JP2012035208A - Metal substrate for catalyst and denitration catalyst using the same - Google Patents

Metal substrate for catalyst and denitration catalyst using the same Download PDF

Info

Publication number
JP2012035208A
JP2012035208A JP2010178355A JP2010178355A JP2012035208A JP 2012035208 A JP2012035208 A JP 2012035208A JP 2010178355 A JP2010178355 A JP 2010178355A JP 2010178355 A JP2010178355 A JP 2010178355A JP 2012035208 A JP2012035208 A JP 2012035208A
Authority
JP
Japan
Prior art keywords
catalyst
phosphate
substrate
metal substrate
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010178355A
Other languages
Japanese (ja)
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Keiichiro Kai
啓一郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010178355A priority Critical patent/JP2012035208A/en
Publication of JP2012035208A publication Critical patent/JP2012035208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal substrate which is hardly corroded even when being exposed for a long period of time in an actual usage environment of a catalyst and to provide a denitration catalyst which can maintain a low SOoxidation rate over the long term.SOLUTION: The substrate is characterized in that a phosphate is carried together with silica and titanium oxide in layers on the surface of the metal substrate. The substrate is produced by immersing the metal substrate into a treatment liquid slurried by adding the phosphate to a treatment liquid including colloidal silica, titanium oxide fine particle and polyvinyl alcohol, thereby, carrying the silica, titanium oxide, polyvinyl alcohol and phosphate on the metal substrate and, thereafter, drying and calcinating the treated metal substrate to form a corrosion-resistant film on the surface of the metal substrate.

Description

本発明は触媒用金属基板、脱硝触媒およびそれらの製造方法に係り、特に、金属性金網やラス板を用いる酸化チタン系アンモニア接触還元用脱硝触媒のSO2からSO3への酸化活性を抑制した触媒用基板およびこれを用いた脱硝触媒に関する。 The present invention relates to a catalyst metal substrate, a denitration catalyst, and a production method thereof, and in particular, suppresses the oxidation activity from SO 2 to SO 3 of a titanium oxide-based ammonia catalytic reduction denitration catalyst using a metal wire mesh or a lath plate. The present invention relates to a catalyst substrate and a denitration catalyst using the same.

酸化チタンを主成分とするアンモニア還元法脱硝触媒は、触媒活性が高く、耐久性に優れるため、国内外でボイラなどの排煙処理に広く用いられ、脱硝触媒の主流となっている(特許文献1)。これらの酸化チタン系脱硝触媒は、ハニカム状や、金属基板に触媒成分を塗布した板状触媒で用いられることが多く、中でも後者の板状触媒は煤塵による摩耗や堆積に強いため、油、石炭燃焼排ガスの脱硝に広く用いられている。板状触媒の製造法としては、従来から数多く提案されているが、その内、金属薄板に所定ピッチの切れ目(スリット)を入れ、スリットと直角方向に引っ張り力を加えて得られる金網状のラス基材は、量産性も優れ、機械強度も強い触媒が得られるところから、国内外の板状触媒の主流となっている。   Ammonia reduction method denitration catalyst mainly composed of titanium oxide has high catalytic activity and excellent durability, so it is widely used for flue gas treatment of boilers and the like at home and abroad, and has become the mainstream of denitration catalyst (patent document) 1). These titanium oxide-based denitration catalysts are often used in honeycomb-like or plate-like catalysts in which a catalyst component is applied to a metal substrate, and the latter plate-like catalysts are particularly resistant to abrasion and accumulation due to soot and dust. Widely used for denitration of combustion exhaust gas. A number of methods for producing a plate catalyst have been proposed. Among them, a metal mesh lath obtained by cutting a slit (slit) with a predetermined pitch in a thin metal plate and applying a tensile force in a direction perpendicular to the slit is provided. Substrates have become the mainstream of plate catalysts in Japan and overseas because they can produce a catalyst with excellent mass productivity and high mechanical strength.

一方、近年、エネルギ需要が急増し、硫黄分が高い石炭(高S炭)が燃料として用いられるようになり、これに伴って、脱硝触媒のSO2酸化活性によりSO2の一部がSO3に酸化され、煙突でSO3による紫煙を発生したり、脱硝装置後流器機で腐食を起こすなど、SO3を原因とするトラブルが増大している。このため、脱硝触媒の有するSO2酸化活性が非常に低い触媒へのニーズが高まり、触媒組成を工夫した触媒(特許文献2)や触媒成分の濃度に分布を持たせた触媒(特許文献3)が知られている。
特開昭50-128681号公報 特開平2-184342号公報 特開平09-220468号公報 特開昭52-14658号公報 特開平06-246176号公報
On the other hand, in recent years, energy demand has increased rapidly, and coal with a high sulfur content (high S coal) has come to be used as fuel. Along with this, a part of SO 2 is SO 3 due to the SO 2 oxidation activity of the denitration catalyst. There are increasing troubles caused by SO 3 , such as the generation of purple smoke due to SO 3 in the chimney and the corrosion of the denitrator downstream. For this reason, the need for a catalyst with very low SO 2 oxidation activity possessed by a denitration catalyst has increased, and a catalyst with a devised catalyst composition (Patent Document 2) or a catalyst with a distribution of catalyst component concentrations (Patent Document 3). It has been known.
JP 50-128681 JP-A-2-184342 JP 09-220468 A JP 52-14658 A Japanese Patent Laid-Open No. 06-246176

