JP2012035329A - Method for calibrating six-axes home position of six-axes robot, control device of six-axes robot, method for calibrating seven-axes home position of seven-axes robot and control device of seven-axes robot - Google Patents

Method for calibrating six-axes home position of six-axes robot, control device of six-axes robot, method for calibrating seven-axes home position of seven-axes robot and control device of seven-axes robot Download PDF

Info

Publication number
JP2012035329A
JP2012035329A JP2010174444A JP2010174444A JP2012035329A JP 2012035329 A JP2012035329 A JP 2012035329A JP 2010174444 A JP2010174444 A JP 2010174444A JP 2010174444 A JP2010174444 A JP 2010174444A JP 2012035329 A JP2012035329 A JP 2012035329A
Authority
JP
Japan
Prior art keywords
axis
axes
distance
measurement
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010174444A
Other languages
Japanese (ja)
Other versions
JP5786290B2 (en
Inventor
Naoya Kagawa
尚哉 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Wave Inc
Original Assignee
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Wave Inc filed Critical Denso Wave Inc
Priority to JP2010174444A priority Critical patent/JP5786290B2/en
Priority to DE102011052386.3A priority patent/DE102011052386B8/en
Publication of JP2012035329A publication Critical patent/JP2012035329A/en
Application granted granted Critical
Publication of JP5786290B2 publication Critical patent/JP5786290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for calibrating a sixth axis home position of a six axes robot for properly calibrating a home position of the sixth axis of the six axes robot without requiring installation of a large-sized detection instrument.SOLUTION: A laser measuring device for measuring a distance from a measuring object located on an upper side is installed on an installation surface and a measuring plate is mounted at an axial center of the sixth axis. When one end side of the measuring plate is located to be a first measuring point in a state of the six axes robot taking an attitude in which a second axis of the six axes robot is rotated by 90° with respect to an axial center of a first axis, a third axis is rotated in a direction of the installation surface so that an axial center of a forth axis is parallel to the axial center of the first axis, and a fifth axis is rotated so that an axial center of the sixth axis is parallel to the installation surface (S1), a first distance L1 up to the first measuring point is measured by the laser measuring device (S2). When the first axis is rotated, the other end side of the measuring plate is located to a second measuring point (S3) and a second distance L2 up to a second measuring point is measured by the laser measuring device (S4), an error angle Δθ6 of the sixth axis is determined by a (1) formula (S5) and the home position of the sixth axis is calibrated by using the error angle Δθ6 (S6).

Description

本発明は、6軸ロボットにおける6軸の原点位置を較正する方法,6軸ロボットの制御装置,7軸ロボットにおける7軸の原点位置を較正する方法,7軸ロボットの制御装置に関する。   The present invention relates to a method for calibrating a six-axis origin position in a six-axis robot, a control apparatus for a six-axis robot, a method for calibrating a seven-axis origin position in a seven-axis robot, and a control apparatus for a seven-axis robot.

例えば6軸ロボットなどの多関節型ロボットにおける各軸の原点位置の較正は、基本的には工場出荷前の段階で工場にて行われ、工場から出荷されて設置先に設置された後ではモータなどの交換により原点位置が変更された場合に設置先にて行われる。各軸の原点位置を較正する方法としては、大型の検出器具を設置したりする方法や(例えば特許文献1参照)、検出用の特殊センサを追加する方法(例えば特許文献1,2参照)がある。また、特許文献3〜5には、6軸ロボットについて大型の検出器具を設置することなく、5軸,3軸,2軸の原点位置を較正する方法や装置が開示されている。
特開平6−304893公報 特開2003−220587号公報 特開2009−274186号公報 特開2009−274187号公報 特開2009−274188号公報
For example, the calibration of the origin position of each axis in an articulated robot such as a 6-axis robot is basically performed at the factory before shipment from the factory, and after being shipped from the factory and installed at the installation site, the motor This is done at the installation site when the origin position is changed by exchanging the above. As a method of calibrating the origin position of each axis, there is a method of installing a large detection instrument (for example, see Patent Document 1) or a method of adding a special sensor for detection (for example, see Patent Documents 1 and 2). is there. Patent Documents 3 to 5 disclose methods and apparatuses for calibrating the origin positions of the 5-axis, 3-axis, and 2-axis without installing a large detection instrument for a 6-axis robot.
JP-A-6-304893 Japanese Patent Laid-Open No. 2003-220587 JP 2009-274186 A JP 2009-274187 A JP 2009-274188 A

しかしながら、大型の検出器具を設置する方法については設置するスペースを確保することが困難となるおそれがある。また、検出用の特殊センサを追加する方法についてはコストアップの原因になるので、実施を避けたいという事情がある。そして、これらの事情を考慮した上で6軸ロボットの6軸の原点位置を較正する方法については、従来提案されていなかった。   However, it may be difficult to secure a space for installing a large detection instrument. In addition, there is a situation where it is desired to avoid implementation of a method for adding a special sensor for detection because it causes an increase in cost. A method for calibrating the six-axis origin position of the six-axis robot in consideration of these circumstances has not been proposed in the past.

本発明は、上記事情に鑑みてなされたものであり、その目的は、大型の検出器具を設置したりする必要がなく、6軸ロボットについて6軸の原点位置を適切に較正できる6軸ロボットの6軸原点位置較正方法,6軸ロボットの制御装置,7軸ロボットについて7軸の原点位置を適切に較正できる7軸ロボットの7軸原点位置較正方法及び7軸ロボットの制御装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a 6-axis robot that can appropriately calibrate the 6-axis origin position for a 6-axis robot without having to install a large-sized detection instrument. To provide a 6-axis origin position calibration method, a 6-axis robot controller, a 7-axis robot 7-axis origin position calibration method and a 7-axis robot controller capable of appropriately calibrating the 7-axis origin position for a 7-axis robot is there.

請求項1記載の6軸ロボットの6軸原点位置較正方法によれば、設置面に、上方に位置する測定対象物との距離を測定する距離測定手段を設置し、6軸の軸心に測定板を取り付ける。そして、6軸ロボットの2軸を1軸の軸心に対してπ/2[rad]回転させ、4軸の軸心が1軸の軸心と平行となるように3軸を前記設置面の方向に回転させ、6軸の軸心が前記設置面と平行となるように5軸を回転させた姿勢を取らせた状態で、測定板の一端側が第1計測点となるように位置させる(第1工程)と、距離測定手段により第1計測点までの第1距離L1を測定する(第2工程)。   According to the 6-axis origin position calibration method of the 6-axis robot according to claim 1, the distance measuring means for measuring the distance to the measurement object located above is installed on the installation surface, and the measurement is performed on the 6-axis axis. Install the board. Then, two axes of the six-axis robot are rotated by π / 2 [rad] with respect to the axis of one axis, and three axes are arranged on the installation surface so that the four axes are parallel to the one axis. The measurement plate is positioned such that one end side of the measurement plate becomes the first measurement point in a state in which the orientation is rotated so that the six axes are parallel to the installation surface. First step) and a first distance L1 to the first measurement point is measured by the distance measuring means (second step).

