and the opening edge of the second low-pressure discharge oil passage 56, and is oiltight from the direction of the axis C1. It refers to the one at the moment.

上記第1油逃がし油路58は、図2に示すように、第1高圧吐出油路50の開口縁のうちの内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部から、前記回転方向の前方側の第1低圧吐出油路52へ向けて周方向に延設された第1外側周方向溝66と、図3に示すように、第2高圧吐出油路54の開口縁のうちの内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部から、前記回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設された第2外側周方向溝68とから成る。上記第1外側周方向溝66および第2外側周方向溝68は、高圧吐出油路50、54と低圧吐出油路52、56との間の閉じ込み位置に位置させられた所定の油圧室30aに先端部が連通する程度に周方向長さが設定され、また、各吐出油路と比べて十分に浅く設定される。   As shown in FIG. 2, the first oil relief oil passage 58 is more radial than the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 of the opening edge of the first high-pressure discharge oil passage 50. A first outer circumferential groove 66 extending in the circumferential direction from a part of the outer side toward the first low pressure discharge oil passage 52 on the front side in the rotational direction, and a second high pressure discharge as shown in FIG. From a part of the opening edge of the oil passage 54 radially outside the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 to the second low pressure discharge oil passage 56 on the front side in the rotational direction. And a second outer circumferential groove 68 extending in the circumferential direction. The first outer circumferential groove 66 and the second outer circumferential groove 68 are a predetermined hydraulic chamber 30a located at a closed position between the high pressure discharge oil passages 50, 54 and the low pressure discharge oil passages 52, 56. The length in the circumferential direction is set to such an extent that the tip portion communicates with each other, and is set sufficiently shallower than each discharge oil passage.

図2および図3に示すように、各高圧吐出油路(第1高圧吐出油路50および第2高圧吐出油路54)から、その各高圧吐出油路と各低圧吐出油路(第1低圧吐出油路52および第2低圧吐出油路56)との間に位置させられた所定の油圧室30aまでの周方向長さは、最近接点Xの軌跡Kよりも径方向内側に比べて径方向外側の方が短い。したがって、各高圧吐出油路と各低圧吐出油路との間の閉じ込み位置に位置させられた所定の油圧室30aと高圧吐出油路とを連通させるための第1油逃がし油路58が、本実施例のように最近接点Xの軌跡Kよりも径方向外側の第1外側周方向溝66および第2外側周方向溝68から構成される場合には、最近接点Xの軌跡Kよりも径方向内側の周方向溝から構成される場合と比較して、溝の周方向長さが短くなる。   As shown in FIGS. 2 and 3, from each high pressure discharge oil passage (first high pressure discharge oil passage 50 and second high pressure discharge oil passage 54), each high pressure discharge oil passage and each low pressure discharge oil passage (first low pressure discharge passage). The circumferential length to the predetermined hydraulic chamber 30a located between the discharge oil passage 52 and the second low-pressure discharge oil passage 56) is more radial than the locus K of the closest point X in the radial direction. The outside is shorter. Therefore, the first oil relief oil passage 58 for communicating the predetermined hydraulic chamber 30a positioned at the closed position between each high pressure discharge oil passage and each low pressure discharge oil passage and the high pressure discharge oil passage, In the case of the first outer circumferential groove 66 and the second outer circumferential groove 68 that are radially outward from the locus K of the closest point X as in the present embodiment, the diameter is larger than the locus K of the nearest point X. The circumferential length of the groove is shortened compared to a case where the circumferential groove is formed on the inner side in the direction.

前記第2油逃がし油路60は、図2に示すように、第1低圧吐出油路52の開口縁のうちの内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向内側の一部から、前記回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設された第1内側周方向溝70と、図3に示すように、第2低圧吐出油路56の開口縁のうちの内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向内側の一部から、前記回転方向の後方側の第2高圧吐出油路54へ向けて周方向に延設された第2内側周方向溝72とから成る。上記第1内側周方向溝70および第2内側周方向溝72は、高圧吐出油路50、54と低圧吐出油路52、56との間の閉じ込み位置に位置する所定の油圧室30aに先端部が連通する程度に周方向長さが設定され、また、各吐出油路と比べて十分に浅く設定される。   As shown in FIG. 2, the second oil relief oil passage 60 is more radial than the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 of the opening edge of the first low-pressure discharge oil passage 52. A first inner circumferential groove 70 extending in the circumferential direction from a part of the inner side toward the first high pressure discharge oil passage 50 on the rear side in the rotational direction, and a second low pressure discharge as shown in FIG. From a portion of the opening edge of the oil passage 56 radially inward of the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 to the second high-pressure discharge oil passage 54 on the rear side in the rotational direction. And a second inner circumferential groove 72 extending in the circumferential direction. The first inner circumferential groove 70 and the second inner circumferential groove 72 are advanced to a predetermined hydraulic chamber 30a located at a closed position between the high pressure discharge oil passages 50, 54 and the low pressure discharge oil passages 52, 56. The circumferential length is set to such an extent that the parts communicate with each other, and is set sufficiently shallow compared to each discharge oil passage.

図2および図3に示すように、各低圧吐出油路から、その各低圧吐出油路と各高圧吐出油路との間に位置させられた所定の油圧室30aまでの周方向長さは、最近接点Xの軌跡Kよりも径方向外側に比べて径方向内側の方が短い。したがって、各高圧吐出油路と各低圧吐出油路との間の閉じ込み位置に位置させられた所定の油圧室30aと低圧吐出油路とを連通させるための第2油逃がし油路60が、本実施例のように最近接点Xの軌跡Kよりも径方向内側の第1内側周方向溝70および第2内側周方向溝72から構成される場合には、最近接点Xの軌跡Kよりも径方向外側の周方向溝から構成される場合と比較して、溝の周方向長さが短くなる。   As shown in FIGS. 2 and 3, the circumferential length from each low pressure discharge oil passage to a predetermined hydraulic chamber 30a located between each low pressure discharge oil passage and each high pressure discharge oil passage is: The inner radius is shorter than the outer radius K of the closest contact X. Therefore, the second oil relief oil passage 60 for communicating the predetermined hydraulic chamber 30a positioned at the closed position between each high pressure discharge oil passage and each low pressure discharge oil passage and the low pressure discharge oil passage, In the case of the first inner circumferential groove 70 and the second inner circumferential groove 72 radially inward of the locus K of the closest point X as in this embodiment, the diameter is larger than the locus K of the nearest point X. The circumferential length of the groove is shortened as compared with the case where the circumferential groove is formed on the outer side in the direction.

第1外側周方向溝66および第1内側周方向溝70は共にポンプ室40の側面42に形成されつつ、周方向において対向して設けられている。また、第2外側周方向溝68および第2内側周方向溝72は共にポンプ室40の側面44に形成されつつ、周方向において対向して設けられている。   Both the first outer circumferential groove 66 and the first inner circumferential groove 70 are formed on the side surface 42 of the pump chamber 40 while facing each other in the circumferential direction. Further, the second outer circumferential groove 68 and the second inner circumferential groove 72 are both formed on the side surface 44 of the pump chamber 40 while facing each other in the circumferential direction.

次に、各周方向溝の加工について説明する。なお、以下では、外側周方向溝および内側周方向溝を代表して、第1外側周方向溝66および第1内側周方向溝70の加工について説明する。図5は、図1のII-II矢視方向から見たポンプボデー36だけを示す図である。図5において、第1外側周方向溝66および第1内側周方向溝70は、たとえば、第1低圧吐出油路52の開口縁のうち、矢印aで示す前記回転方向の後方側の側縁74が共通の加工位置基準すなわち被加工物の固定(チャック)位置基準として用いられ、例えばエンドミル等の切削工具が使用されてフライス盤等の工作機械により溝加工されて形成される。ここで、上記第1外側周方向溝66および第1内側周方向溝70は、上記のように共通の加工位置基準を用いて加工されているため、例えば、第1低圧吐出油路52の側縁74の周方向位置が個体毎に周方向にばらついたり或いは加工のばらつきが発生したとしても、それら周方向溝の先端同士の周方向間隔L[mm]が略一定に保たれる。   Next, processing of each circumferential groove will be described. In the following, the processing of the first outer circumferential groove 66 and the first inner circumferential groove 70 will be described on behalf of the outer circumferential groove and the inner circumferential groove. FIG. 5 is a view showing only the pump body 36 viewed from the direction of arrows II-II in FIG. In FIG. 5, the first outer circumferential groove 66 and the first inner circumferential groove 70 are, for example, side edges 74 on the rear side in the rotational direction indicated by the arrow a among the opening edges of the first low-pressure discharge oil passage 52. Is used as a common processing position reference, that is, a workpiece fixing (chuck) position reference, and is formed by grooving with a machine tool such as a milling machine using a cutting tool such as an end mill. Here, since the first outer circumferential groove 66 and the first inner circumferential groove 70 are machined using the common machining position reference as described above, for example, the first low pressure discharge oil passage 52 side. Even if the circumferential position of the edge 74 varies in the circumferential direction for each individual or processing variation occurs, the circumferential interval L [mm] between the tips of the circumferential grooves is kept substantially constant.

