JP2012036619A - River water quality improvement system and method - Google Patents

River water quality improvement system and method Download PDF

Info

Publication number
JP2012036619A
JP2012036619A JP2010176694A JP2010176694A JP2012036619A JP 2012036619 A JP2012036619 A JP 2012036619A JP 2010176694 A JP2010176694 A JP 2010176694A JP 2010176694 A JP2010176694 A JP 2010176694A JP 2012036619 A JP2012036619 A JP 2012036619A
Authority
JP
Japan
Prior art keywords
water
river
sluice
water quality
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176694A
Other languages
Japanese (ja)
Inventor
Taku Ishii
卓 石井
Hidehiko Hayashi
秀彦 林
Nobuaki Kosaka
信章 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010176694A priority Critical patent/JP2012036619A/en
Publication of JP2012036619A publication Critical patent/JP2012036619A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a river water quality improvement system and a method capable of inexpensively improving water quality at a bottom part of a tidal river.SOLUTION: A water quality improvement system 10 to improve water quality of a tidal river 2 comprises: a water gate 12 which is constructed at an upstream side of the river 2 and vertically movable to open and close; a conduit 14 which communicates between the upstream side of the water gate 12 and a bottom part of a downstream side thereof and can open and close such communication; and control means 16 which controls the water gate 12 as well as the conduit 14 to close at high tide to raise a water level of the upstream side and controls the conduit 14 to open at low tide to channel water at the upstream side of the water gate 12 into the bottom part of the downstream side thereof.

Description

本発明は、河川の水質改善システムおよび方法に関するものである。   The present invention relates to a river water quality improvement system and method.

従来、図6に示す日本橋川のような都市部の低地で海に近い河川では、海の潮位変動に応じて流れが逆流したり、滞留したりするため、水の入れ替わりが制限される。その結果、河川底部付近は溶存酸素濃度が低く生物の生息に適さない水質になり、ヘドロ等が堆積しやすくなっていた。このような問題に対し、従来は、河川底部を浚渫することや別の河川から良質の水を合流させること等で対応してきたが、浚渫の場合には定期的に実施する必要があるなど、いずれも多大な労力とコストを必要としていた。   Conventionally, in a river close to the sea in an urban lowland such as the Nihonbashi River shown in FIG. 6, the flow of water flows backward or stays depending on the sea level fluctuation, so that the replacement of water is limited. As a result, near the river bottom, the dissolved oxygen concentration was low and the water quality was not suitable for living organisms, and sludge and the like were easily deposited. In the past, such problems have been dealt with by dredging the bottom of the river or by combining high-quality water from another river. All of them required a lot of labor and cost.

こうした海に近接した河川等の水域の水質浄化を図る既存技術として、水域の入口に水門を設置し、潮汐による水位差を利用して水域内に導水し、水域の水質浄化を図る方法が知られている(例えば、特許文献1参照)。しかしながら、特許文献1の方法は、水門から導水する水と水域内の底部の水との間に密度差がなければ水の混合は起こりにくい。   As an existing technology for purifying the water quality of rivers and other areas close to the sea, there is a known method of purifying the water quality by installing a sluice at the entrance of the water area and guiding water into the water area using the difference in water level due to tides. (For example, refer to Patent Document 1). However, in the method of Patent Document 1, water mixing is unlikely to occur unless there is a density difference between the water guided from the water gate and the water at the bottom in the water area.

また、蝶番式水門を用いて河川下層に流れを起こし河川の水質を改善する方法が知られている(例えば、特許文献2参照)。しかしながら、感潮河川の場合、河川底部の凹部には密度の高い塩水が滞留しており、水門の開放操作のみによる掃流力では凹部の塩水の上層を滑るように流れ、効率的な水の入れ替えを起こすことは難しい。   In addition, a method for improving the water quality of a river by causing a flow in a river lower layer using a hinged sluice is known (for example, see Patent Document 2). However, in the case of tidal rivers, high-density salt water stays in the recesses at the bottom of the river, and with the tractive force only by opening the sluice gate, it flows so as to slide over the salt water in the recesses, and efficient water It is difficult to cause replacement.