次に1軸を回転させて、測定板の他端側が第2計測点となるように位置させ(第3工程)、距離測定手段により第2計測点までの第2距離L2を測定する(第4工程)。そして、6軸の誤差角度Δθ6を、以下の式
Δθ6=arctan{ΔL*cos(θ_def)/M}−θ6
より求める(第5工程)と、誤差角度Δθ6を用いて6軸の原点位置を較正する(第6工程)。尚、第1計測点から第2計測点までの距離Mは、1軸の軸心から第1,第2計測点までの回転半径をR,第3工程における1軸の回転角度をθとすれば、M=R*θより求められる。上記の誤差角度Δθ6を求める式は、簡単にするため測定方向が接地面に立つ法線に対してなす角θ_defがゼロであるとすれば、
tan(θ6+Δθ6)=ΔL/M
の関係があることによる。
Next, one axis is rotated so that the other end of the measurement plate is positioned at the second measurement point (third step), and the second distance L2 to the second measurement point is measured by the distance measuring means (first step). 4 steps). Then, the six-axis error angle Δθ6 is expressed by the following equation:
Δθ6 = arctan {ΔL * cos (θ_def) / M} −θ6
If it is obtained (fifth step), the origin positions of the six axes are calibrated using the error angle Δθ6 (sixth step). Note that the distance M from the first measurement point to the second measurement point is R as the rotation radius from the axis of one axis to the first and second measurement points, and θ as the rotation angle of one axis in the third step. For example, M = R * θ. The above formula for calculating the error angle Δθ6 is, for the sake of simplicity, assuming that the angle θ_def made with respect to the normal line where the measurement direction stands on the ground plane is zero,
tan (θ6 + Δθ6) = ΔL / M
Because of the relationship.

すなわち、第1工程において6軸ロボットに取らせた姿勢で第1距離L1を測定し、第3工程で1軸を回転させた後に第2距離L2を測定して得られる距離差ΔLは、専ら6軸の(原点位置ずれがあればそのずれを含む)回転角度によって決まり、1軸〜5軸の影響を受けない。したがって、たとえ1軸〜5軸の原点位置が較正されていない状態であっても6軸の誤差角度Δθ6を得ることができ、6軸の原点位置を較正できる。   That is, the distance difference ΔL obtained by measuring the first distance L1 with the posture taken by the six-axis robot in the first step and measuring the second distance L2 after rotating the first axis in the third step is exclusively It is determined by the rotation angle of 6 axes (including the deviation if there is an origin position deviation) and is not affected by 1 to 5 axes. Therefore, even when the origin positions of the first to fifth axes are not calibrated, the six-axis error angle Δθ6 can be obtained, and the six-axis origin position can be calibrated.

請求項2記載の6軸ロボットの制御装置によれば、位置・姿勢制御手段は、2軸を1軸の軸心に対してπ/2[rad]回転させ、4軸の軸心が1軸の軸心と平行となるように3軸を設置面の方向に回転させ、6軸の軸心が設置面と平行となるように5軸を回転させた計測姿勢を取らせた後、1軸を任意の角度だけ回転させる。そして、原点位置較正手段は、基準位置から6軸の軸心に取り付けられている測定板の第1計測点(1軸回転前)までの第1距離L1,基準位置から測定板の第2計測点までの第2距離L2を得ると、6軸の誤差角度Δθ6を、以下の式
Δθ6=arctan(ΔL/M)−θ6
より求め、誤差角度Δθ6を用いて6軸の原点位置を較正する。したがって、請求項1と同様の効果が得られる。
According to the control apparatus for a six-axis robot according to claim 2, the position / posture control means rotates the two axes by π / 2 [rad] with respect to the axis of one axis, and the axis of the four axes has one axis. After rotating the three axes in the direction of the installation surface so as to be parallel to the axis of the axis and rotating the five axes so that the axis of the six axes is parallel to the installation surface, Is rotated by an arbitrary angle. Then, the origin position calibration means has a first distance L1 from the reference position to the first measurement point (before 1-axis rotation) of the measurement plate attached to the 6-axis axis, and the second measurement of the measurement plate from the reference position. When the second distance L2 to the point is obtained, the six-axis error angle Δθ6 is expressed by the following equation.
Δθ6 = arctan (ΔL / M) −θ6
The six-axis origin position is calibrated using the error angle Δθ6. Therefore, an effect similar to that of the first aspect can be obtained.

請求項3記載の7軸ロボットの7軸原点位置較正方法によれば、請求項1記載の発明を7軸ロボットに適用して実施できる。すなわち、7軸ロボットは、一般に6軸ロボットでは2軸,3軸に対応する2軸,4軸の間に、これらの軸心に直交する軸心を有する3軸を備えて構成されている。したがって、6軸ロボットの3軸〜6軸を7軸ロボットの4軸〜7軸に置き換えることで請求項1記載の発明を7軸ロボットに適用できる。但しこの場合、3軸の原点位置は較正済みであることが前提となる。また、請求項4記載の7軸ロボットの制御装置によれば、上記と同様の理由で、請求項2記載の発明を7軸ロボットに適用できる。   According to the seven-axis origin position calibration method for the seven-axis robot according to the third aspect, the invention according to the first aspect can be applied to the seven-axis robot. That is, the 7-axis robot is generally configured to include 3 axes having axes that are orthogonal to these axes between the 2 and 4 axes corresponding to the 2 and 3 axes in the 6-axis robot. Therefore, the invention according to claim 1 can be applied to the seven-axis robot by replacing the three to six axes of the six-axis robot with the four to seven axes of the seven-axis robot. However, in this case, it is assumed that the origin positions of the three axes are already calibrated. Further, according to the control apparatus for the seven-axis robot according to the fourth aspect, the invention according to the second aspect can be applied to the seven-axis robot for the same reason as described above.

第1実施例であり、ロボット装置の斜視図1 is a perspective view of a robot apparatus according to a first embodiment. 機能ブロック図Functional block diagram 各軸の関係を示す模式図Schematic diagram showing the relationship of each axis フローチャートflowchart 状態遷移図(その1)State transition diagram (part 1) 状態遷移図(その2)State transition diagram (part 2) (a)は6軸の軸心を正面から見た図、(b)は6軸の回転方向の正負を定義する図(A) is the figure which looked at the axial center of 6 axes from the front, (b) is the figure which defines the positive / negative of the rotation direction of 6 axes. 第2実施例を示す図7(a)相当図FIG. 7A equivalent view showing the second embodiment. 第3実施例を示す(a)は図3相当図、(b)は図5相当図FIG. 3A is a diagram corresponding to FIG. 3, and FIG. 5B is a diagram corresponding to FIG.

(第1実施例)
以下、第1実施例について図1ないし図7を参照して説明する。ロボット装置1は、図1に示すように、垂直多関節型ロボット(以下、ロボットと称する)2と、ロボット2の動作を制御する制御装置(位置・姿勢制御手段,原点位置較正手段)3と、制御装置3に接続されているティーチングペンダント4とを備えて構成されている。
(First embodiment)
The first embodiment will be described below with reference to FIGS. As shown in FIG. 1, the robot apparatus 1 includes a vertical articulated robot (hereinafter referred to as a robot) 2, a control device (position / posture control means, origin position calibration means) 3 that controls the operation of the robot 2, and The teaching pendant 4 connected to the control device 3 is provided.

ロボット2は、ベース5と、ベース5に水平方向に旋回可能に支持されているショルダ部6と、ショルダ部6に上下方向に旋回可能に支持されている下アーム7と、下アーム7に上下方向に旋回可能に支持されている第1の上アーム8と、第1の上アーム8の先端部に捻り回転可能に支持されている第2の上アーム9と、第2の上アーム9に上下方向に回転可能に支持されている手首10と、手首10に回転(捻り動作)可能に支持されているフランジ11とを備えて構成されている。   The robot 2 includes a base 5, a shoulder portion 6 supported by the base 5 so as to be turnable in the horizontal direction, a lower arm 7 supported by the shoulder portion 6 so as to be turnable in the vertical direction, and a lower arm 7 A first upper arm 8 that is supported so as to be pivotable in a direction, a second upper arm 9 that is supported by a tip portion of the first upper arm 8 in a twistable manner, and a second upper arm 9. The wrist 10 is supported by being rotatable in the vertical direction, and the flange 11 is supported by the wrist 10 so as to be rotatable (twisting).