図6は、オイルポンプ10の各吐出油路の下流側に設けられた油圧制御回路76の一例を模式的に示した図である。図6において、オイルポンプ10の第1吸入油路46および第2吸入油路48は、互いに接続され、例えば前記トランスアクスルケース14等に形成された第1油路78とストレーナ80とをそれぞれ介して、トランスアクスルケース14の下部に固定されたオイルパン82内の油貯溜空間に連通されている。また、オイルポンプ10の第1高圧吐出油路50および第2高圧吐出油路54は、互いに接続され、例えば前記トランスアクスルケース14等に形成された第2油路84を介して、油圧制御回路76内に設けられた例えば良く知られたリリーフ形のレギュレータ86の第1入力ポート88に接続されると共に、例えば、前記自動変速機の変速機構に設けられた複数の油圧式摩擦係合装置を制御するための変速制御用バルブや、前記トルクコンバータに設けられたロックアップクラッチを制御するためのロックアップコントロールバルブ等を含むバルブ装置90に接続されている。また、オイルポンプ10の第1低圧吐出油路52および第2低圧吐出油路56は、互いに接続され、例えば前記トランスアクスルケース14等に形成された第3油路92を介して油圧制御回路76のレギュレータ86の第2入力ポート94に接続されている。   FIG. 6 is a diagram schematically illustrating an example of a hydraulic control circuit 76 provided on the downstream side of each discharge oil passage of the oil pump 10. In FIG. 6, a first suction oil passage 46 and a second suction oil passage 48 of the oil pump 10 are connected to each other, for example, via a first oil passage 78 and a strainer 80 formed in the transaxle case 14 or the like. The oil storage space in the oil pan 82 is fixed to the lower part of the transaxle case 14. The first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 of the oil pump 10 are connected to each other and, for example, via a second oil passage 84 formed in the transaxle case 14 or the like, a hydraulic control circuit. For example, a plurality of hydraulic friction engagement devices provided in a transmission mechanism of the automatic transmission are connected to a first input port 88 of a well-known relief-type regulator 86 provided in 76. It is connected to a valve device 90 including a shift control valve for controlling and a lockup control valve for controlling a lockup clutch provided in the torque converter. The first low pressure discharge oil passage 52 and the second low pressure discharge oil passage 56 of the oil pump 10 are connected to each other and, for example, a hydraulic control circuit 76 via a third oil passage 92 formed in the transaxle case 14 or the like. Connected to the second input port 94 of the regulator 86.

上記バルブ装置90に供給される作動油は、レギュレータ86によって作動油のリリーフ量が調節されてその油圧値が調圧されるようになっている。具体的には、各高圧吐出油路からバルブ装置90に供給される作動油は、図7の下段に示すように、ドライブギヤ24の回転速度N[rpm]が予め定められた所定の回転速度N1[rpm]以下であって、各高圧吐出油路から吐出される作動油の油圧値すなわち高圧ポート油圧値Pp1[MPa]が予め定められた所定の高油圧値Pphigh[MPa]以下である場合には、その油圧値のままで用いられる。また、各高圧吐出油路からバルブ装置90に供給される作動油は、回転速度Nが所定の回転速度N1を超えるときであって高圧ポート油圧値Pp1が上記高油圧値Pphighを超えようとする場合には、レギュレータ86により上記高油圧値Pphighに調圧されて用いられる。なお、図7の上段に示すのは、オイルポンプ10の各吐出油路からの作動油の吐出量Q[L/min]である。図7に示すように、各高圧吐出油路から吐出される作動油の総吐出量すなわち高圧ポート吐出量Q1[L/min]は、ドライブギヤ24の回転速度Nに比例する。   The hydraulic oil supplied to the valve device 90 is adjusted in pressure by adjusting the relief amount of the hydraulic oil by the regulator 86. Specifically, the hydraulic oil supplied to the valve device 90 from each high-pressure discharge oil passage has a predetermined rotational speed at which the rotational speed N [rpm] of the drive gear 24 is predetermined as shown in the lower part of FIG. N1 [rpm] or less and the hydraulic pressure value of the hydraulic oil discharged from each high-pressure discharge oil passage, that is, the high-pressure port hydraulic pressure value Pp1 [MPa] is equal to or less than a predetermined high hydraulic pressure value Pphigh [MPa] Is used with its oil pressure value unchanged. The hydraulic oil supplied to the valve device 90 from each high-pressure discharge oil passage is when the rotational speed N exceeds a predetermined rotational speed N1 and the high-pressure port hydraulic pressure value Pp1 tends to exceed the high hydraulic pressure value Pphigh. In this case, the regulator 86 is used by adjusting the pressure to the high hydraulic pressure value Pphigh. 7 shows the discharge amount Q [L / min] of hydraulic oil from each discharge oil passage of the oil pump 10. As shown in FIG. 7, the total discharge amount of hydraulic oil discharged from each high-pressure discharge oil passage, that is, the high-pressure port discharge amount Q 1 [L / min] is proportional to the rotational speed N of the drive gear 24.

そして、各低圧吐出油路から第3油路92に供給される作動油は、図7の下段に示すように、ドライブギヤ24の回転速度Nが予め定められた所定の回転速度N2[rpm]を下回る場合には、レギュレータ86の第2入力ポート94が塞がれて昇圧させられて第2油路84内の油圧値よりも大きくなることに応じて、第3油路92と第2油路84との間に設けられた一方向弁96を介して第2油路84へ流出させられる。上記所定の回転速度N2は、バルブ装置90で消費される相対的に高油圧の作動油の必要消費量Q’[L/min]が高圧吐出油路からの高圧ポート吐出量Q1[L/min]だけで充足される回転速度範囲の最小の回転速度である。また、各低圧吐出油路から第3油路92に供給される作動油は、ドライブギヤ24の回転速度Nが所定の回転速度N2以上となる場合には、その油圧値すなわち低圧ポート油圧値Pp2がレギュレータ86により予め定められた所定の低油圧値Pplow[MPa]に維持される。なお、図7の上段に示すように、各低圧吐出油路から吐出される作動油の総吐出量すなわち低圧ポート吐出量Q2[L/min]は、ドライブギヤ24の回転速度Nに比例する。そして、各吐出油路50乃至56から吐出される作動油の総吐出量Q(=Q1+Q2)[L/min]は、ドライブギヤ24の回転速度Nに比例する。   Then, the hydraulic oil supplied from each low pressure discharge oil passage to the third oil passage 92 has a predetermined rotational speed N2 [rpm] where the rotational speed N of the drive gear 24 is predetermined as shown in the lower part of FIG. When the pressure is lower than the second oil pressure, the second input port 94 of the regulator 86 is closed and boosted to become larger than the oil pressure value in the second oil passage 84, and the third oil passage 92 and the second oil The oil is discharged to the second oil passage 84 through a one-way valve 96 provided between the passage 84 and the passage 84. The predetermined rotational speed N2 is such that the required consumption Q ′ [L / min] of the relatively high hydraulic fluid consumed by the valve device 90 is the high-pressure port discharge amount Q1 [L / min] from the high-pressure discharge oil passage. ] Is the minimum rotation speed in the rotation speed range that can be satisfied only with. Further, the hydraulic oil supplied from each low pressure discharge oil passage to the third oil passage 92 has its oil pressure value, that is, the low pressure port oil pressure value Pp2 when the rotational speed N of the drive gear 24 is equal to or higher than a predetermined rotational speed N2. Is maintained at a predetermined low hydraulic pressure value Pplow [MPa] determined in advance by the regulator 86. As shown in the upper part of FIG. 7, the total discharge amount of hydraulic oil discharged from each low pressure discharge oil passage, that is, the low pressure port discharge amount Q2 [L / min] is proportional to the rotational speed N of the drive gear 24. The total discharge amount Q (= Q1 + Q2) [L / min] of hydraulic oil discharged from the discharge oil passages 50 to 56 is proportional to the rotational speed N of the drive gear 24.

以上のように構成されたオイルポンプ10では、ドライブギヤ24およびドリブンギヤ28が前記回転方向に回転させられると、容量Vが増加する周方向範囲を移動させられる油圧室30には、オイルパン82に貯溜された油がストレーナ80および第1油路78を通じて吸入される。そして、容量Vが減少する周方向範囲のうちの第1高圧吐出油路50および第2高圧吐出油路54が開口する周方向範囲を移動させられる油圧室30からは、加圧された油が吐出されて第2油路84を通じて油圧制御回路76へ圧送される。そして、容量Vが減少する周方向範囲のうちの第1低圧吐出油路52および第2低圧吐出油路56が開口する周方向範囲を移動させられる油圧室30からは、加圧された油が吐出されて第3油路92を通じて油圧制御回路76へ圧送される。そして、複数の油圧室30が前記回転方向へ移動させられて高圧吐出油路と低圧吐出油路との間の閉じ込み位置を通過する際には、図2および図3に示すように、所定の油圧室30aが高圧吐出油路と低圧吐出油路との間に位置させられるときに、その所定の油圧室30a内の作動油が各周方向溝を通じて各高圧吐出油路および各低圧吐出油路の少なくともいずれか一方へ逃がされるようになっている。   In the oil pump 10 configured as described above, when the drive gear 24 and the driven gear 28 are rotated in the rotational direction, the hydraulic chamber 30 that is moved in the circumferential range in which the capacity V increases is provided in the oil pan 82. The stored oil is sucked through the strainer 80 and the first oil passage 78. Then, pressurized oil is supplied from the hydraulic chamber 30 that is moved in the circumferential range in which the first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 open in the circumferential range in which the capacity V decreases. It is discharged and pumped to the hydraulic control circuit 76 through the second oil passage 84. Then, pressurized oil is supplied from the hydraulic chamber 30 that is moved in the circumferential range in which the first low-pressure discharge oil passage 52 and the second low-pressure discharge oil passage 56 open in the circumferential range in which the capacity V decreases. It is discharged and pumped to the hydraulic control circuit 76 through the third oil passage 92. When the plurality of hydraulic chambers 30 are moved in the rotational direction and pass through the closed position between the high-pressure discharge oil passage and the low-pressure discharge oil passage, as shown in FIGS. When the hydraulic chamber 30a is positioned between the high-pressure discharge oil passage and the low-pressure discharge oil passage, the hydraulic oil in the predetermined hydraulic chamber 30a passes through the circumferential grooves and the high-pressure discharge oil passage and the low-pressure discharge oil. It is designed to escape to at least one of the roads.