特開2006−274702号公報JP 2006-274702 A 特開2008−274728号公報JP 2008-274728 A

(株)日建設計シビル、[online]、[平成22年2月25日検索]、インターネット<URL:http://www.nikken-civil.co.jp/developcase/contents/nihonbashigawa/nihonbashigawa.pdf>Nikken Sekkei, Inc., [online], [Search February 25, 2010], Internet <URL: http://www.nikken-civil.co.jp/developcase/contents/nihonbashigawa/nihonbashigawa.pdf > 高坂他、日本橋川感潮域における水質変動特性、第35回土木学会関東支部技術研究発表会要旨集、平成20年3月Takasaka et al., Water quality fluctuation characteristics in the Nihonbashi River tide area, Abstracts of the 35th Kanto Branch Technical Research Presentation, March 2008

図7は、日本橋川の水質状態を示した縦断面図である。図7(a)は干潮時の塩分の分布を、図7(b)は満潮時の塩分の分布を示している。この図7に示すように、河川の底部付近に塩水が滞留している領域が存在していることが判る。   FIG. 7 is a longitudinal sectional view showing the water quality of the Nihonbashi River. FIG. 7A shows the distribution of salinity at low tide, and FIG. 7B shows the distribution of salinity at high tide. As shown in FIG. 7, it can be seen that there is an area where salt water is retained near the bottom of the river.

図8は、干潮時から満潮時に至る上げ潮期間における深さ別の流動方向の分布を示している。観測点は常磐橋である。図8に示すように、河川の底部付近に逆流する領域が存在しており、これが塩水の滞留の原因となっていることが判る。   FIG. 8 shows the distribution of the flow direction by depth during the rising tide period from low tide to high tide. The observation point is Joban Bridge. As shown in FIG. 8, it can be seen that there is a region that flows backward near the bottom of the river, and this is the cause of the retention of salt water.

図9は、日本橋川の水質状態を示した縦断面図である。図9(a)〜(c)は、それぞれ河川縦断面における深さ別の溶存酸素濃度(DO)、塩分および水温の分布を示している。図9(a)、(b)に示すように、河川の底部付近に存在する塩水の滞留領域は溶存酸素濃度が低い領域(図9(a)中丸印で図示する貧酸素の領域)となっており、潮位変動の影響を受ける感潮河川では水質が悪化する原因となっていることが伺える。また、図9(c)の水温分布に示すように、上記の領域は、水温も低くなっている。   FIG. 9 is a longitudinal sectional view showing the water quality of the Nihonbashi River. FIGS. 9A to 9C show the distributions of dissolved oxygen concentration (DO), salinity and water temperature according to depth in the river longitudinal section, respectively. As shown in FIGS. 9 (a) and 9 (b), the salt water retention region present near the bottom of the river is a region where the dissolved oxygen concentration is low (the poor oxygen region illustrated by a circle in FIG. 9 (a)). It can be seen that water quality deteriorates in the tidal river affected by tidal fluctuations. Further, as shown in the water temperature distribution of FIG. 9C, the water temperature is low in the above region.

また、このような河川では上記の非特許文献1に紹介されているように、河川底部にスラッジが蓄積し、夏の期間中に剥離して水面に図10に示すようなスカムとして浮かび出てきて、河川の景観を著しく悪化させるといった問題もある。   In addition, as introduced in Non-Patent Document 1 above, sludge accumulates at the bottom of the river and peels off during the summer and emerges as scum on the water surface as shown in FIG. In addition, there is a problem that the river landscape is significantly deteriorated.

このため、このような感潮河川の水質の悪化や底部のスラッジ等の堆積を防止することができる安価な技術の開発が求められていた。   For this reason, there has been a demand for the development of an inexpensive technique capable of preventing such deterioration of water quality in tidal rivers and accumulation of sludge at the bottom.