上述した従来技術には、下記二つの解決すべき課題が残されている。その一つは、触媒製造過程で、触媒原料中のSO4により金属基板がわずかに腐食することにより、SO2酸化活性の低減の妨げになる点である。酸化チタン系脱硝触媒には、安価で高い触媒性能が得られる硫酸法による酸化チタンが使用されている。一般に硫酸法による酸化チタン中には数wt%の硫酸根が含まれており、触媒成分の添加・焼成等の行程を経てもその大半が触媒成分中に残留している。このため、触媒基板を用いた触媒の場合、触媒成分のペーストやスラリを基板に湿式法でコーティング又は塗布しようとすると、残留硫酸によって金属基板が溶解されて基板成分が触媒成分中に移動する。サス基板成分のうち、鉄(Fe)、ニッケル(Ni)、クロム(Cr)等の元素は、酸化チタンに吸着されると、脱硝触媒成分であるV以上にSO2の酸化を促進することが知られており、触媒製造過程で溶解した微量の遷移金属成分により、SO2酸化活性の低減の妨げになっている。 The prior art described above has the following two problems to be solved. One of them is that during the catalyst production process, the metal substrate is slightly corroded by SO 4 in the catalyst raw material, which hinders the reduction of SO 2 oxidation activity. As the titanium oxide-based denitration catalyst, titanium oxide by a sulfuric acid method is used which is inexpensive and provides high catalyst performance. In general, titanium oxide by the sulfuric acid method contains several wt% of sulfate radicals, and most of them remain in the catalyst component even after the steps of addition and firing of the catalyst component. For this reason, in the case of a catalyst using a catalyst substrate, when a paste or slurry of the catalyst component is coated or applied to the substrate by a wet method, the metal substrate is dissolved by residual sulfuric acid and the substrate component moves into the catalyst component. Among the suspension substrate components, elements such as iron (Fe), nickel (Ni), and chromium (Cr), when adsorbed on titanium oxide, can promote oxidation of SO 2 more than V, which is a denitration catalyst component. It is known that a small amount of transition metal component dissolved during the catalyst production process hinders the reduction of SO 2 oxidation activity.

もう一つは、ボイラの起動停止時やエアヒータの水洗時などに、触媒が50〜60℃の飽和水蒸気中に曝され、触媒が吸湿状態に曝される場合があるが、特に、S分の多い石炭燃焼ボイラでは、触媒へSO4根が数%蓄積し、これが吸湿したときに触媒中に移動して基板腐食を引き起こす場合があり、これによりSO2酸化率が上昇する恐れがある。 The other is that the catalyst may be exposed to saturated steam at 50 to 60 ° C. when the boiler is started or stopped, or when the air heater is washed with water. In many coal-fired boilers, several percent of SO 4 roots accumulate in the catalyst, and when it absorbs moisture, it may move into the catalyst and cause substrate corrosion, which may increase the SO 2 oxidation rate.

このような金属基板の腐食を防止する方法として、金属基板と触媒成分の接触を防止する目的で、金属基板表面に不活性化膜を形成させる方法が提案されている(金属アルミを溶射する方法(特許文献4)、酸化チタンを主成分とする被膜を形成する方法(特許文献5など)。このうち、後者は、金属基板表面に、密着性の高い緻密で安定な被膜を形成することができるため効果も高いが、実機において長時間曝されると、不活性化膜と基板のとの間にわずかではあるが隙間が生じ、このわずかな隙間にSO4根が蓄積して腐食が生じることがあるため、完全に腐食が抑制されたとは言えず、改善すべき点が残されていた。
本発明の課題は、上記問題点を解決し、触媒の実際の使用環境において長時間暴露されても腐食されにくい金属基板と、これを用いることにより長期に亘り低いSO2酸化率を維持することができる脱硝触媒とを提供することにある。
As a method of preventing such corrosion of the metal substrate, a method of forming an inactivated film on the surface of the metal substrate has been proposed for the purpose of preventing contact between the metal substrate and the catalyst component (method of spraying metal aluminum) (Patent Document 4), a method of forming a film mainly composed of titanium oxide (Patent Document 5, etc.) Among them, the latter can form a dense and stable film with high adhesion on the surface of a metal substrate. It is highly effective because it can be done, but if it is exposed for a long time in the actual machine, a slight gap will be formed between the passivation film and the substrate, and SO 4 root will accumulate in this slight gap and corrosion will occur. For this reason, it could not be said that corrosion was completely suppressed, and there was a point to be improved.
The object of the present invention is to solve the above-mentioned problems and to maintain a low SO 2 oxidation rate over a long period of time by using a metal substrate that is not easily corroded even if it is exposed for a long time in the actual use environment of the catalyst. It is an object of the present invention to provide a denitration catalyst capable of