ここで、図2のA矢視部に相当する部分を拡大して示す図8に示すように、例えば、第1内側周方向溝70が、閉じ込み位置に位置させられた所定の油圧室30aから遠ざかる周方向へ約1[度]短く形成された場合には、その第1内側周方向溝70は、ドライブギヤ24により塞がれることとなる。しかし、このような場合であっても、閉じ込み位置に位置させられた所定の油圧室30aは、第1外側周方向溝66を介して第1高圧吐出油路50と連通状態とされ、その油圧室30a内の作動油が第1高圧吐出油路50へ逃がされ得るようになっている。   Here, as shown in FIG. 8 which shows an enlarged view corresponding to the portion indicated by the arrow A in FIG. 2, for example, a predetermined hydraulic chamber 30a in which the first inner circumferential groove 70 is positioned at the closed position. When it is formed shorter by about 1 [degree] in the circumferential direction away from the first circumferential groove 70, the first inner circumferential groove 70 is blocked by the drive gear 24. However, even in such a case, the predetermined hydraulic chamber 30a positioned at the closed position is in communication with the first high-pressure discharge oil passage 50 via the first outer circumferential groove 66, and The hydraulic oil in the hydraulic chamber 30 a can be released to the first high-pressure discharge oil passage 50.

また、図2のA矢視部に相当する部分を拡大して示す図9に示すように、例えば、ドライブギヤ24およびドリブンギヤ28が回転中に上方へ偏心させられた場合には、第1内側周方向溝70は、ドライブギヤ24により塞がれることとなる。しかし、このような場合であっても、閉じ込み位置に位置させられた所定の油圧室30aは、第1外側周方向溝66を介して第1高圧吐出油路50と連通状態とされ、その油圧室30a内の作動油が第1高圧吐出油路50へ逃がされ得るようになっている。   Further, as shown in FIG. 9, which shows an enlarged view of the portion corresponding to the portion indicated by the arrow A in FIG. 2, for example, when the drive gear 24 and the driven gear 28 are decentered upward during rotation, the first inner side The circumferential groove 70 is blocked by the drive gear 24. However, even in such a case, the predetermined hydraulic chamber 30a positioned at the closed position is in communication with the first high-pressure discharge oil passage 50 via the first outer circumferential groove 66, and The hydraulic oil in the hydraulic chamber 30 a can be released to the first high-pressure discharge oil passage 50.

因みに、図17に示すように、従来のオイルポンプ100は、所定の油圧室30aが第1高圧吐出油路50と第1低圧吐出油路52との間に位置させられて、それら吐出油路と直接的に連通していないときにおいて、その所定の油圧室30aと第1低圧吐出油路52とを連通させるために、第1低圧吐出油路52の開口縁の径方向外側の一部および径方向内側の一部から第1高圧吐出油路50へ向けて周方向にそれぞれ延設された外側周方向溝102および内側周方向溝104を備えている。これら油逃がし溝は、図18に示すように、第1低圧吐出油路52の開口縁の側縁74が加工位置基準として用いられて、例えばエンドミル等の切削工具が使用されてフライス盤等の工作機械により溝加工されて形成される。上記外側周方向溝102および内側周方向溝104は、図17に示すように、閉じ込み位置に位置された所定の油圧室30aに対して先端部が僅かに連通させられるように設計される。   Incidentally, as shown in FIG. 17, in the conventional oil pump 100, a predetermined hydraulic chamber 30a is positioned between the first high pressure discharge oil passage 50 and the first low pressure discharge oil passage 52, and these discharge oil passages are arranged. When the predetermined hydraulic chamber 30a and the first low-pressure discharge oil passage 52 are communicated with each other when they are not in direct communication with each other, a part on the radially outer side of the opening edge of the first low-pressure discharge oil passage 52 and An outer circumferential groove 102 and an inner circumferential groove 104 are provided respectively extending in the circumferential direction from a part on the radially inner side toward the first high-pressure discharge oil passage 50. As shown in FIG. 18, these oil relief grooves are formed by using the side edge 74 of the opening edge of the first low-pressure discharge oil passage 52 as a processing position reference, and using a cutting tool such as an end mill, for example. It is formed by grooving by a machine. As shown in FIG. 17, the outer circumferential groove 102 and the inner circumferential groove 104 are designed such that the tip ends are slightly communicated with a predetermined hydraulic chamber 30 a located at the closed position.

ここで、図17のD矢視部に相当する部分を拡大して示す図19に示すように、例えば、加工位置基準が閉じ込み位置に位置させられた油圧室30aから遠ざかる周方向へずれた場合であって、各周方向溝102および104が、その油圧室30aから遠ざかる周方向へ約1[度]短く形成された場合には、それら周方向溝102および104は、ドライブギヤ24により塞がれることとなる。そのため、油圧室30が第1高圧吐出油路50と第1低圧吐出油路52との間の閉じ込み位置を通過するときに昇圧しようとするその油圧室30内の作動油が、吐出油路へ逃がされず、その油圧室30内の作動油の圧力値が急激に上昇することに起因してポンプ駆動トルクが増大するという問題があった。   Here, as shown in FIG. 19, which shows an enlarged view of the portion corresponding to the portion indicated by the arrow D in FIG. 17, for example, the machining position reference is shifted in the circumferential direction away from the hydraulic chamber 30a positioned at the closed position. In the case where the circumferential grooves 102 and 104 are formed to be shortened by about 1 [degree] in the circumferential direction away from the hydraulic chamber 30a, the circumferential grooves 102 and 104 are blocked by the drive gear 24. It will come off. Therefore, when the hydraulic chamber 30 passes through the closed position between the first high-pressure discharge oil passage 50 and the first low-pressure discharge oil passage 52, the hydraulic oil in the hydraulic chamber 30 to be increased in pressure is discharged into the discharge oil passage. There is a problem that the pump drive torque increases due to a sudden rise in the pressure value of the hydraulic oil in the hydraulic chamber 30 without being escaped.

また、図17のD矢視部に相当する部分を拡大して示す図20に示すように、例えば、ドライブギヤ24およびドリブンギヤ28が回転中に上方へ偏心させられた場合には、周方向溝102および104がドライブギヤ24により塞がれることとなる。そのため、上記の場合と同様に、油圧室30が第1高圧吐出油路50と第1低圧吐出油路52との間の閉じ込み位置を通過するときに昇圧しようとするその油圧室30内の作動油が、吐出油路へ逃がされず、その油圧室30内の作動油の圧力値が急激に上昇することに起因してポンプ駆動トルクが増大するという問題があった。   Further, as shown in FIG. 20 showing an enlarged portion corresponding to the portion indicated by the arrow D in FIG. 17, for example, when the drive gear 24 and the driven gear 28 are eccentric upward during rotation, the circumferential groove 102 and 104 are blocked by the drive gear 24. Therefore, as in the above case, when the hydraulic chamber 30 passes through the closed position between the first high-pressure discharge oil passage 50 and the first low-pressure discharge oil passage 52, There is a problem that the pump drive torque increases due to the fact that the hydraulic oil is not released to the discharge oil passage and the pressure value of the hydraulic oil in the hydraulic chamber 30 increases rapidly.

なお、閉じ込み位置に位置させられた所定の油圧室30aを吐出油路に連通させる周方向溝(油逃がし油路)が設けられない従来のオイルポンプにおいては、油圧室30が高圧吐出油路と低圧吐出油路との間を通過する際に、その油圧室30が閉じ込み状態とされて、図4に破線で示すようにその油圧室30内の油圧値P2が急激に上昇し、オイルポンプの駆動トルクが増加してしまうという問題があった。これに対して、本実施例のオイルポンプ10では、油圧室30の回転角度θが第1吐出区間と第2吐出区間との間であるときには、その大部分において、油圧室30と各吐出油路の少なくとも1つとが各周方向溝の少なくとも1つを介して連通させられるため、図4に実線で示すように、油圧室油圧値P1が略一定に維持される。本実施例の第1油逃がし油路58および第2油逃がし油路60は、油圧室30が各高圧吐出油路と各低圧吐出油路との間を移動させられるときにその油圧室30内の急激な昇圧を防止する昇圧抑制溝として機能するものである。   In a conventional oil pump that does not have a circumferential groove (oil relief oil passage) that communicates a predetermined hydraulic chamber 30a positioned at the closed position with the discharge oil passage, the hydraulic chamber 30 is provided with a high-pressure discharge oil passage. 4 and the low-pressure discharge oil passage, the hydraulic chamber 30 is closed, and the hydraulic pressure value P2 in the hydraulic chamber 30 rapidly increases as shown by the broken line in FIG. There was a problem that the driving torque of the pump would increase. On the other hand, in the oil pump 10 of the present embodiment, when the rotation angle θ of the hydraulic chamber 30 is between the first discharge section and the second discharge section, the hydraulic chamber 30 and each discharge oil are mostly used. Since at least one of the paths communicates with at least one of the circumferential grooves, the hydraulic chamber hydraulic pressure value P1 is maintained substantially constant as shown by the solid line in FIG. The first oil relief oil passage 58 and the second oil relief oil passage 60 of the present embodiment are arranged in the hydraulic chamber 30 when the hydraulic chamber 30 is moved between each high pressure discharge oil passage and each low pressure discharge oil passage. It functions as a boost suppression groove that prevents abrupt boosting.

