JP2012035311A - Fluid transfer device and method - Google Patents

Fluid transfer device and method Download PDF

Info

Publication number
JP2012035311A
JP2012035311A JP2010179199A JP2010179199A JP2012035311A JP 2012035311 A JP2012035311 A JP 2012035311A JP 2010179199 A JP2010179199 A JP 2010179199A JP 2010179199 A JP2010179199 A JP 2010179199A JP 2012035311 A JP2012035311 A JP 2012035311A
Authority
JP
Japan
Prior art keywords
fluid
fluid transfer
cylindrical wall
transfer path
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010179199A
Other languages
Japanese (ja)
Other versions
JP5582501B2 (en
Inventor
Kyoji Aigami
京二 相上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010179199A priority Critical patent/JP5582501B2/en
Publication of JP2012035311A publication Critical patent/JP2012035311A/en
Application granted granted Critical
Publication of JP5582501B2 publication Critical patent/JP5582501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To transfer a fluid while making the fluid remained in the middle of a fluid transfer path in accordance with the feed/exhaust of gas play a role as a valve.SOLUTION: The fluid transfer device is configured to combine an upper structure whose lower side is opened and a lower structure whose upper side is opened up and down. The upper structure includes: an upper cover; a first cylindrical wall elongating from the upper cover toward the lower side in the vertical direction; a second cylindrical wall elongating from the upper cover toward the lower side in the vertical direction at the inside in the radial direction of the first cylindrical wall; a discharge tube passing through the upper cover at the inside in the radial direction of the second cylindrical wall and having a discharge port at the upper edge side and an inlet port at the lower edge side; a first gas feed/exhaust tube connected to the upper cover at the inside in the radial direction of the second cylindrical wall; and a second gas feed/exhaust tube connected to the upper cover at the inside in the radial direction of the first cylindrical wall and also at the outside in the radial direction of the second cylindrical wall. The lower structure includes: a bottom plate; a third cylindrical wall elongating from the bottom plate toward the upper side in the vertical direction; and a fourth cylindrical wall elongating from the bottom plate toward the upper side in the vertical direction at the inside in the radial direction of the third cylindrical wall.

Description

この発明は、流体を移送する装置及び方法に関し、特に、気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせながら、流体を移送する装置と方法に関する。   The present invention relates to an apparatus and a method for transferring a fluid, and more particularly to an apparatus and a method for transferring a fluid while acting as a valve on a fluid remaining in the middle of a fluid transfer path in accordance with supply and discharge of a gas.

気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせながら、流体を移送する装置と方法に関しては従来から種々の提案がされている。   Various proposals have heretofore been made regarding devices and methods for transferring a fluid while allowing the fluid remaining in the middle of the fluid transfer path to act as a valve according to the supply and discharge of gas.

特に、このような装置、方法によれば金属製の弁体を使用しなくてすむことから高温の金属溶湯を移送する装置、方法に多くの提案がなされている。   In particular, according to such an apparatus and method, many proposals have been made for an apparatus and a method for transferring a high-temperature molten metal because it is not necessary to use a metal valve body.

本願の発明者も発明者としていくつかの提案を行っている(例えば、特許文献1、2)。   The inventor of the present application has also made several proposals as an inventor (for example, Patent Documents 1 and 2).

特開2003−117649号公報JP 2003-117649 A 特開2007−61906号公報JP 2007-61906 A

前述した従来の装置、方法においては、気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせることから、流体移送路が、上下鉛直方向に延びる複数本の垂直管及び、隣接する垂直管の下端側を接続するU字状部、隣接する垂直管の上端側を接続する逆U字状部を備えている、断面でU字状の構造になるのが一般的であった。   In the above-described conventional apparatus and method, the fluid remaining in the middle of the fluid transfer path plays a role of a valve according to the supply and discharge of gas, so that the fluid transfer path has a plurality of vertically extending vertical directions. It has a U-shaped structure in cross section, which includes a vertical tube, a U-shaped portion that connects the lower ends of adjacent vertical tubes, and an inverted U-shaped portion that connects the upper ends of adjacent vertical tubes. It was general.

このような構造の装置を、例えば、高温の金属溶湯が貯留されている貯留槽内に沈設して使用する場合、偏熱の影響などにより内部構造に損傷が生ずることがある。高温の金属溶湯内に沈設することを考慮してセラミックスなどの耐火物を用いて装置を製造していても、内部構造が損傷することがあった。   For example, when the apparatus having such a structure is used by being set in a storage tank in which high-temperature molten metal is stored, the internal structure may be damaged due to the influence of uneven heat. Even when an apparatus is manufactured using a refractory material such as ceramics in consideration of being deposited in a high-temperature molten metal, the internal structure may be damaged.

この場合、分解して内部の損傷を補修することは困難であり、場合によっては装置全体の入れ替えを余儀なくされることもあった。   In this case, it is difficult to disassemble and repair the internal damage, and in some cases, the entire apparatus has to be replaced.

そこで、高温の金属溶湯を移送する場合に限らず、気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせながら、流体を移送する装置と方法において、より簡単な構造でこれを実現できるようにすることが求められていた。   Therefore, the present invention is not limited to the case of transferring a high-temperature molten metal, and in the apparatus and method for transferring a fluid while acting as a valve to the fluid remaining in the middle of the fluid transfer path according to the supply and discharge of gas, There was a need to be able to achieve this with a simple structure.

請求項1記載の発明は、
鉛直方向下側が開放している上部構造体と、鉛直方向上側が開放している下部構造体とを上下に組み合わせてなる流体移送装置であって、
前記上部構造体は、
上蓋と、
当該上蓋から鉛直方向下側に向かって延びる第一筒状壁と、
当該第一筒状壁の径方向内側において前記上蓋から鉛直方向下側に向かって延びる第二筒状壁と、
当該第二筒状壁の径方向内側において前記上蓋を貫通し、前記上蓋より鉛直方向の上側に延びる上端側に吐出口、前記上蓋より鉛直方向の下側に延びる下端側に吸入口をそれぞれ有する吐出管と、
前記第二筒状壁の径方向内側において前記上蓋に接続されている第一気体給排管と、
前記第一筒状壁の径方向内側であって、前記第二筒状壁の径方向外側において前記上蓋に接続されている第二気体給排管と
を備えており、
前記下部構造体は、
底板と、
当該底板から鉛直方向上側に向かって延びる第三筒状壁と、
当該第三筒状壁の径方向内側において前記底板から鉛直方向上側に向かって延びる第四筒状壁と
を備えていて、
前記上部構造体と、前記下部構造体とを上下に組み合わせて、
前記第一筒状壁と前記第三筒状壁との間に第一流体移送路、
前記第二筒状壁と前記第三筒状壁との間に第二流体移送路、
前記第二筒状壁と前記第四筒状壁との間に第三流体移送路、
第四筒状壁の径方向内側に流体貯留室、
前記第三筒状壁の上端と前記上蓋との間に前記第一流体移送路及び前記第二流体移送路に連続する第一空間部、
前記第二筒状壁の下端と前記底板との間に前記第二流体移送路及び前記第三流体移送路に連続する第二空間部、
前記第四筒状壁の上端と前記上蓋との間に前記第三流体移送路及び前記流体貯留室に連続する第三空間部
がそれぞれ形成されていることを特徴とする流体移送装置である。
The invention described in claim 1
A fluid transfer device formed by combining an upper structure opened on the lower side in the vertical direction and a lower structure opened on the upper side in the vertical direction,
The upper structure is
An upper lid,
A first cylindrical wall extending vertically downward from the upper lid;
A second cylindrical wall extending from the upper lid toward the lower side in the vertical direction on the radially inner side of the first cylindrical wall;
The second cylindrical wall has a discharge port on the upper end side that passes through the upper lid on the radially inner side and extends upward in the vertical direction from the upper lid, and a suction port on the lower end side that extends downward in the vertical direction from the upper lid. A discharge pipe;
A first gas supply / discharge pipe connected to the upper lid on the radially inner side of the second cylindrical wall;
A second gas supply / exhaust pipe connected to the upper lid on the radially inner side of the first cylindrical wall and on the radially outer side of the second cylindrical wall,
The lower structure is
The bottom plate,
A third tubular wall extending vertically upward from the bottom plate;
A fourth cylindrical wall extending radially upward of the third cylindrical wall from the bottom plate toward the upper side in the vertical direction,
Combining the upper structure and the lower structure vertically,
A first fluid transfer path between the first cylindrical wall and the third cylindrical wall;
A second fluid transfer path between the second cylindrical wall and the third cylindrical wall;
A third fluid transfer path between the second cylindrical wall and the fourth cylindrical wall;
A fluid storage chamber radially inward of the fourth cylindrical wall;
A first space continuous to the first fluid transfer path and the second fluid transfer path between an upper end of the third cylindrical wall and the upper lid;
A second space portion continuous between the second fluid transfer path and the third fluid transfer path between the lower end of the second cylindrical wall and the bottom plate;
The fluid transfer device is characterized in that a third space continuous to the third fluid transfer path and the fluid storage chamber is formed between an upper end of the fourth cylindrical wall and the upper lid, respectively.

請求項2記載の発明は、
前記上部構造体と、前記下部構造体とを上下に組み合わせて前記流体移送装置とした際に、
前記第一筒状壁が前記上蓋から鉛直方向下側に向かって延びる長さと、
前記第二筒状壁が前記上蓋から鉛直方向下側に向かって延びる長さと、
前記吐出管が前記上蓋から鉛直方向下側に向かって延びる長さとが同一で、
前記第三筒状壁が前記底板から鉛直方向上側に向かって延びる長さと、
前記第四筒状壁が前記底板から鉛直方向上側に向かって延びる長さとが同一
であることを特徴とする請求項1記載の流体移送装置である。
The invention according to claim 2
When the upper structure and the lower structure are combined up and down to form the fluid transfer device,
A length of the first cylindrical wall extending vertically downward from the upper lid;
A length of the second cylindrical wall extending vertically downward from the upper lid;
The discharge pipe has the same length that extends downward from the upper lid in the vertical direction,
A length of the third cylindrical wall extending from the bottom plate toward the upper side in the vertical direction;
The fluid transfer device according to claim 1, wherein the fourth cylindrical wall has the same length extending from the bottom plate toward the upper side in the vertical direction.