上記課題を達成するため、本願で特許請求される発明は以下のとおりである。
(1)金属基板表面にリン酸塩がシリカおよび酸化チタンと共に層状に担持されていることを特徴とする触媒用基板。
(2)前記リン酸塩がリン酸カルシウム、リン酸バリウムおよびリン酸亜鉛から選ばれた1または2以上の化合物である(1)記載の触媒用基板。
(3)前記金属基板がメタルラスであり、前記触媒用基板の網目間及び表面に酸化チタンと、モリブデン、タングステンおよびバナジウムから選ばれる1つ以上の元素の酸化物とを含む脱硝触媒成分が担持されていることを特徴とする脱硝触媒。
(4)コロイダルシリカ、微粒酸化チタンおよびポリビニルアルコールを含む処理液にリン酸塩を加えてスラリ状にした処理液に金属基板を浸漬し、該金属基板上に前記シリカ、酸化チタン、ポリビニルアルコールおよびリン酸塩を担持した後、乾燥、焼成して前記金属基板表面に耐食性皮膜を形成することを特徴とする触媒用基板の製造方法。
(5)前記リン酸塩がリン酸カルシウム、リン酸バリウムおよびリン酸亜鉛から選ばれた1または2以上の化合物である(4)記載の触媒用基板。
(6)コロイダルシリカ、微粒酸化チタンおよびポリビニルアルコールを含む処理液にリン酸塩を加えてスラリ状にした処理液に金属基板としてメタルラスを浸漬し、該メタルラスに前記シリカ、酸化チタン、ポリビニルアルコールおよびリン酸塩を担持し、乾燥、焼成して触媒用基板を製造した後、該触媒用基板の網目間および表面に酸化チタンと、モリブデン、タングステンおよびバナジウムから選ばれる1つ以上の元素の酸化物とを含む脱硝触媒成分を担持することを特徴とする脱硝触媒の製造方法。
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) A catalyst substrate characterized in that a phosphate is supported on a metal substrate surface in a layer together with silica and titanium oxide.
(2) The catalyst substrate according to (1), wherein the phosphate is one or more compounds selected from calcium phosphate, barium phosphate and zinc phosphate.
(3) The metal substrate is a metal lath, and a denitration catalyst component containing titanium oxide and an oxide of one or more elements selected from molybdenum, tungsten and vanadium is supported between the mesh and the surface of the catalyst substrate. A denitration catalyst characterized by that.
(4) A metal substrate is immersed in a slurry obtained by adding phosphate to a treatment liquid containing colloidal silica, finely divided titanium oxide and polyvinyl alcohol, and the silica, titanium oxide, polyvinyl alcohol and A method for producing a catalyst substrate, comprising supporting a phosphate, followed by drying and firing to form a corrosion-resistant film on the surface of the metal substrate.
(5) The catalyst substrate according to (4), wherein the phosphate is one or more compounds selected from calcium phosphate, barium phosphate and zinc phosphate.
(6) A metal lath is immersed as a metal substrate in a slurry obtained by adding phosphate to a treatment liquid containing colloidal silica, fine titanium oxide and polyvinyl alcohol, and the silica, titanium oxide, polyvinyl alcohol and After producing a catalyst substrate by supporting phosphate, drying and firing, oxides of one or more elements selected from titanium oxide, molybdenum, tungsten, and vanadium between the mesh and the surface of the catalyst substrate A method for producing a denitration catalyst comprising supporting a denitration catalyst component comprising:

本発明によれば、金属基板を担体に用いる脱硝触媒における基板の腐食により生成したFeが触媒に移動することを防止でき、それに起因して生じる性能低下、とくにSO2酸化率の上昇を防止することが出来る。 According to the present invention, the metal substrate can be prevented from Fe generated by corrosion of the substrate in the denitration catalyst used in the carrier is moved to the catalyst, performance degradation resulting from it, in particular to prevent an increase in SO 2 oxidation rate I can do it.

本発明では、リン酸塩、特に水に不溶もしくは難溶なリン酸塩を含む不活性被膜を金属基板表面に形成させることが重要である。   In the present invention, it is important to form an inactive film containing a phosphate, particularly a phosphate insoluble or hardly soluble in water, on the surface of the metal substrate.

高S炭ボイラでは、触媒中に多くのSO4が吸着して蓄積し、これが金属基板と下記(1)、(2)式のごとく反応して硫酸鉄を生成する。
Fe + SO4 2− → FeSO4 (1)
2Fe + 3SO4 2− → Fe2(SO4)3 (2)
In a high-S coal boiler, a large amount of SO 4 is adsorbed and accumulated in the catalyst, and this reacts with the metal substrate as shown in the following formulas (1) and (2) to produce iron sulfate.
Fe + SO 4 2- → FeSO 4 (1)
2Fe + 3SO 4 2- → Fe 2 (SO 4 ) 3 (2)

この硫酸鉄が、触媒が吸湿状態に置かれたときに溶解してFeイオンを生成して触媒中に移動し、SO2酸化率の上昇を引き起こす。リン酸塩を含む不活性皮膜は、SO4が金属基板と接触することを抑制する効果があるが、経年的に皮膜と基板との間にわずかな隙間を生じるため、完全に腐食を抑制することができない。 This iron sulfate dissolves when the catalyst is placed in a hygroscopic state, generates Fe ions, moves into the catalyst, and raises the SO 2 oxidation rate. An inert film containing phosphate has the effect of suppressing SO 4 from coming into contact with the metal substrate. However, since a slight gap is formed between the film and the substrate over time, it completely suppresses corrosion. I can't.

これに対し、本発明では、不活性皮膜中に添加したリン酸塩が、ラス基板との接触面で硫酸塩と下記(3)〜(8)のごとくと反応してFeを不溶化する。   On the other hand, in the present invention, the phosphate added to the inert film reacts with the sulfate and the following (3) to (8) on the contact surface with the lath substrate to insolubilize Fe.