本発明は、上記に鑑みてなされたものであって、感潮河川の底部の水質を改善することができる安価な河川の水質改善システムおよび方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the cheap water quality improvement system and method of a river which can improve the water quality of the bottom part of a tidal river.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る河川の水質改善システムは、感潮河川の水質を改善する水質改善システムであって、前記河川の上流側に設けた上下に開閉可能な水門と、前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路と、満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水する制御手段とを備えることを特徴とする。   In order to solve the above-mentioned problems and achieve the object, a river water quality improvement system according to claim 1 of the present invention is a water quality improvement system for improving the water quality of a tidal river, and is located upstream of the river. A sluice gate that can be opened and closed vertically, a water conduit that communicates with the upstream and downstream bottoms of the sluice, and that communication can be opened and closed, and the sluice and the water conduit are closed at high tide and the upstream of the sluice And a control means for guiding the water on the upstream side of the sluice to the bottom on the downstream side of the sluice by raising the water level on the side and opening the water channel at low tide.

また、本発明の請求項2に係る河川の水質改善システムは、上述した請求項1において、前記導水路の下流側の連通口を上方に向けて配したことを特徴とする。   Further, the river water quality improvement system according to claim 2 of the present invention is characterized in that, in the above-described claim 1, the downstream side communication port is arranged upward.

また、本発明の請求項3に係る河川の水質改善システムは、上述した請求項1または2において、前記制御手段は、上げ潮時から満潮時に至るまで前記水門を開状態とすることを特徴とする。   Moreover, the river water quality improvement system according to claim 3 of the present invention is characterized in that, in the above-described claim 1 or 2, the control means opens the sluice from the time of rising tide to the time of high tide. .

また、本発明の請求項4に係る河川の水質改善システムは、上述した請求項1〜3のいずれか一つにおいて、前記水門の下流側底部の溶存酸素濃度を改善することを特徴とする。   A river water quality improvement system according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3 described above, the dissolved oxygen concentration at the bottom of the downstream side of the sluice is improved.

また、本発明の請求項5に係る河川の水質改善システムは、上述した請求項1〜4のいずれか一つにおいて、前記導水路の下流側の連通口に旋回翼を設けたことを特徴とする。   A river water quality improvement system according to claim 5 of the present invention is characterized in that, in any one of claims 1 to 4 described above, a swirl vane is provided at a communication port on the downstream side of the water conduit. To do.

また、本発明の請求項6に係る河川の水質改善システムは、上述した請求項1〜4のいずれか一つにおいて、前記導水路の下流側の連通口に多孔管を設け、前記多孔管を河川底面に広く設置したことを特徴とする。   A river water quality improvement system according to a sixth aspect of the present invention is the river water quality improvement system according to any one of the first to fourth aspects described above, wherein a porous tube is provided at a communication port on the downstream side of the water conduit. It is widely installed on the bottom of the river.

また、本発明の請求項7に係る河川の水質改善方法は、感潮河川の水質を改善する水質改善方法であって、前記河川の上流側に上下に開閉可能な水門と、前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路とを設け、満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水することを特徴とする。   A river water quality improvement method according to claim 7 of the present invention is a water quality improvement method for improving the water quality of a tidal river, wherein a sluice that can be opened and closed on the upstream side of the river, and an upstream of the sluice A water conduit that can open and close the communication, and the water gate and the water conduit are closed at high tide to raise the water level upstream of the sluice, and then at low tide The water guide channel is opened, and water on the upstream side of the sluice is introduced to the bottom on the downstream side of the sluice.