請求項3記載の発明は、
請求項1又は2記載の流体移送装置を流体貯留槽内に沈設し、当該流体貯留槽内に貯留されている流体を前記流体移送装置を介して移送する流体移送方法であって、
大気圧状態において前記流体貯留槽から、前記第一流体移送路、第一空間部、第二流体移送路、第二空間部、第三流体移送路、第三空間部を介して、前記流体貯留室及び吐出管の下端側内に、流体を貯留する流体貯留工程と、
引き続いて、前記第二気体給排管を開状態にしたまま、前記第一気体給排管を介して気体を供給し、前記第三流体移送路の下端側に流体が存在している状態で、所定の圧力にて前記第三空間部を加圧する第一加圧工程と、
引き続いて、前記第一加圧工程による第三空間部の加圧状態を維持したまま、前記第二気体給排管を介して気体を供給し、前記第一流体移送路の下端側及び第二流体移送路の下端側にそれぞれに流体が存在している状態で、前記第一加圧工程において前記第三空間部を加圧したのと同一の所定の圧力で前記第一空間部を加圧する第二加圧工程と、
引き続いて、前記の第二加圧工程による前記第一空間部の加圧状態を維持したまま、前記第一気体給排管を介して更に気体を供給し、前記第三流体移送路の下端側に流体が存在している状態及び、前記流体貯留室における流体の液面の高さが前記吐出管の下端側の吸入口の高さにまで降下しない状態で、前記所定の圧力より高い圧力で第三空間部を加圧することにより、前記流体貯留室から前記吐出管の吐出口を介して流体を吐出させる第三加圧工程と
を備えていることを特徴とする流体移送方法である。
The invention described in claim 3
A fluid transfer method for sinking the fluid transfer device according to claim 1 or 2 in a fluid storage tank and transferring the fluid stored in the fluid storage tank via the fluid transfer device,
In the atmospheric pressure state, the fluid storage tank stores the fluid through the first fluid transfer path, the first space part, the second fluid transfer path, the second space part, the third fluid transfer path, and the third space part. A fluid storing step for storing fluid in the lower end side of the chamber and the discharge pipe;
Subsequently, with the second gas supply / exhaust pipe open, gas is supplied via the first gas supply / exhaust pipe, and fluid is present at the lower end side of the third fluid transfer path. A first pressurizing step of pressurizing the third space with a predetermined pressure;
Subsequently, the gas is supplied through the second gas supply / exhaust pipe while maintaining the pressurized state of the third space portion by the first pressurizing step, and the lower end side and the second of the first fluid transfer path are supplied. Pressurizing the first space with the same predetermined pressure as in pressurizing the third space in the first pressurizing step in the state where fluid exists in the lower end side of the fluid transfer path. A second pressurizing step;
Subsequently, while maintaining the pressurized state of the first space portion by the second pressurizing step, further gas is supplied through the first gas supply / exhaust pipe, and the lower end side of the third fluid transfer path At a pressure higher than the predetermined pressure in a state where fluid is present in the fluid storage chamber and in a state where the fluid level of the fluid in the fluid storage chamber does not drop to the height of the suction port on the lower end side of the discharge pipe. And a third pressurizing step of discharging the fluid from the fluid storage chamber through the discharge port of the discharge pipe by pressurizing the third space.

この発明によれば、気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせながら流体を移送する装置と方法において、より簡単な構造でこれを実現することができる。   According to the present invention, in a device and a method for transferring a fluid while acting as a valve to a fluid remaining in the middle of a fluid transfer path in accordance with supply and discharge of gas, this can be realized with a simpler structure. Can do.

また、気体の給排に応じて流体移送路の途中に残存させる流体に弁の役割を果たさせながら流体を移送する装置と方法において、簡単な構造を採用しているにもかかわらず、より高い圧力で、所望の量の流体を移送する方法を提供することができる。   In addition, in the apparatus and method for transferring the fluid while acting as a valve to the fluid remaining in the middle of the fluid transfer path according to the supply and discharge of gas, despite adopting a simple structure, more A method of transferring a desired amount of fluid at high pressure can be provided.

本発明に係る流体移送装置の構成を表す概念図であって、(a)上部構造体の側面図、(b)上部構造体の平面図、(c)下部構造体の側面図、(d)下部構造体の平面図、(e)上部構造体と下部構造体とを上下に組み合わせて構成した本発明の流体移送装置の側面図、(f)本発明の流体移送装置の平面図。It is a conceptual diagram showing the structure of the fluid transfer apparatus which concerns on this invention, Comprising: (a) The side view of an upper structure, (b) The top view of an upper structure, (c) The side view of a lower structure, (d) The top view of a lower structure, (e) The side view of the fluid transfer apparatus of this invention comprised combining the upper structure and the lower structure up and down, (f) The top view of the fluid transfer apparatus of this invention. 本発明に係る流体移送方法を説明する概念図であって、大気圧状態下で本発明の流体移送装置内に流体が流入した状態を表す断面図。It is a conceptual diagram explaining the fluid transfer method which concerns on this invention, Comprising: Sectional drawing showing the state which the fluid flowed in into the fluid transfer apparatus of this invention under atmospheric pressure conditions. 本発明に係る流体移送方法を説明する概念図であって、図1図示の状態から第一加圧工程が進行している状態を表す断面図。It is a conceptual diagram explaining the fluid transfer method which concerns on this invention, Comprising: Sectional drawing showing the state which the 1st pressurization process has progressed from the state of FIG. 1 illustration. 本発明に係る流体移送方法を説明する概念図であって、第一加圧工程が完了した状態を表す断面図。It is a key map explaining the fluid transfer method concerning the present invention, and is a sectional view showing the state where the 1st pressurization process was completed. 本発明に係る流体移送方法を説明する概念図であって、第二加圧工程が完了した状態を表す断面図。It is a key map explaining the fluid transfer method concerning the present invention, and is a sectional view showing the state where the 2nd pressurization process was completed. 本発明に係る流体移送方法を説明する概念図であって、第三加圧工程により流体が吐出口から吐出される状態を表す断面図。It is a key map explaining the fluid transfer method concerning the present invention, and is sectional drawing showing the state where fluid is discharged from a discharge mouth by the 3rd pressurization process. 本願発明に係る流体移送方法の原理を示す概念図であって、(a)流体移送管内の各流体移送路内に大気圧状態で流体が流入し、各流体移送路内の液面が同じ高さ位置になっている状態を説明する断面図、(b)図7(a)図示の状態から、図中、右端の流体移送路24aを大気圧に対してQ大きい圧力Qで加圧する工程が完了した状態を説明する断面図、(c)引き続いて、逆U字状部25bを圧力Qで加圧する工程が完了した状態を説明する断面図、(d)引き続いて、逆U字状部25dを圧力Qで加圧する工程が完了した状態を説明する断面図、(e)引き続いて、逆U字状部25bを、大気圧に対して2Q(Qの2倍)大きい圧力2Qで加圧する工程が完了した状態を説明する断面図、(f)引き続いて、図中、右端の流体移送路24aを圧力2Qで加圧する工程が完了した状態を説明する断面図、(g)引き続いて、図中、右端の流体移送路24aを、大気圧に対して3Q(Qの3倍)大きい圧力3Qで加圧する工程が完了した状態を説明する断面図。It is a conceptual diagram which shows the principle of the fluid transfer method which concerns on this invention, Comprising: (a) The fluid flows in into each fluid transfer path in a fluid transfer pipe in an atmospheric pressure state, and the liquid level in each fluid transfer path is the same high FIG. 7B is a cross-sectional view for explaining the state of the vertical position, and FIG. 7B is a step of pressurizing the rightmost fluid transfer path 24a with a pressure Q that is Q larger than the atmospheric pressure from the state shown in FIG. A sectional view for explaining the completed state, (c) a sectional view for explaining a state in which the step of pressurizing the inverted U-shaped portion 25b with the pressure Q is subsequently completed, and (d) subsequently, an inverted U-shaped portion 25d. Sectional drawing explaining the state which the process of pressurizing with pressure Q was completed, (e) Then, the process of pressurizing the reverse U-shaped part 25b with 2Q (2 times Q) larger than atmospheric pressure. FIG. 8 is a cross-sectional view illustrating a state in which the fluid transfer is completed; Sectional drawing explaining the state where the process which pressurizes a with the pressure 2Q was completed, (g) Then, in the figure, the pressure 3Q which is 3Q (3 times Q) larger than the atmospheric pressure in the fluid transfer path 24a at the right end. Sectional drawing explaining the state which completed the process of pressurizing in FIG. 本発明の流体移送装置により本発明の流体移送方法が実施される一例を説明する概念図であって、大気圧状態下で本発明の流体移送装置内に流体が流入した状態を表す概略断面図。It is a conceptual diagram explaining an example by which the fluid transfer method of the present invention is carried out by the fluid transfer device of the present invention, and is a schematic cross-sectional view showing a state in which fluid flows into the fluid transfer device of the present invention under atmospheric pressure conditions . 図8図示の状態に引き続き第一加圧工程が完了した状態を表す概略断面図。FIG. 9 is a schematic cross-sectional view illustrating a state in which the first pressurizing step is completed following the state illustrated in FIG. 8. 図9図示の状態に引き続き第二加圧工程が完了した状態を表す概略断面図。FIG. 10 is a schematic cross-sectional view illustrating a state in which the second pressurizing step is completed following the state illustrated in FIG. 9. 図10図示の状態に引き続き第三加圧工程により流体の吐出が行われている状態表す概略断面図。FIG. 11 is a schematic cross-sectional view illustrating a state in which fluid is discharged by a third pressurizing process following the state illustrated in FIG. 10.

以下、添付図面を参照して本発明の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の流体移送装置21の構成を示す概略図である。   FIG. 1 is a schematic view showing a configuration of a fluid transfer device 21 of the present invention.

流体移送装置21は、鉛直方向下側(図1(a)における下側)が開放している上部構造体1(図1(a))と、鉛直方向上側(図1(c)における上側)が開放している下部構造体10(図1(c))とを、図1(e)図示のように上下に組み合わせて構成される。   The fluid transfer device 21 includes an upper structure 1 (FIG. 1A) that is open on the lower side in the vertical direction (lower side in FIG. 1A) and an upper side in the vertical direction (upper side in FIG. 1C). The lower structure 10 (FIG. 1 (c)) in which is open is combined vertically as shown in FIG. 1 (e).

上部構造体1は、図1(a)に示すように、上蓋2と、上蓋2から鉛直方向下側に向かって延びる第一筒状壁3と、第一筒状壁3の径方向内側において上蓋2から鉛直方向下側に向かって延びる第二筒状壁4を備えている。   As shown in FIG. 1A, the upper structure 1 includes an upper lid 2, a first cylindrical wall 3 that extends downward from the upper lid 2 in the vertical direction, and a radially inner side of the first cylindrical wall 3. A second cylindrical wall 4 extending downward from the upper lid 2 in the vertical direction is provided.

また、上部構造体1は、第二筒状壁4の径方向内側において上蓋2を貫通し、上蓋2より鉛直方向の上側に延びる上端側に吐出口5、上蓋2より鉛直方向の下側に延びる下端側に吸入口6をそれぞれ有する吐出管7を備えている。   Further, the upper structure 1 penetrates the upper lid 2 on the radially inner side of the second cylindrical wall 4, and has a discharge port 5 on the upper end side extending in the vertical direction above the upper lid 2, and on the lower side in the vertical direction from the upper lid 2. Discharge pipes 7 each having a suction port 6 are provided on the extending lower end side.