上述のように、本実施例のオイルポンプ10は、複数の油圧室30のうちの所定の油圧室30aが高圧吐出油路(第1高圧吐出油路50および第2高圧吐出油路54)の開口と低圧吐出油路(第1低圧吐出油路52および第2低圧吐出油路56)の開口との間に位置させられてそれら吐出油路と直接的に連通していないときにおいて、上記所定の油圧室30aと高圧吐出油路とを連通させるために、ポンプ室40の側面42の第1高圧吐出油路50の開口縁の一部から所定の回転方向の前方側の第1低圧吐出油路52へ向けて周方向に延設された第1外側周方向溝66と、ポンプ室40の側面44の第2高圧吐出油路54の開口縁の一部から前記回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設された第2外側周方向溝68とから成る第1油逃がし油路58と、上記所定の油圧室30aと低圧吐出油路とを連通させるために、ポンプ室40の側面42の第1低圧吐出油路52の開口縁の一部から前記回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設された第1内側周方向溝70と、ポンプ室40の側面44の第2低圧吐出油路56の開口縁の一部から前記回転方向の後方側の第2高圧吐出油路54へ向けて周方向に延設された第2内側周方向溝72とから成る第2油逃がし油路60とを含むものである。そのため、各周方向溝を加工するための加工基準位置が周方向溝毎にばらついて、それに起因して高圧吐出油路および低圧吐出油路の一方に形成される周方向溝が、高圧吐出油路および低圧吐出油路の他方から遠ざかる側へ、すなわちそれら吐出油路間の閉じ込み位置に位置する所定の油圧室30aから遠ざかる側へ短く加工されても、上記周方向溝に周方向に対向して設けられる、高圧吐出油路および低圧吐出油路の他方に形成される周方向溝は、上記閉じ込み位置に位置する所定の油圧室30aから遠ざかる側へ加工されるわけではないので、所定の油圧室30aが閉じ込み位置に位置するときにおいて、上記短く加工された周方向溝がドリブンギヤ28またはドライブギヤ24により塞がれても他方の周方向溝が塞がれることなく、上記所定の油圧室30aが吐出油路と連通される。また、ドリブンギヤ28およびドライブギヤ24が回転中に偏心または変形することにより、閉じ込み位置に位置する所定の油圧室30aが、高圧吐出油路および低圧吐出油路の一方に形成される周方向溝から遠ざかる側へ移動しても、高圧吐出油路および低圧吐出油路の他方に形成される周方向溝へ近づく側へ移動することになるので、所定の油圧室30aが閉じ込み位置に位置するときにおいて、上記一方の周方向溝がドリブンギヤ28およびドライブギヤ24により塞がれても他方の周方向溝が塞がれることなく、上記所定の油圧室30aが吐出油路と連通される。それ故に、高圧吐出側の容積効率の低下を抑制するために各周方向溝を必要以上に長く設定しないことが求められるなかで、各周方向溝を可及的に短く設定した場合であって、それら各周方向溝の加工にばらつきが生じ又はドリブンギヤ28およびドライブギヤ24が回転中に偏心または変形するときであっても、上記所定の油圧室30aが高圧吐出油路と低圧吐出油路との間の閉じ込み位置を通過する際には、その所定の油圧室30a内の作動油が複数の周方向溝のうちの少なくとも1つを通じて吐出油路へ逃がされるので、閉じ込み状態とされた所定の油圧室30a内の作動油の圧力値が急激に上昇することが抑制され、その油圧室30a内の油圧上昇に起因してポンプ駆動トルクが増大することを抑制することができる。また、ドリブンギヤ28およびドライブギヤ24の偏心、変形や、周方向溝(油逃がし溝)の加工ばらつきでその周方向溝が長く設定されたとしても、閉じ込み位置に位置する所定の油圧室30aが各吐出油路と直接的に連通せず、その各吐出油路と比べて流通断面積が十分に小さい周方向溝を介して連通するので、容積効率低下の影響が少ない。   As described above, in the oil pump 10 of the present embodiment, the predetermined hydraulic chamber 30a among the plurality of hydraulic chambers 30 is the high pressure discharge oil passage (the first high pressure discharge oil passage 50 and the second high pressure discharge oil passage 54). When the predetermined position is set between the opening and the opening of the low pressure discharge oil passage (the first low pressure discharge oil passage 52 and the second low pressure discharge oil passage 56) and is not in direct communication with these discharge oil passages. In order to make the hydraulic chamber 30a communicate with the high-pressure discharge oil passage, the first low-pressure discharge oil on the front side in a predetermined rotational direction from a part of the opening edge of the first high-pressure discharge oil passage 50 on the side surface 42 of the pump chamber 40. A first outer circumferential groove 66 extending in the circumferential direction toward the passage 52 and a part of the opening edge of the second high-pressure discharge oil passage 54 on the side surface 44 of the pump chamber 40 from the front side in the rotational direction. 2 a second outer circumferential groove 68 extending in the circumferential direction toward the low pressure discharge oil passage 56; In order to connect the first oil relief oil passage 58, the predetermined hydraulic chamber 30a and the low pressure discharge oil passage, from a part of the opening edge of the first low pressure discharge oil passage 52 on the side surface 42 of the pump chamber 40. A first inner circumferential groove 70 extending in the circumferential direction toward the first high-pressure discharge oil passage 50 on the rear side in the rotation direction, and an opening edge of the second low-pressure discharge oil passage 56 on the side surface 44 of the pump chamber 40. A second oil relief oil passage 60 including a second inner circumferential groove 72 extending in a circumferential direction from a part of the oil passage to a second high pressure discharge oil passage 54 on the rear side in the rotational direction. Therefore, the machining reference position for machining each circumferential groove varies for each circumferential groove, and the circumferential groove formed in one of the high-pressure discharge oil passage and the low-pressure discharge oil passage thereby has a high-pressure discharge oil. Even if it is processed short to the side away from the other of the passage and the low pressure discharge oil passage, that is, to the side away from the predetermined hydraulic chamber 30a located at the closed position between the discharge oil passages, it faces the circumferential groove in the circumferential direction. The circumferential groove formed on the other of the high pressure discharge oil passage and the low pressure discharge oil passage is not processed to the side away from the predetermined hydraulic chamber 30a located at the closed position. When the hydraulic chamber 30a is located at the closed position, even if the short circumferential groove is blocked by the driven gear 28 or the drive gear 24, the other circumferential groove is not blocked. Predetermined hydraulic pressure chamber 30a is communicated with the discharge passage. Further, when the driven gear 28 and the drive gear 24 are eccentric or deformed during rotation, a predetermined hydraulic chamber 30a located at the closed position is formed in a circumferential groove formed in one of the high pressure discharge oil passage and the low pressure discharge oil passage. Even if it moves away from the side, it moves toward the side closer to the circumferential groove formed in the other of the high-pressure discharge oil passage and the low-pressure discharge oil passage, so that the predetermined hydraulic chamber 30a is located at the closed position. At this time, even if the one circumferential groove is closed by the driven gear 28 and the drive gear 24, the predetermined hydraulic chamber 30a is communicated with the discharge oil passage without closing the other circumferential groove. Therefore, it is a case where each circumferential groove is set as short as possible while it is required not to set each circumferential groove longer than necessary in order to suppress a decrease in volumetric efficiency on the high pressure discharge side. Even when the machining of these circumferential grooves occurs or when the driven gear 28 and the drive gear 24 are eccentric or deformed during rotation, the predetermined hydraulic chamber 30a has a high-pressure discharge oil passage and a low-pressure discharge oil passage. When passing through the closed position, the hydraulic oil in the predetermined hydraulic chamber 30a is released to the discharge oil passage through at least one of the plurality of circumferential grooves, so that the closed state is established. A sudden increase in the pressure value of the hydraulic oil in the predetermined hydraulic chamber 30a is suppressed, and an increase in pump driving torque due to an increase in the hydraulic pressure in the hydraulic chamber 30a can be suppressed. Further, even if the circumferential groove is set longer due to eccentricity or deformation of the driven gear 28 and the drive gear 24 or due to variations in processing of the circumferential groove (oil relief groove), the predetermined hydraulic chamber 30a located at the closed position remains. Since it does not communicate directly with each discharge oil passage and communicates via a circumferential groove whose flow cross-sectional area is sufficiently small compared with each discharge oil passage, there is little influence of a decrease in volumetric efficiency.

また、本実施例のオイルポンプ10において、第1外側周方向溝66は、第1高圧吐出油路50の開口縁のうちの内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部から、前記回転方向の前方側の第1低圧吐出油路52へ向けて周方向に延設されたものであり、第2外側周方向溝68は、第2高圧吐出油路54の開口縁のうちの最近接点Xの軌跡Kよりも径方向外側の一部から、前記回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設されたものであり、第1内側周方向溝70は、第1低圧吐出油路52の開口縁のうちの最近接点Xの軌跡Kよりも径方向内側の一部から、前記回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設されたものであり、第2内側周方向溝72は、第2低圧吐出油路56の開口縁のうちの最近接点Xの軌跡Kよりも径方向内側の一部から、前記回転方向の後方側の第2高圧吐出油路54へ向けて周方向に延設されたものである。そのため、各高圧吐出油路と各低圧吐出油路との間の閉じ込み位置に位置させられた所定の油圧室30aと高圧吐出油路とを連通させるための第1油逃がし油路58が、本実施例のように最近接点Xの軌跡Kよりも径方向外側の第1外側周方向溝66および第2外側周方向溝68から構成される場合には、最近接点Xの軌跡Kよりも径方向内側の周方向溝から構成される場合と比較して、溝の周方向長さが短くなる。そして、上記閉じ込み位置に位置させられた所定の油圧室30aと低圧吐出油路とを連通させるための第2油逃がし油路60が、本実施例のように最近接点Xの軌跡Kよりも径方向内側の第1内側周方向溝70および第2内側周方向溝72から構成される場合には、最近接点Xの軌跡Kよりも径方向外側の周方向溝から構成される場合と比較して、溝の周方向長さが短くなる。それ故に、各油逃がし油路を形成するための加工時間が短縮されると共にその際に用いられる加工工具の寿命が長くなる。   Further, in the oil pump 10 of the present embodiment, the first outer circumferential groove 66 is based on the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 of the opening edge of the first high-pressure discharge oil passage 50. Is also extended in the circumferential direction from a part on the outer side in the radial direction toward the first low-pressure discharge oil passage 52 on the front side in the rotational direction, and the second outer circumferential groove 68 is provided with the second high-pressure discharge. A portion extending in the circumferential direction from a part of the opening edge of the oil passage 54 radially outside the locus K of the closest point X toward the second low-pressure discharge oil passage 56 on the front side in the rotational direction. The first inner circumferential groove 70 is a first rear side in the rotational direction from a part radially inward of the locus K of the closest point X in the opening edge of the first low-pressure discharge oil passage 52. The second inner circumferential groove 72 extends in the circumferential direction toward the high pressure discharge oil passage 50, and the second inner circumferential groove 72 is provided in the second low pressure discharge oil passage. 6 extending from the part radially inward of the locus K of the closest contact point X toward the second high-pressure discharge oil passage 54 on the rear side in the rotational direction. . Therefore, a first oil relief oil passage 58 for communicating a predetermined hydraulic chamber 30a positioned at a closed position between each high pressure discharge oil passage and each low pressure discharge oil passage and the high pressure discharge oil passage, In the case of the first outer circumferential groove 66 and the second outer circumferential groove 68 that are radially outward from the locus K of the closest point X as in the present embodiment, the diameter is larger than the locus K of the nearest point X. The circumferential length of the groove is shortened compared to a case where the circumferential groove is formed on the inner side in the direction. And the 2nd oil relief oil path 60 for connecting the predetermined | prescribed hydraulic chamber 30a located in the said closed position and a low pressure discharge oil path is more than the locus | trajectory K of the nearest point X like a present Example. The case where the first inner circumferential groove 70 and the second inner circumferential groove 72 on the radially inner side are composed of the circumferential groove on the radially outer side than the locus K of the closest point X is compared with the case where the circumferential groove is located on the radially outer side. Thus, the circumferential length of the groove is shortened. Therefore, the processing time for forming each oil release oil passage is shortened and the life of the processing tool used at that time is extended.