上記したベース5を含め、ショルダ部6、下アーム7、第1の上アーム8、第2の上アーム9、手首10及びフランジ11は、ロボット2のリンクとして機能し、ベース5を除く各リンクは、下段のリンクに対して回転関節により回転可能に連結されている。最先端のリンクであるフランジ11は、ワークを把持するためのハンド(図示せず)が取付け可能になっている。また、リンク同士を連結する回転関節には前段のリンク側に固定されているモータの回転を減速して次段のリンクに伝達する減速装置が設けられている。   The shoulder portion 6, the lower arm 7, the first upper arm 8, the second upper arm 9, the wrist 10 and the flange 11 including the base 5 described above function as links of the robot 2, and each link excluding the base 5 Is rotatably connected to the lower link by a rotary joint. A flange (not shown) for gripping a workpiece can be attached to the flange 11 which is the most advanced link. In addition, the rotary joint that connects the links is provided with a reduction gear that reduces the rotation of the motor fixed to the previous link and transmits it to the next link.

尚、本実施例では、第1のリンクであるベース5と第2のリンクであるショルダ部6との間を連結する回転関節の関節軸を1軸、第2のリンクであるショルダ部6と第3のリンクである下アーム7との間を連結する回転関節の関節軸を2軸、第3のリンクである下アーム7と第4のリンクである第1の上アーム8との間を連結する回転関節の関節軸を3軸、第4のリンクである第1の上アーム8と第5のリンクである第2の上アーム9との間を連結する回転関節の関節軸を4軸、第5のリンクである第2の上アーム9と第6のリンクである手首10との間を連結する回転関節の関節軸を5軸、第6のリンクである手首10と第7のリンクであるフランジ11との間を連結する回転関節の関節軸を6軸として図示している。   In the present embodiment, the joint axis of the rotary joint that connects between the base 5 that is the first link and the shoulder portion 6 that is the second link is one axis, and the shoulder portion 6 that is the second link, Two joint axes of the rotary joint connecting between the lower link 7 as the third link and between the lower arm 7 as the third link and the first upper arm 8 as the fourth link Three joint axes of the rotary joint to be connected, and four joint axes of the rotary joint connecting the first upper arm 8 being the fourth link and the second upper arm 9 being the fifth link. In addition, the five joint axes of the rotary joint connecting the second upper arm 9 as the fifth link and the wrist 10 as the sixth link, and the wrist 10 and the seventh link as the sixth link The joint axes of the rotary joint that connects with the flange 11 are shown as six axes.

すなわち、ロボット2は、図3に示すように、6軸の垂直多関節を有するPUMA型のロボットであり、1軸の軸心が6軸ロボットの設置面と直交し、2軸の軸心が1軸の軸心と直交し、2軸の軸心と3軸の軸心と5軸の軸心とが平行で、5軸の軸心が4軸の軸心及び6軸の軸心と同一点で直交する構成となっている。   That is, as shown in FIG. 3, the robot 2 is a PUMA type robot having 6-axis vertical articulated joints. The 1-axis axis is perpendicular to the installation surface of the 6-axis robot, and the 2-axis axis is Orthogonal to 1 axis, 2 axes, 3 axes and 5 axes are parallel, 5 axes are the same as 4 axes and 6 axes The configuration is orthogonal at one point.

ロボット2の動作を制御する制御装置3は、図2に示すように、CPU12と、駆動回路13と、位置検出回路14とを備えて構成されている。CPU12には、ロボット2全体のシステムプログラムや動作プログラムを作成するためのロボット言語などを記憶するROM15及びロボット2の動作プログラムなどを記憶するRAM16が接続されていると共に、ティーチング作業を行なう際に使用するティーチングペンダント4が接続されている。ティーチングペンダント4は、図1に示すように、各種の操作部4a及び表示器4bを備えて構成されている。   As illustrated in FIG. 2, the control device 3 that controls the operation of the robot 2 includes a CPU 12, a drive circuit 13, and a position detection circuit 14. The CPU 12 is connected with a ROM 15 for storing a robot language for creating a system program and an operation program for the entire robot 2 and a RAM 16 for storing an operation program for the robot 2 and used for teaching work. Teaching pendant 4 is connected. As shown in FIG. 1, the teaching pendant 4 includes various operation units 4a and a display 4b.

位置検出回路14は、ショルダ部6、各アーム7〜9、手首10及びフランジ11の位置を検出するためのもので、ショルダ部6、各アーム7〜9、手首10及びフランジ11の軸毎の駆動源であるモータ17に設けられているロータリエンコーダ18が接続されている。位置検出回路14は、ロータリエンコーダ18から入力される検出信号に基づいてベース5に対するショルダ部6の回転角度、ショルダ部6に対する下アーム7の回転角度、下アーム7に対する第1の上アーム8の回転角度、第1の上アーム8に対する第2の上アーム9の回転角度、第2の上アーム9に対する手首10の回転角度、手首10に対するフランジ11の回転角度を検出し、それら検出した位置検出情報をCPU12に出力する。そして、CPU12は、動作プログラムに基づいてショルダ部6、各アーム7〜9、手首10及びフランジ11を動作させる際に、位置検出回路14から入力する位置検出情報をフィードバック信号としてそれらの動作を制御する。   The position detection circuit 14 is for detecting the positions of the shoulder portion 6, the arms 7 to 9, the wrist 10 and the flange 11. The position detection circuit 14 is provided for each axis of the shoulder portion 6, the arms 7 to 9, the wrist 10 and the flange 11. A rotary encoder 18 provided in a motor 17 that is a drive source is connected. The position detection circuit 14 is based on the detection signal input from the rotary encoder 18, the rotation angle of the shoulder portion 6 with respect to the base 5, the rotation angle of the lower arm 7 with respect to the shoulder portion 6, and the first upper arm 8 with respect to the lower arm 7. The rotation angle, the rotation angle of the second upper arm 9 relative to the first upper arm 8, the rotation angle of the wrist 10 relative to the second upper arm 9, and the rotation angle of the flange 11 relative to the wrist 10 are detected, and the detected position is detected. Information is output to the CPU 12. The CPU 12 controls the operation of the shoulder unit 6, the arms 7 to 9, the wrist 10 and the flange 11 based on the operation program using the position detection information input from the position detection circuit 14 as a feedback signal. To do.

各リンクには、3次元の座標が規定されている。このうち、床面に据え付けられるベース5の座標系は、図1に示すように不動の座標系としてロボット2の基準座標とされるものであり、ベース5の下端中心を原点とし、水平方向の2つの座標軸Xb,Yb及び垂直方向の1つの座標軸Zbが規定されている。他のリンクの座標系は、各回転関節の回転により基準座標上での位置と向きが変化し、CPU12は、位置検出回路14から入力するショルダ部6、各アーム7〜9、手首10、フランジ11の各回転関節の位置検出情報と予め記憶されている各関節の長さ情報とに基づいて各関節の座標の位置と向きとを座標変換の計算機能により基準座標上での位置と向きとに変換して認識する。   Each link has three-dimensional coordinates. Among these, the coordinate system of the base 5 installed on the floor surface is a reference coordinate of the robot 2 as a stationary coordinate system as shown in FIG. Two coordinate axes Xb and Yb and one coordinate axis Zb in the vertical direction are defined. In the coordinate system of the other links, the position and orientation on the reference coordinates change due to the rotation of each rotary joint, and the CPU 12 receives the shoulder 6, the arms 7 to 9, the wrist 10, and the flange input from the position detection circuit 14. 11 based on the position detection information of each rotary joint and the length information of each joint stored in advance, the position and orientation of the coordinates of each joint are converted to the position and orientation on the reference coordinates by the coordinate conversion calculation function. Convert to and recognize.