更に、上部構造体1は、第二筒状壁4の径方向内側において上蓋2に接続されている第一気体給排管8と、第一筒状壁3の径方向内側であって、第二筒状壁4の径方向外側において上蓋2に接続されている第二気体給排管9とを備えている。   Furthermore, the upper structure 1 includes a first gas supply / exhaust pipe 8 connected to the upper lid 2 on the radially inner side of the second cylindrical wall 4, and a radially inner side of the first cylindrical wall 3. A second gas supply / exhaust pipe 9 connected to the upper lid 2 is provided outside the two cylindrical walls 4 in the radial direction.

下部構造体10は、図1(c)に示すように、底板11と、底板11から鉛直方向上側(図1(c)において上側)に向かって延びる第三筒状壁12と、第三筒状壁12の径方向内側において底板11から鉛直方向上側に向かって延びる第四筒状壁13とを備えている。   As shown in FIG. 1C, the lower structure 10 includes a bottom plate 11, a third cylindrical wall 12 extending from the bottom plate 11 toward the upper side in the vertical direction (upper side in FIG. 1C), and a third cylinder. A fourth cylindrical wall 13 extending from the bottom plate 11 toward the upper side in the vertical direction on the radially inner side of the wall 12.

このような上部構造体1と、下部構造体10とを図1(e)図示のように上下に組み合わせて本発明の流体移送装置21とする。   Such an upper structure 1 and lower structure 10 are combined vertically as shown in FIG. 1E to form a fluid transfer device 21 of the present invention.

この流体移送装置21では、上部構造体1と、下部構造体10とを上下に組み合わせることにより、図1(e)図示のように、第一流体移送路14、第二流体移送路15、第三流体移送路16、流体貯留室17、第一空間部18、第二空間部19、第三空間部20が形成される。   In the fluid transfer device 21, the upper structure 1 and the lower structure 10 are combined vertically so that the first fluid transfer path 14, the second fluid transfer path 15, the first structure, as shown in FIG. A three-fluid transfer path 16, a fluid storage chamber 17, a first space portion 18, a second space portion 19, and a third space portion 20 are formed.

第一流体移送路14は第一筒状壁3と第三筒状壁12との間に、第二流体移送路15は第二筒状壁4と第三筒状壁12との間に、第三流体移送路16は第二筒状壁4と第四筒状壁13との間に、流体貯留室17は第四筒状壁13の径方向内側にそれぞれ形成される。   The first fluid transfer path 14 is between the first cylindrical wall 3 and the third cylindrical wall 12, and the second fluid transfer path 15 is between the second cylindrical wall 4 and the third cylindrical wall 12, The third fluid transfer path 16 is formed between the second cylindrical wall 4 and the fourth cylindrical wall 13, and the fluid storage chamber 17 is formed on the radially inner side of the fourth cylindrical wall 13.

また、第一空間部18は、第三筒状壁12の上端と上蓋2との間に第一流体移送路14及び第二流体移送路15に連続して形成され、第二空間部19は、第二筒状壁4の下端と底板11との間に第二流体移送路15及び第三流体移送路16に連続して形成され、第三空間部20は、第四筒状壁13の上端と上蓋2との間に第三流体移送路16及び流体貯留室17に連続して形成される。   The first space 18 is formed continuously between the upper end of the third cylindrical wall 12 and the upper lid 2 in the first fluid transfer path 14 and the second fluid transfer path 15. The second fluid transfer path 15 and the third fluid transfer path 16 are continuously formed between the lower end of the second cylindrical wall 4 and the bottom plate 11, and the third space portion 20 is formed on the fourth cylindrical wall 13. A third fluid transfer path 16 and a fluid storage chamber 17 are formed continuously between the upper end and the upper lid 2.

こうして、図1(e)図示のように、吐出管7は流体貯留室17内に延び、第一気体給排管8は第三空間部20に連通し、第二気体給排管9は第一空間部18に連通するようになる。   Thus, as shown in FIG. 1E, the discharge pipe 7 extends into the fluid storage chamber 17, the first gas supply / discharge pipe 8 communicates with the third space portion 20, and the second gas supply / discharge pipe 9 The space 18 communicates with the space 18.

上部構造体1の上蓋2に対して第一筒状壁3、第二筒状壁4、吐出管7、第一気体給排管8、第二気体給排管9が配備される位置、下部構造体10の底板11に対して第三筒状壁12、第四筒状壁13が配備される位置は、図1(e)図示のように第一流体移送路14、第二流体移送路15、第三流体移送路16、流体貯留室17、第一空間部18、第二空間部19、第三空間部20が形成され、吐出管7が流体貯留室17内に延び、第一気体給排管8が第三空間部20、第二気体給排管9が第一空間部18にそれぞれ連通する構造になることを考慮して決定される。   Position where the first cylindrical wall 3, the second cylindrical wall 4, the discharge pipe 7, the first gas supply / exhaust pipe 8, and the second gas supply / exhaust pipe 9 are arranged with respect to the upper lid 2 of the upper structure 1, the lower part The positions where the third cylindrical wall 12 and the fourth cylindrical wall 13 are arranged with respect to the bottom plate 11 of the structure 10 are the first fluid transfer path 14 and the second fluid transfer path as shown in FIG. 15, the third fluid transfer path 16, the fluid storage chamber 17, the first space portion 18, the second space portion 19, and the third space portion 20 are formed, the discharge pipe 7 extends into the fluid storage chamber 17, and the first gas It is determined in consideration of the structure in which the supply / discharge pipe 8 communicates with the third space portion 20 and the second gas supply / discharge pipe 9 communicates with the first space portion 18.

本発明の流体移送装置21を構成する前記の上部構造体1、下部構造体10は、いずれも、不定形耐火物を水と混練し、所定の型枠に流し込んで、固化、乾燥、焼成することによって成型することができる。   In the upper structure 1 and the lower structure 10 constituting the fluid transfer device 21 of the present invention, the amorphous refractory is kneaded with water, poured into a predetermined mold, solidified, dried, and fired. Can be molded.

図示の実施形態では、第一筒状壁3、第二筒状壁4、第三筒状壁12、第四筒状壁13は、いずれも、円筒状にしているが、前述した構造を形成できるものであれば、図1(b)、(d)、(f)図示のように平面、底面から見たときに、円筒状ではなく、三角筒状、四角筒状、等の多角筒状にすることができる。   In the illustrated embodiment, the first cylindrical wall 3, the second cylindrical wall 4, the third cylindrical wall 12, and the fourth cylindrical wall 13 are all cylindrical, but form the structure described above. If possible, it is not a cylindrical shape but a polygonal cylindrical shape such as a triangular cylindrical shape or a rectangular cylindrical shape when viewed from the plane or bottom as shown in FIGS. Can be.

本発明の流体移送装置21は上述したように、上部構造体1、下部構造体10を上下に組み合わせて構成されているので、内部構造に損傷、等の不具合が生じた場合には取り外して、内部構造を簡単に修復することができる。   As described above, since the fluid transfer device 21 of the present invention is configured by combining the upper structure 1 and the lower structure 10 in the vertical direction, if the internal structure is damaged, remove it, The internal structure can be easily repaired.

上述した本発明の流体移送装置21を用いた本発明による流体の移送は次のように行われる。   The fluid transfer according to the present invention using the fluid transfer device 21 of the present invention described above is performed as follows.

まず、流体移送装置21を流体貯留槽内に設置し、前述したように、第一流体移送路14、第二流体移送路15、第三流体移送路16、流体貯留室17、第一空間部18、第二空間部19、第三空間部20が形成されている状態で、上部構造体1、下部構造体10を固定する。   First, the fluid transfer device 21 is installed in the fluid storage tank, and as described above, the first fluid transfer path 14, the second fluid transfer path 15, the third fluid transfer path 16, the fluid storage chamber 17, and the first space portion. 18, the upper structure 1 and the lower structure 10 are fixed in a state where the second space 19 and the third space 20 are formed.

(流体貯留工程)
図2に矢印31、32、33、34、35で示すように、大気圧状態において、流体貯留槽内の流体30が、第一流体移送路14、第一空間部18、第二流体移送路15、第二空間部19、第三流体移送路16、第三空間部20を介して流体貯留室17及び吐出管7の下端側内に流入し、貯留される。
(Fluid storage process)
As shown by arrows 31, 32, 33, 34, and 35 in FIG. 15, the fluid flows into the fluid storage chamber 17 and the lower end side of the discharge pipe 7 through the second space 19, the third fluid transfer path 16, and the third space 20 and is stored.

(第一加圧工程)
次に、第二気体給排管9を開状態にしたまま、第一気体給排管8を介して気体を矢印36で示すように供給し、第三流体移送路16の下端側に流体30が存在している状態で、所定の圧力(p1)にて第三空間部20を加圧する(図3、図4)。
(First pressurization process)
Next, with the second gas supply / exhaust pipe 9 open, gas is supplied as indicated by an arrow 36 through the first gas supply / exhaust pipe 8, and the fluid 30 is supplied to the lower end side of the third fluid transfer path 16. The third space 20 is pressurized with a predetermined pressure (p1) in the presence of (FIGS. 3 and 4).

そこで、図4図示のように、流体30は、第三流体移送路16、第二空間部19、第二流体移送路15、第一空間部18、第一流体移送路14を介して矢印37、38、39のように流動して流体貯留槽内に戻る。また、矢印40のように吐出管7の吸入口6内に流入し、吐出管7内を矢印41のように上昇する。   Therefore, as shown in FIG. 4, the fluid 30 passes through the third fluid transfer path 16, the second space portion 19, the second fluid transfer path 15, the first space portion 18, and the first fluid transfer path 14 with an arrow 37. , 38, 39 and return to the fluid reservoir. Further, it flows into the suction port 6 of the discharge pipe 7 as indicated by an arrow 40 and rises inside the discharge pipe 7 as indicated by an arrow 41.

この結果、第三流体移送路16内の流体液面と流体貯留槽内の流体液面との間にhで示される差が生じ、流体貯留室17内の流体液面と吐出管7の流体液面との間にhで示される差が生じる。   As a result, a difference indicated by h occurs between the fluid level in the third fluid transfer path 16 and the fluid level in the fluid storage tank, and the fluid level in the fluid storage chamber 17 and the fluid in the discharge pipe 7 A difference indicated by h occurs between the liquid level and the liquid level.

すなわち、流体30にhで示される液面の高さの差が生じる所定の圧力(p1)が第三空間部20に加えられたことになる。   That is, a predetermined pressure (p 1) that causes a difference in liquid level indicated by h in the fluid 30 is applied to the third space portion 20.

この際、第三流体移送路16の下端側に存在している流体が弁の役割を果たし、加圧された第三空間部20の圧力(p1)が維持される。   Under the present circumstances, the fluid which exists in the lower end side of the 3rd fluid transfer path 16 plays the role of a valve, and the pressure (p1) of the pressurized 3rd space part 20 is maintained.