本発明によれば、感潮河川の水質を改善する水質改善システムであって、前記河川の上流側に設けた上下に開閉可能な水門と、前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路と、満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水する制御手段とを備えるので、水門の上下流間に形成した水頭差で上流側の水を下流側底部に導水し、この水流と底部の河川水との密度差や温度差により鉛直混合を発生させ、底部に滞留する水を入れ替えることにより、感潮河川の底部の水質を安価に改善することができる。   According to the present invention, there is provided a water quality improvement system for improving the water quality of a tidal river, wherein a sluice gate provided on the upstream side of the river and which can be opened and closed is communicated with an upstream side and a downstream side bottom portion of the sluice gate. A waterway that can be opened and closed, and the water gate and the waterway are closed at high tide and the water level on the upstream side of the water gate is raised, and the waterway is opened at low tide and the upstream side of the water gate is opened. And a control means for guiding the water to the downstream bottom of the sluice, so that the upstream water is guided to the downstream bottom by the head difference formed between the upstream and downstream of the sluice, and this water flow and the river water at the bottom The water quality at the bottom of the tidal river can be improved at low cost by generating vertical mixing due to the difference in density and temperature and replacing the water remaining at the bottom.

図1は、本発明に係る河川の水質改善システムの上げ潮時の状態を示す河川縦断面図である。FIG. 1 is a river longitudinal sectional view showing a state of the river water quality improvement system according to the present invention at the time of rising tide. 図2は、本発明に係る河川の水質改善システムの満潮時の状態を示す河川縦断面図である。FIG. 2 is a river longitudinal sectional view showing a state at the time of high tide of the river water quality improvement system according to the present invention. 図3は、本発明に係る河川の水質改善システムの下げ潮時の状態を示す河川縦断面図である。FIG. 3 is a river longitudinal sectional view showing a state of the river water quality improvement system according to the present invention at the time of low tide. 図4は、導水管の下流側出口の構造の一例を示す図である。FIG. 4 is a diagram illustrating an example of the structure of the downstream outlet of the water conduit. 図5は、日本橋川の水位変化を示す図である。FIG. 5 is a diagram showing changes in the water level of the Nihonbashi River. 図6は、海に近い河川の例としての日本橋川の位置図である。FIG. 6 is a position diagram of the Nihonbashi River as an example of a river close to the sea. 図7は、日本橋川の水質状態を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing the water quality of the Nihonbashi River. 図8は、日本橋川の流動方向の時間変化を示す図である。FIG. 8 is a diagram showing the change over time in the flow direction of the Nihonbashi River. 図9は、日本橋川の水質状態を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing the water quality of the Nihonbashi River. 図10は、河川の水面に浮かび出てきたスカムを示す写真図である。FIG. 10 is a photograph showing the scum that has emerged on the surface of the river.

以下に、本発明に係る河川の水質改善システムおよび方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a river water quality improvement system and method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1に示すように、本発明に係る河川の水質改善システム10は、感潮河川2の水質を改善する水質改善システムであって、河川2の上流側に設けた上下に開閉可能な締切板からなる水門12と、水門12の上流側と下流側底部の凹部4とを連通し、その連通を開閉可能な導水管14(導水路)と、水門12および導水管14の開閉状態を調整制御する制御手段16とを備える。   As shown in FIG. 1, a river water quality improvement system 10 according to the present invention is a water quality improvement system that improves the water quality of a tidal river 2, and is a cutoff plate that can be opened and closed up and down provided on the upstream side of the river 2. The sluice 12 comprising the sluice 12 is connected to the recess 4 at the upstream side and the downstream bottom of the sluice 12, and the conduit 14 (water conduit) capable of opening and closing the communication, and the open / close state of the sluice 12 and the conduit 14 are adjusted and controlled. And control means 16 for performing the above.

図1に示すように、制御手段16は、上げ潮時から満潮時に至るまでは水門12を開状態とする制御を行う。   As shown in FIG. 1, the control means 16 performs control to open the water gate 12 from the rising tide to the high tide.

続いて、図2に示すように、満潮時に水門12および導水管14を閉状態として水門12の上流側に貯水してその水位を上昇させる。下げ潮時から干潮時に至るまで水門12および導水管14を閉状態に維持すると水門12の下流側の河川水位が低下して、水門12の上下流側で水位差が生じる。このように、河川水の潮位変動によって水門12の上流側の水位を上げ、位置エネルギーとして蓄える。   Then, as shown in FIG. 2, the sluice 12 and the conduit 14 are closed at high tide and water is stored upstream of the sluice 12 to raise the water level. When the sluice 12 and the conduit pipe 14 are maintained in the closed state from the time of low tide to the time of low tide, the river water level on the downstream side of the sluice 12 is lowered and a water level difference is generated on the upstream and downstream sides of the sluice 12. In this way, the water level on the upstream side of the sluice gate 12 is raised by the tide level fluctuation of the river water and stored as potential energy.