さて、上記したロボット2においては、各軸の原点位置の較正は、基本的には工場出荷前の段階で工場にて行われ、工場から出荷されて設置先に設置された後ではモータ17などの交換により原点位置が変更された場合に設置先にて行われる。以下、本実施例の作用,すなわち6軸の原点位置を較正する手順について図4ないし図7を参照して説明する。   In the robot 2 described above, the calibration of the origin position of each axis is basically performed at the factory before shipment from the factory, and after being shipped from the factory and installed at the installation destination, the motor 17 and the like. This is done at the installation site when the origin position is changed by exchanging. The operation of this embodiment, that is, the procedure for calibrating the origin positions of the six axes will be described below with reference to FIGS.

CPU12は、6軸の原点位置を較正する制御プログラムを記憶保持しており、その制御プログラムを実行して6軸の原点位置を較正する。ここで、図4は、CPU12が行う処理を示しており、図5は、計測点(1)を計測するためのロボット2の初期姿勢を示している。この姿勢は、下アーム7が設置面(座標軸Xb)に対して平行となるように2軸を90度(π/2[rad])回転させ、第1上アーム8及び第2上アーム9が設置面に対して垂直となるように、且つそれらの上アーム8及び9が座標軸Zbの負方向を向くように3軸を下アーム7に対して90度回転させる(尚、上アーム8及び9が座標軸Zbの正方向を向くように3軸を下アーム7に対して90度回転させても良い)。更に、5軸を、手首10;6軸の軸心が設置面に対して平行となるように、第2上アーム9に対して90度回転させる(ステップS1;第1工程)。   The CPU 12 stores and holds a control program for calibrating the origin positions of the six axes, and executes the control program to calibrate the origin positions of the six axes. Here, FIG. 4 shows processing performed by the CPU 12, and FIG. 5 shows an initial posture of the robot 2 for measuring the measurement point (1). In this posture, two axes are rotated 90 degrees (π / 2 [rad]) so that the lower arm 7 is parallel to the installation surface (coordinate axis Xb), and the first upper arm 8 and the second upper arm 9 are The three axes are rotated by 90 degrees with respect to the lower arm 7 so that the upper arms 8 and 9 are directed to the negative direction of the coordinate axis Zb so as to be perpendicular to the installation surface (the upper arms 8 and 9). The three axes may be rotated by 90 degrees with respect to the lower arm 7 so that is directed in the positive direction of the coordinate axis Zb). Further, the five axes are rotated by 90 degrees with respect to the second upper arm 9 so that the axis of the wrist 10; 6 axes is parallel to the installation surface (step S1; first step).

この状態で、6軸の軸心方向は座標軸Xbに一致しているとものとし、6軸の回転角度は任意の角度θ6[rad]で良い。そして、フランジ11には矩形状の測定板19を、ロボットの設置面に対して既知の角度で取り付ける。またこの時、1軸〜6軸の角回転角度は、例えば以下のようになっているものとする。
(0,π/2,π/2,0,−π/2,θ6)
In this state, it is assumed that the axis direction of the six axes coincides with the coordinate axis Xb, and the rotation angle of the six axes may be an arbitrary angle θ6 [rad]. A rectangular measurement plate 19 is attached to the flange 11 at a known angle with respect to the installation surface of the robot. At this time, the angular rotation angles of the 1st to 6th axes are, for example, as follows.
(0, π / 2, π / 2, 0, -π / 2, θ6)

また、設置面には例えばレーザー計測器(距離測定手段)20を配置しておく。ベース5の設置面とレーザー計測器20の設置面とは、必ずしも同一の平面である必要はなく、互いに平行な面であれば良い。例えば、上記の姿勢を取った場合に、上アーム8及び9の長さにより手首10の位置がベース5の設置面よりも下方に位置するとすれば、ロボット2はレーザー計測器20の設置面に所定の高さを有する基台を配置し、その基台上にベース5を設置すれば良い。
レーザー計測器20は、座標軸Zb方向の距離を計測するように設置する。そして、上記の姿勢において、測定板19の一端側を計測点(1)として、レーザー計測器20により計測点(1)までの距離L1を計測する(ステップS2;第2工程)。例えば、図5(a)のように上方から見た場合、測定板19の左端側を計測点(1)とする。
Further, for example, a laser measuring instrument (distance measuring means) 20 is arranged on the installation surface. The installation surface of the base 5 and the installation surface of the laser measuring instrument 20 do not necessarily have to be the same plane, and may be planes that are parallel to each other. For example, when taking the above posture, if the wrist 10 is positioned below the installation surface of the base 5 due to the length of the upper arms 8 and 9, the robot 2 is placed on the installation surface of the laser measuring instrument 20. A base having a predetermined height may be arranged, and the base 5 may be installed on the base.
The laser measuring instrument 20 is installed so as to measure the distance in the coordinate axis Zb direction. And in said attitude | position, the distance L1 to the measurement point (1) is measured by the laser measuring device 20 by making the one end side of the measurement board 19 into the measurement point (1) (step S2; 2nd process). For example, when viewed from above as shown in FIG. 5A, the left end side of the measurement plate 19 is set as the measurement point (1).

次に、レーザー計測器20による計測対象を、測定板19の右端側を計測点(2)とするように、2軸〜6軸は固定して1軸を角度θだけ回転させる(ステップS3;第3工程)。この時、図6に示す1軸の回転方向は反時計回り方向となる。その状態で、レーザー計測器20により計測点(2)までの距離L2を計測する(ステップS4;第4工程)。6軸の見掛け上の回転角度θ6’は真の回転角度θ6と原点のずれ角Δθ6との和であり、測定板19は回転角度θ6’分だけ設置面に対して傾くため、距離L1と距離L2とに差ΔLが生じる(図7(a)参照)。すなわち、ステップS1における姿勢からステップS3のように1軸を回転させれば、1軸〜5軸の影響を受けることなく、回転角度θ6’を計測することが可能となる。   Next, the measurement object by the laser measuring instrument 20 is rotated by an angle θ while fixing the 2nd to 6th axes so that the measurement point (2) is the right end side of the measurement plate 19 (step S3; (3rd process). At this time, the rotation direction of one axis shown in FIG. 6 is the counterclockwise direction. In this state, the distance L2 to the measurement point (2) is measured by the laser measuring instrument 20 (step S4; fourth step). The apparent rotation angle θ6 ′ of the six axes is the sum of the true rotation angle θ6 and the deviation angle Δθ6 of the origin, and the measurement plate 19 is inclined with respect to the installation surface by the rotation angle θ6 ′. There is a difference ΔL from L2 (see FIG. 7A). That is, if one axis is rotated from the posture in step S1 as in step S3, the rotation angle θ6 ′ can be measured without being affected by the first to fifth axes.