図3は、第二気体給排管9を開状態にしたまま、第一気体給排管8を介して気体を矢印36で示すように供給し、第三空間部20を加圧し始め、図4図示の状態に至る途中の状態を示すものである。第三流体移送路16内の流体液面の高さと、流体貯留室17内の流体液面の高さとが同一になっている状態である。   FIG. 3 shows that gas is supplied through the first gas supply / exhaust pipe 8 as shown by an arrow 36 while the second gas supply / exhaust pipe 9 is in an open state, and pressurization of the third space 20 is started. 4 shows a state in the middle of the state shown in the figure. The height of the fluid level in the third fluid transfer path 16 and the height of the fluid level in the fluid storage chamber 17 are the same.

図2のように大気圧状態で流体30を流入させると、第一気体給排管8、第二気体給排管9、吐出管7における液面の高さは流体貯留槽内の液面の高さと同一になり、図3図示の状態でも、第二気体給排管9、吐出管7における液面の高さは流体貯留槽内の液面の高さと同一である。   As shown in FIG. 2, when the fluid 30 is allowed to flow in at atmospheric pressure, the liquid level in the first gas supply / discharge pipe 8, the second gas supply / discharge pipe 9, and the discharge pipe 7 is the same as the liquid level in the fluid storage tank. In the state shown in FIG. 3, the liquid level in the second gas supply / discharge pipe 9 and the discharge pipe 7 is the same as the liquid level in the fluid storage tank.

そこで、次の第二加圧工程、第三加圧工程をへて、流体貯留室17から吐出管7の吐出口5を介して流体30を吐出する場合の吐出量は、この図3図示の状態を基準とした量で一定になる。   Therefore, the discharge amount when the fluid 30 is discharged from the fluid storage chamber 17 through the discharge port 5 of the discharge pipe 7 through the next second pressurization step and third pressurization step is as shown in FIG. The amount is constant based on the state.

すなわち、大気圧状態で、第一気体給排管8、第二気体給排管9、吐出管7における液面の高さは流体貯留槽内の液面の高さと同一であり、図3図示の状態でも、第二気体給排管9、吐出管7における液面の高さは流体貯留槽内の液面の高さと同一である。そして、第四筒状壁13の上端で画される流体貯留室17内の液面高さから、吐出管7における液面高さまでの部分に存在している流体の中から、後述する第三加圧工程による吐出が行われる。そこで、第三加圧工程で加える圧力を常に一定にしておけば、一定量の流体が吐出されることになる。   That is, in the atmospheric pressure state, the liquid level in the first gas supply / exhaust pipe 8, the second gas supply / exhaust pipe 9, and the discharge pipe 7 is the same as the liquid level in the fluid storage tank. Even in this state, the height of the liquid level in the second gas supply / discharge pipe 9 and the discharge pipe 7 is the same as the height of the liquid level in the fluid storage tank. Then, from the fluid existing in the portion from the liquid level height in the fluid storage chamber 17 defined by the upper end of the fourth cylindrical wall 13 to the liquid level height in the discharge pipe 7, a third to be described later. Discharge by a pressurization process is performed. Therefore, if the pressure applied in the third pressurizing step is always constant, a certain amount of fluid is discharged.

(第二加圧工程)
次に、前記第一加圧工程による第三空間部20の加圧状態を維持したまま、第二気体給排管9を介して気体を矢印42で示すように供給し、第一流体移送路14の下端側及び第二流体移送路15の下端側にそれぞれ流体が存在している状態で、前記の第一加圧工程において第三空間部20を加圧したのと同一の所定の圧力(p1)で第一空間部18を加圧する。
(Second pressurization process)
Next, the gas is supplied as shown by the arrow 42 through the second gas supply / exhaust pipe 9 while maintaining the pressurized state of the third space portion 20 in the first pressurizing step, and the first fluid transfer path 14 and the lower end side of the second fluid transfer path 15, the same predetermined pressure (the same pressure as when the third space portion 20 was pressurized in the first pressurizing step). The first space 18 is pressurized at p1).

前記の第一加圧工程において第三空間部20を加圧したのと同一の所定の圧力(p1)で第一空間部18を加圧するので、第一流体移送路14流体液面の高さと、流体貯留槽内の流体液面との間には、前記の第一加圧工程において、第三流体移送路16内の流体液面と流体貯留槽内の流体液面との間に生じたのと同じhで示される差が生じる。   Since the first space 18 is pressurized at the same predetermined pressure (p1) as the third space 20 is pressurized in the first pressurizing step, the height of the fluid level of the first fluid transfer path 14 In the first pressurizing step, the fluid level between the fluid level in the fluid reservoir and the fluid level in the fluid reservoir is generated between the fluid level in the third fluid transfer path 16 and the fluid level in the fluid reservoir. The same difference as h is produced.

また、第二流体移送路15内の流体は第一空間部18が加圧されることにより押し下げられ、第二流体移送路15内の流体が若干、第三流体移送路15内に矢印43で示すように流動する。そして、第一加圧工程において第三空間部20を加圧したのと同一の所定の圧力(p1)で第一空間部18が加圧されることから、図5図示のように、第二流体移送路15内の流体液面と、第三流体移送路15内の流体液面とは同一の高さになる。   In addition, the fluid in the second fluid transfer path 15 is pushed down by pressurizing the first space 18, and the fluid in the second fluid transfer path 15 is slightly in the third fluid transfer path 15 by the arrow 43. Flow as shown. And since the 1st space part 18 is pressurized with the same predetermined pressure (p1) which pressurized the 3rd space part 20 in the 1st pressurization process, as shown in FIG. The fluid level in the fluid transfer path 15 and the fluid level in the third fluid transfer path 15 are the same height.

この際、第一流体移送路14の下端側及び第二流体移送路15の下端側にそれぞれ存在している流体が弁の役割を果たし、第二加圧工程で加圧される第一空間部18及び、第一加圧工程で加圧された第三空間部20の圧力(p1)がそれぞれ維持される。   Under the present circumstances, the fluid which exists respectively in the lower end side of the 1st fluid transfer path 14 and the lower end side of the 2nd fluid transfer path 15 plays the role of a valve, and the 1st space part pressurized by the 2nd pressurization process 18 and the pressure (p1) of the third space portion 20 pressurized in the first pressurizing step are respectively maintained.

(第三加圧工程)
次に、前記の第二加圧工程による第一空間部18の加圧状態を維持したまま、第一気体給排管8を介して矢印44で示されるように、更に、気体を供給し、第三流体移送路16の下端側に流体が存在している状態及び、流体貯留室17における流体の液面の高さが吐出管7の下端側の吸入口6の高さにまで降下しない状態で、前記の第一加圧工程及び第二加圧工程における所定の圧力(p1)より高い圧力(p2)で第三空間部20を加圧することにより、流体貯留室17から吐出管7の吐出口5を介して流体を矢印45で示すように吐出させる。
(Third pressurization process)
Next, while maintaining the pressurized state of the first space 18 by the second pressurizing step, gas is further supplied through the first gas supply / exhaust pipe 8 as indicated by the arrow 44, A state in which fluid is present on the lower end side of the third fluid transfer path 16 and a state in which the liquid level in the fluid storage chamber 17 does not drop to the height of the suction port 6 on the lower end side of the discharge pipe 7. Thus, the discharge of the discharge pipe 7 from the fluid storage chamber 17 is performed by pressurizing the third space portion 20 with a pressure (p2) higher than the predetermined pressure (p1) in the first pressurization step and the second pressurization step. The fluid is discharged through the outlet 5 as indicated by an arrow 45.

第三空間部20が、第一加圧工程及び第二加圧工程における所定の圧力(p1)より高い圧力(p2)で加圧されることにより、第三流体移送路16における流体の液面は図6図示のように降下し、矢印46で示すように流体が第三流体移送路16から第二流体移送路15側に移動し、第一加圧工程及び第二加圧工程における所定の圧力(p1)で加圧されている第一空間部18に連続している第二流体移送路15における流体の液面との間に、図6に符号Xで示す高さの相違が生じる。   When the third space portion 20 is pressurized at a pressure (p2) higher than the predetermined pressure (p1) in the first pressurization step and the second pressurization step, the liquid level of the fluid in the third fluid transfer path 16 6 descends as shown in FIG. 6, and the fluid moves from the third fluid transfer path 16 to the second fluid transfer path 15 as indicated by an arrow 46, and the predetermined pressure in the first pressurization process and the second pressurization process is determined. A difference in height indicated by a symbol X in FIG. 6 occurs between the fluid level of the fluid in the second fluid transfer path 15 continuing to the first space 18 that is pressurized by the pressure (p1).

すなわち、第一加圧工程及び第二加圧工程における所定の圧力(p1)で加圧されている第二流体移送路15における流体の液面の高さとの間に、図6に符号Xで示す高さの相違を生じさせるだけの高い圧力(p2)で、第三空間部20、第三流体移送路16、流体貯留室17が加圧されていることになる。   That is, the reference numeral X in FIG. 6 indicates the height of the fluid level in the second fluid transfer path 15 pressurized at a predetermined pressure (p1) in the first pressurization step and the second pressurization step. The third space 20, the third fluid transfer path 16, and the fluid storage chamber 17 are pressurized with a high pressure (p2) that causes a difference in height to be shown.

一方、吐出管7の吐出口5側は大気圧状態であるので、流体貯留室17から吐出管7の吸入口6内に矢印40で示すように流入した流体の液面の高さは図6に仮想線で示す位置になる。   On the other hand, since the discharge port 5 side of the discharge pipe 7 is in the atmospheric pressure state, the height of the liquid level of the fluid flowing from the fluid storage chamber 17 into the suction port 6 of the discharge pipe 7 as indicated by the arrow 40 is shown in FIG. It becomes a position shown by a virtual line.

「第一加圧工程及び第二加圧工程でそれぞれ第三空間部20、第一空間部18に加えられる圧力(p1=大気圧状態の液面に対して図4、図5に符号hで示す高さの差を生じさせる圧力)」+「第三加圧工程で第三空間部20に加えられる圧力(p2=第一加圧工程及び第二加圧工程でそれぞれ第三空間部20、第一空間部18に加えられる圧力(p1)を受けている液面に対して図6に符号Xで示す高さの差を生じさせる圧力)」という圧力(P)が、大気圧状態の液面に対して、加えられることによって、流体貯留室17内の流体の液面の高さと、大気圧状態の液面の高さとの間には、図6に仮想線で示す高さ方向の相違Hが生じることになる。   “Pressure applied to the third space portion 20 and the first space portion 18 in the first pressurization step and the second pressurization step, respectively (p1 = a reference numeral h in FIG. 4 and FIG. Pressure causing a difference in height to be shown) ”+“ pressure applied to the third space portion 20 in the third pressure step (p2 = the third space portion 20 in the first pressure step and the second pressure step, respectively) The pressure (P) of “the pressure causing the height difference indicated by the symbol X in FIG. 6 to the liquid surface receiving the pressure (p1) applied to the first space portion 18” is the liquid in the atmospheric pressure state. The difference between the height of the fluid level in the fluid storage chamber 17 and the height of the fluid level in the atmospheric pressure state in the height direction indicated by the phantom line in FIG. H is generated.