また、本実施例のオイルポンプ10によれば、第1油逃がし油路58の第1外側周方向溝66および第2油逃がし油路60の第1内側周方向溝70は、第1低圧吐出油路52の開口縁のうちの前記回転方向の後方側の側縁74が共通の加工位置基準として用いられて溝加工されて形成され、第1油逃がし油路58の第2外側周方向溝68および第2油逃がし油路60の第2内側周方向溝72も同様に共通の加工位置基準が用いられて溝加工により形成されることから、上記各加工位置基準の周方向位置が個体毎に周方向にばらついたり加工誤差が発生しても、外側周方向溝および内側周方向溝の先端同士の周方向間隔L[mm]が略一定に保たれるので、上記ばらつきに起因して外側周方向溝および内側周方向溝の一方が、閉じ込み位置に位置する所定の油圧室30aから遠ざかる側へ短く加工されても、他方が、上記所定の油圧室30aに近づく側へ長く加工される。それ故に、高圧吐出側の容積効率の低下を抑制するために各周方向溝を必要以上に長く設定しないことが求められるなかで、各周方向溝を可及的に短く設定した場合であって、それら各周方向溝の加工にばらつきが生じたときであっても、油圧室30aが高圧吐出油路と低圧吐出油路との間の閉じ込み位置を通過する際には、その油圧室30a内の作動油が複数の周方向溝のうちの少なくとも1つを通じて吐出油路へ逃がされる。したがって、油逃がし溝の加工ばらつきで例えば第1外側周方向溝66および第1内側周方向溝70の一方が長く加工されても他方が短くされて、一方および他方の先端間隔が精度良く保たれるので、油逃がし溝の加工のばらつきに起因するポンプ駆動トルクの増大や高圧吐出油路の容積効率低下が一層抑制される。   Further, according to the oil pump 10 of the present embodiment, the first outer circumferential groove 66 of the first oil relief oil path 58 and the first inner circumferential groove 70 of the second oil relief oil path 60 are provided with the first low pressure discharge. The side edge 74 on the rear side in the rotational direction of the opening edge of the oil passage 52 is formed by grooving using a common processing position reference, and the second outer circumferential groove of the first oil relief oil passage 58 is formed. 68 and the second inner circumferential groove 72 of the second oil relief oil passage 60 are similarly formed by grooving using a common machining position reference. Even if there is a variation in the circumferential direction or a machining error occurs, the circumferential interval L [mm] between the tips of the outer circumferential groove and the inner circumferential groove is kept substantially constant, so that the outer One of the circumferential groove and the inner circumferential groove is in the closed position Even if it is processed short to the side away from the predetermined hydraulic chamber 30a, the other is processed longer to the side approaching the predetermined hydraulic chamber 30a. Therefore, it is a case where each circumferential groove is set as short as possible while it is required not to set each circumferential groove longer than necessary in order to suppress a decrease in volumetric efficiency on the high pressure discharge side. Even when there is variation in the machining of these circumferential grooves, when the hydraulic chamber 30a passes through the closed position between the high-pressure discharge oil passage and the low-pressure discharge oil passage, the hydraulic chamber 30a The hydraulic fluid inside is released to the discharge oil passage through at least one of the plurality of circumferential grooves. Therefore, even if one of the first outer circumferential groove 66 and the first inner circumferential groove 70 is machined longer due to processing variations of the oil relief groove, for example, the other is shortened, and the tip interval between the one and the other is kept accurately. Therefore, an increase in pump drive torque and a decrease in volumetric efficiency of the high-pressure discharge oil passage due to variations in processing of the oil relief groove are further suppressed.

次に、本発明の他の実施例について説明する。なお、以下の実施例の説明において、実施例相互に重複する部分については、同一の符号を付してその説明を省略する。   Next, another embodiment of the present invention will be described. In the following description of the embodiments, portions that overlap each other are denoted by the same reference numerals and description thereof is omitted.

図10および図11は、本発明の他の実施例のオイルポンプ110をそれぞれ示す図であって、実施例1の図1のII-II矢視部断面およびIII-III矢視部断面に相当する部分をそれぞれ拡大して示す断面図である。オイルポンプ110のハウジング112は、複数の油圧室30のうちの所定の油圧室30aが第1高圧吐出油路50の開口縁と第1低圧吐出油路52の開口縁との間に位置させられると共に、第2高圧吐出油路54の開口縁と第2低圧吐出油路56の開口縁との間に位置させられて、それら吐出油路と直接的に連通していないときにおいて、図11に示すように、上記所定の油圧室30aと第2高圧吐出油路54とを連通させるために、ポンプ室40の側面44に形成された第1油逃がし油路114と、図10に示すように、上記所定の油圧室30aと第1低圧吐出油路52とを連通させるために、ポンプ室40の側面42に形成された第2油逃がし油路116とを備えている。なお、本実施例の第2高圧吐出油路54は、本発明における第1吐出油路に相当し、また、本実施例の第1低圧吐出油路52は、本発明における第2吐出油路に相当するものである。   FIGS. 10 and 11 are views respectively showing an oil pump 110 according to another embodiment of the present invention, which corresponds to the section taken along the line II-II and the section taken along the line III-III in FIG. It is sectional drawing which expands and shows each part to perform. In the housing 112 of the oil pump 110, a predetermined hydraulic chamber 30 a among the plurality of hydraulic chambers 30 is positioned between the opening edge of the first high-pressure discharge oil passage 50 and the opening edge of the first low-pressure discharge oil passage 52. 11 is positioned between the opening edge of the second high-pressure discharge oil passage 54 and the opening edge of the second low-pressure discharge oil passage 56 and is not in direct communication with these discharge oil passages. As shown in FIG. 10, the first oil relief oil passage 114 formed on the side surface 44 of the pump chamber 40 and the predetermined oil pressure chamber 30a communicate with the second high pressure discharge oil passage 54, as shown in FIG. In order to allow the predetermined hydraulic chamber 30a and the first low-pressure discharge oil passage 52 to communicate with each other, a second oil relief oil passage 116 formed on the side surface 42 of the pump chamber 40 is provided. The second high-pressure discharge oil passage 54 of the present embodiment corresponds to the first discharge oil passage in the present invention, and the first low-pressure discharge oil passage 52 of the present embodiment is the second discharge oil passage in the present invention. It is equivalent to.

上記第1油逃がし油路114は、図11に示すように、第2高圧吐出油路54の開口縁のうち、内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部および径方向内側の一部から、それぞれ矢印aで示す所定の回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設された第1外側周方向溝118および第1内側周方向溝120から成る。また、上記第2油逃がし油路116は、図10に示すように、第1低圧吐出油路52の開口縁のうち、内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部および径方向内側の一部から、それぞれ矢印aで示す所定の回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設された第2外側周方向溝122および第2内側周方向溝124から成る。上記各外側周方向溝および各内側周方向溝は、前記所定の油圧室30aが各吐出油路間に位置してそれら吐出油路と直接的に連通していないときにおいて、先端部がその所定の油圧室30aに僅かに連通させられるように設計される。   As shown in FIG. 11, the first oil relief oil passage 114 is more radial than the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 among the opening edges of the second high-pressure discharge oil passage 54. A first outer circumferential groove 118 extending in the circumferential direction from a part on the outer side and a part on the inner side in the radial direction toward the second low-pressure discharge oil passage 56 on the front side in the predetermined rotation direction indicated by the arrow a. And a first inner circumferential groove 120. Further, as shown in FIG. 10, the second oil relief oil passage 116 is more than the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 among the opening edges of the first low pressure discharge oil passage 52. A second outer circumferential direction extending in the circumferential direction from a part on the radially outer side and a part on the radially inner side toward the first high-pressure discharge oil passage 50 on the rear side in the predetermined rotational direction indicated by the arrow a. It consists of a groove 122 and a second inner circumferential groove 124. Each of the outer circumferential grooves and the inner circumferential grooves has a predetermined tip when the predetermined hydraulic chamber 30a is located between the discharge oil passages and is not in direct communication with the discharge oil passages. It is designed to be slightly communicated with the hydraulic chamber 30a.