したがって、計測点(1),(2)間の距離をMとすると、ずれΔθ6[rad]は次式から求められる(ステップS5;第5工程)。
Δθ6=arctan(ΔL/M)−θ6 …(1)
尚、距離Mは、1軸の軸心から第1,第2計測点までの回転半径をR,ステップS3における1軸の回転角度をθとすれば、M=R*θより求められる。そして、ずれΔθ6を求めると、そのずれΔθ6により6軸の原点位置を較正する(ステップS6;第6工程)。例えば、図7(a)に示すように6軸の原点が、図7(b)に定義を示す正方向にずれている場合は、求めたずれΔθ6を減算することで較正する。
Therefore, when the distance between the measurement points (1) and (2) is M, the deviation Δθ6 [rad] is obtained from the following equation (step S5; fifth step).
Δθ6 = arctan (ΔL / M) −θ6 (1)
The distance M can be obtained from M = R * θ, where R is the radius of rotation from the axis of one axis to the first and second measurement points, and θ is the rotation angle of one axis in step S3. When the deviation Δθ6 is obtained, the origin positions of the six axes are calibrated based on the deviation Δθ6 (step S6; sixth step). For example, when the origins of the six axes are shifted in the positive direction shown in FIG. 7B as shown in FIG. 7A, calibration is performed by subtracting the obtained shift Δθ6.

以上のように本実施例によれば、設置面に、上方に位置する測定対象物との距離を測定するレーザー計測器20を設置し、6軸の軸心に測定板19を取り付ける。そして、ロボット2の2軸を1軸の軸心に対して90度回転させ、4軸の軸心が1軸の軸心と平行となるように3軸を前記設置面の方向に回転させ、6軸の軸心が前記設置面と平行となるように5軸を回転させた姿勢を取らせた状態で、測定板19の一端側が第1計測点となるように位置させると、レーザー計測器20により第1計測点までの第1距離L1を測定する。次に1軸を回転させて、測定板19の他端側が第2計測点となるように位置させ、レーザー計測器20により第2計測点までの第2距離L2を測定すると、6軸の誤差角度Δθ6を(1)式で求め、誤差角度Δθ6を用いて6軸の原点位置を較正するようにした。   As described above, according to the present embodiment, the laser measuring instrument 20 that measures the distance from the measurement object positioned above is installed on the installation surface, and the measurement plate 19 is attached to the six axes. Then, the two axes of the robot 2 are rotated 90 degrees with respect to the axis of one axis, the three axes are rotated in the direction of the installation surface so that the axis of the four axes is parallel to the axis of the one axis, When the one end side of the measuring plate 19 is positioned to be the first measurement point in a state where the five axes are rotated so that the six axes are parallel to the installation surface, the laser measuring instrument The first distance L1 to the first measurement point is measured by 20. Next, when one axis is rotated so that the other end side of the measurement plate 19 becomes the second measurement point, and the second distance L2 to the second measurement point is measured by the laser measuring instrument 20, a six-axis error is obtained. The angle Δθ6 is obtained by the equation (1), and the origin positions of the six axes are calibrated using the error angle Δθ6.

すなわち、第1工程においてロボット2に取らせた姿勢で第1距離L1を測定し、第3工程で1軸を回転させた後に第2距離L2を測定して得られる両者の距離差ΔLは、専ら6軸の(原点位置ずれがあればそのずれを含む)回転角度θ6’によって決まるので、1軸〜5軸の影響を受けない。したがって、たとえ1軸〜5軸の原点位置が較正されていない状態であっても6軸の誤差角度Δθ6を得て、6軸の原点位置を較正できる。   That is, the distance difference ΔL between the two obtained by measuring the first distance L1 in the posture taken by the robot 2 in the first step and measuring the second distance L2 after rotating one axis in the third step is: Since it is determined solely by the rotation angle θ6 ′ of 6 axes (including the origin position deviation if there is any deviation), it is not affected by the 1st to 5th axes. Therefore, even if the origin positions of the first to fifth axes are not calibrated, the six-axis error angle Δθ6 can be obtained and the six-axis origin position can be calibrated.

(第2実施例)
図8は第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図8は、第1実施例の図7相当図であり、イレギュラーな想定ではあるが、レーザー計測器20の測定軸が設置面の法線に対して傾いた状態となるように設置された場合を示す。この時、傾き角をθ_defとすると、(1)式を(2)式に変更してずれΔθ6を求めれば良い。
Δθ6=arctan{ΔL*cos(θ_def)/M−θ6} …(2)
ここで(2)式の傾き角θ_defを0[rad]とすれば、(1)式に一致する。
(Second embodiment)
FIG. 8 shows a second embodiment. The same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Hereinafter, different parts will be described. FIG. 8 is a diagram corresponding to FIG. 7 of the first embodiment, which is assumed to be irregular, but installed so that the measurement axis of the laser measuring instrument 20 is inclined with respect to the normal of the installation surface. Show the case. At this time, if the inclination angle is θ_def, the deviation Δθ6 may be obtained by changing the equation (1) to the equation (2).
Δθ6 = arctan {ΔL * cos (θ_def) / M−θ6} (2)
Here, if the inclination angle θ_def in the equation (2) is set to 0 [rad], it coincides with the equation (1).

尚、図8は計測点(1)を計測板19の左端側(正面から見た場合)とした場合を示しており、この時、ステップS3で1軸を回転させる方向は図6とは逆の時計回り方向となるから、計測点(2)は計測板19の右端側(正面から見た場合)となる。
以上のように第2実施例によれば、レーザー計測器20の測定軸が設置面の法線に対して傾いた状態となるように設置された場合であっても、第1実施例と同様にずれΔθ6を求めて6軸の原点位置を較正することができる。
FIG. 8 shows a case where the measurement point (1) is the left end side (when viewed from the front) of the measurement plate 19. At this time, the direction in which one axis is rotated in step S3 is opposite to FIG. The measurement point (2) is on the right end side of the measurement plate 19 (when viewed from the front).
As described above, according to the second embodiment, even when the measurement axis of the laser measuring instrument 20 is installed so as to be inclined with respect to the normal line of the installation surface, the same as in the first embodiment. The origin of 6 axes can be calibrated by obtaining the deviation Δθ6.

(第3実施例)
図9は第3実施例であり、第1実施例を7軸ロボットに適用した場合を示す。図9(a)は、一般的な7軸ロボットの図3相当図である。このように、7軸ロボットは、6軸ロボットでは2軸,3軸に対応する2軸,4軸の間に、これらの軸心に直交する軸心を有する3軸を備えて構成されている。したがって、6軸ロボットの3軸〜6軸を7軸ロボットの4軸〜7軸に置き換えることで、第1実施例の原点位置較正方法を、7軸ロボットの7軸原点位置較正方法に適用できる。但しこの場合、3軸の原点位置は較正済みであることが前提となる。
(Third embodiment)
FIG. 9 shows a third embodiment, in which the first embodiment is applied to a seven-axis robot. FIG. 9A is a diagram corresponding to FIG. 3 of a general seven-axis robot. As described above, the 7-axis robot is configured to include 3 axes having an axis perpendicular to these axes between the 2 and 4 axes corresponding to the 2 and 3 axes in the 6-axis robot. . Therefore, the origin position calibration method of the first embodiment can be applied to the 7 axis origin position calibration method of the 7 axis robot by replacing the 3 axis to 6 axis of the 6 axis robot with the 4 axis to 7 axis of the 7 axis robot. . However, in this case, it is assumed that the origin positions of the three axes are already calibrated.

本発明は、上記し又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形または拡張が可能である。
第1工程におけるロボットの姿勢は、その他、例えば以下のように設定しても良い。
The present invention is not limited to the embodiments described above or shown in the drawings, and the following modifications or expansions are possible.
For example, the posture of the robot in the first step may be set as follows.