そして、吐出管7内を矢印41のように上昇する流体中、吐出口5よりも高い位置にまで上昇する流体が、吐出口5から矢印45のように吐出されていくことになる。   Then, in the fluid rising in the discharge pipe 7 as indicated by the arrow 41, the fluid rising to a position higher than the discharge port 5 is discharged from the discharge port 5 as indicated by the arrow 45.

引き続き、第一気体給排管8、第二気体給排管9への気体の供給を停止し、第一気体給排管8、第二気体給排管9を開状態にすることによって、流体貯留工程にもどり、図2(a)に矢印31、32、33、34、35で示すように、大気圧状態において、流体貯留槽から流体30が、第一流体移送路14、第一空間部18、第二流体移送路15、第二空間部19、第三流体移送路16、第三空間部20を介して流体貯留室17及び吐出管7の下端側内に、矢印31、32、33、34、35のように流入し、貯留される。   Subsequently, the supply of gas to the first gas supply / exhaust pipe 8 and the second gas supply / exhaust pipe 9 is stopped, and the first gas supply / exhaust pipe 8 and the second gas supply / exhaust pipe 9 are opened, so that the fluid Returning to the storage step, as shown by arrows 31, 32, 33, 34, and 35 in FIG. 2A, the fluid 30 is transferred from the fluid storage tank to the first fluid transfer path 14 and the first space portion in the atmospheric pressure state. 18, arrows 31, 32, 33 in the lower end side of the fluid storage chamber 17 and the discharge pipe 7 through the second fluid transfer path 15, the second space 19, the third fluid transfer path 16, and the third space 20. , 34, 35, and stored.

以上の通り、本発明の流体移送方法によれば、上述した圧力Pで流体貯留室17内の流体を吐出管7の吐出口5を介して吐出させることができる。   As described above, according to the fluid transfer method of the present invention, the fluid in the fluid storage chamber 17 can be discharged through the discharge port 5 of the discharge pipe 7 at the pressure P described above.

図4に示すように、第三空間部20、すなわち、流体貯留室17、第三流体移送路16に対して圧力p1を加えた時点で、第三流体移送路16内の液面高さは第二筒状壁4の下端側に近づく。p1より更に大きな圧力を第三空間部20に加えて第三流体移送路16内の液面高さが第二筒状壁4の下端に達すると、第三流体移送路16の下端側に残っている流体による弁の働きが失われてしまう。   As shown in FIG. 4, when the pressure p <b> 1 is applied to the third space 20, that is, the fluid storage chamber 17 and the third fluid transfer path 16, the liquid level in the third fluid transfer path 16 is It approaches the lower end side of the second cylindrical wall 4. When a pressure higher than p1 is applied to the third space portion 20 and the liquid level in the third fluid transfer path 16 reaches the lower end of the second cylindrical wall 4, it remains on the lower end side of the third fluid transfer path 16. The function of the valve due to the fluid is lost.

このため、第一加圧工程においてp1を越える大きな圧力を第三空間部20に加えることはできない。   For this reason, a large pressure exceeding p1 cannot be applied to the third space portion 20 in the first pressurizing step.

しかし、この発明では、第二加圧工程を採用していることにより、上述したように圧力p1よりも大きな圧力Pを、第三空間部20、すなわち、流体貯留室17、第三流体移送路16に加えて、流体貯留室17内の流体を吐出管7の吐出口5を介して吐出させることができる。   However, in the present invention, by adopting the second pressurizing step, as described above, the pressure P larger than the pressure p1 is applied to the third space portion 20, that is, the fluid storage chamber 17, the third fluid transfer path. In addition to 16, the fluid in the fluid storage chamber 17 can be discharged through the discharge port 5 of the discharge pipe 7.

以上に説明したこの本発明の流体移送方法の基本原理を図7に基づいて説明する。   The basic principle of the fluid transfer method of the present invention described above will be described with reference to FIG.

大気圧下において、流体移送管23(例えば金属パイプ)を構成する流体移送路24a、24b、24c、24d、24e、24f内にそれぞれ流体が図7(a)の液面高さ位置に貯留されている。   Under atmospheric pressure, the fluid is respectively stored in the liquid level height position in FIG. 7A in the fluid transfer paths 24a, 24b, 24c, 24d, 24e, and 24f constituting the fluid transfer pipe 23 (for example, metal pipe). ing.

流体移送管23は、流体移送路24a、流体移送路24b、流体移送路24c、流体移送路24d、流体移送路24e、流体移送路24fによって構成されている。そして、流体移送路24aの下端側と流体移送路24bの下端側とがU字部25aによって、流体移送路24cの下端側と流体移送路24dの下端側とがU字部25cによって、流体移送路24eの下端側と流体移送路24fの下端側とがU字部25eによって、流体移送路24bの上端側と体移送路24cの上端側とが逆U字部25bによって、流体移送路24dの上端側と体移送路24eの上端側とが逆U字部25dによって、それぞれ、接続されている。   The fluid transfer pipe 23 includes a fluid transfer path 24a, a fluid transfer path 24b, a fluid transfer path 24c, a fluid transfer path 24d, a fluid transfer path 24e, and a fluid transfer path 24f. The lower end side of the fluid transfer path 24a and the lower end side of the fluid transfer path 24b are transferred by the U-shaped portion 25a, and the lower end side of the fluid transfer path 24c and the lower end side of the fluid transfer path 24d are transferred by the U-shaped portion 25c. The lower end side of the path 24e and the lower end side of the fluid transfer path 24f are formed by the U-shaped part 25e, and the upper end side of the fluid transfer path 24b and the upper end side of the body transfer path 24c are set by the inverted U-shaped part 25b. The upper end side and the upper end side of the body transfer path 24e are connected to each other by an inverted U-shaped portion 25d.

そして、流体移送路24aの上端に気体給排管26aが接続され、逆U字部25bの上部に気体給排管26bが接続され、逆U字部25dの上部に気体給排管26cが接続され、当該気体給排管を介して気体が給排されるようになっている。   And the gas supply / discharge pipe 26a is connected to the upper end of the fluid transfer path 24a, the gas supply / discharge pipe 26b is connected to the upper part of the inverted U-shaped part 25b, and the gas supply / exhaust pipe 26c is connected to the upper part of the inverted U-shaped part 25d. The gas is supplied and discharged through the gas supply / discharge pipe.

大気圧下で、気体給排管26a、気体給排管26b、気体給排管26cが開放されている図7(a)の状態から、気体給排管26b、気体給排管26cを開状態に維持したまま、気体給排管26aを介して流体移送路24aを、大気圧状態に比較してQヘクトパスカル大きい圧力(以下のこの圧力の大きさを「Q」と表す)で加圧した(図7(b))。   Under the atmospheric pressure, the gas supply / exhaust pipe 26b, the gas supply / exhaust pipe 26b, and the gas supply / exhaust pipe 26c are opened from the state shown in FIG. 7A. The fluid transfer path 24a was pressurized through the gas supply / exhaust pipe 26a with a pressure Q hectopascal larger than the atmospheric pressure state (the magnitude of this pressure is expressed as "Q" below). FIG. 7B).

この結果、流体移送路24a内の流体は圧力差Qに応じて図7(b)図示の位置まで下降し、流体移送路24b内の流体は圧力差Qに応じて図7(b)図示の位置まで上昇する。   As a result, the fluid in the fluid transfer path 24a is lowered to the position shown in FIG. 7B according to the pressure difference Q, and the fluid in the fluid transfer path 24b is shown in FIG. 7B according to the pressure difference Q. Ascend to position.

この場合、流体移送路24a内下部に滞留している流体が弁としての機能を果たし、流体移送路24a内の圧力Qが維持される。   In this case, the fluid staying in the lower part in the fluid transfer path 24a functions as a valve, and the pressure Q in the fluid transfer path 24a is maintained.

次に、気体給排管26cを開状態に維持し、図7(b)での流体移送路24a内の圧力Qを維持したまま、逆U字部25bを気体給排管26bを介して、同一の圧力Qで加圧する(図7(c))。この場合、流体移送路24a内の圧力はQに維持されているので、流体移送路24b内の流体は若干下降し、流体移送路24b内の液面高さと、流体移送路24a内の液面高さは同一になる。   Next, the gas supply / discharge pipe 26c is maintained in an open state, and the inverted U-shaped portion 25b is passed through the gas supply / discharge pipe 26b while maintaining the pressure Q in the fluid transfer path 24a in FIG. Pressurization is performed with the same pressure Q (FIG. 7C). In this case, since the pressure in the fluid transfer path 24a is maintained at Q, the fluid in the fluid transfer path 24b slightly drops, the liquid level in the fluid transfer path 24b, and the liquid level in the fluid transfer path 24a. The height is the same.

また、流体移送路24c内の流体は圧力差Qに応じて図7(b)における流体移送路24a内の流体の液面高さと同一の高さ位置にまで下降し、流体移送路24d内の流体は図3(b)における流体移送路24b内の流体の液面高さと同一の高さ位置にまで上昇する。   Further, the fluid in the fluid transfer path 24c is lowered to the same height as the liquid level in the fluid transfer path 24a in FIG. The fluid rises to the same height as the liquid level of the fluid in the fluid transfer path 24b in FIG.

この際、流体移送路24b内に滞留している流体及び流体移送路24cの下端側に滞留している流体が、それぞれ弁としての機能を果たし、流体移送路24a、逆U字部25b内の圧力Qを維持している。   At this time, the fluid staying in the fluid transfer path 24b and the fluid staying at the lower end side of the fluid transfer path 24c each function as a valve, and in the fluid transfer path 24a and the inverted U-shaped portion 25b. The pressure Q is maintained.

次いで、図7(b)、(c)における流体移送路24a内の圧力Q及び、図7(c)における逆U字部25b内の圧力Qをそれぞれ維持したまま、逆U字部25dを気体給排管26cを介して同一の圧力Qで加圧する(図7(d)。   Next, while maintaining the pressure Q in the fluid transfer path 24a in FIGS. 7B and 7C and the pressure Q in the reverse U-shaped portion 25b in FIG. 7C, the reverse U-shaped portion 25d is gasified. Pressurization is performed at the same pressure Q through the supply / discharge pipe 26c (FIG. 7D).

この場合、流体移送路24e内の流体は圧力差Qに応じて、図7(b)における流体移送路24a内の流体の液面高さ及び、図7(c)における流体移送路24c内の流体の液面高さと同一の高さ位置にまで下降し、流体移送路24f内の流体は図7(b)における流体移送路24b内の流体の液面高さと同一の高さ位置にまで上昇する。   In this case, the fluid in the fluid transfer path 24e corresponds to the pressure difference Q, and the fluid level in the fluid transfer path 24a in FIG. 7B and the fluid level in the fluid transfer path 24c in FIG. The fluid moves down to the same height as the fluid level, and the fluid in the fluid transfer path 24f rises to the same height as the fluid level in the fluid transfer path 24b in FIG. 7B. To do.