次に、各周方向溝の加工について説明する。なお、以下では、外側周方向溝および内側周方向溝を代表して、第1外側周方向溝118および第1内側周方向溝120の加工について説明する。図12は、図11のポンプカバー32だけを示す図である。図12において、第1外側周方向溝118および第1内側周方向溝120は、第2高圧吐出油路54の開口縁のうち、矢印aで示す前記回転方向の前方側の側縁126が共通の加工位置基準として用いられて、例えばエンドミル等の切削工具が使用されてフライス盤等の工作機械により溝加工されて形成される。   Next, processing of each circumferential groove will be described. In the following, the processing of the first outer circumferential groove 118 and the first inner circumferential groove 120 will be described on behalf of the outer circumferential groove and the inner circumferential groove. FIG. 12 shows only the pump cover 32 of FIG. In FIG. 12, the first outer circumferential groove 118 and the first inner circumferential groove 120 have a common side edge 126 on the front side in the rotational direction indicated by arrow a among the opening edges of the second high-pressure discharge oil passage 54. For example, a cutting tool such as an end mill is used and a groove is formed by a machine tool such as a milling machine.

以上のように構成されたオイルポンプ110では、ドライブギヤ24およびドリブンギヤ28が前記回転方向に回転させられると、容量Vが増加する周方向範囲を移動させられる油圧室30には油が吸入される。そして、容量Vが減少する周方向範囲のうちの第1高圧吐出油路50および第2高圧吐出油路54が開口する周方向範囲を移動させられる油圧室30からは、加圧された油が吐出される。そして、容量Vが減少する周方向範囲のうちの第1低圧吐出油路52および第2低圧吐出油路56が開口する周方向範囲を移動させられる油圧室30からは、加圧された油が吐出される。そして、複数の油圧室30が前記回転方向へ移動させられて高圧吐出油路と低圧吐出油路との間の閉じ込み位置を通過する際には、図10および図11に示すように、所定の油圧室30aが高圧吐出油路と低圧吐出油路との間に位置させられるときに、その所定の油圧室30a内の作動油が各周方向溝を通じて各高圧吐出油路および各低圧吐出油路の少なくともいずれか一方へ逃がされるようになっている。   In the oil pump 110 configured as described above, when the drive gear 24 and the driven gear 28 are rotated in the rotational direction, oil is sucked into the hydraulic chamber 30 that is moved in the circumferential range in which the capacity V increases. . Then, pressurized oil is supplied from the hydraulic chamber 30 that is moved in the circumferential range in which the first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 open in the circumferential range in which the capacity V decreases. Discharged. Then, pressurized oil is supplied from the hydraulic chamber 30 that is moved in the circumferential range in which the first low-pressure discharge oil passage 52 and the second low-pressure discharge oil passage 56 open in the circumferential range in which the capacity V decreases. Discharged. When the plurality of hydraulic chambers 30 are moved in the rotational direction and pass through the closed position between the high pressure discharge oil passage and the low pressure discharge oil passage, as shown in FIGS. When the hydraulic chamber 30a is positioned between the high-pressure discharge oil passage and the low-pressure discharge oil passage, the hydraulic oil in the predetermined hydraulic chamber 30a passes through the circumferential grooves and the high-pressure discharge oil passage and the low-pressure discharge oil. It is designed to escape to at least one of the roads.

ここで、図10のB矢視部に相当する部分を拡大して示す図13に示すように、例えば、第2油逃がし油路116を構成する第2外側周方向溝122および第2内側周方向溝124が、閉じ込み位置に位置させられた所定の油圧室30aから遠ざかる周方向へ約1[度]短く形成された場合には、それら各周方向溝はドライブギヤ24により塞がれることとなる。しかし、このような場合であっても、図11のC矢視部に相当する部分を拡大して示す図14に示すように、閉じ込み位置に位置させられた所定の油圧室30aは、第1外側周方向溝118および第1内側周方向溝120を介して第2高圧吐出油路54と連通状態とされ、その油圧室30a内の作動油が第2高圧吐出油路54へ逃がされ得るようになっている。   Here, as shown in FIG. 13 which shows an enlarged view corresponding to the portion indicated by the arrow B in FIG. 10, for example, the second outer circumferential groove 122 and the second inner circumference constituting the second oil relief oil passage 116. When the direction grooves 124 are formed to be shorter by about 1 [degree] in the circumferential direction away from the predetermined hydraulic chamber 30a positioned at the closed position, the circumferential grooves are blocked by the drive gear 24. It becomes. However, even in such a case, as shown in FIG. 14 which shows an enlarged view corresponding to the portion indicated by arrow C in FIG. 11, the predetermined hydraulic chamber 30a positioned at the closed position is The second high pressure discharge oil passage 54 is in communication with the first outer circumferential groove 118 and the first inner circumferential groove 120, and the hydraulic oil in the hydraulic chamber 30 a is released to the second high pressure discharge oil passage 54. To get.

また、図10のB矢視部に相当する部分を拡大して示す図15に示すように、例えば、ドライブギヤ24およびドリブンギヤ28が回転中に上方へ偏心させられた場合には、第2外側周方向溝122および第2内側周方向溝124は、ドライブギヤ24により塞がれることとなる。しかし、このような場合であっても、図11のC矢視部に相当する部分を拡大して示す図16に示すように、閉じ込み位置に位置させられた所定の油圧室30aは、第1外側周方向溝118および第1内側周方向溝120を介して第2高圧吐出油路54と連通状態とされ、その油圧室30a内の作動油が第2高圧吐出油路54へ逃がされ得るようになっている。   Further, as shown in FIG. 15 which shows an enlarged portion corresponding to the portion indicated by the arrow B in FIG. 10, for example, when the drive gear 24 and the driven gear 28 are decentered upward during rotation, the second outer side The circumferential groove 122 and the second inner circumferential groove 124 are blocked by the drive gear 24. However, even in such a case, as shown in FIG. 16 which shows an enlarged view corresponding to the portion indicated by arrow C in FIG. 11, the predetermined hydraulic chamber 30a positioned at the closed position is The second high pressure discharge oil passage 54 is in communication with the first outer circumferential groove 118 and the first inner circumferential groove 120, and the hydraulic oil in the hydraulic chamber 30 a is released to the second high pressure discharge oil passage 54. To get.

上述のように、本実施例のオイルポンプ10は、複数の油圧室30のうちの所定の油圧室30aが高圧吐出油路(第1高圧吐出油路50および第2高圧吐出油路54)の開口と低圧吐出油路(第1低圧吐出油路52および第2低圧吐出油路56)の開口との間に位置させられてそれら吐出油路と直接的に連通していないときにおいて、上記所定の油圧室30aと高圧吐出油路とを連通させるために、第2高圧吐出油路54の開口縁のうち、内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部および径方向内側の一部から、それぞれ矢印aで示す所定の回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設された第1外側周方向溝118および第1内側周方向溝120から成る第1油逃がし油路114と、第1低圧吐出油路52の開口縁のうち、内周歯26と外周歯20との最近接点Xの軌跡Kよりも径方向外側の一部および径方向内側の一部から、それぞれ矢印aで示す所定の回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設された第2外側周方向溝122および第2内側周方向溝124から成る第2油逃がし油路116とを含むものである。そのため、高圧吐出側の容積効率の低下を抑制するために各周方向溝を必要以上に長く設定しないことが求められるなかで、各周方向溝を可及的に短く設定した場合であって、ドリブンギヤ28およびドライブギヤ24が回転中に偏心または変形するとき又は各周方向溝の加工にばらつきが生じたときであっても、上記所定の油圧室30aが高圧吐出油路と低圧吐出油路との間の閉じ込み位置を通過する際には、その所定の油圧室30a内の作動油が複数の周方向溝のうちの少なくとも1つを通じて吐出油路へ逃がされるので、実施例1と同様に、閉じ込み状態とされた所定の油圧室30a内の作動油の圧力値が急激に上昇することが抑制され、その油圧室30a内の油圧上昇に起因してポンプ駆動トルクが増大することを抑制することができる。   As described above, in the oil pump 10 of the present embodiment, the predetermined hydraulic chamber 30a among the plurality of hydraulic chambers 30 is the high pressure discharge oil passage (the first high pressure discharge oil passage 50 and the second high pressure discharge oil passage 54). When the predetermined position is set between the opening and the opening of the low pressure discharge oil passage (the first low pressure discharge oil passage 52 and the second low pressure discharge oil passage 56) and is not in direct communication with these discharge oil passages. In order to make the hydraulic chamber 30a communicate with the high-pressure discharge oil passage, out of the opening edge of the second high-pressure discharge oil passage 54, it is radially outward from the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20. A first outer circumferential groove 118 extending in the circumferential direction from a part of the first and the radially inner part toward the second low pressure discharge oil passage 56 on the front side in a predetermined rotational direction indicated by an arrow a. A first oil relief oil passage 114 comprising a first inner circumferential groove 120; Of the opening edge of the pressure discharge oil passage 52, a predetermined portion indicated by an arrow a from a part radially outside and a part radially inward of the locus K of the closest point X between the inner peripheral tooth 26 and the outer peripheral tooth 20 respectively. A second oil relief oil passage 116 composed of a second outer circumferential groove 122 and a second inner circumferential groove 124 extending in the circumferential direction toward the first high-pressure discharge oil passage 50 on the rear side in the rotation direction. Is included. Therefore, in order to suppress a decrease in volumetric efficiency on the high pressure discharge side, it is required not to set each circumferential groove longer than necessary, and when each circumferential groove is set as short as possible, Even when the driven gear 28 and the drive gear 24 are decentered or deformed during rotation, or when variations occur in the processing of the circumferential grooves, the predetermined hydraulic chamber 30a has a high-pressure discharge oil passage and a low-pressure discharge oil passage. In the same manner as in the first embodiment, the hydraulic oil in the predetermined hydraulic chamber 30a is released to the discharge oil passage through at least one of the plurality of circumferential grooves. The pressure value of the hydraulic oil in the predetermined hydraulic chamber 30a in the closed state is suppressed from rapidly increasing, and the pump driving torque is prevented from increasing due to the increase in the hydraulic pressure in the hydraulic chamber 30a. To do That.

また、本実施例のオイルポンプ110によれば、第1油逃がし油路114は、ポンプ室40の一方の側面44に形成された第2高圧吐出油路54の開口縁のうちの径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の前方側の第2低圧吐出油路56へ向けて周方向に延設された第1外側周方向溝118および第1内側周方向溝120から成り、第2油逃がし油路116は、ポンプ室40の他方の側面42に形成された第1低圧吐出油路52の開口縁のうちの径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の後方側の第1高圧吐出油路50へ向けて周方向に延設された第2外側周方向溝122および第2内側周方向溝124から成ることから、1つの側面に形成される2つの周方向溝は、その側面に開口された1つの吐出油路に対して加工が施されて形成されるので、各油逃がし油路の加工時間が比較的短くなるという利点がある。具体的には、一方の側面44に形成される2つの第1外側周方向溝118および第1内側周方向溝120は、その側面44に開口された1つの第2高圧吐出油路54に対して加工が施されて形成され、また、他方の側面42に形成される2つの第2外側周方向溝122および第2内側周方向溝124は、その側面42に開口された1つの第1低圧吐出油路52に対して加工が施されて形成される。ここで、例えば、ポンプ室40の一方の側面44に第1油逃がし油路および第2油逃がし油路を1つずつ形成し、ポンプ室40の他方の側面42に第1油逃がし油路および第2油逃がし油路を1つずつ形成する場合においては、1つの側面に形成される2つの周方向溝は、その側面に開口された2つの吐出油路に対してそれぞれ加工を施して形成する必要があり、各油逃がし溝の加工時間が比較的長くなるという欠点がある。   Further, according to the oil pump 110 of the present embodiment, the first oil relief oil passage 114 is radially outside of the opening edge of the second high-pressure discharge oil passage 54 formed on the one side surface 44 of the pump chamber 40. A first outer circumferential groove 118 and a first inner circumferential direction extending in a circumferential direction from a part of the first circumferential direction and a part on the radially inner side toward the second low-pressure discharge oil passage 56 on the front side in the rotational direction. The second oil relief oil passage 116, which is composed of the groove 120, is a part on the radially outer side and the radially inner side of the opening edge of the first low-pressure discharge oil passage 52 formed on the other side surface 42 of the pump chamber 40. Since it consists of a second outer circumferential groove 122 and a second inner circumferential groove 124 that extend in the circumferential direction from a part toward the first high-pressure discharge oil passage 50 on the rear side in the rotational direction, Two circumferential grooves formed on one side face Since machining is formed is subjected to one discharge oil passage which is the mouth, there is an advantage that the processing time of the oil relief oil passage is relatively short. Specifically, the two first outer circumferential grooves 118 and the first inner circumferential groove 120 formed on one side surface 44 are formed with respect to one second high-pressure discharge oil passage 54 opened on the side surface 44. The two second outer circumferential grooves 122 and the second inner circumferential groove 124 formed on the other side surface 42 are formed by one first low pressure formed in the side surface 42. The discharge oil passage 52 is formed by being processed. Here, for example, one first oil relief oil passage and one second oil relief oil passage are formed on one side surface 44 of the pump chamber 40, and the first oil relief oil passage and the other side surface 42 of the pump chamber 40 are formed. When forming the second oil relief oil passages one by one, the two circumferential grooves formed on one side surface are formed by processing the two discharge oil passages opened on the side surface, respectively. There is a disadvantage that the processing time of each oil relief groove becomes relatively long.

以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。   As mentioned above, although one Example of this invention was described in detail with reference to drawings, this invention is not limited to this Example, It can implement in another aspect.

たとえば、高圧吐出油路50、52は、前記回転方向の前方側に設けられ、低圧吐出油路54、56は、前記回転方向の後方側に設けられていたが、これに限らず、例えば、高圧吐出油路50、52が前記回転方向の後方側に設けられ、低圧吐出油路54、56が前記回転方向の前方側に設けられてもよい。   For example, the high-pressure discharge oil passages 50 and 52 are provided on the front side in the rotation direction, and the low-pressure discharge oil passages 54 and 56 are provided on the rear side in the rotation direction. The high pressure discharge oil passages 50 and 52 may be provided on the rear side in the rotation direction, and the low pressure discharge oil passages 54 and 56 may be provided on the front side in the rotation direction.

また、実施例1において、第1高圧吐出油路50および第2高圧吐出油路54は、少なくとも一方が設けられればよく、また、第1低圧吐出油路52および第2低圧吐出油路56は、少なくとも一方が設けられればよい。   In the first embodiment, at least one of the first high-pressure discharge oil passage 50 and the second high-pressure discharge oil passage 54 may be provided, and the first low-pressure discharge oil passage 52 and the second low-pressure discharge oil passage 56 It is sufficient that at least one of them is provided.

また、実施例1において、第1油逃がし油路58は、第1外側周方向溝66および第2外側周方向溝68の少なくとも一方を備えていればよく、また、第2油逃がし油路60は、第1内側周方向溝70および第2内側周方向溝72の少なくとも一方を備えていればよい。   In the first embodiment, the first oil relief oil passage 58 only needs to include at least one of the first outer circumferential groove 66 and the second outer circumferential groove 68, and the second oil relief oil passage 60 is provided. May have at least one of the first inner circumferential groove 70 and the second inner circumferential groove 72.

また、実施例2において、第1高圧吐出油路50および第2低圧吐出油路56は、必ずしも設けられなくてもよい。   In the second embodiment, the first high-pressure discharge oil passage 50 and the second low-pressure discharge oil passage 56 are not necessarily provided.

また、実施例2において、第1油逃がし油路114は、第1外側周方向溝118および第1内側周方向溝120の少なくとも一方を備えていればよく、また、第2油逃がし油路116は、第2外側周方向溝122および第2内側周方向溝124の少なくとも一方を備えていればよい。   In the second embodiment, the first oil relief oil passage 114 only needs to include at least one of the first outer circumferential groove 118 and the first inner circumferential groove 120, and the second oil relief oil passage 116 is provided. May have at least one of the second outer circumferential groove 122 and the second inner circumferential groove 124.

また、オイルポンプ10(110)は、トルクコンバータを備え、FF(フロントエンジン・フロントドライブ)型車両に好適に用いられる自動変速機に備えられていたが、これに限らず、たとえば、トルクコンバータを備えず又はFR型車両等の他の駆動型式の車両に好適に用いられる変速機等、車両に備えられるオイルポンプであればよい。   The oil pump 10 (110) includes a torque converter and is included in an automatic transmission suitable for use in an FF (front engine / front drive) type vehicle, but is not limited thereto. Any oil pump provided in the vehicle may be used, such as a transmission suitably used in other drive type vehicles such as an FR type vehicle.

なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。   It should be noted that the above description is merely an embodiment, and other examples are not illustrated. However, the present invention is implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the gist of the present invention. Can do.

10,110:車両用内接歯車型オイルポンプ
18,112:ハウジング
20:外周歯
24:ドライブギヤ
26:内周歯
28:ドリブンギヤ
30:油圧室
30a:所定の油圧室
40:ポンプ室
42:側面
44:側面
50:第1高圧吐出油路(第1吐出油路)
52:第1低圧吐出油路(第2吐出油路)
54:第2高圧吐出油路(第1吐出油路)
56:第2低圧吐出油路(第2吐出油路)
58,114:第1油逃がし油路
60,116:第2油逃がし油路
66,118:第1外側周方向溝(外側周方向溝)
68,122:第2外側周方向溝(外側周方向溝)
70,120:第1内側周方向溝(内側周方向溝)
72,124:第2内側周方向溝(内側周方向溝)
74,126:側縁(加工位置基準)
C1:軸心(一軸心)
C2:偏心軸心
K:最近接点の軌跡
V:容積
X:最近接点
a:回転方向
DESCRIPTION OF SYMBOLS 10,110: Vehicle internal gear type oil pump 18,112: Housing 20: Outer peripheral tooth 24: Drive gear 26: Inner peripheral tooth 28: Driven gear 30: Hydraulic chamber 30a: Predetermined hydraulic chamber 40: Pump chamber 42: Side 44: Side 50: First high-pressure discharge oil passage (first discharge oil passage)
52: First low pressure discharge oil passage (second discharge oil passage)
54: Second high-pressure discharge oil passage (first discharge oil passage)
56: Second low pressure discharge oil passage (second discharge oil passage)
58, 114: first oil relief oil passage 60, 116: second oil relief oil passage 66, 118: first outer circumferential groove (outer circumferential groove)
68, 122: second outer circumferential groove (outer circumferential groove)
70, 120: first inner circumferential groove (inner circumferential groove)
72, 124: second inner circumferential groove (inner circumferential groove)
74, 126: Side edge (processing position reference)
C1: Axial (single axis)
C2: eccentric axis K: locus of closest contact V: volume X: closest contact a: direction of rotation

Claims (5)

外周歯を有し、一軸心まわりに回転可能に設けられたドライブギヤと、該ドライブギヤの外周歯に噛み合わされた内周歯を有して前記一軸心から偏心した偏心軸心まわりに回転可能に設けられ、該ドライブギヤにより回転駆動される円環状のドリブンギヤと、該ドリブンギヤおよび前記ドライブギヤが収容させられたポンプ室と、該ポンプ室内から油を吐出するために該ポンプ室の側面に周方向の所定の間隔を隔ててそれぞれ開口させられ、前記内周歯と前記外周歯との噛合隙間によって周方向に形成された複数の油圧室が前記ドライブギヤおよび前記ドリブンギヤの回転に伴って所定の回転方向に移動させられるときにおいて、該油圧室の容積が減少させられる過程で該油圧室に順に連通させられる第1吐出油路および第2吐出油路を有するハウジングとを、備えた車両用内接歯車型オイルポンプであって、
前記複数の油圧室のうちの所定の油圧室が前記第1吐出油路の開口と前記第2吐出油路の開口との間に位置させられてそれら吐出油路と直接的に連通していないときにおいて、該所定の油圧室と該第1吐出油路とを連通させるために、前記ポンプ室の側面に形成された該第1吐出油路の開口縁の一部から前記回転方向の前方側の該第2吐出油路へ向けて周方向に延設された第1油逃がし油路と、前記所定の油圧室と前記第2吐出油路とを連通させるために、前記ポンプ室の側面に形成された該第2吐出油路の開口縁の一部から前記回転方向の後方側の該第1吐出油路へ向けて周方向に延設された第2油逃がし油路とを、含むことを特徴とする車両用内接歯車型オイルポンプ。
A drive gear having outer peripheral teeth and rotatably provided around one axis, and an inner circumference tooth meshed with the outer teeth of the drive gear and having an eccentric shaft center eccentric from the one axis An annular driven gear that is rotatably provided and is driven to rotate by the drive gear, a pump chamber in which the driven gear and the drive gear are accommodated, and a side surface of the pump chamber for discharging oil from the pump chamber And a plurality of hydraulic chambers formed in the circumferential direction by meshing gaps between the inner peripheral teeth and the outer peripheral teeth as the drive gear and the driven gear rotate. A first discharge oil passage and a second discharge oil passage that are sequentially communicated with the hydraulic chamber in a process in which the volume of the hydraulic chamber is reduced when being moved in a predetermined rotation direction; A housing, a vehicular internal gear type oil pump comprising,
A predetermined hydraulic chamber of the plurality of hydraulic chambers is positioned between the opening of the first discharge oil passage and the opening of the second discharge oil passage and is not in direct communication with the discharge oil passage. In order to communicate the predetermined hydraulic chamber and the first discharge oil passage, the front side in the rotational direction from a part of the opening edge of the first discharge oil passage formed on the side surface of the pump chamber In order to communicate the first oil relief oil passage extending in the circumferential direction toward the second discharge oil passage, the predetermined hydraulic chamber and the second discharge oil passage, the side surface of the pump chamber Including a second oil relief oil passage extending in a circumferential direction from a part of the opening edge of the formed second discharge oil passage toward the first discharge oil passage on the rear side in the rotation direction. An internal gear type oil pump for vehicles.
前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の前方側へ周方向に延設された外側周方向溝から成り、
前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の後方側へ周方向に延設された内側周方向溝から成る
ことを特徴とする請求項1の車両用内接歯車型オイルポンプ。
The first oil relief oil passage is a front side in the rotational direction from a part radially outside the locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the first discharge oil passage. Consisting of an outer circumferential groove extending in the circumferential direction,
The second oil relief oil passage is a rear side in the rotational direction from a part radially inward of a locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the second discharge oil passage. The vehicular internal gear type oil pump according to claim 1, wherein the vehicular internal gear type oil pump comprises an inner circumferential groove extending in a circumferential direction.
前記第1油逃がし油路は、前記第1吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向内側の一部から前記回転方向の前方側へ周方向に延設された内側周方向溝から成り、
前記第2油逃がし油路は、前記第2吐出油路の開口縁のうちの前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部から前記回転方向の後方側へ周方向に延設された外側周方向溝から成る
ことを特徴とする請求項1の車両用内接歯車型オイルポンプ。
The first oil relief oil passage is a front side in the rotational direction from a part radially inward of a locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the first discharge oil passage. Consisting of an inner circumferential groove extending in the circumferential direction,
The second oil relief oil passage is a rear side in the rotational direction from a part radially outside the locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth of the opening edge of the second discharge oil passage. The vehicle internal gear type oil pump according to claim 1, comprising an outer circumferential groove extending in a circumferential direction.
前記第1油逃がし油路は、前記ポンプ室の一方の側面に形成された前記第1吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の前方側へ周方向に延設された外側周方向溝および内側周方向溝から成り、
前記第2油逃がし油路は、前記ポンプ室の他方の側面に形成された前記第2吐出油路の開口縁のうち、前記内周歯と前記外周歯との最近接点の軌跡よりも径方向外側の一部および径方向内側の一部から、それぞれ前記回転方向の後方側へ周方向に延設された外側周方向溝および内側周方向溝から成る
ことを特徴とする請求項1の車両用内接歯車型オイルポンプ。
The first oil relief oil passage is more radial than the locus of the closest contact point between the inner peripheral tooth and the outer peripheral tooth among the opening edges of the first discharge oil passage formed on one side surface of the pump chamber. It consists of an outer circumferential groove and an inner circumferential groove extending in the circumferential direction from the outer part and the radially inner part to the front side in the rotational direction, respectively.
The second oil relief oil passage is more radial than the locus of the closest contact between the inner peripheral tooth and the outer peripheral tooth among the opening edges of the second discharge oil passage formed on the other side surface of the pump chamber. 2. The vehicle according to claim 1, further comprising an outer circumferential groove and an inner circumferential groove extending in a circumferential direction from a part on the outer side and a part on the radially inner side to the rear side in the rotational direction. Internal gear type oil pump.
前記第1油逃がし油路および前記第2油逃がし油路は、共通の加工位置基準を用いてそれぞれ溝加工されたものであることを特徴とする請求項1乃至3のいずれか1の車両用内接歯車型オイルポンプ。   4. The vehicle according to claim 1, wherein the first oil relief oil passage and the second oil relief oil passage are each grooved using a common machining position reference. 5. Internal gear type oil pump.
JP2010178992A 2010-08-09 2010-08-09 Internal gear type oil pump for vehicles Active JP5562170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178992A JP5562170B2 (en) 2010-08-09 2010-08-09 Internal gear type oil pump for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178992A JP5562170B2 (en) 2010-08-09 2010-08-09 Internal gear type oil pump for vehicles

Publications (2)

Publication Number Publication Date
JP2012036861A true JP2012036861A (en) 2012-02-23
JP5562170B2 JP5562170B2 (en) 2014-07-30

Family

ID=45849112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178992A Active JP5562170B2 (en) 2010-08-09 2010-08-09 Internal gear type oil pump for vehicles

Country Status (1)

Country Link
JP (1) JP5562170B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953981A (en) * 2012-11-22 2013-03-06 无锡惠山泵业有限公司 Oil pump rotor
US9500277B2 (en) 2013-12-18 2016-11-22 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission for vehicle
WO2017033720A1 (en) * 2015-08-26 2017-03-02 株式会社デンソー Fuel pump
JP2020076394A (en) * 2018-11-09 2020-05-21 アイシン・エィ・ダブリュ株式会社 Oil pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517818B1 (en) * 2015-09-15 2017-08-15 Avl List Gmbh Two-way flowable device for measuring flow processes of fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078285A1 (en) * 2004-02-18 2005-08-25 Aisin Aw Co., Ltd Oil pump and automatic speed changer with the same
JP2009127569A (en) * 2007-11-26 2009-06-11 Toyooki Kogyo Kk Internal gear pump
JP2010196607A (en) * 2009-02-26 2010-09-09 Toyooki Kogyo Kk Internal gear pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078285A1 (en) * 2004-02-18 2005-08-25 Aisin Aw Co., Ltd Oil pump and automatic speed changer with the same
JP2009127569A (en) * 2007-11-26 2009-06-11 Toyooki Kogyo Kk Internal gear pump
JP2010196607A (en) * 2009-02-26 2010-09-09 Toyooki Kogyo Kk Internal gear pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953981A (en) * 2012-11-22 2013-03-06 无锡惠山泵业有限公司 Oil pump rotor
US9500277B2 (en) 2013-12-18 2016-11-22 Hyundai Motor Company Hydraulic pressure supply system of automatic transmission for vehicle
WO2017033720A1 (en) * 2015-08-26 2017-03-02 株式会社デンソー Fuel pump
JP2017044139A (en) * 2015-08-26 2017-03-02 株式会社デンソー Fuel pump
JP2020076394A (en) * 2018-11-09 2020-05-21 アイシン・エィ・ダブリュ株式会社 Oil pump
JP7132826B2 (en) 2018-11-09 2022-09-07 株式会社アイシン oil pump

Also Published As

Publication number Publication date
JP5562170B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5395713B2 (en) Vane pump
JP5084536B2 (en) Oil pump
JP5576191B2 (en) Internal gear type oil pump for vehicles
US9303512B2 (en) Vane pump
JP5562170B2 (en) Internal gear type oil pump for vehicles
JP4989392B2 (en) Variable displacement pump
JP6182821B2 (en) Variable displacement vane pump
US20140178239A1 (en) Vane pump
US10767645B2 (en) Fuel pump
JP5009760B2 (en) Internal gear pump
JP4969419B2 (en) Variable displacement vane pump
JP5357574B2 (en) Internal gear pump
JP6264850B2 (en) Oil pump device and relief valve
JP2012233405A (en) Internal gear type oil pump
JP5475701B2 (en) Vane pump
JP5443427B2 (en) Variable displacement vane pump
JP3819768B2 (en) Gear pump and transmission using the same
WO2006090483A1 (en) Gear pump and oil pump for automatic transmission using the same
JP2020045802A (en) Vehicular oil pump
JP2005076542A (en) Gear pump and oil pump for automatic transmission using the same
JP2010185297A (en) Internal gear pump
JP6152745B2 (en) Gear pump
KR101071717B1 (en) Oil pump for automatic transmission
JP6945796B2 (en) Inscribed gear pump
JP2022006934A (en) Gear pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130905

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350