Ca3(PO4)2+ 3FeSO4→ Fe3(PO4)2 + 3CaSO4 (3)
Ba3(PO4)2+ 3FeSO4→ Fe3(PO4)2 + 3BaSO4 (4)
Zn3(PO4)2+ 3FeSO4→ Fe3(PO4)2 + 3ZnSO4 (5)
Ca3(PO4)2+ Fe2(SO4)3→ 2FePO4 + 3CaSO4 (6)
Ba3(PO4)2+ Fe2(SO4)3→ 2FePO4 + 3BaSO4 (7)
Zn3(PO4)2+ Fe2(SO4)3→ 2FePO4 + 3ZnSO4 (8)
Ca 3 (PO 4 ) 2 + 3FeSO 4 → Fe 3 (PO 4 ) 2 + 3CaSO 4 (3)
Ba 3 (PO 4 ) 2 + 3FeSO 4 → Fe 3 (PO 4 ) 2 + 3BaSO 4 (4)
Zn 3 (PO 4 ) 2 + 3FeSO 4 → Fe 3 (PO 4 ) 2 + 3ZnSO 4 (5)
Ca 3 (PO 4 ) 2 + Fe 2 (SO 4 ) 3 → 2FePO 4 + 3CaSO 4 (6)
Ba 3 (PO 4 ) 2 + Fe 2 (SO 4 ) 3 → 2FePO 4 + 3BaSO 4 (7)
Zn 3 (PO 4 ) 2 + Fe 2 (SO 4 ) 3 → 2FePO 4 + 3ZnSO 4 (8)

リン酸塩を添加する皮膜の構成成分としては、ラス(メタルラス)や金網などの金属基板に担持する場合に、金属とのなじみが良くかつ液安定性に優れ、さらに基板との密着性に優れるものが好ましく、シリカ、微粒酸化チタン粉末が好結果を与える。皮膜の形成方法は、特許文献5記載の方法を応用することができる。すなわち、ラス切りした基板を脱脂炉で加熱して付着した切削油を除去し、当該特許記載のポリビニルアルコール、コロイダルシリカ、微粒酸化チタン粉末から成る処理液にリン酸塩を加えたスラリ状物に、得られたラス板を浸漬させて皮膜形成成分を担持させ、これを120〜200℃の炉を通過させることにより皮膜を形成させる。   As a component of the film to which phosphate is added, when supported on a metal substrate such as a lath or a metal mesh, it has good compatibility with metal, excellent liquid stability, and excellent adhesion to the substrate. Of these, silica and finely divided titanium oxide powder give good results. The method described in Patent Document 5 can be applied as a method for forming the film. That is, the lath-cut substrate is heated in a degreasing furnace to remove the adhering cutting oil, and the slurry is obtained by adding phosphate to a treatment liquid composed of polyvinyl alcohol, colloidal silica, and fine titanium oxide powder described in the patent. Then, the obtained lath plate is immersed to carry a film-forming component, and this is passed through a furnace at 120 to 200 ° C. to form a film.

ここで、リン酸塩は、不溶性または難溶性のリン酸塩が好ましい。リン酸や溶解度の高いリン酸塩(例えばリン酸アルミニウムなど)を用いると、触媒を担持した後、湿潤状態で溶解して触媒中に移動し、活性を低下させるため好ましくない。リン酸塩の添加量は、基板腐食により生成するFeイオンと当モル以上であればよく、使用条件によって異なるため一概には言えないが、0.5g/m2〜40g/m2の範囲内が好結果を与える。これより少ないと抑制効果が小さく、これより多いと、皮膜形成が困難となる。また、皮膜の担持量についても特に制限はないが、多すぎると剥離しやすく少なすぎると防食が薄れるため、30〜150g/m2の範囲内が好ましい。 Here, the phosphate is preferably an insoluble or hardly soluble phosphate. Use of phosphoric acid or a phosphate having high solubility (for example, aluminum phosphate) is not preferable because the catalyst is supported and then dissolved in a wet state and moved into the catalyst to reduce the activity. The addition amount of the phosphate, as long Fe ions and equimolar or more to produce a substrate corrosion, can not be said sweepingly because it varies depending on use conditions, in the range of 0.5g / m 2 ~40g / m 2 is Give good results. If it is less than this, the inhibitory effect is small, and if it is more than this, film formation becomes difficult. Further, the amount of the film supported is not particularly limited, but if it is too much, it is easy to peel off, and if it is too little, the anticorrosion is thinned, so the range of 30 to 150 g / m 2 is preferable.

リン酸塩を添加する処理液に用いるポリビニルアルコールは、多すぎると粘性が高くなり操作性が悪くなるため、好ましくは1〜2wt%がよい。コロイダルシリカは、粉末原料である微粒酸化チタンとリン酸塩との隙間を埋める程度でよく、微粒子酸化チタンとリン酸塩の重量に対し10〜20wt%が選ばれる。また、TiO2酸化チタンは、硫酸根を含まない塩素法で生成したものがよく、比表面積10m2/g以下、平均粒径1μm以下が分散性が良く好ましい。 If the polyvinyl alcohol used in the treatment liquid to which the phosphate is added is too much, the viscosity becomes high and the operability becomes poor. Colloidal silica is sufficient to fill the gap between fine titanium oxide and phosphate, which are powder raw materials, and is selected to be 10 to 20 wt% with respect to the weight of fine titanium oxide and phosphate. Further, TiO 2 titanium oxide is preferably produced by a chlorine method containing no sulfate radical, and a specific surface area of 10 m 2 / g or less and an average particle size of 1 μm or less are preferable because of good dispersibility.