一方、逆U字部25b内の圧力はQに維持されているので、流体移送路24d内の流体は若干下降し、流体移送路24d内の液面高さと、流体移送路24c内の液面高さは同一になる。   On the other hand, since the pressure in the inverted U-shaped portion 25b is maintained at Q, the fluid in the fluid transfer path 24d slightly drops, the liquid level in the fluid transfer path 24d, and the liquid level in the fluid transfer path 24c. The height is the same.

この場合、流体移送路24d内に滞留している流体及び流体移送路24eの下端側内に滞留している流体が、それぞれ弁としての機能を果たし、逆U字部25d内の圧力Qが維持されている。   In this case, the fluid staying in the fluid transfer path 24d and the fluid staying in the lower end side of the fluid transfer path 24e each function as a valve, and the pressure Q in the inverted U-shaped portion 25d is maintained. Has been.

次に、図7(b)、(c)における流体移送路24a内の圧力Q及び、図7(d)における逆U字部25d内の圧力Qをそれぞれ維持したまま、逆U字部25bを、気体給排管26bを介して、大気圧状態に比較して2Qヘクトパスカル大きい圧力(前記のQヘクトパスカルの2倍の大きさの圧力であって、以下のこの圧力の大きさを「2Q」と表す)で加圧する(図7(e))。   Next, while maintaining the pressure Q in the fluid transfer path 24a in FIGS. 7B and 7C and the pressure Q in the inverted U-shaped portion 25d in FIG. 7D, the inverted U-shaped portion 25b is maintained. Through the gas supply / exhaust pipe 26b, the pressure 2Q hectopascal is larger than the atmospheric pressure state (the pressure is twice as large as the Q hectopascal, and this pressure is expressed as “2Q” below. Pressure) (FIG. 7 (e)).

この結果、流体移送路24b、流体移送路24c内の流体の液面高さは下降し、流体移送路24a、流体移送路24d内の流体の液面高さは上昇する。   As a result, the liquid level height of the fluid in the fluid transfer path 24b and the fluid transfer path 24c decreases, and the liquid level height of the fluid in the fluid transfer path 24a and fluid transfer path 24d increases.

この際、流体移送路24b、流体移送路24c、流体移送路24eの下端側に滞留している流体が、それぞれ弁としての機能を果たし、流体移送路24a内の圧力Q、逆U字部25b内の圧力2Q、逆U字部25d内の圧力Qを維持している。   At this time, the fluid staying at the lower end side of the fluid transfer path 24b, the fluid transfer path 24c, and the fluid transfer path 24e functions as a valve, and the pressure Q in the fluid transfer path 24a and the inverted U-shaped portion 25b. The internal pressure 2Q and the internal pressure Q in the inverted U-shaped portion 25d are maintained.

次に、図7(e)における逆U字部25b内の圧力2Q、逆U字部25d内の圧力Qを維持をそれぞれ維持したまま、流体移送路24a内を、気体給排管26aを介して2Qの圧力で加圧する(図7(f))。   Next, while maintaining the pressure 2Q in the inverted U-shaped portion 25b and the pressure Q in the inverted U-shaped portion 25d in FIG. 7 (e), the fluid transfer path 24a is maintained via the gas supply / discharge pipe 26a. And pressurizing with a pressure of 2Q (FIG. 7F).

この結果、流体移送路24a内の流体の液面高さは下降し、流体移送路24a、流体移送路24b内の流体の液面高さは同一になる。   As a result, the liquid level in the fluid transfer path 24a is lowered, and the liquid level in the fluid transfer path 24a and the fluid transfer path 24b is the same.

この際、流体移送路24a、流体移送路24cの下端側に滞留している流体が、それぞれ弁としての機能を果たし、流体移送路24a内の圧力2Q、逆U字部25b内の圧力2Qを維持している。   At this time, the fluid staying at the lower end side of the fluid transfer path 24a and the fluid transfer path 24c serves as a valve, and the pressure 2Q in the fluid transfer path 24a and the pressure 2Q in the inverted U-shaped portion 25b are reduced. Is maintained.

引き続いて、図7(e)、(f)における逆U字部25b内の圧力2Q、逆U字部25d内の圧力Qを維持をそれぞれ維持したまま、流体移送路24a内を、気体給排管26aを介して、大気圧状態に比較して3Qヘクトパスカル大きい圧力(前記のQヘクトパスカルの3倍の大きさの圧力であって、以下のこの圧力の大きさを「3Q」と表す)で加圧する(図7(e))。   Subsequently, while maintaining the pressure 2Q in the inverted U-shaped portion 25b and the pressure Q in the inverted U-shaped portion 25d in FIGS. 7 (e) and 7 (f), the gas supply / exhaust in the fluid transfer path 24a is maintained. Via the pipe 26a, a pressure that is 3Q hectopascals larger than the atmospheric pressure state (a pressure that is three times larger than the above-mentioned Q hectopascals, and this pressure is expressed as "3Q" below) is applied. The pressure is applied (FIG. 7E).

前述したように、逆U字部25b内の圧力と、流体移送路24a内の圧力とにQヘクトパスカルの相違がある場合(流体移送路24a内の圧力の方が、逆U字部25b内の圧力よりQヘクトパスカル大きい場合)、流体移送路24a、流体移送路24b内の流体の状況は、図7(b)図示のようになる。   As described above, when there is a difference of Q hectopascals between the pressure in the reverse U-shaped portion 25b and the pressure in the fluid transfer path 24a (the pressure in the fluid transfer path 24a is higher in the reverse U-shaped portion 25b. In the case where Q hectopascal is larger than the pressure), the state of the fluid in the fluid transfer path 24a and the fluid transfer path 24b is as shown in FIG. 7B.

図7(g)の状態でも、逆U字部25b内の圧力(2Q)と、流体移送路24a内の圧力(3Q)との間にはQヘクトパスカルの相違がある(流体移送路24a内の圧力の方が、逆U字部25b内の圧力よりQヘクトパスカル大きい)、そこで、図7(g)の状態(逆U字部25b内の圧力が2Qで、流体移送路24a内の圧力が3Q)でも、流体移送路24a、流体移送路24b内の流体の状況は、図7(b)図示の場合と同じく、図7(g)図示の状態になる。   Even in the state of FIG. 7G, there is a difference in Q hectopascal between the pressure (2Q) in the inverted U-shaped portion 25b and the pressure (3Q) in the fluid transfer path 24a (in the fluid transfer path 24a). The pressure is Q hectopascals larger than the pressure in the inverted U-shaped portion 25b. Therefore, the state shown in FIG. 7G (the pressure in the inverted U-shaped portion 25b is 2Q, and the pressure in the fluid transfer path 24a is 3Q. However, the state of the fluid in the fluid transfer path 24a and the fluid transfer path 24b is as shown in FIG. 7 (g), as in the case of FIG. 7 (b).

即ち、流体移送路24a、流体移送路24b、等の図7中、上下方向の長さを変動させる(特に、図7中、左側の流体移送路24fから右側の流体移送路24aに近づくに従って上下方向の長さを大きくする)必要なしに、流体移送路24aに対して加えることのできる圧力の大きさを、当初、図7(b)の状態で加えることのできた圧力(Q)の3倍にすることが可能になるのである。   That is, the vertical length of the fluid transfer path 24a, the fluid transfer path 24b, etc. in FIG. 7 is changed (particularly, in FIG. 7, the vertical direction increases as the fluid transfer path 24a on the left side approaches the fluid transfer path 24a on the right side. The magnitude of the pressure that can be applied to the fluid transfer path 24a without the need to increase the length in the direction is three times the pressure (Q) that can be initially applied in the state of FIG. It becomes possible to make it.

これは、上述した工程を採用することによって、流体移送路24fの下端側、U字状部25e、流体移送路24eの下端側に滞留する流体が、大気圧状態に比較してQヘクトパスカル大きい圧力に対する弁として機能し、流体移送路24dの下端側、U字状部25c、流体移送路24cの下端側に滞留する流体が、大気圧状態に比較して2Qヘクトパスカル大きい圧力に対する弁として機能し、流体移送路24bの下端側、U字状部25a、流体移送路24aの下端側に滞留する流体が、大気圧状態に比較して3Qヘクトパスカル大きい圧力に対する弁として機能することによって発揮されるものである。   This is because, by adopting the above-described process, the fluid staying at the lower end side of the fluid transfer path 24f, the U-shaped portion 25e, and the lower end side of the fluid transfer path 24e is larger in pressure by Q hectopascals than in the atmospheric pressure state. The fluid staying at the lower end side of the fluid transfer path 24d, the U-shaped portion 25c, and the lower end side of the fluid transfer path 24c functions as a valve against a pressure that is 2Q hectopascals larger than the atmospheric pressure state, The fluid staying at the lower end side of the fluid transfer path 24b, the U-shaped portion 25a, and the lower end side of the fluid transfer path 24a is exhibited by functioning as a valve against a pressure that is 3Q hectopascals larger than the atmospheric pressure state. is there.

図7図示の例では、流体移送路24a〜流体移送路24fを用いているのみであるが、更に、使用する流体移送路の本数を増加すれば、流体移送路24aの下端側に滞留する流体に弁の役割を果たさせることによって、流体移送路24aに加えることのできた圧力よりも非常に大きい圧力を流体移送路24aに加えることが可能になる。   In the example shown in FIG. 7, only the fluid transfer path 24a to the fluid transfer path 24f are used. However, if the number of the fluid transfer paths to be used is further increased, the fluid staying at the lower end side of the fluid transfer path 24a. By allowing the valve to act as a valve, it is possible to apply a pressure that is much greater than the pressure that could be applied to the fluid transfer path 24a to the fluid transfer path 24a.

本発明の流体移送方法は上述した原理を利用しているものである。   The fluid transfer method of the present invention utilizes the principle described above.

これによって、本発明の装置のように、下端側が開放されている上部構造体1と、上端側が開放されている下部構造体10とを組み合わせて、上述した第一流体移送路14、第二流体移送路15、第三流体移送路16、流体貯留室17、第一空間部18、第二空間部19、第三空間部20が形成されている流体移送装置にし、なおかつ、第一筒状壁3が上蓋2から鉛直方向下側に向かって延びる長さと、第二筒状壁4が上蓋2から鉛直方向下側に向かって延びる長さと、吐出管7が上蓋2から鉛直方向下側に向かって延びる長さとを同一にし、第三筒状壁12が底板11から鉛直方向上側に向かって延びる長さと、第四筒状壁13が底板11から鉛直方向上側に向かって延びる長さとを同一にした場合であっても、吐出管7の吐出口5から流体を吐出させるために第三空間部20に加える圧力を、最初に、第三流体移送路16の下端側に滞留する流体を弁として使用することによって第三空間部20に加えることができた圧力よりも大きくすることが可能になる。   Thus, as in the apparatus of the present invention, the first fluid transfer path 14 and the second fluid described above are combined by combining the upper structure 1 whose lower end side is opened and the lower structure 10 whose upper end side is opened. The fluid transfer device is formed with the transfer path 15, the third fluid transfer path 16, the fluid storage chamber 17, the first space 18, the second space 19, and the third space 20, and the first cylindrical wall. 3 is a length extending from the upper lid 2 downward in the vertical direction, a second cylindrical wall 4 is extending from the upper lid 2 downward in the vertical direction, and the discharge pipe 7 is directed downward from the upper lid 2 in the vertical direction. The third cylindrical wall 12 extends from the bottom plate 11 upward in the vertical direction, and the fourth cylindrical wall 13 extends from the bottom plate 11 upward in the vertical direction. Even if it is a case, it will flow from the discharge outlet 5 of the discharge pipe 7. The pressure that can be applied to the third space portion 20 by first using the fluid retained at the lower end side of the third fluid transfer path 16 as a valve. Can be made larger.