(θ1,π/2, π/2,θ4, π/2,θ6)
(θ1,π/2,−π/2,θ4, π/2,θ6)
(θ1,π/2,−π/2,θ4,−π/2,θ6)
尚、θ1,θ4は任意である。また、勿論θ1,θ4,θ6を0[rad]にしても良い。
(Θ1, π / 2, π / 2, θ4, π / 2, θ6)
(Θ1, π / 2, -π / 2, θ4, π / 2, θ6)
(Θ1, π / 2, -π / 2, θ4, -π / 2, θ6)
Note that θ1 and θ4 are arbitrary. Of course, θ1, θ4, and θ6 may be set to 0 [rad].

測定板19をフランジ11に取り付けるタイミングは、図4に示す処理を実行する前でも良く、要はステップS2を実行する前であればどのタイミングでも良い。
第3実施例の7軸ロボットについても、第2実施例のように、レーザー計測器20の測定軸が設置面の法線に対して傾いた状態となるように設置された状態で較正を行っても良い。
距離測定手段は、レーザー計測器20に限ることなく、距離を測定する手法は任意である。
上記実施例に示した計算式は、角度が弧度法[rad]で示されることを前提としているが、度数法を用いる場合でも弧度法との整合をとれば同じ結果がもたらされる。したがって、角度を度数法で示した計算式を用いて、同様に6軸又は7軸の原点ずれを求めても良い。
The timing at which the measurement plate 19 is attached to the flange 11 may be before the processing shown in FIG. 4 is executed, and may be any timing as long as it is before the execution of step S2.
The 7-axis robot of the third embodiment is also calibrated in a state where the measurement axis of the laser measuring instrument 20 is tilted with respect to the normal of the installation surface as in the second embodiment. May be.
The distance measuring means is not limited to the laser measuring instrument 20, and the method for measuring the distance is arbitrary.
The calculation formulas shown in the above embodiments are based on the premise that the angle is represented by the arc method [rad]. However, even when the power method is used, the same result can be obtained by matching with the arc method. Therefore, the origin deviation of the 6-axis or 7-axis may be obtained in the same manner using a calculation formula in which the angle is expressed by the frequency method.

図面中、2はロボット(6軸ロボット、多関節型ロボット)、3は制御装置(位置・姿勢制御手段,原点位置較正手段)、20はレーザー計測器(距離測定手段)である。   In the drawings, 2 is a robot (6-axis robot, articulated robot), 3 is a control device (position / posture control means, origin position calibration means), and 20 is a laser measuring instrument (distance measurement means).

Claims (4)

1軸の軸心が6軸ロボットの設置面と直交し、2軸の軸心が1軸の軸心と直交し、2軸の軸心と3軸の軸心と5軸の軸心とが互いに平行で、5軸の軸心が4軸の軸心及び6軸の軸心と同一点で直交するように構成される6軸ロボットの6軸の原点位置を較正する方法であって、
前記設置面に、上方に位置する測定対象物との距離を測定する距離測定手段を設置し、
6軸の軸心に測定板を取り付け、
2軸を1軸の軸心に対してπ/2[rad]回転させ、4軸の軸心が1軸の軸心と平行となるように3軸を前記設置面の方向に回転させ、6軸の軸心が前記設置面と平行となるように5軸を回転させた姿勢を取らせた状態で、前記測定板における6軸の軸心と直交する方向の一端側を前記距離測定手段の測定対象(第1計測点)となるように位置させる第1工程と、
前記距離測定手段により前記第1計測点までの第1距離L1を測定する第2工程と、
1軸を回転させて、前記測定板における前記直交する方向の他端側を前記距離測定手段の測定対象(第2計測点)となるように位置させる第3工程と、
前記距離測定手段により前記第2計測点までの第2距離L2を測定する第4工程と、
前記第1計測点から前記第2計測点までの距離をM,前記第1距離L1と前記第2距離L2との差をΔL,6軸の回転角度をθ6,前記距離計測手段が距離を測定する場合の測定方向が前記接地面に立つ法線に対してなす角をθ_defとすると(角度の単位は[rad]とする)、6軸の誤差角度Δθ6を、以下の式
Δθ6=arctan{ΔL*cos(θ_def)/M}−θ6
より求める第5工程と、
前記誤差角度Δθ6を用いて、6軸の原点位置を較正する第6工程とからなることを特徴とする6軸ロボットの6軸原点位置較正方法。
The axis of 1 axis is orthogonal to the installation surface of the 6 axis robot, the axis of 2 axes is orthogonal to the axis of 1 axis, and the axis of 2 axes, 3 axes and 5 axes are A method of calibrating the origin positions of the six axes of a six-axis robot configured such that the five axes are parallel to each other and perpendicular to the four axes and the six axes.
On the installation surface, a distance measuring means for measuring the distance to the measurement object located above is installed,
A measuring plate is attached to the 6-axis shaft center,
Two axes are rotated by π / 2 [rad] with respect to the axis of one axis, and three axes are rotated in the direction of the installation surface so that the axis of four axes is parallel to the axis of one axis. One end side of the measuring plate in a direction orthogonal to the six-axis axis is in the state of rotating the five axes so that the axis of the axis is parallel to the installation surface. A first step to be positioned to be a measurement target (first measurement point);
A second step of measuring a first distance L1 to the first measurement point by the distance measuring means;
A third step of rotating one axis and positioning the other end side of the measurement plate in the orthogonal direction to be a measurement target (second measurement point) of the distance measurement unit;
A fourth step of measuring a second distance L2 to the second measurement point by the distance measuring means;
The distance from the first measurement point to the second measurement point is M, the difference between the first distance L1 and the second distance L2 is ΔL, the rotation angle of six axes is θ6, and the distance measurement means measures the distance. When the angle formed by the measurement direction with respect to the normal line standing on the ground plane is θ_def (the unit of the angle is [rad]), the six-axis error angle Δθ6 is expressed by the following equation:
Δθ6 = arctan {ΔL * cos (θ_def) / M} −θ6
A fifth step to be obtained,
6. A 6-axis origin position calibration method for a 6-axis robot, comprising a sixth step of calibrating the origin position of 6 axes using the error angle Δθ6.
1軸の軸心が6軸ロボットの設置面と直交し、2軸の軸心が1軸の軸心と直交し、2軸の軸心と3軸の軸心と5軸の軸心とが互いに平行で、5軸の軸心が4軸の軸心及び6軸の軸心と同一点で直交するように構成される6軸ロボットの制御装置であって、
2軸を1軸の軸心に対してπ/2[rad]回転させ、4軸の軸心が1軸の軸心と平行となるように3軸を前記設置面の方向に回転させ、6軸の軸心が前記設置面と平行となるように5軸を回転させた計測姿勢を取らせた後、1軸を任意の角度だけ回転させる位置・姿勢制御手段と、
6軸の軸心に取り付けられている測定板について、前記位置・姿勢制御手段が1軸を回転させる前の位置で、前記設置面側に設定される基準位置上に立つ法線方向に位置する前記測定板における6軸の軸心と直交する方向の一端側を第1計測点,前記位置・姿勢制御手段が1軸を回転させた後の位置で前記法線方向に位置する前記測定板における前記直交する方向の他端側を第2計測点として、
前記基準位置から前記第1計測点までの第1距離をL1,前記基準位置から前記第2計測点までの第2距離をL2,前記第1計測点から前記第2計測点までの距離をM,前記第1距離L1と前記第2距離L2との差をΔL,6軸の回転角度をθ6とすると(角度の単位は[rad]とする)、6軸の誤差角度Δθ6を、以下の式
Δθ6=arctan(ΔL/M)−θ6
より求め、前記誤差角度Δθ6を用いて、6軸の原点位置を較正する原点位置較正手段とを備えることを特徴とする6軸ロボットの制御装置。
The axis of 1 axis is orthogonal to the installation surface of the 6 axis robot, the axis of 2 axes is orthogonal to the axis of 1 axis, and the axis of 2 axes, 3 axes and 5 axes are A control device for a 6-axis robot, which is parallel to each other and configured so that the 5-axis axis is orthogonal to the 4-axis axis and the 6-axis axis at the same point,
Two axes are rotated by π / 2 [rad] with respect to the axis of one axis, and three axes are rotated in the direction of the installation surface so that the axis of four axes is parallel to the axis of one axis. A position / posture control means for rotating one axis by an arbitrary angle after taking a measurement posture by rotating the five axes so that the axis of the shaft is parallel to the installation surface;
The measuring plate attached to the 6-axis axis is positioned in the normal direction standing on the reference position set on the installation surface side before the position / posture control means rotates one axis. One end side of the measurement plate in the direction orthogonal to the axis of the six axes is a first measurement point, and the position / posture control means is positioned in the normal direction at a position after the position / posture control means has rotated one axis. The other end side in the orthogonal direction as a second measurement point,
The first distance from the reference position to the first measurement point is L1, the second distance from the reference position to the second measurement point is L2, and the distance from the first measurement point to the second measurement point is M. , Where the difference between the first distance L1 and the second distance L2 is ΔL and the rotation angle of the six axes is θ6 (the unit of the angle is [rad]), the error angle Δθ6 of the six axes is expressed by the following equation:
Δθ6 = arctan (ΔL / M) −θ6
And a home position calibration unit that calibrates the home position of the 6 axes using the error angle Δθ6.
1軸の軸心が6軸ロボットの設置面と直交し、2軸の軸心と1軸の軸心とが直交し、3軸の軸心と2軸の軸心とが直交し、2軸の軸心と4軸の軸心と6軸の軸心とが互いに平行で、6軸の軸心が5軸の軸心及び7軸の軸心と同一点で直交するように構成される7軸ロボットにおける7軸の原点位置を較正する方法であって、
前記設置面に、上方に位置する測定対象物との距離を測定する距離測定手段を設置し、
7軸の軸心に測定板を取り付け、
2軸を1軸の軸心に対してπ/2[rad]回転させ、5軸の軸心が1軸の軸心と平行となるように4軸を前記設置面の方向に回転させ、7軸の軸心が前記設置面と平行となるように6軸を回転させた姿勢を取らせた状態で、前記測定板における7軸の軸心と直交する方向の一端側を前記距離測定手段の測定対象(第1計測点)となるように位置させる第1工程と、
前記距離測定手段により前記第1計測点までの第1距離L1を測定する第2工程と、
1軸を回転させて、前記測定板における前記直交する方向の他端側を前記距離測定手段の測定対象(第2計測点)となるように位置させる第3工程と、
前記距離測定手段により前記第2計測点までの第2距離L2を測定する第4工程と、
前記第1計測点から前記第2計測点までの距離をM,前記第1距離L1と前記第2距離L2との差をΔL,7軸の回転角度をθ7,前記距離計測手段が距離を測定する場合の測定方向が前記接地面に立つ法線に対してなす角をθ_defとすると(角度の単位は[rad]とする)、7軸の誤差角度Δθ7を、以下の式
Δθ7=arctan{ΔL*cos(θ_def)/M}−θ7
より求める第5工程と、
前記誤差角度Δθ7を用いて、7軸の原点位置を構成する第6工程とからなることを特徴とする7軸ロボットの7軸原点位置較正方法。
The axis of 1 axis is orthogonal to the installation surface of the 6 axis robot, the axis of 2 axes is orthogonal to the axis of 1 axis, the axis of 3 axes is orthogonal to the axis of 2 axes, 2 axes The 6-axis axis, the 4-axis axis, and the 6-axis axis are parallel to each other, and the 6-axis axis is orthogonal to the 5-axis axis and the 7-axis axis at the same point. A method for calibrating the origin positions of seven axes in an axis robot,
On the installation surface, a distance measuring means for measuring the distance to the measurement object located above is installed,
Attach the measuring plate to the center of 7 axes,
Two axes are rotated by π / 2 [rad] relative to the axis of one axis, and four axes are rotated in the direction of the installation surface so that the axis of five axes is parallel to the axis of one axis. In a state where the six axes are rotated so that the axis of the shaft is parallel to the installation surface, one end side of the measurement plate in the direction orthogonal to the axis of the seven axes is connected to the distance measuring means. A first step to be positioned to be a measurement target (first measurement point);
A second step of measuring a first distance L1 to the first measurement point by the distance measuring means;
A third step of rotating one axis and positioning the other end side of the measurement plate in the orthogonal direction to be a measurement target (second measurement point) of the distance measurement unit;
A fourth step of measuring a second distance L2 to the second measurement point by the distance measuring means;
The distance from the first measurement point to the second measurement point is M, the difference between the first distance L1 and the second distance L2 is ΔL, the rotation angle of the seven axes is θ7, and the distance measuring means measures the distance. If the angle formed by the measurement direction with respect to the normal line standing on the ground plane is θ_def (the unit of the angle is [rad]), the seven-axis error angle Δθ7 is expressed by the following equation:
Δθ7 = arctan {ΔL * cos (θ_def) / M} −θ7
A fifth step to be obtained,
A 7-axis origin position calibration method for a 7-axis robot, comprising a sixth step of configuring an origin position of 7 axes using the error angle Δθ7.
1軸の軸心が6軸ロボットの設置面と直交し、2軸の軸心と1軸の軸心とが直交し、3軸の軸心と2軸の軸心とが直交し、2軸の軸心と4軸の軸心と6軸の軸心とが互いに平行で、6軸の軸心が5軸の軸心及び7軸の軸心と同一点で直交するように構成される7軸ロボットの制御装置であって、
2軸を1軸の軸心に対してπ/2[rad]回転させ、5軸の軸心が1軸の軸心と平行となるように4軸を前記設置面の方向に回転させ、7軸の軸心が前記設置面と平行となるように5軸を回転させた計測姿勢を取らせた後、1軸を任意の角度だけ回転させる位置・姿勢制御手段と、
7軸の軸心に取り付けられている測定板について、前記位置・姿勢制御手段が1軸を回転させる前の位置で、前記設置面側に設定される基準位置上に立つ法線方向に位置する前記測定板における7軸の軸心と直交する方向の一端側を第1計測点,前記位置・姿勢制御手段が1軸を回転させた後の位置で前記法線方向に位置する前記測定板における前記直交する方向の他端側を第2計測点として、
前記基準位置から前記第1計測点までの第1距離をL1,前記基準位置から前記第2計測点までの第2距離をL2,前記第1計測点から前記第2計測点までの距離をM,前記第1距離L1と前記第2距離L2との差をΔL,7軸の回転角度をθ7とすると(角度の単位は[rad]とする)、7軸の誤差角度Δθ7を、以下の式
Δθ7=arctan(ΔL/M)−θ7
より求め、前記誤差角度Δθ7を用いて、7軸の原点位置を較正する原点位置較正手段とを備えることを特徴とする7軸ロボットの制御装置。
The axis of 1 axis is orthogonal to the installation surface of the 6 axis robot, the axis of 2 axes is orthogonal to the axis of 1 axis, the axis of 3 axes is orthogonal to the axis of 2 axes, 2 axes The 6-axis axis, the 4-axis axis, and the 6-axis axis are parallel to each other, and the 6-axis axis is orthogonal to the 5-axis axis and the 7-axis axis at the same point. A control device for an axis robot,
Two axes are rotated by π / 2 [rad] relative to the axis of one axis, and four axes are rotated in the direction of the installation surface so that the axis of five axes is parallel to the axis of one axis. A position / posture control means for rotating one axis by an arbitrary angle after taking a measurement posture by rotating the five axes so that the axis of the shaft is parallel to the installation surface;
The measuring plate attached to the 7-axis axis is positioned in a normal direction standing on a reference position set on the installation surface side before the position / posture control means rotates one axis. One end side of the measurement plate in a direction orthogonal to the axis of the seven axes is a first measurement point, and the position / posture control means is positioned in the normal direction at a position after the position / posture control means has rotated one axis. The other end side in the orthogonal direction as a second measurement point,
The first distance from the reference position to the first measurement point is L1, the second distance from the reference position to the second measurement point is L2, and the distance from the first measurement point to the second measurement point is M. , Where the difference between the first distance L1 and the second distance L2 is ΔL and the rotation angle of the seven axes is θ7 (the unit of the angle is [rad]), the error angle Δθ7 of the seven axes is expressed by the following equation:
Δθ7 = arctan (ΔL / M) −θ7
And a home position calibration unit that calibrates the home position of the 7 axes using the error angle Δθ7.
JP2010174444A 2010-08-03 2010-08-03 6-axis robot 6-axis origin position calibration method, 6-axis robot controller, 7-axis robot 7-axis origin position calibration method, and 7-axis robot controller Active JP5786290B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010174444A JP5786290B2 (en) 2010-08-03 2010-08-03 6-axis robot 6-axis origin position calibration method, 6-axis robot controller, 7-axis robot 7-axis origin position calibration method, and 7-axis robot controller
DE102011052386.3A DE102011052386B8 (en) 2010-08-03 2011-08-03 Method and device for calibrating an origin position of an articulated arm robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174444A JP5786290B2 (en) 2010-08-03 2010-08-03 6-axis robot 6-axis origin position calibration method, 6-axis robot controller, 7-axis robot 7-axis origin position calibration method, and 7-axis robot controller

Publications (2)

Publication Number Publication Date
JP2012035329A true JP2012035329A (en) 2012-02-23
JP5786290B2 JP5786290B2 (en) 2015-09-30

Family

ID=45847906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174444A Active JP5786290B2 (en) 2010-08-03 2010-08-03 6-axis robot 6-axis origin position calibration method, 6-axis robot controller, 7-axis robot 7-axis origin position calibration method, and 7-axis robot controller

Country Status (1)

Country Link
JP (1) JP5786290B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047672A (en) * 2013-09-03 2015-03-16 株式会社デンソーウェーブ Calibration method for fingertip shaft origin position of robot, and robot control apparatus
CN105690421A (en) * 2016-04-21 2016-06-22 奇弩(北京)科技有限公司 Universal mechanical arm capable of automatically memorizing trajectory
CN106393089A (en) * 2016-10-18 2017-02-15 广东伯朗特智能装备股份有限公司 Control method and device for six-shaft light-load industrial robot
CN106926234A (en) * 2015-12-29 2017-07-07 哈尔滨恒誉名翔科技有限公司 A kind of REbot-V-6R robot arm devices
CN109968347A (en) * 2017-12-28 2019-07-05 沈阳新松机器人自动化股份有限公司 A kind of Zero positioning method of seven axis robot
US10935968B2 (en) 2017-10-27 2021-03-02 Fanuc Corporation Robot, robot system, and method for setting coordinate system of robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140783A (en) * 1985-12-12 1987-06-24 フアナツク株式会社 Calibration device for industrial robot
JPH042480A (en) * 1990-04-18 1992-01-07 Meidensha Corp Correction method for axial slide of robot
JP2010079471A (en) * 2008-09-25 2010-04-08 Nippon Shoryoku Kikai Kk Robot system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140783A (en) * 1985-12-12 1987-06-24 フアナツク株式会社 Calibration device for industrial robot
JPH042480A (en) * 1990-04-18 1992-01-07 Meidensha Corp Correction method for axial slide of robot
JP2010079471A (en) * 2008-09-25 2010-04-08 Nippon Shoryoku Kikai Kk Robot system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047672A (en) * 2013-09-03 2015-03-16 株式会社デンソーウェーブ Calibration method for fingertip shaft origin position of robot, and robot control apparatus
CN106926234A (en) * 2015-12-29 2017-07-07 哈尔滨恒誉名翔科技有限公司 A kind of REbot-V-6R robot arm devices
CN105690421A (en) * 2016-04-21 2016-06-22 奇弩(北京)科技有限公司 Universal mechanical arm capable of automatically memorizing trajectory
CN106393089A (en) * 2016-10-18 2017-02-15 广东伯朗特智能装备股份有限公司 Control method and device for six-shaft light-load industrial robot
US10935968B2 (en) 2017-10-27 2021-03-02 Fanuc Corporation Robot, robot system, and method for setting coordinate system of robot
CN109968347A (en) * 2017-12-28 2019-07-05 沈阳新松机器人自动化股份有限公司 A kind of Zero positioning method of seven axis robot

Also Published As

Publication number Publication date
JP5786290B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5071238B2 (en) 6-axis robot 2-axis origin position calibration method, 6-axis robot control apparatus, articulated robot axis origin position calibration method, and articulated robot control apparatus
JP5786290B2 (en) 6-axis robot 6-axis origin position calibration method, 6-axis robot controller, 7-axis robot 7-axis origin position calibration method, and 7-axis robot controller
US8918210B2 (en) Method of detecting an inter-axis offset of 6-axis robot
JP4072628B2 (en) Robot calibration method and system
EP0655301B1 (en) Method and device for calibration of movement axes of an industrial robot
JP7305951B2 (en) CALIBRATION DEVICE AND CALIBRATION METHOD
JP7087575B2 (en) Posture adjustment method for 6-axis robot
JP2016168651A (en) Robot controlling method, robot apparatus, program, and recording medium
JP5531996B2 (en) 6-axis robot offset detection method
EP0616566B1 (en) Method and device for calibration of movement axes of an industrial robot
JP5701055B2 (en) 7-axis articulated robot control method, control program, and robot controller
JP2013184235A (en) Calibration method and calibration apparatus for robot
JP5672173B2 (en) 6-axis robot offset detection method
JP5071237B2 (en) 5-axis origin position calibration method for 6-axis robot, 6-axis robot controller, articulated robot axis origin position calibration method, and articulated robot controller
JP2010079471A (en) Robot system
JP5786550B2 (en) 6-axis robot offset detection method
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
US20160375580A1 (en) Robot system and robot control method
JP5789934B2 (en) 6-axis robot 4-axis origin position calibration method, 6-axis robot controller, 7-axis robot 5-axis origin position calibration method, and 7-axis robot controller
JP6221528B2 (en) Robot hand axis origin position calibration method, robot control device
KR101826577B1 (en) The tool calibration method using robot's wrist axes movements
JP2000094370A (en) Inclination measuring method of work surface of robot and measuring device thereof
KR20110123942A (en) Robot calibration method using digital leveler
JP7146609B2 (en) Detection device, drive device, robot device, detection method, article manufacturing method, control method, program, and recording medium
JP2017007082A (en) Robot system and robot control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250