その後、図3に示すように、干潮時に水門12を閉状態に維持しつつ導水管14を開状態とする制御を行う。この制御により、水門12の上流側の水を水頭差で水門12の下流側底部の凹部4に導水する。こうして導水された水流と凹部4の河川水との密度差および温度差により導水地点に鉛直混合を発生させる。そうすると、凹部4に滞留する水と上層の河川水の密度差が少なくなり、河川掃流力による水の入れ替えが容易となる。こうすることで、河川底部の溶存酸素濃度などの水質を改善することができる。   Thereafter, as shown in FIG. 3, control is performed to open the water conduit 14 while keeping the sluice 12 closed at low tide. By this control, the water on the upstream side of the sluice 12 is guided to the recess 4 at the bottom on the downstream side of the sluice 12 by the head difference. Vertical mixing is generated at the water introduction point by the density difference and temperature difference between the water flow thus introduced and the river water in the recess 4. If it does so, the density difference of the water which retains in the recessed part 4 and upper river water will decrease, and replacement | exchange of water by river scavenging force will become easy. By doing so, water quality such as dissolved oxygen concentration at the bottom of the river can be improved.

このように、制御手段16による水門12の開閉時期は、満潮時に閉状態とし、干潮時に開状態とする。なお、河川増水時は開状態とするのが好適である。また、制御手段16による導水管14の開閉時期は、満潮から1時間程度以降に開状態とし、干潮時に閉状態とするのが好ましい。この理由は、満潮から1時間程度経過すると水門12の下流側の水位が十分に低下して水門12の上流側との水位差が大きくなり効率よく水質改善できるようになるからである。   Thus, the opening and closing timing of the sluice 12 by the control means 16 is closed at high tide and open at low tide. In addition, it is suitable to make it an open state at the time of river increase. Further, the opening and closing timing of the water conduit 14 by the control means 16 is preferably opened after about 1 hour from high tide and closed at low tide. This is because the water level on the downstream side of the sluice 12 is sufficiently lowered after about 1 hour from high tide, and the water level difference from the upstream side of the sluice 12 becomes large so that the water quality can be improved efficiently.

導水管14から河川2に導水する方法としては、図4(a)に示すように、導水管14から鉛直上方に向けて1箇所に導水する方法、図4(b)に示すように、導水管14の下流側連通口14aを斜め上方に向けて、河川下流側に放水する方法、図4(c)に示すように、導水管14の下流側連通口14aに多孔管18を設け、多孔管18を河川底面に広く設置して面で導水する方法、図4(d)に示すように、導水管14の下流側連通口14aに旋回翼20を設けて撹拌して導水する方法などを利用することができる。   As shown in FIG. 4 (a), water is introduced into the river 2 from the water conduit 14 to the river 1 in a vertically upward direction, as shown in FIG. 4 (b). A method of discharging water downstream of the river with the downstream communication port 14a of the water pipe 14 directed obliquely upward, as shown in FIG. 4C, a porous tube 18 is provided at the downstream communication port 14a of the water conduit 14, A method in which the pipe 18 is widely installed on the bottom of the river and water is introduced on the surface, as shown in FIG. 4 (d), a method in which the swirl vane 20 is provided in the downstream communication port 14a of the water guide pipe 14 and the water is stirred and guided. Can be used.

なお、導水管14の上流側連通口の位置は、下流側の凹部4よりも相対的に水質が良好な位置とする必要がある。この上流側連通口の位置としては、例えば、川底凸部や川底よりも比較的高い位置(ある範囲の川底凹凸の最大凸部より高い位置)、あるいは、河川の上層〜中層などの位置とすることが考えられる。   In addition, the position of the upstream communication port of the water conduit 14 needs to be a position where the water quality is relatively better than that of the recess 4 on the downstream side. As the position of the upstream communication port, for example, a river bottom convex part or a position relatively higher than the river bottom (a position higher than the maximum convex part of a certain range of river bottom irregularities) or a position such as an upper layer to a middle layer of a river It is possible.

図5は、日本橋川の常磐橋における水位変化の一例を示した図である(非特許文献2「高坂他、日本橋川感潮域における水質変動特性、第35回土木学会関東支部技術研究発表会要旨集、平成20年3月」を参照)。   Fig. 5 is a diagram showing an example of the water level change at the Joban Bridge in the Nihonbashi River (Non-Patent Document 2, "Takasaka et al., Water Quality Fluctuation Characteristics in the Nihonbashi River Tide Area, 35th Kanto Branch Technical Research Presentation (See Abstract, March 2008).

図5および図6に示すように、観測点の常磐橋は河口から2km上流の地点であるが、潮位変化の影響が顕著であり、図5では約1.5mの潮位変化が見られ、大潮の時期には約2mの潮位変化が観測されている。また、直接海に面しているわが国の海岸、港湾、運河においては、大潮の時期で最大4.5m程度、小潮の時期でも0.1m程度の潮位変化量がある。   As shown in Fig. 5 and Fig. 6, the observation point Joban Bridge is 2km upstream from the estuary, but the influence of the tide level change is remarkable, and in Fig. 5 the tide level change is about 1.5m, About 2m of tide level change was observed during this period. In Japan, the coasts, ports, and canals that face the sea directly have a maximum tidal level change of about 4.5m at the time of the tide and about 0.1m at the time of the tide.

したがって、こうした潮位変動による再生可能エネルギーを利用して河川底部付近の水質改善を安価に行うことができる。つまり、満潮時の水位上昇を利用して水門12の上流側に貯水する一方、下げ潮時の水位低下を利用して水門12の上下流側に水位差を形成する。そして、この水頭差で水門12の上流側の水を下流側の底部に導水し、この水流と密度差や温度差によって導水地点に鉛直混合を起こさせる。こうすることで、河川底部付近の水質を安価に改善することができる。   Therefore, it is possible to improve the water quality near the bottom of the river at low cost by using renewable energy due to such tide level fluctuations. That is, the water level difference is formed on the upstream and downstream sides of the sluice 12 by using the water level rise at the time of high tide to store water upstream of the sluice 12 while using the water level decrease at the time of low tide. Then, the water on the upstream side of the sluice 12 is guided to the bottom on the downstream side by this water head difference, and vertical mixing is caused at the water introduction point by this water flow, density difference and temperature difference. By doing so, the water quality near the bottom of the river can be improved at low cost.

以上説明したように、本発明によれば、感潮河川の水質を改善する水質改善システムであって、前記河川の上流側に設けた上下に開閉可能な水門と、前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路と、満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水する制御手段とを備えるので、水門の上下流間に形成した水頭差で上流側の水を下流側底部に導水し、この水流と底部の河川水との密度差や温度差により鉛直混合を発生させ、底部に滞留する水を入れ替えることにより、感潮河川の底部の水質を安価に改善することができる。   As described above, according to the present invention, there is provided a water quality improvement system for improving the water quality of a tidal river, the sluice gate provided on the upstream side of the river that can be opened and closed, and the upstream side and the downstream side of the sluice gate. A water conduit that communicates with the bottom of the side and that can be opened and closed; and the water gate and the water conduit are closed at high tide and the water level upstream of the water gate is raised, and the water conduit is opened at low tide Control means for guiding the water upstream of the sluice to the bottom of the downstream of the sluice, so that the water on the upstream side is led to the bottom of the downstream by the head difference formed between the upstream and downstream of the sluice. The water quality at the bottom of the tidal river can be improved at low cost by generating vertical mixing due to the density difference and temperature difference between the river and the river water at the bottom and replacing the water staying at the bottom.

以上のように、本発明に係る河川の水質改善システムおよび方法は、感潮河川の底部の水質改善に有用であり、特に、塩水が滞留しやすい底部付近の凹部の水質改善に適している。   As described above, the river water quality improvement system and method according to the present invention are useful for improving the water quality at the bottom of tidal rivers, and are particularly suitable for improving the water quality of the recesses near the bottom where salt water tends to stay.

2 河川
4 凹部
10 河川の水質改善システム
12 水門
14 導水管(導水路)
16 制御手段
18 多孔管
20 旋回翼
2 River 4 Concave 10 River water quality improvement system 12 Sluice 14 Conduit (conduct)
16 Control means 18 Porous tube 20 Swivel blade

Claims (7)

感潮河川の水質を改善する水質改善システムであって、
前記河川の上流側に設けた上下に開閉可能な水門と、
前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路と、
満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水する制御手段とを備えることを特徴とする河川の水質改善システム。
A water quality improvement system that improves the quality of tidal rivers,
A sluice gate that can be opened and closed vertically on the upstream side of the river;
A water conduit that communicates the upstream side and the downstream bottom of the sluice, and that can be opened and closed;
After the sluice and the conduit are closed at high tide and the water level upstream of the sluice is raised, the conduit is opened at low tide and water upstream of the sluice is guided to the bottom downstream of the sluice And a water quality improvement system for a river.
前記導水路の下流側の連通口を上方に向けて配したことを特徴とする請求項1に記載の河川の水質改善システム。   The river water quality improvement system according to claim 1, wherein a communication port on the downstream side of the water conduit is arranged upward. 前記制御手段は、上げ潮時から満潮時に至るまで前記水門を開状態とすることを特徴とする請求項1または2に記載の河川の水質改善システム。   The river water quality improvement system according to claim 1 or 2, wherein the control means opens the sluice from a rising tide to a high tide. 前記水門の下流側底部の溶存酸素濃度を改善することを特徴とする請求項1〜3のいずれか一つに記載の河川の水質改善システム。   The river water quality improvement system according to any one of claims 1 to 3, wherein the dissolved oxygen concentration at the bottom of the downstream side of the sluice is improved. 前記導水路の下流側の連通口に旋回翼を設けたことを特徴とする請求項1〜4のいずれか一つに記載の河川の水質改善システム。   The river water quality improvement system according to any one of claims 1 to 4, wherein swirl vanes are provided at a communication port on the downstream side of the water conduit. 前記導水路の下流側の連通口に多孔管を設け、前記多孔管を河川底面に広く設置したことを特徴とする請求項1〜4のいずれか一つに記載の河川の水質改善システム。   The river water quality improvement system according to any one of claims 1 to 4, wherein a porous pipe is provided at a communication port on the downstream side of the water conduit, and the porous pipe is widely installed on a river bottom. 感潮河川の水質を改善する水質改善方法であって、
前記河川の上流側に上下に開閉可能な水門と、
前記水門の上流側と下流側底部とを連通し、その連通を開閉可能な導水路とを設け、
満潮時に前記水門および前記導水路を閉状態として前記水門の上流側の水位を上昇させた後、干潮時に前記導水路を開状態として前記水門の上流側の水を前記水門の下流側底部に導水することを特徴とする河川の水質改善方法。
A water quality improvement method for improving the water quality of tidal rivers,
A sluice that can be opened and closed on the upstream side of the river;
The upstream side and downstream side bottom of the sluice gate are communicated, and a water conduit that can open and close the communication is provided,
After the sluice and the conduit are closed at high tide and the water level upstream of the sluice is raised, the conduit is opened at low tide and water upstream of the sluice is guided to the bottom downstream of the sluice River water quality improvement method characterized by doing.
JP2010176694A 2010-08-05 2010-08-05 River water quality improvement system and method Pending JP2012036619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176694A JP2012036619A (en) 2010-08-05 2010-08-05 River water quality improvement system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176694A JP2012036619A (en) 2010-08-05 2010-08-05 River water quality improvement system and method

Publications (1)

Publication Number Publication Date
JP2012036619A true JP2012036619A (en) 2012-02-23

Family

ID=45848892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176694A Pending JP2012036619A (en) 2010-08-05 2010-08-05 River water quality improvement system and method

Country Status (1)

Country Link
JP (1) JP2012036619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780718A (en) * 2016-04-22 2016-07-20 浙江省水利河口研究院 Tidal bore process simulation device based on frequency control of multiple water pumps
CN106315987A (en) * 2016-09-30 2017-01-11 中水珠江规划勘测设计有限公司 Multistage-strengthened water-self-purification and water-power-regulation-and-control water purification process and system
CN106638449A (en) * 2016-11-25 2017-05-10 浙江绿维环境科技有限公司 Tidal basin
CN107794888A (en) * 2016-08-29 2018-03-13 扬州市勘测设计研究院有限公司 A kind of steel dam valve with walkway

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105780718A (en) * 2016-04-22 2016-07-20 浙江省水利河口研究院 Tidal bore process simulation device based on frequency control of multiple water pumps
CN107794888A (en) * 2016-08-29 2018-03-13 扬州市勘测设计研究院有限公司 A kind of steel dam valve with walkway
CN107794888B (en) * 2016-08-29 2020-01-31 扬州市勘测设计研究院有限公司 steel dam gate with pedestrian passageway
CN106315987A (en) * 2016-09-30 2017-01-11 中水珠江规划勘测设计有限公司 Multistage-strengthened water-self-purification and water-power-regulation-and-control water purification process and system
CN106315987B (en) * 2016-09-30 2023-11-21 中水珠江规划勘测设计有限公司 Multistage reinforced water self-cleaning and hydraulic regulation water quality purification treatment process and system
CN106638449A (en) * 2016-11-25 2017-05-10 浙江绿维环境科技有限公司 Tidal basin

Similar Documents

Publication Publication Date Title
WO2008031317A1 (en) Method for increasing the quantity of city river and controlling pollution
JP2012036619A (en) River water quality improvement system and method
CN107739098B (en) Method for purifying water quality and restoring water ecology of polluted urban internal lake
CN207452849U (en) A kind of double door leaf weir-type gates with water quality purification function
CN103452077B (en) Power station fish pass import attracting moisturizing experimental facilities
CN109356080A (en) A method of it creating ecological wetland and promotes surrounding basin or the exchange of bay water body
CN102704440B (en) Method for improving water temperature stratification characteristic of channel reservoir tributary bay by internal wave
KR20130053120A (en) Apparatus for small hydro power using pumping water and method thereof
CN104314055A (en) Water pressure type floating plate fish passage
JP2016068068A (en) Water environment improvement method by water depth adjustment method in closed water area such as lake
CN101941777A (en) Method for treating sewage and ecologically restoring water environment of villages and small towns in water network region
CN106930230A (en) The governing system and method for a kind of tidal black-odor riverway of single-pass
CN202416262U (en) Sand filtering dam
CN105040636A (en) Gravel bed structure and in-situ purification system of riverway water formed thereby
CN104529073A (en) Solar-driven constructed-wetland purification treatment system for landscape water body
CN110442997B (en) Estuary water area range defining method for guiding estuary habitat improvement engineering
Teodoru et al. Independent review of the environmental impact assessment for the Merowe Dam project (Nile River, Sudan)
CN205205791U (en) Fish device excessively of water conservancy water and electricity dam
CN204715194U (en) With the bridge of small-sized view gate
CN103266644B (en) Device combined with main tower of water intake tower of reservoir for avoiding algae
CN110952496B (en) Urban water flow ecological guide control and diversion system
CN110965519B (en) Method for solving unsmooth flow of urban mass water body
CN110359414A (en) The off-lying sea of optimization exchanges method with inland lake water system water body
CN109440720A (en) A kind of aqueduct is across reservoir point water intaking structure and water intaking, sluicing, dividing method for water
WO2023087815A1 (en) Marine water storage and tidal water storage dual-purpose power station