すなわち、第一加圧工程で第三流体移送路16の下端側に流体が残留している状態で加えることのできた圧力に、更に、追加した圧力を第三空間部20に加えて吐出管7の吐出口6からの吐出を行わせることができる。   That is, in the first pressurizing step, the added pressure is added to the third space portion 20 in addition to the pressure that can be applied in the state where the fluid remains on the lower end side of the third fluid transfer path 16, and the discharge pipe 7. The discharge from the discharge port 6 can be performed.

本発明の実施例について、図8〜図11を参照して説明する。   An embodiment of the present invention will be described with reference to FIGS.

なお、前述した図1〜図7を用いて説明した本発明の流体移送装置における構造部分と同一の構造部分については同一の符号を付けてその説明を省略する。   In addition, about the same structure part as the structure part in the fluid transfer apparatus of this invention demonstrated using FIGS. 1-7 mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

不図示のコンプレッサーにシリンダー式圧力発生器58、59が切替弁51、52、53、54、55、56、圧力逃がし弁57を介して接続されている。   Cylinder pressure generators 58 and 59 are connected to a compressor (not shown) through switching valves 51, 52, 53, 54, 55 and 56, and a pressure relief valve 57.

シリンダー式圧力発生器58は第一加圧工程で第三空間部20に供給される圧力p1を生成し、シリンダー式圧力発生器59は第三加圧工程で第三空間部20に供給される圧力p2を生成することに用いられる。   The cylinder type pressure generator 58 generates the pressure p1 supplied to the third space part 20 in the first pressurizing process, and the cylinder type pressure generator 59 is supplied to the third space part 20 in the third pressurizing process. Used to generate pressure p2.

図示の実施形態では、吐出口5に連続して水平方向に延びる移送管60の途中に鉛直方向下側に窪む流体溜まり部61が形成されている。   In the illustrated embodiment, a fluid reservoir 61 that is recessed downward in the vertical direction is formed in the middle of a transfer pipe 60 that extends in the horizontal direction continuously to the discharge port 5.

移送される流体30が金属溶湯貯留槽50に貯留されている高温の金属溶湯である場合、吐出される金属溶湯の一部が常にここに存在することによって、吐出管7に存在している金属溶湯の液面が酸化されないようにするものである。   When the fluid 30 to be transferred is a high-temperature molten metal stored in the molten metal storage tank 50, a part of the discharged molten metal is always present here, so that the metal present in the discharge pipe 7 is present. This prevents the liquid surface of the molten metal from being oxidized.

なお、移送される流体30が金属溶湯貯留槽50に貯留されている高温の金属溶湯である場合、不図示のコンプレッサーから供給される気体を窒素ガスなどの不活性ガスにすることによって、金属溶湯が酸化されることを防止できる。   In addition, when the fluid 30 to be transferred is a high-temperature molten metal stored in the molten metal storage tank 50, the molten metal is obtained by changing the gas supplied from a compressor (not shown) to an inert gas such as nitrogen gas. Can be prevented from being oxidized.

まず、図8図示のように、大気圧状態下で本発明の流体移送装置内に流体が流入する。   First, as shown in FIG. 8, the fluid flows into the fluid transfer device of the present invention under atmospheric pressure.

引き続いて、第一加圧工程で、第二気体給排管9を開状態にしたまま、第一気体給排管8を介して不活性ガスを矢印36で示すように供給し、第三流体移送路16の下端側に流体30が存在している状態で、所定の圧力(p1)にて第三空間部20を加圧する(図9)。   Subsequently, in the first pressurizing step, an inert gas is supplied as indicated by an arrow 36 through the first gas supply / exhaust pipe 8 while the second gas supply / exhaust pipe 9 is kept open, and the third fluid In a state where the fluid 30 is present on the lower end side of the transfer path 16, the third space 20 is pressurized with a predetermined pressure (p1) (FIG. 9).

次いで、第二加圧工程で、前記第一加圧工程による第三空間部20の加圧状態を維持したまま、第二気体給排管9を介して不活性ガスを矢印42で示すように供給し、第一流体移送路14の下端側及び第二流体移送路15の下端側にそれぞれ流体が存在している状態で、前記の第一加圧工程において第三空間部20を加圧したのと同一の所定の圧力(p1)で第一空間部18を加圧する(図10)。   Next, in the second pressurizing step, the inert gas is indicated by the arrow 42 through the second gas supply / exhaust pipe 9 while maintaining the pressurized state of the third space portion 20 in the first pressurizing step. The third space portion 20 was pressurized in the first pressurizing step in a state where fluid was present on the lower end side of the first fluid transfer path 14 and the lower end side of the second fluid transfer path 15 respectively. The first space 18 is pressurized with the same predetermined pressure (p1) as (1).

引き続いて、第三加圧工程で、前記の第二加圧工程による第一空間部18の加圧状態を維持したまま、第一気体給排管8を介して矢印44で示されるように、更に、気体を供給し、第三流体移送路16の下端側に流体が存在している状態及び、流体貯留室17における流体の液面の高さが吐出管7の下端側の吸入口6の高さにまで降下しない状態で、前記の第一加圧工程及び第二加圧工程における所定の圧力(p1)より高い圧力(p2)で第三空間部20を加圧することにより、流体貯留室17から吐出管7の吐出口5を介して流体を矢印45で示すように吐出させる(図11)。   Subsequently, in the third pressurizing step, as shown by the arrow 44 through the first gas supply / exhaust pipe 8 while maintaining the pressurized state of the first space 18 by the second pressurizing step, Further, a state where the gas is supplied and the fluid is present on the lower end side of the third fluid transfer path 16 and the level of the fluid level in the fluid storage chamber 17 is equal to that of the suction port 6 on the lower end side of the discharge pipe 7. By pressurizing the third space portion 20 with a pressure (p2) higher than the predetermined pressure (p1) in the first pressurization step and the second pressurization step without being lowered to the height, the fluid storage chamber The fluid is discharged from 17 through the discharge port 5 of the discharge pipe 7 as shown by an arrow 45 (FIG. 11).

以上、添付図面を参照して本発明の好ましい実施形態、実施例を説明したが、本発明はかかる実施形態、実施例に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   The preferred embodiments and examples of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to such embodiments and examples, and is understood from the description of the claims. Various changes can be made within the scope.

各種工業製品等を鋳造する技術として、金属溶湯を鋳型に送湯して成形する低圧鋳造技術が従来から知られている。   As a technique for casting various industrial products and the like, a low pressure casting technique in which a molten metal is fed into a mold and molded is conventionally known.

この低圧鋳造技術は、金属溶湯中に金属溶湯供給装置を沈め、この装置に金属溶湯を吸湯させ、吸湯させた金属溶湯を鋳型に送湯し、この鋳型内で金属溶湯を冷却して成型品を成形するものである。   In this low pressure casting technology, a molten metal supply device is submerged in the molten metal, the molten metal is absorbed into the molten metal, the absorbed molten metal is sent to a mold, and the molten metal is cooled in the mold. A molded product is molded.

この場合、金属溶湯中に沈められている金属溶湯供給装置については、高温下で長期間使用させる必要があるため、耐火物で装置を構成することが重要である。   In this case, since the molten metal supply device submerged in the molten metal needs to be used for a long time at a high temperature, it is important to configure the device with a refractory.

しかし、耐火物で装置を構成しても、高温の金属溶湯下では、損傷を完全に防ぐことは困難であり、損傷箇所の修復を余儀なくされる場合もある。   However, even if the apparatus is composed of a refractory material, it is difficult to completely prevent damage under a high-temperature molten metal, and the damaged portion may be forced to be repaired.

このような場合、内部空洞型の金属溶湯供給装置では、損傷箇所によっては修復が困難な箇所も存在し得るので、修復費用が増大するおそれがある。   In such a case, in the internal cavity type molten metal supply device, there may be a portion that is difficult to repair depending on the damaged portion, and thus there is a possibility that the repair cost increases.

従って、従来の金属溶湯供給装置の構成を見直し、簡易な構成で従来どおりの鋳造を行うことができる金属溶湯供給装置へ改善する必要がある。   Therefore, it is necessary to review the configuration of the conventional molten metal supply device and improve it to a molten metal supply device that can perform casting as usual with a simple configuration.

この発明は、このような要請にこたえ、低圧鋳造技術に用いられる金属溶湯供給装置において、簡易な構成で従来の鋳造を行う金属溶湯供給装置及び供給方法を提供することができる。   In response to such a demand, the present invention can provide a molten metal supply apparatus and a supply method for performing conventional casting with a simple configuration in a molten metal supply apparatus used in low pressure casting technology.

従って、従来の金属溶湯供給装置に比べ、低コストで装置を構成することが可能となり、又簡易な構成で鋳造を行うことが可能となる効果がある。   Therefore, compared with the conventional molten metal supply apparatus, it is possible to configure the apparatus at a low cost, and it is possible to perform casting with a simple configuration.