この方法で得られた金属基板に担持する触媒成分、触媒担持法は一般的に知られている Ti、W、Mo、Vの酸化物からなる脱硝触媒のペーストをメタルラスの網目に埋め込む塗布法やスラリをコーティングする方法などが適するが、これらにより本発明が制限されないことはいうまでもない。   The catalyst components supported on the metal substrate obtained by this method and the catalyst supporting method are generally known coating methods such as embedding a denitration catalyst paste made of oxides of Ti, W, Mo, and V in a metal lath mesh. A method of coating a slurry is suitable, but it goes without saying that the present invention is not limited by these methods.

以下、具体例を用いて本発明を詳細に説明する。
[実施例1]
ポリビニルアルコール(クラレ社製ポバールPVA-117)3kgを水47kgに溶解したものにコロイダルシリカ(日産化学社製、商品名スノーテックN(SiO2含有量20wt%))65gを混合し、得られた液にチタニア粉末(石原産業社製CR-50)35kg、リン酸カルシウム(1級)30kgをそれぞれ加えて良く攪拌し、スラリ状の処理液を調製した。これに、500mm×500mmに切断したメタルラス(SUS430、厚み0.2mm)を浸漬させ、エアブローで液切りして、ラス表面に上記混合液を担持した後、140℃で不溶化処理を施して皮膜層を有する基板を得た。皮膜担持量は約70g/m2、そのうちリン酸カルシウムの担持量は21g/m2である。
Hereinafter, the present invention will be described in detail using specific examples.
[Example 1]
65 kg of colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snow Tech N (SiO 2 content 20 wt%)) was obtained by dissolving 3 kg of polyvinyl alcohol (Kuraray PVA-117) in 47 kg of water. To the liquid, 35 kg of titania powder (CR-50 manufactured by Ishihara Sangyo Co., Ltd.) and 30 kg of calcium phosphate (first grade) were added and stirred well to prepare a slurry-like treatment liquid. A metal lath (SUS430, thickness 0.2mm) cut into 500mm x 500mm was immersed in this, and the liquid layer was drained by air blow to carry the above mixture on the lath surface, and then insolubilized at 140 ° C to form a coating layer. A substrate having was obtained. The film loading is about 70 g / m 2 , of which the calcium phosphate loading is 21 g / m 2 .

[実施例2、3]
実施例1のリン酸カルシウムを、等モルのリン酸マグネシウム、リン酸亜鉛に変え、ほかは実施例1と同様にして基板を得た。皮膜担持量はいずれも約70g/m2、そのうちリン酸マグネシウム、リン酸亜鉛の担持量はそれぞれ20、25g/m2である。
[Examples 2 and 3]
A substrate was obtained in the same manner as in Example 1 except that the calcium phosphate of Example 1 was changed to equimolar magnesium phosphate and zinc phosphate. The film loading was about 70 g / m 2 , of which magnesium phosphate and zinc phosphate were 20 and 25 g / m 2 , respectively.

[実施例4]
実施例1のリン酸カルシウム添加量を、45kgに、酸化チタン粉末を20kgにしたほかは実施例1と同様にして基板を得た。皮膜担持量はいずれも約70g/m2、そのうちリン酸カルシウムの担持量は32g/m2である。
[Example 4]
A substrate was obtained in the same manner as in Example 1 except that the amount of calcium phosphate added in Example 1 was 45 kg and the titanium oxide powder was 20 kg. The film loading amount is about 70 g / m 2 , of which the calcium phosphate loading amount is 32 g / m 2 .

[比較例1]
実施例1において、本発明による皮膜を形成させないラス基材を用いる以外は実施例1と同様にして基板を得た。皮膜担持量は約70g/m2である。
[Comparative Example 1]
In Example 1, a substrate was obtained in the same manner as in Example 1 except that a lath substrate that did not form a film according to the present invention was used. The film loading is about 70 g / m 2 .

[比較例2]
実施例1において、リン酸カルシウムを同重量の酸化チタン(石原産業社製CR-50)に変えた以外は実施例1と同様にして基板を得た。皮膜担持量は約70g/m2である。
[Comparative Example 2]
A substrate was obtained in the same manner as in Example 1 except that calcium phosphate was changed to titanium oxide having the same weight (CR-50 manufactured by Ishihara Sangyo Co., Ltd.). The film loading is about 70 g / m 2 .

[試験例1]
本発明のリン酸塩添加による基板中のFeイオンの固定化効果を見るため、下記の模擬試験を行った。
まず、基板が硫酸で腐食して硫酸鉄が基板表面に生成した状態を模擬するため、実施例1〜5及び比較例1〜2で得られた基板を、FeSO4として4wt%含有する水溶液に1分間浸漬後、室温で1時間風乾し、さらに120℃で2時間乾燥した。以下これを単に硫酸鉄処理と称する。
[Test Example 1]
In order to observe the effect of fixing Fe ions in the substrate by the phosphate addition of the present invention, the following simulation test was performed.
First, in order to simulate the state in which the substrate was corroded with sulfuric acid and iron sulfate was generated on the substrate surface, the substrates obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were added to an aqueous solution containing 4 wt% as FeSO 4. After being immersed for 1 minute, it was air-dried at room temperature for 1 hour, and further dried at 120 ° C. for 2 hours. Hereinafter, this is simply referred to as iron sulfate treatment.

これとは別に、酸化チタンとモリブデン酸アンモニウム、メタバナジン酸アンモニウムとを、原子比でTi:Mo:V=93.5:5:1.5の割合で混合し、水、シリカゾル、シリカ系セラミック繊維を加えてニーダで十分混練して触媒ペーストを得た。   Separately, titanium oxide, ammonium molybdate, and ammonium metavanadate are mixed at an atomic ratio of Ti: Mo: V = 93.5: 5: 1.5, and water, silica sol, silica-based ceramic fibers are added, and the kneader is mixed. And kneaded sufficiently to obtain a catalyst paste.

上記した硫酸鉄処理を施したラス板を一対の加圧ローラに通過させることにより、触媒ペーストを基材の網目間及び表面に圧着塗布した。これを150℃で1時間乾燥後、500℃で2時間焼成して板状触媒を得た(塗布量700g/m2)。ここまでの操作は、腐食された基板の表面に触媒が担持された状態を模擬している。 The lath plate subjected to the above-described iron sulfate treatment was passed through a pair of pressure rollers to apply the catalyst paste between the mesh of the substrate and the surface thereof. This was dried at 150 ° C. for 1 hour and then calcined at 500 ° C. for 2 hours to obtain a plate catalyst (coating amount 700 g / m 2 ). The operation so far simulates the state in which the catalyst is supported on the surface of the corroded substrate.

[試験例3]
実施例1と同じ基板を用いて試験例1と同じ硫酸鉄処理を行った。
これとは別に、酸化チタンとタングステン酸アンモニウム、メタバナジン酸アンモニウムとを、原子比でTi:W:V=93.5:5:1.5の割合で混合し、水、シリカゾル、シリカ系セラミック繊維を加えてニーダで十分混練して触媒ペーストを得た。硫酸鉄処理を施したラス板を一対の加圧ローラに通過させることにより、触媒ペーストを基材の網目間及び表面に圧着塗布した。これを150℃で1時間乾燥後、500℃で2時間焼成して板状触媒を得た(塗布量700g/m2)。
[Test Example 3]
Using the same substrate as in Example 1, the same iron sulfate treatment as in Test Example 1 was performed.
Separately, titanium oxide, ammonium tungstate, and ammonium metavanadate are mixed at an atomic ratio of Ti: W: V = 93.5: 5: 1.5, and water, silica sol, silica-based ceramic fibers are added, and the kneader is mixed. And kneaded sufficiently to obtain a catalyst paste. The lath plate subjected to the iron sulfate treatment was passed through a pair of pressure rollers to apply the catalyst paste between the mesh of the substrate and the surface thereof. This was dried at 150 ° C. for 1 hour and then calcined at 500 ° C. for 2 hours to obtain a plate catalyst (coating amount 700 g / m 2 ).

[試験例4]
基板表面に生成した腐食生成物の硫酸鉄が、触媒が実機等で湿潤状態におかれて触媒中に移動するところを模擬するため、試験例1及び2の触媒を100mm×100mmに切断した後、相対湿度100%の密閉容器内に1時間静置した。これを取り出して120℃で2時間乾燥、350℃で2時間焼成し、試験片を得た。この処理を、吸湿処理と称する。
[Test Example 4]
After slicing the catalyst of Test Examples 1 and 2 to 100 mm x 100 mm in order to simulate the movement of the corrosion product iron sulfate generated on the substrate surface into the catalyst in a wet state with an actual machine etc. The mixture was allowed to stand for 1 hour in an airtight container with a relative humidity of 100%. This was taken out, dried at 120 ° C. for 2 hours, and calcined at 350 ° C. for 2 hours to obtain a test piece. This process is referred to as a moisture absorption process.

上記吸湿処理によって基板から触媒に移動してきたFe量を調べるため、得られた試験片から触媒を剥がして乳鉢で粉砕し、触媒粉末中のFe2O3量を、蛍光X線測定装置を用いて測定した。 In order to examine the amount of Fe transferred from the substrate to the catalyst by the above moisture absorption treatment, the catalyst was peeled off from the obtained test piece and pulverized in a mortar, and the amount of Fe 2 O 3 in the catalyst powder was measured using a fluorescent X-ray measurement device. Measured.

実施例1〜5及び比較例1、2の基板に触媒を担持した試験片での、触媒中のFe2O3量を表1に示す。表1の結果から、実施例の基板を用いた試験片では、いずれも触媒中のFe2O3量は試験前後でほとんど差が無いが、比較例1では、吸湿処理後の触媒中のFe2O3が大きく増加していることが分かる。また、比較例2では、比較例1に比べると触媒中のFe2O3量は少ないものの、本発明の実施例に比べると多い。このことから、比較例の触媒では、基材上の硫酸鉄が、その後触媒が吸湿状態におかれたことにより、触媒中に移動しているといえる。これに対し、実施例の触媒では、吸湿処理後の触媒中のFe2O3量が比較例に比べて少ない。このことから、実施例の触媒では、基材からのFeイオンの移動が防止されていることが分かる。 Table 1 shows the amount of Fe 2 O 3 in the catalyst in the test pieces in which the catalyst is supported on the substrates of Examples 1 to 5 and Comparative Examples 1 and 2. From the results of Table 1, in the test pieces using the substrates of the examples, there is almost no difference in the amount of Fe 2 O 3 in the catalyst before and after the test, but in Comparative Example 1, Fe in the catalyst after the moisture absorption treatment. It can be seen that 2 O 3 is greatly increased. Further, in Comparative Example 2, although the amount of Fe 2 O 3 in the catalyst is smaller than that in Comparative Example 1, it is larger than that in Examples of the present invention. From this, in the catalyst of a comparative example, it can be said that the iron sulfate on the base material has moved into the catalyst because the catalyst is subsequently in a hygroscopic state. In contrast, in the catalyst of the example, the amount of Fe 2 O 3 in the catalyst after the moisture absorption treatment is smaller than that in the comparative example. From this, it can be seen that the movement of Fe ions from the base material is prevented in the catalyst of the example.

[試験例5]
試験例1の硫酸鉄処理を施さない以外は同様にして、触媒担持及び吸湿処理を行った。
[Test Example 5]
Catalyst loading and moisture absorption treatment were performed in the same manner except that the iron sulfate treatment of Test Example 1 was not performed.

[試験例6]
本発明のSO2酸化率上昇抑制効果を見るため、下記試験を行った。
試験例1、5で得られた触媒を100×20mmに切断後流通系の反応管に充填し、表2の条件で触媒のSO2酸化率を測定した。結果を表3に示す。表3の結果から、実施例1〜4の基材を用いた触媒では、硫酸鉄処理の有(試験例1)及び無(試験例5)に関係なく、SO2酸化率に変化は見られないが、比較例1、2の基材を用いた触媒では、硫酸鉄処理(試験例1)によりSO2酸化率が高くなっていることが分かる。これより、本発明の方法では、Feの移動によるSO2酸化率の上昇が防止されることが分かる。
[Test Example 6]
In order to see the effect of suppressing the increase in SO 2 oxidation rate of the present invention, the following test was conducted.
The catalyst obtained in Test Examples 1 and 5 was cut to 100 × 20 mm and filled into a reaction tube in a flow system, and the SO 2 oxidation rate of the catalyst was measured under the conditions shown in Table 2. The results are shown in Table 3. From the results of Table 3, in the catalyst using the base materials of Examples 1 to 4, a change was observed in the SO 2 oxidation rate regardless of whether iron sulfate treatment was performed (Test Example 1) or not (Test Example 5). Although there is no catalyst, it can be seen that in the catalysts using the base materials of Comparative Examples 1 and 2, the SO 2 oxidation rate is increased by the iron sulfate treatment (Test Example 1). From this, it can be seen that in the method of the present invention, an increase in the SO 2 oxidation rate due to Fe migration is prevented.

Figure 2012035208
Figure 2012035208

Figure 2012035208
Figure 2012035208

Figure 2012035208
Figure 2012035208

Claims (6)

金属基板表面にリン酸塩がシリカおよび酸化チタンと共に層状に担持されていることを特徴とする触媒用基板。   A catalyst substrate, wherein a phosphate is supported on a metal substrate surface in a layer together with silica and titanium oxide. 前記リン酸塩がリン酸カルシウム、リン酸バリウムおよびリン酸亜鉛から選ばれた1または2以上の化合物である請求項1記載の触媒用基板。   The catalyst substrate according to claim 1, wherein the phosphate is one or more compounds selected from calcium phosphate, barium phosphate, and zinc phosphate. 前記金属基板がメタルラスであり、前記触媒用基板の網目間及び表面に酸化チタンと、モリブデン、タングステンおよびバナジウムから選ばれる1つ以上の元素の酸化物とを含む脱硝触媒成分が担持されていることを特徴とする脱硝触媒。   The metal substrate is a metal lath, and a denitration catalyst component containing titanium oxide and an oxide of one or more elements selected from molybdenum, tungsten, and vanadium is supported between the mesh and the surface of the catalyst substrate. A denitration catalyst characterized by コロイダルシリカ、微粒酸化チタンおよびポリビニルアルコールを含む処理液にリン酸塩を加えてスラリ状にした処理液に金属基板を浸漬し、該金属基板上に前記シリカ、酸化チタン、ポリビニルアルコールおよびリン酸塩を担持した後、乾燥、焼成して前記金属基板表面に耐食性皮膜を形成することを特徴とする触媒用基板の製造方法。   A metal substrate is immersed in a slurry obtained by adding phosphate to a treatment liquid containing colloidal silica, fine titanium oxide and polyvinyl alcohol, and the silica, titanium oxide, polyvinyl alcohol and phosphate are immersed on the metal substrate. And then drying and baking to form a corrosion-resistant film on the surface of the metal substrate. 前記リン酸塩がリン酸カルシウム、リン酸バリウムおよびリン酸亜鉛から選ばれた1または2以上の化合物である請求項4記載の触媒用基板。   The catalyst substrate according to claim 4, wherein the phosphate is one or more compounds selected from calcium phosphate, barium phosphate, and zinc phosphate. コロイダルシリカ、微粒酸化チタンおよびポリビニルアルコールを含む処理液にリン酸塩を加えてスラリ状にした処理液に金属基板としてメタルラスを浸漬し、該メタルラスに前記シリカ、酸化チタン、ポリビニルアルコールおよびリン酸塩を担持し、乾燥、焼成して触媒用基板を製造した後、該触媒用基板の網目間および表面に酸化チタンと、モリブデン、タングステンおよびバナジウムから選ばれる1つ以上の元素の酸化物とを含む脱硝触媒成分を担持することを特徴とする脱硝触媒の製造方法。   A metal lath is immersed as a metal substrate in a slurry obtained by adding phosphate to a treatment liquid containing colloidal silica, fine titanium oxide and polyvinyl alcohol, and the silica, titanium oxide, polyvinyl alcohol and phosphate are immersed in the metal lath. The catalyst substrate is manufactured by supporting and drying and firing, and then includes titanium oxide and an oxide of one or more elements selected from molybdenum, tungsten and vanadium on the mesh and on the surface of the catalyst substrate. A method for producing a denitration catalyst, comprising a denitration catalyst component.
JP2010178355A 2010-08-09 2010-08-09 Metal substrate for catalyst and denitration catalyst using the same Pending JP2012035208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010178355A JP2012035208A (en) 2010-08-09 2010-08-09 Metal substrate for catalyst and denitration catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178355A JP2012035208A (en) 2010-08-09 2010-08-09 Metal substrate for catalyst and denitration catalyst using the same

Publications (1)

Publication Number Publication Date
JP2012035208A true JP2012035208A (en) 2012-02-23

Family

ID=45847817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178355A Pending JP2012035208A (en) 2010-08-09 2010-08-09 Metal substrate for catalyst and denitration catalyst using the same

Country Status (1)

Country Link
JP (1) JP2012035208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119067A1 (en) * 2013-01-29 2014-08-07 日立造船株式会社 Catalyst for decomposing ammonia
CN112980260A (en) * 2021-03-24 2021-06-18 南京信息职业技术学院 Preparation method of car paint polyvinyl alcohol-titanium dioxide composite coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119067A1 (en) * 2013-01-29 2014-08-07 日立造船株式会社 Catalyst for decomposing ammonia
JP2014144424A (en) * 2013-01-29 2014-08-14 Hitachi Zosen Corp Catalyst for decomposing ammonia
CN104955567A (en) * 2013-01-29 2015-09-30 日立造船株式会社 Catalyst for decomposing ammonia
CN112980260A (en) * 2021-03-24 2021-06-18 南京信息职业技术学院 Preparation method of car paint polyvinyl alcohol-titanium dioxide composite coating

Similar Documents

Publication Publication Date Title
TWI418395B (en) Clean catalyst for exhaust gas
WO2013035743A1 (en) Method for reducing the so2 oxidation ratio increase of denitration catalyst
JP2009006226A (en) Method for regenerating catalyst
JP5401049B2 (en) Slurry for producing denitration catalyst, method for producing the slurry, method for producing denitration catalyst using the slurry, and denitration catalyst produced by the method
JP6047477B2 (en) NOx removal catalyst and method for producing the same
CN101371970A (en) Catalyst and preparation method thereof suitable for denitration of flue gas containing alkali metal oxide
JP5921252B2 (en) End treatment method of catalyst supporting honeycomb structure in exhaust gas denitration apparatus
JP2008296100A (en) Slurry for manufacturing denitration catalyst, method for manufacturing denitration catalyst by using the slurry, and denitration catalyst manufactured by the method
TWI647010B (en) Catalyst for oxidation of metal mercury and reduction reaction of nitrogen oxides, and purification method of exhaust gas
JPWO2012086413A1 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
KR20140002600A (en) Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP2012035208A (en) Metal substrate for catalyst and denitration catalyst using the same
TWI465285B (en) An exhaust gas purification catalyst capable of suppressing the influence of an iron compound, an exhaust gas purification method using the same, and a manufacturing method thereof
JP5386096B2 (en) Exhaust gas treatment catalyst
JP5804980B2 (en) NOx removal catalyst for exhaust gas treatment and exhaust gas treatment method
JP2006192344A (en) Method for regenerating denitrification catalyst and regenerated denitrification catalyst
JP5615058B2 (en) Method for producing metal substrate for exhaust gas denitration catalyst
JP2006314935A (en) Flue gas nox removal catalyst, its manufacturing method, and flue gas nox removal system
JP5687143B2 (en) Exhaust gas denitration catalyst containing dust and its production method
JP4190716B2 (en) Oxidation-resistant and corrosion-resistant metal substrate, denitration catalyst and exhaust gas purification method
JP2007009315A (en) Sulfidation corrosion resistant high temperature member, method for producing the same, and method for preventing sulfidation corrosion in high temperature member
JP2012035209A (en) Metal substrate for catalyst, denitration catalyst, and method for manufacturing them
JP2010075806A (en) High-durability substrate for depositing catalyst and exhaust gas cleaning catalyst thereof
CN114682248B (en) Low-temperature denitration catalyst and preparation method and application thereof
JP2013031788A (en) Metal substrate for catalyst and denitration catalyst using the same