1 上部構造体
2 上蓋
3 第一筒状壁
4 第二筒状壁
5 吐出口
6 吸入口
7 吐出管
8 第一気体給排管
9 第二気体給排管
10 下部構造体
11 底板
12 第三筒状壁
13 第四筒状壁
14 第一流体移送路
15 第二流体移送路
16 第三流体移送路
17 流体貯留室
18 第一空間部
19 第二空間部
20 第三空間部
21 流体移送装置
30 流体
50 流体貯留槽
1 Upper structure 2 Upper lid 3 First cylindrical wall 4 Second cylindrical wall 5 Discharge port 6 Suction port 7 Discharge tube 8 First gas supply / discharge tube 9 Second gas supply / discharge tube 10 Lower structure 11 Bottom plate 12 Third Cylindrical wall 13 fourth cylindrical wall 14 first fluid transfer path 15 second fluid transfer path 16 third fluid transfer path 17 fluid storage chamber 18 first space part 19 second space part 20 third space part 21 fluid transfer device 30 Fluid 50 Fluid storage tank

Claims (3)

鉛直方向下側が開放している上部構造体と、鉛直方向上側が開放している下部構造体とを上下に組み合わせてなる流体移送装置であって、
前記上部構造体は、
上蓋と、
当該上蓋から鉛直方向下側に向かって延びる第一筒状壁と、
当該第一筒状壁の径方向内側において前記上蓋から鉛直方向下側に向かって延びる第二筒状壁と、
当該第二筒状壁の径方向内側において前記上蓋を貫通し、前記上蓋より鉛直方向の上側に延びる上端側に吐出口、前記上蓋より鉛直方向の下側に延びる下端側に吸入口をそれぞれ有する吐出管と、
前記第二筒状壁の径方向内側において前記上蓋に接続されている第一気体給排管と、
前記第一筒状壁の径方向内側であって、前記第二筒状壁の径方向外側において前記上蓋に接続されている第二気体給排管と
を備えており、
前記下部構造体は、
底板と、
当該底板から鉛直方向上側に向かって延びる第三筒状壁と、
当該第三筒状壁の径方向内側において前記底板から鉛直方向上側に向かって延びる第四筒状壁と
を備えていて、
前記上部構造体と、前記下部構造体とを上下に組み合わせて、
前記第一筒状壁と前記第三筒状壁との間に第一流体移送路、
前記第二筒状壁と前記第三筒状壁との間に第二流体移送路、
前記第二筒状壁と前記第四筒状壁との間に第三流体移送路、
第四筒状壁の径方向内側に流体貯留室、
前記第三筒状壁の上端と前記上蓋との間に前記第一流体移送路及び前記第二流体移送路に連続する第一空間部、
前記第二筒状壁の下端と前記底板との間に前記第二流体移送路及び前記第三流体移送路に連続する第二空間部、
前記第四筒状壁の上端と前記上蓋との間に前記第三流体移送路及び前記流体貯留室に連続する第三空間部
がそれぞれ形成されていることを特徴とする流体移送装置。
A fluid transfer device formed by combining an upper structure opened on the lower side in the vertical direction and a lower structure opened on the upper side in the vertical direction,
The upper structure is
An upper lid,
A first cylindrical wall extending vertically downward from the upper lid;
A second cylindrical wall extending from the upper lid toward the lower side in the vertical direction on the radially inner side of the first cylindrical wall;
The second cylindrical wall has a discharge port on the upper end side that passes through the upper lid on the radially inner side and extends upward in the vertical direction from the upper lid, and a suction port on the lower end side that extends downward in the vertical direction from the upper lid. A discharge pipe;
A first gas supply / discharge pipe connected to the upper lid on the radially inner side of the second cylindrical wall;
A second gas supply / exhaust pipe connected to the upper lid on the radially inner side of the first cylindrical wall and on the radially outer side of the second cylindrical wall,
The lower structure is
The bottom plate,
A third tubular wall extending vertically upward from the bottom plate;
A fourth cylindrical wall extending radially upward of the third cylindrical wall from the bottom plate toward the upper side in the vertical direction,
Combining the upper structure and the lower structure vertically,
A first fluid transfer path between the first cylindrical wall and the third cylindrical wall;
A second fluid transfer path between the second cylindrical wall and the third cylindrical wall;
A third fluid transfer path between the second cylindrical wall and the fourth cylindrical wall;
A fluid storage chamber radially inward of the fourth cylindrical wall;
A first space continuous to the first fluid transfer path and the second fluid transfer path between an upper end of the third cylindrical wall and the upper lid;
A second space portion continuous between the second fluid transfer path and the third fluid transfer path between the lower end of the second cylindrical wall and the bottom plate;
A fluid transfer device, wherein a third space portion is formed between the upper end of the fourth cylindrical wall and the upper lid, the third space portion being continuous with the third fluid transfer path and the fluid storage chamber.
前記上部構造体と、前記下部構造体とを上下に組み合わせて前記流体移送装置とした際に、
前記第一筒状壁が前記上蓋から鉛直方向下側に向かって延びる長さと、
前記第二筒状壁が前記上蓋から鉛直方向下側に向かって延びる長さと、
前記吐出管が前記上蓋から鉛直方向下側に向かって延びる長さとが同一で、
前記第三筒状壁が前記底板から鉛直方向上側に向かって延びる長さと、
前記第四筒状壁が前記底板から鉛直方向上側に向かって延びる長さとが同一
であることを特徴とする請求項1記載の流体移送装置。
When the upper structure and the lower structure are combined up and down to form the fluid transfer device,
A length of the first cylindrical wall extending vertically downward from the upper lid;
A length of the second cylindrical wall extending vertically downward from the upper lid;
The discharge pipe has the same length that extends downward from the upper lid in the vertical direction,
A length of the third cylindrical wall extending from the bottom plate toward the upper side in the vertical direction;
The fluid transfer device according to claim 1, wherein the fourth cylindrical wall has the same length extending from the bottom plate toward the upper side in the vertical direction.
請求項1又は2記載の流体移送装置を流体貯留槽内に沈設し、当該流体貯留槽内に貯留されている流体を前記流体移送装置を介して移送する流体移送方法であって、
大気圧状態において前記流体貯留槽から、前記第一流体移送路、第一空間部、第二流体移送路、第二空間部、第三流体移送路、第三空間部を介して、前記流体貯留室及び吐出管の下端側内に、流体を貯留する流体貯留工程と、
引き続いて、前記第二気体給排管を開状態にしたまま、前記第一気体給排管を介して気体を供給し、前記第三流体移送路の下端側に流体が存在している状態で、所定の圧力にて前記第三空間部を加圧する第一加圧工程と、
引き続いて、前記第一加圧工程による第三空間部の加圧状態を維持したまま、前記第二気体給排管を介して気体を供給し、前記第一流体移送路の下端側及び第二流体移送路の下端側にそれぞれに流体が存在している状態で、前記第一加圧工程において前記第三空間部を加圧したのと同一の所定の圧力で前記第一空間部を加圧する第二加圧工程と、
引き続いて、前記の第二加圧工程による前記第一空間部の加圧状態を維持したまま、前記第一気体給排管を介して更に気体を供給し、前記第三流体移送路の下端側に流体が存在している状態及び、前記流体貯留室における流体の液面の高さが前記吐出管の下端側の吸入口の高さにまで降下しない状態で、前記所定の圧力より高い圧力で第三空間部を加圧することにより、前記流体貯留室から前記吐出管の吐出口を介して流体を吐出させる第三加圧工程と
を備えていることを特徴とする流体移送方法。
A fluid transfer method for sinking the fluid transfer device according to claim 1 or 2 in a fluid storage tank and transferring the fluid stored in the fluid storage tank via the fluid transfer device,
In the atmospheric pressure state, the fluid storage tank stores the fluid through the first fluid transfer path, the first space part, the second fluid transfer path, the second space part, the third fluid transfer path, and the third space part. A fluid storing step for storing fluid in the lower end side of the chamber and the discharge pipe;
Subsequently, with the second gas supply / exhaust pipe open, gas is supplied via the first gas supply / exhaust pipe, and fluid is present at the lower end side of the third fluid transfer path. A first pressurizing step of pressurizing the third space with a predetermined pressure;
Subsequently, the gas is supplied through the second gas supply / exhaust pipe while maintaining the pressurized state of the third space portion by the first pressurizing step, and the lower end side and the second of the first fluid transfer path are supplied. Pressurizing the first space with the same predetermined pressure as in pressurizing the third space in the first pressurizing step in the state where fluid exists in the lower end side of the fluid transfer path. A second pressurizing step;
Subsequently, while maintaining the pressurized state of the first space portion by the second pressurizing step, further gas is supplied through the first gas supply / exhaust pipe, and the lower end side of the third fluid transfer path At a pressure higher than the predetermined pressure in a state where fluid is present in the fluid storage chamber and in a state where the fluid level of the fluid in the fluid storage chamber does not drop to the height of the suction port on the lower end side of the discharge pipe. And a third pressurizing step of discharging the fluid from the fluid storage chamber through the discharge port of the discharge pipe by pressurizing the third space.
JP2010179199A 2010-08-10 2010-08-10 Fluid transfer apparatus and method Expired - Fee Related JP5582501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179199A JP5582501B2 (en) 2010-08-10 2010-08-10 Fluid transfer apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179199A JP5582501B2 (en) 2010-08-10 2010-08-10 Fluid transfer apparatus and method

Publications (2)

Publication Number Publication Date
JP2012035311A true JP2012035311A (en) 2012-02-23
JP5582501B2 JP5582501B2 (en) 2014-09-03

Family

ID=45847894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179199A Expired - Fee Related JP5582501B2 (en) 2010-08-10 2010-08-10 Fluid transfer apparatus and method

Country Status (1)

Country Link
JP (1) JP5582501B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133706A (en) * 1997-07-24 1999-02-09 Ariake Serako Kk Equipment to feed fixed quantity of molten metal
JP2003117649A (en) * 2001-10-11 2003-04-23 Ota Seisakusho:Kk Method for supplying fixed quantity of molten metal and pump for supplying molten metal
JP2005095921A (en) * 2003-09-24 2005-04-14 Ariake Serako Kk Casting method and casting apparatus
JP2007061906A (en) * 2005-08-05 2007-03-15 Ariake Serako Kk Device and method for transferring molten metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133706A (en) * 1997-07-24 1999-02-09 Ariake Serako Kk Equipment to feed fixed quantity of molten metal
JP2003117649A (en) * 2001-10-11 2003-04-23 Ota Seisakusho:Kk Method for supplying fixed quantity of molten metal and pump for supplying molten metal
JP2005095921A (en) * 2003-09-24 2005-04-14 Ariake Serako Kk Casting method and casting apparatus
JP2007061906A (en) * 2005-08-05 2007-03-15 Ariake Serako Kk Device and method for transferring molten metal

Also Published As

Publication number Publication date
JP5582501B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
CA2912788C (en) Distribution plate for gas/liquid contact colume with secondary distribution system
JP5133321B2 (en) Heat storage device
NO334388B1 (en) Fluid-pressure reduction
TW201114951A (en) Surface treatment device for cylinder barrel
JP2011079493A (en) Fuel tank
JP5582501B2 (en) Fluid transfer apparatus and method
JP2006192442A (en) Casting mold for full mold casting
US11953271B2 (en) Thermal energy storage apparatus
JP2008501504A5 (en)
CN202778105U (en) Combined large-scale slug flow catcher
CN102211143A (en) Copper-aluminum alloy bottom pouring type pouring system structure
KR101762772B1 (en) Structure for fuel storage tank
JP5878541B2 (en) Means for supplying oil from a tank containing heavy oil fuel
CN205299450U (en) Waste heat boiler
JP2006346719A (en) Casting device, and casting method
JP4907461B2 (en) Gravity blender
JP2011517835A5 (en)
JP2010216608A (en) Circuit for removing air bubble in hydraulic oil
JP6034461B1 (en) Hydroelectric power generator with dramatically increased power output
CN208083417U (en) One kind being used for die casting mould core quick change construction
CN104941282A (en) Chemical engineering filter
JP2007043174A5 (en)
JP2007268478A (en) Internal heat exchange type distillation column
JP6242218B2 (en) Carbonated water generator
RU2005141362A (en) METHOD FOR BLOWING A LIQUID METAL IN A BUCKET AND A DEVICE FOR BLOWING A METAL BY GAS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5582501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees