JP2012035179A - Temperature sensitive adsorbent and method of manufacturing the same - Google Patents

Temperature sensitive adsorbent and method of manufacturing the same Download PDF

Info

Publication number
JP2012035179A
JP2012035179A JP2010176475A JP2010176475A JP2012035179A JP 2012035179 A JP2012035179 A JP 2012035179A JP 2010176475 A JP2010176475 A JP 2010176475A JP 2010176475 A JP2010176475 A JP 2010176475A JP 2012035179 A JP2012035179 A JP 2012035179A
Authority
JP
Japan
Prior art keywords
temperature
sensitive
group
polymer
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176475A
Other languages
Japanese (ja)
Inventor
Kenji Murakami
賢治 村上
Yukihiko Inoue
幸彦 井上
Katsuyasu Sugawara
勝康 菅原
Takahiro Kato
貴宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2010176475A priority Critical patent/JP2012035179A/en
Publication of JP2012035179A publication Critical patent/JP2012035179A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a temperature sensitive adsorbent in which the outer surface of porous silica is uniformly covered with a small amount of temperature sensitive polymer and which can control the pore entrance diameter of the porous silica by temperature control.SOLUTION: The temperature sensitive adsorbent is made by bonding the temperature sensitive polymer whose volume is changed according to a temperature change to the outer surface of the porous silica through a functional group.

Description

本発明は、外部温度の変化により細孔の入口径を可逆的に変化させることが可能な感温性吸着剤及びその製造方法に関する。   The present invention relates to a thermosensitive adsorbent capable of reversibly changing the inlet diameter of pores by a change in external temperature and a method for producing the same.

ポーラスシリカは、高比表面積かつ均一な細孔を有し、触媒や分離/吸着材料として広く使用されている。例えば、細孔内部に有機官能基が修飾されたポーラスシリカは、水中に溶存している金属イオンや有機分子に対して優れた吸着能を示す。ポーラスシリカの細孔内部に有機官能基を修飾する方法の一つとして、いわゆるco-condensation法がある。co-condensation法は、シリカ源とともに有機官能基を有するシランを混合することで、one-pot合成する方法である。界面活性剤の除去は通常、酸性溶媒を用いて行われる。この方法によれば、有機官能基が細孔内に均一に分散し、また有機官能基の固定化量の制御も容易であるなどの長所を持つ。この場合、細孔内壁に固定化する有機官能基量を変化させることにより、細孔径を変化させることができる(非特許文献1)。このことは、有機官能基量によって吸着可能な分子の大きさを制御できることを示し、吸着対象分子の迅速かつ優先的な分離・吸着が可能と考えられる。しかしながら、この場合、細孔径を数Å単位でしか変化させることができず、また、大量に有機官能基を導入するとポーラスシリカの骨格構造が壊れてしまうといった問題もあった。   Porous silica has a high specific surface area and uniform pores, and is widely used as a catalyst or a separation / adsorption material. For example, porous silica whose organic functional group is modified inside the pores exhibits excellent adsorption ability for metal ions and organic molecules dissolved in water. One of the methods for modifying the organic functional group inside the pores of the porous silica is a so-called co-condensation method. The co-condensation method is a one-pot synthesis method by mixing a silane having an organic functional group together with a silica source. The removal of the surfactant is usually performed using an acidic solvent. According to this method, the organic functional group is uniformly dispersed in the pores, and the amount of the organic functional group immobilized can be easily controlled. In this case, the pore diameter can be changed by changing the amount of the organic functional group immobilized on the inner wall of the pore (Non-Patent Document 1). This indicates that the size of molecules that can be adsorbed can be controlled by the amount of the organic functional group, and it is considered possible to quickly and preferentially separate and adsorb molecules to be adsorbed. However, in this case, the pore diameter can only be changed by several units, and there is also a problem that the skeleton structure of porous silica is broken when a large amount of organic functional groups are introduced.

一方、新たな吸着材料として刺激応答性高分子が期待されている。刺激応答性高分子は、pHや光、電場などの外部からの刺激に応答して、その体積を変化させる。特に感温性高分子の一種であるポリ(N−イソプロピルアクリルアミド)といったアクリルアミド誘導体は、所定の温度(例えば、32℃)を境に可逆的に水和又は脱水和を起こす。それに伴い、高分子自身が膨潤又は収縮し、体積が変化する。この体積変化の際に、分子を網目構造に取り込んで吸着させることが可能である。しかしながら、刺激応答性高分子を吸着剤として用いる場合、吸着量が極めて少なく、また、機械的な強度が十分でないといった問題があった(非特許文献2)。   On the other hand, stimuli-responsive polymers are expected as new adsorbing materials. The stimulus-responsive polymer changes its volume in response to external stimuli such as pH, light, and electric field. In particular, an acrylamide derivative such as poly (N-isopropylacrylamide), which is a kind of thermosensitive polymer, reversibly hydrates or dehydrates at a predetermined temperature (for example, 32 ° C.). Along with this, the polymer itself swells or contracts, and the volume changes. During this volume change, molecules can be taken into the network structure and adsorbed. However, when a stimuli-responsive polymer is used as an adsorbent, there are problems that the amount of adsorption is extremely small and the mechanical strength is not sufficient (Non-patent Document 2).

上記のようなポーラスシリカ特有の問題と刺激応答性高分子特有の問題とを双方解消するため、ポーラスシリカと刺激応答性高分子とを複合化させる研究が行われてきた(非特許文献3−11)。当該研究の目的のするところは、ポーラスシリカの持つ吸着容量や比表面積、機械的強度を活かしつつ、刺激応答性高分子の体積変化により細孔入口径を制御することにある。しかしながら、ポーラスシリカに刺激応答性高分子を被覆する場合、被覆量の制御が容易でなく、刺激応答性高分子を適切に被覆しようとした場合、ポーラスシリカ外表面の刺激応答性高分子の量が多量となってしまい、ポーラスシリカ外表面を刺激応答性高分子の層が厚く覆うこととなる結果、ポーラスシリカの細孔入口径を制御することが困難であった。   In order to solve both the above-mentioned problems specific to porous silica and problems specific to stimuli-responsive polymers, research has been conducted on combining porous silica and stimuli-responsive polymers (Non-patent Document 3- 11). The purpose of this research is to control the pore inlet diameter by changing the volume of the stimulus-responsive polymer while taking advantage of the adsorption capacity, specific surface area, and mechanical strength of porous silica. However, when the stimulus-responsive polymer is coated on the porous silica, it is not easy to control the coating amount, and when the stimulus-responsive polymer is to be appropriately coated, the amount of the stimulus-responsive polymer on the outer surface of the porous silica. As a result, the stimulus-responsive polymer layer is thickly covered on the outer surface of the porous silica. As a result, it is difficult to control the pore inlet diameter of the porous silica.

K. Murakami, K. Fuda and M. Sugai, Geometrical Study on Change of Pore Volume of MCM-41 Functionalized with Aminopropyl Groups, Mater. Res. Soc. Symp. Proc., 1056E (2007) 1056-HH08-41K. Murakami, K. Fuda and M. Sugai, Geometrical Study on Change of Pore Volume of MCM-41 Functionalized with Aminopropyl Groups, Mater. Res. Soc. Symp. Proc., 1056E (2007) 1056-HH08-41 T. Oya, T. Enoki, A. Y. Grosberg, S. Masamune, T. Sakiyama, Y. Takeoka, K. Tanaka, G. Wang, Y. Yilmaz, M. S. Feld, R. Dasari, and T. Tanaka, Reversible molecular adsorption based on multiple-point interaction by shrinkable gels, Science, 286 (1999) 1543-1545T. Oya, T. Enoki, AY Grosberg, S. Masamune, T. Sakiyama, Y. Takeoka, K. Tanaka, G. Wang, Y. Yilmaz, MS Feld, R. Dasari, and T. Tanaka, Reversible molecular adsorption based on multiple-point interaction by shrinkable gels, Science, 286 (1999) 1543-1545 Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ran, and Y. Li, Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure, Angew. Chem. Int. Ed., 44 (2005) 5083-5087.Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ran, and Y. Li, Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere / Polyelectrolyte Multilayer Core-Shell Structure, Angew Chem. Int. Ed., 44 (2005) 5083-5087. S-W. Song, K. Hidajat, and S. Kawi, pH-Controllable drug release using hydrogel encapsulated mesoporous silica, Chem. Commn., 42 (2007) 4396-4398.S-W. Song, K. Hidajat, and S. Kawi, pH-Controllable drug release using hydrogel encapsulated mesoporous silica, Chem. Commn., 42 (2007) 4396-4398. W. Xu, Q. Gao, Y. Xu, D. Wu, Y. Sun, pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate, Materials Research Bulletin 44 (2009) 606-612.W. Xu, Q. Gao, Y. Xu, D. Wu, Y. Sun, pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate, Materials Research Bulletin 44 (2009) 606-612. H-J. Kim, H. Matsuda, H. Zhou, and I. Honma, Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)-Mesoporous Silica Composite, Adv. Mater. 18 (2006) 3083-3088.H-J. Kim, H. Matsuda, H. Zhou, and I. Honma, Ultrasound-Triggered Smart Drug Release from a Poly (dimethylsiloxane) -Mesoporous Silica Composite, Adv. Mater. 18 (2006) 3083-3088. N. K. Mal, M. Fujiwara, and Y. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 421 (2003) 350-353.N. K. Mal, M. Fujiwara, and Y. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature, 421 (2003) 350-353. G.V. Rama Rao, M. E. Krug, S. Balamurugan, H. Xu, Q. Xu, and G. P. Lopez, Synthesis and Characterization of Silica-Poly(N-isopropylacylamide) Hybrid Membranes: Switchable Molecular Filters, Chem. Mater., 14 (2002) 5075-5080.GV Rama Rao, ME Krug, S. Balamurugan, H. Xu, Q. Xu, and GP Lopez, Synthesis and Characterization of Silica-Poly (N-isopropylacylamide) Hybrid Membranes: Switchable Molecular Filters, Chem. Mater., 14 (2002 ) 5075-5080. Q. Fu, G.V. Rama Rao, L. K. Ista, Y. Wu, B. P. Andrzejewski, L. A. Sklar, T. L. Ward, and G. P. Lopez, Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials, Adv. Mater., 15 (2003) 1262-1266.Q. Fu, GV Rama Rao, LK Ista, Y. Wu, BP Andrzejewski, LA Sklar, TL Ward, and GP Lopez, Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials, Adv. Mater., 15 (2003) 1262 -1266. Q. Fu, G. V. Rama Rao, T. L. Ward, Y. Lu, and G. P. Lopez, Thermoresponsive Transport through Ordered Mesoporous Silica/PNIPAAm Copolymer Membranes and Microspheres, Langmuir, 23 (2007) 170-174.Q. Fu, G. V. Rama Rao, T. L. Ward, Y. Lu, and G. P. Lopez, Thermoresponsive Transport through Ordered Mesoporous Silica / PNIPAAm Copolymer Membranes and Microspheres, Langmuir, 23 (2007) 170-174. B.-S. Tian, and C. Yang, Temperature-Responsive Nanocomposites Based on Mesoporous SBA-15 Silica and PNIPAAm: Synthesis and Characterization, J. Phys. Chem. C., 113 (2009) 4925-4931.B.-S. Tian, and C. Yang, Temperature-Responsive Nanocomposites Based on Mesoporous SBA-15 Silica and PNIPAAm: Synthesis and Characterization, J. Phys. Chem. C., 113 (2009) 4925-4931.

そこで本発明は、ポーラスシリカの外表面に、均一かつ少量の感温性高分子が被覆され、温度制御によって、ポーラスシリカの細孔入口径を制御することが可能な感温性吸着剤を提供することを課題とする。   Accordingly, the present invention provides a temperature-sensitive adsorbent in which the outer surface of the porous silica is coated with a uniform and small amount of a temperature-sensitive polymer, and the pore inlet diameter of the porous silica can be controlled by temperature control. The task is to do.

上記課題を解決するため、本発明は以下の構成を採る。すなわち、
本発明の第1の態様は、温度変化に対応して体積が変化する感温性高分子が、官能基を介して、ポーラスシリカの外表面に結合されてなる、感温性吸着剤である。
In order to solve the above problems, the present invention adopts the following configuration. That is,
A first aspect of the present invention is a temperature-sensitive adsorbent in which a temperature-sensitive polymer whose volume changes in response to a temperature change is bonded to the outer surface of porous silica via a functional group. .

本発明において、「ポーラスシリカの外表面」とは、ポーラスシリカの細孔内壁以外の表面をいい、外観視で露出している表面をいう。また、「感温性高分子が、官能基を介して、ポーラスシリカの外表面に結合されてなる」とは、感温性高分子が、官能基に共有結合やイオン結合等によって化学的に結合されてなる形態の他、物質同士の物理的吸着や絡み合い等によって物理的に結合されてなる形態の双方を含み得る。特に、本発明では、官能基の存在により、感温性高分子をポーラスシリカ外表面に化学的に結合させることが可能である。   In the present invention, the “outer surface of porous silica” refers to a surface other than the pore inner wall of the porous silica and is a surface exposed in appearance. In addition, “the thermosensitive polymer is bonded to the outer surface of the porous silica via a functional group” means that the thermosensitive polymer is chemically bonded to the functional group by a covalent bond or an ionic bond. In addition to the combined form, both forms formed by physical adsorption or entanglement between substances may be included. In particular, in the present invention, it is possible to chemically bond the thermosensitive polymer to the outer surface of the porous silica due to the presence of the functional group.

本発明の第1の態様においては、感温性高分子の量を、感温性吸着剤全体を基準(100質量%)として、5質量%以下とすることが可能である。本発明では、感温性高分子が官能基を介してシリカ外表面に結合されているので、感温性高分子がシリカ外表面を単に被覆する形態と比較して、感温性高分子の量を少量とすることができる。すなわち、官能基を介さずに感温性高分子をシリカ外表面に被覆しようとしても、感温性高分子の量が少ないと、当該感温性高分子をうまく被覆することはできない。例えば、Tianらの場合(上記非特許文献11)、高分子の量を21〜28質量%としており、或いは、Fuらの場合(上記非特許文献9)、高分子の量を24質量%としている。すなわち、従来の形態にあっては、シリカ外表面を非常に多くのポリマーで被覆していた。言い換えれば、官能基を介さずに感温性高分子を固定化する場合、感温性高分子の量を極めて多量にしなければ、固定化できなかったといえる。一方、本発明では、5質量%以下という極めて少量な官能性高分子量であっても、官能基を介することで、ポーラスシリカ外表面に適切に固定化できる。   In the first aspect of the present invention, the amount of the thermosensitive polymer can be 5% by mass or less based on the entire thermosensitive adsorbent (100% by mass). In the present invention, since the temperature-sensitive polymer is bonded to the outer surface of the silica via a functional group, the temperature-sensitive polymer is compared with the form in which the temperature-sensitive polymer simply covers the outer surface of the silica. The amount can be small. That is, even if the temperature-sensitive polymer is to be coated on the silica outer surface without using a functional group, if the amount of the temperature-sensitive polymer is small, the temperature-sensitive polymer cannot be coated well. For example, in the case of Tian et al. (Non-Patent Document 11), the amount of polymer is 21 to 28% by mass, or in the case of Fu et al. (Non-Patent Document 9), the amount of polymer is 24% by mass. Yes. That is, in the conventional form, the silica outer surface was coated with a very large number of polymers. In other words, when immobilizing a thermosensitive polymer without interposing a functional group, it can be said that immobilization could not be achieved unless the amount of the thermosensitive polymer was extremely large. On the other hand, in the present invention, even a very small amount of the functional high molecular weight of 5% by mass or less can be appropriately immobilized on the outer surface of the porous silica through the functional group.

本発明の第1の態様において、官能基が、アミノ基、モノ置換アミノ基、ジ置換アミノ基又はビニル基から選ばれる少なくとも一種であることが好ましく、この中でも特に、ジメチルアミノ基であることが好ましい。これらの官能基によって、シリカ外表面に感温性高分子をより適切に結合させることができる。   In the first aspect of the present invention, the functional group is preferably at least one selected from an amino group, a mono-substituted amino group, a di-substituted amino group, or a vinyl group, and among them, a dimethylamino group is particularly preferable. preferable. With these functional groups, the thermosensitive polymer can be more appropriately bonded to the outer surface of the silica.

本発明の第1の態様において、感温性高分子が、(メタ)アクリルアミド誘導体由来の単量体単位を備えることが好ましく、特に、ポリ(N−イソプロピル(メタ)アクリルアミド)であることが好ましい。これにより、温度変化による細孔径制御の精度が一層向上する。   In the first aspect of the present invention, the thermosensitive polymer preferably comprises a monomer unit derived from a (meth) acrylamide derivative, and particularly preferably poly (N-isopropyl (meth) acrylamide). . Thereby, the precision of pore diameter control by temperature change further improves.

本発明の第1の態様において、ポーラスシリカが、細孔内部にイオン交換基を有していることが好ましい。特に、当該イオン交換基が、1〜3級アミノ基、4級アンモニウム基,カルボキシル基、又はスルホン酸基であることが好ましい。これにより、感温性吸着剤をイオン交換用途にも用いることが可能となる。   In the first aspect of the present invention, the porous silica preferably has an ion exchange group inside the pore. In particular, the ion exchange group is preferably a primary to tertiary amino group, a quaternary ammonium group, a carboxyl group, or a sulfonic acid group. This makes it possible to use the temperature-sensitive adsorbent for ion exchange applications.

本発明の第2の態様は、ポーラスシリカ骨格の外表面に官能基を付加する、官能基付加工程と、官能基に、温度変化に対応して体積が変化する感温性高分子を結合する、感温性高分子結合工程とを備える、感温性吸着剤の製造方法である。   In the second aspect of the present invention, a functional group addition step of adding a functional group to the outer surface of the porous silica skeleton, and a thermosensitive polymer whose volume changes in response to a temperature change are bonded to the functional group. And a temperature-sensitive polymer binding step.

ここで、「ポーラスシリカ骨格」とは、ポーラスシリカとなり得るシリカ骨格を意味する。界面活性剤等を鋳型としてポーラスシリカ骨格を形成する場合は、当該界面活性剤等が残存していてもよい。「官能基に、…感温性高分子を結合する」とは、例えば、液中において、感温性高分子を形成する単量体を官能基付近で重合させることにより感温性高分子を官能基に化学的或いは物理的に結合する形態等、官能基に感温性高分子を結合可能なものであれば、いずれも適用可能である。   Here, the “porous silica skeleton” means a silica skeleton that can become porous silica. When forming a porous silica skeleton using a surfactant or the like as a template, the surfactant or the like may remain. “Binding the thermosensitive polymer to the functional group” means, for example, that the thermosensitive polymer is polymerized in the liquid in the vicinity of the functional group by polymerizing a monomer that forms the thermosensitive polymer. Any form can be applied as long as the thermosensitive polymer can be bonded to the functional group, such as a form chemically or physically bonded to the functional group.

本発明の第2の態様において、界面活性剤とシリカ源とを含む溶液を用いて、当該界面活性剤を鋳型としてポーラスシリカ骨格を形成し、その後、界面活性剤を除去することにより、細孔を形成するとよい。この場合、溶液がイオン交換基源をさらに含むものであることが好ましい。尚、「シリカ源」とは、ポーラスシリカの原料となる化合物を意味する。シリカ源としては従来公知のシリカ源を用いることができ、具体的にはテトラエトキシシラン(TEOS)等のケイ酸化合物が挙げられる。「イオン交換基源」とは、ポーラスシリカの細孔内に固定化されるイオン交換基を有する化合物を意味する。イオン交換基源としては従来公知のものを用いることができ、例えば、有機官能基を有するケイ酸化合物を用いることができる。   In the second aspect of the present invention, by using a solution containing a surfactant and a silica source, a porous silica skeleton is formed using the surfactant as a template, and then the surfactant is removed, whereby pores are obtained. It is good to form. In this case, it is preferable that the solution further contains an ion exchange group source. The “silica source” means a compound that is a raw material for porous silica. A conventionally known silica source can be used as the silica source, and specific examples thereof include silicic acid compounds such as tetraethoxysilane (TEOS). The “ion exchange group source” means a compound having an ion exchange group immobilized in the pores of porous silica. A conventionally well-known thing can be used as an ion exchange group source, For example, the silicic acid compound which has an organic functional group can be used.

本発明の第2の態様において、感温性高分子結合工程を、官能基が付加されたポーラスシリカ骨格を含む液中にて感温性高分子を形成する単量体を重合することにより、官能基に感温性高分子を結合する工程、とすることができる。   In the second aspect of the present invention, the thermosensitive polymer binding step is performed by polymerizing a monomer that forms the thermosensitive polymer in a liquid containing a porous silica skeleton to which a functional group is added. A step of bonding a thermosensitive polymer to the functional group.

本発明によれば、ポーラスシリカの外表面に官能基を介して感温性高分子を結合させることにより、ポーラスシリカの外表面に均一かつ少量の感温性高分子が被覆される。これにより、温度制御によって、ポーラスシリカの細孔入口径を制御することが可能な感温性吸着剤を提供することができる。   According to the present invention, the thermosensitive polymer is bonded to the outer surface of the porous silica via a functional group, so that the outer surface of the porous silica is uniformly coated with a small amount of the thermosensitive polymer. Thereby, the temperature sensitive adsorbent which can control the pore inlet diameter of porous silica by temperature control can be provided.

一実施形態に係る本発明の感温性吸着剤100の断面構造を概略的に示す図である。It is a figure which shows roughly the cross-section of the temperature sensitive adsorbent 100 of this invention which concerns on one Embodiment. 感温性高分子の体積相転移について説明するための概略図である。It is the schematic for demonstrating the volume phase transition of a thermosensitive polymer. 一実施形態に係る本発明の感温性吸着剤の製造方法の流れを説明するための図である。It is a figure for demonstrating the flow of the manufacturing method of the temperature sensitive adsorbent of this invention which concerns on one Embodiment. 一実施形態に係る本発明の感温性吸着剤の製造方法の流れを説明するための図である。It is a figure for demonstrating the flow of the manufacturing method of the temperature sensitive adsorbent of this invention which concerns on one Embodiment. 比較例の形態を概略的に示す図である。It is a figure which shows the form of a comparative example schematically. 比較例の形態を概略的に示す図である。It is a figure which shows the form of a comparative example schematically. 官能基20のみが付加されたポーラスシリカ10からなる複合体300についてのXRDパターンを示す図である。It is a figure which shows the XRD pattern about the composite_body | complex 300 which consists of the porous silica 10 to which only the functional group 20 was added. 官能基20のみが付加されたポーラスシリカ10からなる複合体300についてのFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum about the composite_body | complex 300 which consists of the porous silica 10 to which only the functional group 20 was added. 感温性吸着剤100及び感温性高分子を備えていない複合体400についてのSEM写真図である。It is a SEM photograph figure about the composite 400 which is not equipped with the thermosensitive adsorbent 100 and the thermosensitive polymer. 感温性吸着剤100及び感温性高分子を備えていない複合体400についてのXRDパターンを示す図である。It is a figure which shows the XRD pattern about the composite 400 which is not equipped with the thermosensitive adsorbent 100 and the thermosensitive polymer. 感温性吸着剤100及び感温性高分子を備えていない複合体400についてのFT−IRスペクトルを示す図である。It is a figure which shows the FT-IR spectrum about the composite 400 which is not equipped with the thermosensitive adsorbent 100 and the thermosensitive polymer. 熱重量分析結果を示す図である。It is a figure which shows a thermogravimetric analysis result. 感温性高分子を備えていない複合体400について、メチルオレンジに対する吸脱着特性を示す図である。It is a figure which shows the adsorption / desorption characteristic with respect to methyl orange about the composite_body | complex 400 which is not equipped with a temperature sensitive polymer. 従来の方法により作製した複合体500’について、メチルオレンジに対する吸脱着特性を示す図である。It is a figure which shows the adsorption / desorption characteristic with respect to methyl orange about the composite_body | complex 500 'produced by the conventional method. 本発明の感温性吸着剤100について、メチルオレンジに対する吸脱着特性を示す図である。It is a figure which shows the adsorption / desorption characteristic with respect to methyl orange about the temperature sensitive adsorbent 100 of this invention.

1.感温性吸着剤
図1に、一実施形態に係る本発明の感温性吸着剤100の断面構造を概略的に示す。図1に示すように、感温性吸着剤100は、細孔10a、10a、…を有するポーラスシリカ10の外表面に、官能基20を介して、感温性高分子30が結合されている。また、細孔10a、10a、…の内壁には、イオン交換基40、40、…が修飾されている。
1. FIG. 1 schematically shows a cross-sectional structure of a temperature-sensitive adsorbent 100 according to an embodiment of the present invention. As shown in FIG. 1, the thermosensitive adsorbent 100 has a thermosensitive polymer 30 bonded to the outer surface of porous silica 10 having pores 10a, 10a,. . Further, ion exchange groups 40, 40,... Are modified on the inner walls of the pores 10a, 10a,.

1.1.ポーラスシリカ
ポーラスシリカ10は、細孔10a、10a、…を有するものであり、細孔10a、10a、…の内壁に特定の物質を吸着可能とされている。細孔10a、10a、…の径は特に限定されるものではないが、特にメソ孔(孔径が2〜50nm程度)が好ましい。すなわち、ポーラスシリカ10としてはメソポーラスシリカを用いるとよい。また、ポーラスシリカ10の比表面積についても特に限定されるものではなく、吸着剤として用い得る程度の比表面積を有していればよい。
1.1. Porous silica The porous silica 10 has pores 10a, 10a,... And can adsorb specific substances on the inner walls of the pores 10a, 10a,. The diameters of the pores 10a, 10a,... Are not particularly limited, but are particularly preferably mesopores (pore diameter is about 2 to 50 nm). That is, mesoporous silica may be used as the porous silica 10. The specific surface area of the porous silica 10 is not particularly limited as long as it has a specific surface area that can be used as an adsorbent.

1.2.官能基
官能基20は、ポーラスシリカ10の外表面(ポーラスシリカ10の細孔10a、10a、…の内壁以外の表面であり、外観視で露出している表面)に付加されている。官能基20は、ポーラスシリカ10の外表面と後述する感温性高分子30とを接続・結合可能なものであれば、特に限定されるものではない。例えば、アミノ基、モノ置換アミノ基、ジ置換アミノ基又はビニル基から選ばれる少なくとも一種であることが好ましく、ジ置換アミノ基であることがより好ましい。特に、ジメチルアミノ基を用いるとよい。
1.2. Functional group The functional group 20 is added to the outer surface of the porous silica 10 (the surface other than the inner walls of the pores 10a, 10a,... Of the porous silica 10 and exposed in appearance). The functional group 20 is not particularly limited as long as it can connect / bond the outer surface of the porous silica 10 and a thermosensitive polymer 30 described later. For example, it is preferably at least one selected from an amino group, a mono-substituted amino group, a di-substituted amino group, and a vinyl group, and more preferably a di-substituted amino group. In particular, a dimethylamino group may be used.

1.3.感温性高分子
感温性高分子30は、官能基20を介してポーラスシリカ10の外表面に結合されている。これは、感温性高分子30がポーラスシリカ10の外表面を単に被覆している(ポーラスシリカ10の外表面付近に単に存在している)従来の形態とは大きく異なる。感温性高分子30は、温度変化に応じて体積を変化させるものであれば特に限定されるものではない。特に、ポリ(N−イソプロピル(メタ)アクリルアミド)やポリ(N−アクリロイルピペリジン)、ポリ(N−プロピルアクリルアミド)といったN−アルキル(メタ)アクリルアミド誘導体由来の単量体単位を備える高分子や、ポリ(N,N−ジエチルアクリルアミド)といったN,N−ジアルキルアクリルアミド由来の単量体単位を備える高分子を用いることが好ましい。例えば、ポリ(N−イソプロピルアクリルアミド)は体積相転移温度が32℃付近であり、これよりも高温側においては感温性高分子30が収縮し、低温側においては感温性高分子30が膨潤する。すなわち、図2に示すように、体積相転移温度よりも高温側では、感温性高分子30は隙間の小さな密な網目構造を採るため、被吸着物質Xを透過させることはない(図2(A))。一方、体積相転移温度よりも低温側では、感温性高分子30は隙間の大きな疎な網目構造を採るため、被吸着物質Xを透過させ得る(図2(B))。本発明では、温度制御によって、感温性高分子30の隙間の大きさを制御し、これにより、ポーラスシリカ10の細孔10a、10a、…の入口径を制御するものとしている。
1.3. Temperature Sensitive Polymer The temperature sensitive polymer 30 is bonded to the outer surface of the porous silica 10 through the functional group 20. This is significantly different from the conventional configuration in which the temperature-sensitive polymer 30 simply covers the outer surface of the porous silica 10 (simply exists in the vicinity of the outer surface of the porous silica 10). The temperature-sensitive polymer 30 is not particularly limited as long as the volume is changed according to a temperature change. In particular, polymers comprising monomer units derived from N-alkyl (meth) acrylamide derivatives such as poly (N-isopropyl (meth) acrylamide), poly (N-acryloylpiperidine), poly (N-propylacrylamide), It is preferable to use a polymer having a monomer unit derived from N, N-dialkylacrylamide, such as (N, N-diethylacrylamide). For example, poly (N-isopropylacrylamide) has a volume phase transition temperature around 32 ° C., and the temperature-sensitive polymer 30 contracts on the higher temperature side and the temperature-sensitive polymer 30 swells on the lower temperature side. To do. That is, as shown in FIG. 2, on the higher temperature side than the volume phase transition temperature, the thermosensitive polymer 30 takes a dense network structure with small gaps, and thus does not allow the adsorbed substance X to pass through (FIG. 2). (A)). On the other hand, on the lower temperature side than the volume phase transition temperature, the temperature-sensitive polymer 30 has a sparse network structure with large gaps, and thus allows the adsorbed substance X to pass therethrough (FIG. 2B). In the present invention, the size of the gap of the temperature-sensitive polymer 30 is controlled by temperature control, and thereby the inlet diameter of the pores 10a, 10a,... Of the porous silica 10 is controlled.

感温性高分子30の量は、感温性吸着剤100を全体基準(100質量%)として、上限が5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下である。下限については特に限定されるものではなく、0質量%を超えていれば本発明の効果は奏される。特に0.5質量%以上が好ましい。本発明では、感温性高分子30が官能基20を介してポーラスシリカ10の外表面に結合された形態にあるため、感温性高分子30がポーラスシリカ10を単に被覆している従来の形態に比べて、少量の感温性高分子30でポーラスシリカ10の外表面を均一に被覆することが可能である。すなわち、感温性高分子30の厚みを容易に薄くすることができ、細孔10a、10a、…の入口径を精度よく制御することが可能となる。   The amount of the temperature-sensitive polymer 30 is 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less, based on the temperature-sensitive adsorbent 100 as a whole (100% by mass). The lower limit is not particularly limited, and the effect of the present invention is exhibited as long as it exceeds 0% by mass. Especially 0.5 mass% or more is preferable. In the present invention, since the thermosensitive polymer 30 is bonded to the outer surface of the porous silica 10 via the functional group 20, the conventional thermosensitive polymer 30 simply covers the porous silica 10. Compared to the form, the outer surface of the porous silica 10 can be uniformly coated with a small amount of the thermosensitive polymer 30. That is, the thickness of the temperature-sensitive polymer 30 can be easily reduced, and the inlet diameter of the pores 10a, 10a,... Can be accurately controlled.

1.4.イオン交換基
本発明の感温性吸着剤100においては、ポーラスシリカ10の細孔10aの内壁に、イオン交換基40、40、…が修飾されている。これにより、感温性吸着剤100の細孔10a内壁において、被吸着物質を物理的に吸脱着させるだけでなく、化学的に吸脱着させることも可能となる。すなわち、イオン交換基40を修飾することにより、本発明の感温性吸着剤100をイオン交換体として機能させることができる。イオン交換基40としては、イオン交換基として従来より採用されているものを特に限定されることなく適用可能である。具体的には、1〜3級アミノ基、4級アンモニウム基,カルボキシル基、スルホン酸基等である。例えば、細孔10aの内壁にアミノ基を修飾した場合、本発明の感温性吸着剤100は、低pHにおいて陰イオンを吸着し、高pHにおいて陰イオンを脱離可能なイオン交換体として機能し得る。
1.4. In the thermosensitive adsorbent 100 of the present invention, ion exchange groups 40, 40,... Are modified on the inner walls of the pores 10a of the porous silica 10. Thereby, it is possible not only to physically adsorb and desorb the substance to be adsorbed on the inner walls of the pores 10a of the temperature-sensitive adsorbent 100, but also to chemically adsorb and desorb it. That is, by modifying the ion exchange group 40, the thermosensitive adsorbent 100 of the present invention can function as an ion exchanger. As the ion exchange group 40, what is conventionally employ | adopted as an ion exchange group is applicable, without being specifically limited. Specific examples include a primary to tertiary amino group, a quaternary ammonium group, a carboxyl group, and a sulfonic acid group. For example, when an amino group is modified on the inner wall of the pore 10a, the temperature-sensitive adsorbent 100 of the present invention functions as an ion exchanger capable of adsorbing anions at low pH and desorbing anions at high pH. Can do.

このように、本発明の感温性吸着剤100は、ポーラスシリカ10の外表面に、官能基20を介して、均一かつ少量の感温性高分子30が結合・被覆されているので、温度制御によって、ポーラスシリカ10の細孔10aの入口径を制御することが可能となる。また、細孔10aの内壁をイオン交換基40で修飾することにより、液中の金属イオン等をイオン交換可能なイオン交換体として用いることができる。当該イオン交換体は、イオン交換クロマトグラフィー用のカラム充填剤として好適に利用することができる。また、細孔10aの内部に所定の薬物を保持した感温性吸着剤100を体内に投与し、体内の所定の箇所にて温度変化によって薬物を脱離・放出させることも可能と考えられ、新規なドラッグデリバリーシステムとしての応用も可能である。   As described above, the temperature-sensitive adsorbent 100 of the present invention has a uniform and small amount of the temperature-sensitive polymer 30 bonded and coated on the outer surface of the porous silica 10 via the functional group 20. It becomes possible to control the inlet diameter of the pore 10a of the porous silica 10 by the control. Further, by modifying the inner wall of the pore 10a with the ion exchange group 40, it is possible to use a metal ion or the like in the liquid as an ion exchanger capable of ion exchange. The said ion exchanger can be utilized suitably as a column filler for ion exchange chromatography. In addition, it is considered possible to administer the temperature-sensitive adsorbent 100 holding a predetermined drug inside the pore 10a into the body, and desorb / release the drug by a temperature change at a predetermined position in the body. Application as a new drug delivery system is also possible.

2.感温性吸着剤の製造方法
図3、4に本発明の感温性吸着剤100の製造方法の一例(製造方法S10)を示す。図3、4に示すように、製造方法S10は、界面活性剤50を含む溶液を作製する工程S1と、作製した溶液にシリカ源及びイオン交換基源を添加し、界面活性剤50を鋳型(テンプレート)としてポーラスシリカ10の骨格を形成することにより複合体101を作製する工程S2と、複合体101の外表面に官能基20を付加し、官能基付加複合体102とする、官能基付加工程S3と、工程S3にて付加した官能基20に感温性高分子30が結合した感温性高分子結合体103を作製する、感温性高分子結合工程S4と、工程S4にて得られた感温性高分子結合体103から、界面活性剤50を除去し、本発明に係る感温性吸着剤100を得る工程S5と、を備えている。
2. Method for Producing Temperature Sensitive Adsorbent FIGS. 3 and 4 show an example of the method for producing the temperature sensitive adsorbent 100 of the present invention (production method S10). As shown in FIGS. 3 and 4, the production method S10 includes a step S1 for producing a solution containing the surfactant 50, a silica source and an ion exchange group source added to the produced solution, and the surfactant 50 as a template ( Step S2 for producing the composite 101 by forming a skeleton of porous silica 10 as a template), and a functional group addition step of adding a functional group 20 to the outer surface of the composite 101 to obtain a functional group-added composite 102 S3, a thermosensitive polymer binding step S4 for producing a thermosensitive polymer conjugate 103 in which the thermosensitive polymer 30 is bonded to the functional group 20 added in step S3, and obtained in step S4. Step S5 for obtaining the thermosensitive adsorbent 100 according to the present invention by removing the surfactant 50 from the thermosensitive polymer conjugate 103 obtained.

2.1.工程S1、工程S2
工程S1は、界面活性剤50を含む溶液を作製する工程であり、工程S2は、作製した溶液において、界面活性剤50をテンプレートとしてポーラスシリカ10の骨格を形成し、複合体101を作製する工程である。溶液中にて、界面活性剤50をテンプレートとしてポーラスシリカ10の骨格を形成する手法は公知のものであり、本発明でも従来の方法を適用することが可能である。すなわち、溶液(例えば、アンモニア水溶液等の水溶液)中に従来公知の界面活性剤(例えば、臭化セチルトリメチルアンモニウム等のテンプレートとして機能し得るもの)を添加し、ホットスターラー等を用いて加熱・攪拌することにより、界面活性剤50が溶解した溶液を作製する(工程S1)。その後、溶液の温度を下げ、シリカ源(例えば、オルトケイ酸テトラエチル等のケイ酸化合物)を加え、さらに、イオン交換基源(例えば、3−アミノプロピルトリエトキシシラン等のイオン交換基を備えたケイ酸化合物)を添加し、攪拌の後、懸濁液を濾過・洗浄し、沈殿物を乾燥することにより、複合体101を得ることができる(工程S2)。
2.1. Step S1, Step S2
Step S1 is a step of producing a solution containing the surfactant 50, and step S2 is a step of producing a composite 101 by forming a skeleton of the porous silica 10 using the surfactant 50 as a template in the produced solution. It is. A technique for forming a skeleton of the porous silica 10 using the surfactant 50 as a template in the solution is a known technique, and a conventional method can be applied in the present invention. That is, a conventionally known surfactant (for example, one that can function as a template such as cetyltrimethylammonium bromide) is added to a solution (for example, an aqueous solution such as an aqueous ammonia solution), and heated and stirred using a hot stirrer or the like. As a result, a solution in which the surfactant 50 is dissolved is prepared (step S1). Thereafter, the temperature of the solution is lowered, a silica source (for example, a silicic acid compound such as tetraethyl orthosilicate) is added, and an ion exchange group source (for example, a silica having an ion exchange group such as 3-aminopropyltriethoxysilane) is added. The acid compound) is added, and after stirring, the suspension is filtered and washed, and the precipitate is dried, whereby the complex 101 can be obtained (step S2).

2.2.官能基付加工程S3
工程S3は、工程S1、S2を経て得られた複合体101の外表面に、官能基20を付加し、官能基付加複合体102とする工程である。工程S3は、官能基付加複合体102を作製可能であれば特に限定されるものではないが、例えば、溶媒に複合体101と官能基源とを加えて攪拌し、懸濁液を濾過・洗浄し、沈殿物を乾燥して官能基付加複合体102とする工程、とすることができる。工程S3にて用いる溶媒としては、例えば、トルエン等の有機溶媒が挙げられる。また、工程S3にて用いる官能基源としては、例えば、3−ジメチルアミノプロピルジエトキシメチルシラン、3−(N−アクリロイルアミノ)プロピルトリエトキシシラン、アリルトリクロロシラン、アリルトリエトキシシラン等の所定の官能基を備えたケイ酸化合物が挙げられる。
2.2. Functional group addition step S3
Step S3 is a step of adding the functional group 20 to the outer surface of the complex 101 obtained through the steps S1 and S2 to obtain the functional group-added complex 102. The step S3 is not particularly limited as long as the functional group-added complex 102 can be produced. For example, the complex 101 and the functional group source are added to a solvent and stirred, and the suspension is filtered and washed. Then, the precipitate can be dried to obtain the functional group-added complex 102. Examples of the solvent used in step S3 include organic solvents such as toluene. The functional group source used in step S3 is, for example, a predetermined group such as 3-dimethylaminopropyldiethoxymethylsilane, 3- (N-acryloylamino) propyltriethoxysilane, allyltrichlorosilane, or allyltriethoxysilane. Examples thereof include silicic acid compounds having a functional group.

2.3.感温性高分子結合工程S4
工程S4は、工程S3を経て得られた官能基付加複合体102の官能基20に感温性高分子30が結合された感温性高分子結合体103を作製する工程である。工程S4は、感温性高分子結合体103を作製可能であれば特に限定されるものではないが、例えば、感温性高分子30を形成可能な単量体を溶解させた溶液に、官能基付加複合体102を添加して懸濁させ、必要に応じて懸濁液中の溶存酸素を除去し、公知の重合開始剤を添加して重合反応を行うことで感温性高分子30を生成させつつ、感温性高分子30を化学的或いは物理的に官能基20に結合させることにより、感温性高分子結合体103を作製する工程、とすることができる。特に、感温性高分子30を官能基20に化学的に結合させる形態がよい。工程S4にて用いる単量体としては、例えば、N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−プロピルアクリルアミド、N,N−ジエチルアクリルアミド等のアクリルアミド誘導体或いはメタクリルアミド誘導体が挙げられる。工程S4にて単量体を溶解させる溶媒としては、例えば水が挙げられる。重合開始剤としては従来公知のものを広く適用でき、例えば、過硫酸アンモニウム等を用いればよい。
2.3. Thermosensitive polymer binding step S4
Step S4 is a step of producing the thermosensitive polymer conjugate 103 in which the thermosensitive polymer 30 is bonded to the functional group 20 of the functional group-added complex 102 obtained through the step S3. The step S4 is not particularly limited as long as the temperature-sensitive polymer conjugate 103 can be produced. For example, the step S4 is functionalized in a solution in which a monomer capable of forming the temperature-sensitive polymer 30 is dissolved. The group addition complex 102 is added and suspended. If necessary, dissolved oxygen in the suspension is removed, and a known polymerization initiator is added to carry out a polymerization reaction, whereby the thermosensitive polymer 30 is obtained. A step of producing the thermosensitive polymer conjugate 103 by chemically or physically bonding the thermosensitive polymer 30 to the functional group 20 while generating the thermosensitive polymer conjugate 103 is possible. In particular, a form in which the thermosensitive polymer 30 is chemically bonded to the functional group 20 is preferable. Examples of the monomer used in step S4 include acrylamide derivatives such as N-isopropylacrylamide, N-acryloylpiperidine, N-propylacrylamide, N, N-diethylacrylamide, and methacrylamide derivatives. Examples of the solvent for dissolving the monomer in step S4 include water. As the polymerization initiator, conventionally known ones can be widely applied. For example, ammonium persulfate may be used.

2.4.工程S5
工程S5は、工程S4を経て得られた感温性高分子結合体103から、界面活性剤50を除去し、本発明に係る感温性吸着剤100を得る工程である。工程S5は、界面活性剤50を適切に除去可能であれば特に限定されるものではないが、例えば、感温性高分子結合体103を酸性溶液(例えば、塩酸)に加えて攪拌することにより、界面活性剤50を酸性溶液中へと溶出させ、その後、溶液を濾過し、抽出した固形分を洗浄・乾燥することにより感温性吸着剤100を得る工程、とすることができる。工程S5においては、界面活性剤50を除去することによって細孔10aを形成する。当該細孔10aの内壁にはイオン交換基40、40、…が残され、細孔10aの内壁にイオン交換基40、40、…が均一に修飾された状態となる。
2.4. Process S5
Step S5 is a step of removing the surfactant 50 from the temperature-sensitive polymer conjugate 103 obtained through step S4 to obtain the temperature-sensitive adsorbent 100 according to the present invention. The step S5 is not particularly limited as long as the surfactant 50 can be appropriately removed. For example, the temperature-sensitive polymer conjugate 103 is added to an acidic solution (for example, hydrochloric acid) and stirred. The step of obtaining the thermosensitive adsorbent 100 by eluting the surfactant 50 into the acidic solution, then filtering the solution, and washing and drying the extracted solid content can be performed. In step S5, the pores 10a are formed by removing the surfactant 50. The ion exchange groups 40, 40, ... are left on the inner wall of the pore 10a, and the ion exchange groups 40, 40, ... are uniformly modified on the inner wall of the pore 10a.

このように、本発明に係る感温性吸着剤の製造方法S10においては、いわゆるco-condensation法を用いてポーラスシリカ10の細孔10aの内部にイオン交換基40を修飾するものとし、また、所定の方法にてポーラスシリカ10の外表面に官能基20を付加し、当該官能基20を介して感温性高分子30を結合させている。これにより、感温性高分子30を薄く被覆・結合させることが可能となるとともに、得られた感温性吸着剤100をイオン交換体として機能させることが可能となる。   Thus, in the method S10 for producing a thermosensitive adsorbent according to the present invention, the ion exchange group 40 is modified inside the pores 10a of the porous silica 10 using a so-called co-condensation method, A functional group 20 is added to the outer surface of the porous silica 10 by a predetermined method, and the thermosensitive polymer 30 is bonded through the functional group 20. As a result, the temperature-sensitive polymer 30 can be thinly coated and bonded, and the obtained temperature-sensitive adsorbent 100 can function as an ion exchanger.

以下、実施例に基づいて、本発明の感温性吸着剤についてさらに詳述する。尚、以下の説明においては、分かりやすさため、図4にて使用した符号を適宜用いることとする。   Hereinafter, based on an Example, the thermosensitive adsorbent of this invention is further explained in full detail. In the following description, the symbols used in FIG. 4 are appropriately used for the sake of easy understanding.

<感温性吸着剤100の作製>
以下の流れで、実施例に係る感温性吸着剤100を作製した。
<Preparation of temperature-sensitive adsorbent 100>
The temperature-sensitive adsorbent 100 according to the example was manufactured in the following flow.

(複合体101の作製)
複合体101の作製は、Grunらの方法(M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM41 materials: control of porosity and morphology, Microporous and Mesoporous Mater., (1999) 207-216)に従った。
界面活性剤50としてアルキル鎖の炭素数が16の臭化セチルトリメチルアンモニウム(CTMABr)を用いた。蒸留水120ml(6.66mol)と28%アンモニア水9.5ml(0.14mol)の混合溶液に、6.6mmolのCTMABrを加え、80℃に設定したホットスターラーでCTMABrが溶解するまで攪拌した。界面活性剤溶液が無色透明になったら、溶液の温度を25℃に下げ、シリカ源としてオルトケイ酸テトラエチル(TEOS)を9.9ml(47.5mmol)加え、さらに3−アミノプロピルトリエトキシシラン(APTES)を0.5ml(2.5mmol)添加し、25℃で1時間攪拌した。攪拌終了後、懸濁液を吸引濾過・水洗浄し、固形物を60℃で24時間乾燥し、イオン交換基40としてアミノ基を修飾した複合体101を得た。
(Preparation of composite 101)
The composite 101 was prepared by the method of Grun et al. (M. Grun, KK Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM41 materials: control of porosity and morphology, Microporous and Mesoporous Mater., ( 1999) 207-216).
As the surfactant 50, cetyltrimethylammonium bromide (CTMBr) having 16 carbon atoms in the alkyl chain was used. To a mixed solution of 120 ml (6.66 mol) of distilled water and 9.5 ml (0.14 mol) of 28% aqueous ammonia, 6.6 mmol of CTMABr was added and stirred with a hot stirrer set at 80 ° C. until the CTMABr was dissolved. When the surfactant solution becomes colorless and transparent, the temperature of the solution is lowered to 25 ° C., 9.9 ml (47.5 mmol) of tetraethyl orthosilicate (TEOS) is added as a silica source, and 3-aminopropyltriethoxysilane (APTES) is further added. 0.5 ml (2.5 mmol) was added, and the mixture was stirred at 25 ° C. for 1 hour. After completion of the stirring, the suspension was filtered with suction and washed with water, and the solid was dried at 60 ° C. for 24 hours to obtain a complex 101 in which amino groups were modified as ion-exchange groups 40.

(官能基付加複合体102の作製)
トルエン120ml中に1gの複合体101と3−ジメチルアミノプロピルジエトキシメチルシラン(信越化学工業社製、LS−3675)を0.1〜1ml添加し、約200℃で4時間還流しながら攪拌した。攪拌終了後、懸濁液を吸引濾過・エタノール洗浄し、固形物を60℃で24時間乾燥し、官能基20としてジメチルアミノ基を付加した官能基付加複合体102を得た。
(Preparation of functional group-added complex 102)
0.1-1 ml of 1 g of the complex 101 and 3-dimethylaminopropyldiethoxymethylsilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-3675) was added to 120 ml of toluene, and the mixture was stirred at reflux at about 200 ° C. for 4 hours. . After completion of the stirring, the suspension was filtered with suction and washed with ethanol, and the solid was dried at 60 ° C. for 24 hours to obtain a functional group-added complex 102 having a dimethylamino group added as the functional group 20.

(感温性高分子結合体103の作製)
3g(26.5mmol)のN−イソプロピルアクリルアミド(NIPAM)を30mlの蒸留水に溶解した。その後、NIPAM水溶液に0.3gの官能基付加複合体102を加え入れ、懸濁液とした。懸濁液中の溶存酸素を除去するために、窒素を吹きこんだ。10分後、懸濁液に、ラジカル重合開始剤として過硫酸アンモニウム(APS)水溶液(濃度:20mg/ml)を3ml混合し、重合反応を行った。反応中は溶液の温度を30℃に保ち、また、窒素を導入し続けた。4時間の攪拌後、濾過・水洗して生成物を抽出し、60℃で24時間乾燥し、感温性高分子30としてポリ(N−イソプロピルアクリルアミド)を備えた感温性高分子結合体103を得た。
(Preparation of thermosensitive polymer conjugate 103)
3 g (26.5 mmol) of N-isopropylacrylamide (NIPAM) was dissolved in 30 ml of distilled water. Thereafter, 0.3 g of the functional group-added complex 102 was added to the NIPAM aqueous solution to prepare a suspension. Nitrogen was blown to remove dissolved oxygen in the suspension. Ten minutes later, 3 ml of an aqueous solution of ammonium persulfate (APS) (concentration: 20 mg / ml) was mixed with the suspension as a radical polymerization initiator to perform a polymerization reaction. During the reaction, the temperature of the solution was kept at 30 ° C., and nitrogen was continuously introduced. After stirring for 4 hours, the product is extracted by filtration and washing with water, dried at 60 ° C. for 24 hours, and the thermosensitive polymer conjugate 103 having poly (N-isopropylacrylamide) as the thermosensitive polymer 30. Got.

(界面活性剤50の除去、感温性吸着剤100の作製)
感温性高分子結合体103から界面活性剤50を除去するために、感温性高分子結合体103を濃塩酸3.5mlとエタノール150mlとの混合液に加え入れ、75℃の恒温槽で1時間還流しながら攪拌した。攪拌終了後、吸引濾過・エタノール洗浄し、60℃、24時間乾燥することで固形分を得た。その後、当該固形分について、再度、濃塩酸とエタノールとの混合液に加え入れ、攪拌、吸引濾過・エタノール洗浄し、乾燥することによって界面活性剤50を完全に除去した。これにより、ポーラスシリカ10の細孔10aの内壁にイオン交換基40としてアミノ基を備え、外表面に官能基20としてジメチルアミノ基を備えるとともに、当該ジメチルアミノ基を介して感温性高分子としてポリ(N−イソプロピルアクリルアミド)が結合された感温性吸着剤100を得た。
(Removal of surfactant 50, preparation of temperature-sensitive adsorbent 100)
In order to remove the surfactant 50 from the temperature-sensitive polymer conjugate 103, the temperature-sensitive polymer conjugate 103 is added to a mixed solution of 3.5 ml of concentrated hydrochloric acid and 150 ml of ethanol, and is kept in a constant temperature bath at 75 ° C. The mixture was stirred at reflux for 1 hour. After completion of the stirring, suction filtration and ethanol washing were performed, and the solid content was obtained by drying at 60 ° C. for 24 hours. Thereafter, the solid content was again added to a mixed liquid of concentrated hydrochloric acid and ethanol, stirred, suction filtered, washed with ethanol, and dried to completely remove the surfactant 50. As a result, an amino group is provided as an ion exchange group 40 on the inner wall of the pore 10a of the porous silica 10 and a dimethylamino group is provided as a functional group 20 on the outer surface, and a thermosensitive polymer is provided via the dimethylamino group. A temperature sensitive adsorbent 100 to which poly (N-isopropylacrylamide) was bound was obtained.

上記のようにして得られた感温性吸着剤100の他、比較例として、図5(A)に示すような、ポーラスシリカ10の細孔10aの内壁にイオン交換基40としてアミノ基を備えるのみの複合体200、図5(B)に示すような、感温性高分子30及びイオン交換基40を備えない複合体300、図5(C)に示すような、感温性高分子30を備えない複合体400を作製した。すなわち、複合体101から界面活性剤50を除去したものを複合体200とし、界面活性剤50を鋳型としてイオン交換基源を添加せずにシリカ源のみを添加してなるポーラスシリカ骨格の外表面に、官能基20を付加し、界面活性剤50を除去したものを複合体300とし、官能基付加複合体102から界面活性剤50を除去したものを複合体400とした。   In addition to the temperature-sensitive adsorbent 100 obtained as described above, as a comparative example, an amino group is provided as an ion exchange group 40 on the inner wall of the pore 10a of the porous silica 10 as shown in FIG. Only composite 200, composite 300 not including temperature-sensitive polymer 30 and ion-exchange group 40 as shown in FIG. 5B, temperature-sensitive polymer 30 as shown in FIG. 5C. A composite 400 that does not include the above was manufactured. That is, the outer surface of the porous silica skeleton obtained by removing the surfactant 50 from the complex 101 is the complex 200, and the surfactant 50 is used as a template and only the silica source is added without adding the ion exchange group source. The composite 300 was obtained by adding the functional group 20 and removing the surfactant 50, and the composite 400 was obtained by removing the surfactant 50 from the functional group-added complex 102.

さらに、官能基20を介さずにポーラスシリカ10に感温性高分子30を被覆した複合体(例えば、図5(D)に示されるような複合体500)を作製するべく、調製を行った。すなわち、NIPAM水溶液に上記と同様にして作製した複合体101を加え入れ、懸濁液とした後、重合開始剤を用いてNIPAMを重合させた。その後、界面活性剤50の除去を行った。NIPAM水溶液の濃度や複合体の添加量等は、上記と同様の条件とした。すなわち、官能基の付加を行わない点以外は、上記と同様の操作を行った。しかしながら、後述するように、得られた複合体の評価を行ったところ、上記操作では、感温性高分子30がポーラスシリカ10の外表面にうまく被覆できておらず、図6に示す複合体500’のような形態をとっているものと考えられた。   Furthermore, preparation was performed to produce a composite (for example, a composite 500 as shown in FIG. 5D) in which the porous silica 10 was coated with the thermosensitive polymer 30 without the functional group 20 interposed therebetween. . That is, the composite 101 produced in the same manner as described above was added to a NIPAM aqueous solution to form a suspension, and then NIPAM was polymerized using a polymerization initiator. Thereafter, the surfactant 50 was removed. The concentration of the NIPAM aqueous solution, the amount of the complex added, and the like were the same as described above. That is, the same operation as described above was performed except that no functional group was added. However, as will be described later, when the obtained composite was evaluated, in the above operation, the thermosensitive polymer 30 was not successfully coated on the outer surface of the porous silica 10, and the composite shown in FIG. It was thought to be in the form of 500 ′.

<感温性吸着剤100の評価方法>
上記実施例に係る感温性吸着剤100や比較例に係る複合体について、以下のような評価を行った。
<Evaluation method of thermosensitive adsorbent 100>
The following evaluation was performed about the temperature sensitive adsorbent 100 which concerns on the said Example, and the composite_body | complex which concerns on a comparative example.

(キャラクタリゼーション)
(1)走査電子顕微鏡(日本電子社製、JSM−6510LV)を用いて表面形態の観察を行った。観察の際は、加速電圧を30kVとした。
(2)X線回折装置(Rigaku社製、Rigaku RAD−C回折計)を用いてX線回折パターンを得た。測定条件は、CuKα線を用い、発散スリット1.0degree、受光スリット0.30mm、スキャンスピード2.000°/min、2θ=1.500°から10.000°、サンプリング幅を0.20°とした。
(3)FT−IR装置(Perkin Elmer社製、FT−IR2000)を用いてIRスペクトルパターンを得た。測定条件は、サンプル1mgに対してKBr99mgを混合して直径10mmのペレットを作製し、透過法でスキャン数16回、分解能4cm−1とした。
(4)熱重量分析計(Bruker社製、TG−DTA 2000SA)を用いて、熱重量分析を行った。測定条件は、空気雰囲気、昇温速度10℃/min、温度範囲を室温から800℃とした。
(5)CHN元素分析装置(ヤナコ分析工業社製、HCN corder MT−700HCN)を用いて、CHN元素分析を行った。
(characterization)
(1) The surface morphology was observed using a scanning electron microscope (manufactured by JEOL Ltd., JSM-6510LV). During the observation, the acceleration voltage was set to 30 kV.
(2) An X-ray diffraction pattern was obtained using an X-ray diffractometer (Rigaku RAD-C diffractometer, manufactured by Rigaku). The measurement conditions are CuKα ray, divergent slit 1.0 degree, light receiving slit 0.30 mm, scan speed 2.000 ° / min, 2θ = 1.500 ° to 10.000 °, and sampling width 0.20 °. did.
(3) An IR spectrum pattern was obtained using an FT-IR apparatus (Perkin Elmer, FT-IR2000). As measurement conditions, 99 mg of KBr was mixed with 1 mg of a sample to prepare a pellet having a diameter of 10 mm, the number of scans was 16 times by the transmission method, and the resolution was 4 cm −1 .
(4) Thermogravimetric analysis was performed using a thermogravimetric analyzer (manufactured by Bruker, TG-DTA 2000SA). The measurement conditions were an air atmosphere, a temperature increase rate of 10 ° C./min, and a temperature range from room temperature to 800 ° C.
(5) CHN elemental analysis was performed using a CHN elemental analyzer (manufactured by Yanaco Analytical Industrial Co., Ltd., HCN corder MT-700HCN).

(メチルオレンジイオン交換能)
0.1gのサンプルを100ppmのメチルオレンジ水溶液100mlに加えた。溶液温度は25℃又は40℃とした。サンプル投入後、アンモニア水又は塩酸を滴下することにより、溶液のpHを約9.5又は2.5に調整した。30分毎に溶液を2mlサンプリングし、pH調整を繰り返した。サンプリングした溶液は遠心分離し、上澄み液を0.2mlだけ採取し、塩酸で希釈することによりpHを調整したのち、分光光度計(日本分光社製、UV−Vis V630)を用いて510nmの吸光度を測定することによりメチルオレンジの吸着量を算出した。尚、遠心分離後に残った懸濁液はイオン交換実験溶液に戻した。
(Methyl orange ion exchange capacity)
0.1 g of sample was added to 100 ml of 100 ppm methyl orange aqueous solution. The solution temperature was 25 ° C or 40 ° C. After the sample was added, aqueous ammonia or hydrochloric acid was added dropwise to adjust the pH of the solution to about 9.5 or 2.5. 2 ml of the solution was sampled every 30 minutes, and the pH adjustment was repeated. The sampled solution is centrifuged, and only 0.2 ml of the supernatant is collected. After adjusting the pH by diluting with hydrochloric acid, the absorbance at 510 nm is measured using a spectrophotometer (manufactured by JASCO Corporation, UV-Vis V630). Was measured to calculate the amount of methyl orange adsorbed. The suspension remaining after centrifugation was returned to the ion exchange experimental solution.

<評価結果>
(アミノ基量及びジメチルアミノ基量の定量)
まず、複合体200のアミノ基量を元素分析によって算出した。元素分析測定の結果、複合体200における窒素量は0.87wt%であり、これがすべてアミノ基由来であると仮定すると、アミノ基量は0.62mmol/gとなる。この量は、仕込みのAPTES量から算出されるアミノ基量(0.80mmol/g)の78%に相当した。また、複合体300のジメチルアミノ基量を元素分析によって算出した。表1に3−ジメチルアミノプロピルジエトキシメチルシラン(LS−3675)の仕込み量とジメチルアミノ基の固定化量との関係を示す。LS−3675の添加量が0.1mlの場合、固定化されたジメチルアミノ基量は0.65mmol/gであり、仕込み値である0.71mmol/gの92%が固定化された。また、LS−3675の添加量が少量である場合、添加量を増加させると固定化されるジメチルアミノ基量もわずかではあるが増加することが分かった。しかしながら、LS−3675を1ml以上添加しても固定化されるジメチルアミノ基量はほとんど増加しないことが分かった。
<Evaluation results>
(Quantification of amino group content and dimethylamino group content)
First, the amino group content of the composite 200 was calculated by elemental analysis. As a result of elemental analysis measurement, the amount of nitrogen in the composite 200 is 0.87 wt%, and assuming that this is all derived from amino groups, the amount of amino groups is 0.62 mmol / g. This amount corresponded to 78% of the amino group amount (0.80 mmol / g) calculated from the charged APTES amount. Further, the amount of dimethylamino groups in the composite 300 was calculated by elemental analysis. Table 1 shows the relationship between the charged amount of 3-dimethylaminopropyldiethoxymethylsilane (LS-3675) and the fixed amount of dimethylamino groups. When the addition amount of LS-3675 was 0.1 ml, the amount of immobilized dimethylamino groups was 0.65 mmol / g, and 92% of the charged value of 0.71 mmol / g was immobilized. Moreover, when the addition amount of LS-3675 was a small amount, when the addition amount was increased, the amount of dimethylamino groups immobilized was found to increase slightly. However, it was found that the amount of immobilized dimethylamino groups hardly increased even when 1 ml or more of LS-3675 was added.

(構造解析結果)
図7、8に、複合体300のXRDパターン、IRスペクトルをそれぞれ示す。尚、図中、L(x)MSとは、LS−3675の添加量(仕込み量)がx(ml)である複合体300を意味する。図より、複合体300は、六方晶系に帰属される構造を有していることが分かった。また、XRDパターンには、4つの回折線が見られ、それぞれ(100)、(110)、(200)、(210)面に相当する。これらの試料の回折角度に大きな違いは見られず、(100)面間隔d100は、いずれの試料でも約40Åであることが分かった。この結果は、ジメチルアミノ基を固定化しても、ポーラスシリカ10の骨格構造に影響はほとんどないことを示している。一方、図8から、ジメチルアミノ基を固定化してもC−Nに関する吸収は認められなかったが、1480cm−1付近に吸収ピークが現れており、これはメソポーラスシリカには見られないものである。1480cm−1付近の吸収ピークは、LS−3675のC−H変角振動に起因するものと考えられる。また1480cm−1付近の吸収ピークはLS−3675の添加量を増加させてもほとんど変化していない。これは、上述したように、LS−3675の添加量を増加させても固定化されるジメチルアミノ基の量がほとんど変化しないことと一致している。
(Structural analysis results)
7 and 8 show the XRD pattern and IR spectrum of the composite 300, respectively. In the figure, L (x) MS means the composite 300 in which the addition amount (preparation amount) of LS-3675 is x (ml). From the figure, it was found that the composite 300 had a structure belonging to the hexagonal system. In addition, four diffraction lines are seen in the XRD pattern, which correspond to the (100), (110), (200), and (210) planes, respectively. Large difference in the diffraction angles of these samples was not observed, (100) spacing d 100 was found to be about 40Å in any of the samples. This result shows that the skeleton structure of the porous silica 10 is hardly affected even when the dimethylamino group is immobilized. On the other hand, from FIG. 8, no absorption related to C—N was observed even when the dimethylamino group was immobilized, but an absorption peak appeared in the vicinity of 1480 cm −1 , which is not found in mesoporous silica. . The absorption peak in the vicinity of 1480 cm −1 is considered to be caused by the C—H bending vibration of LS-3675. Further, the absorption peak near 1480 cm −1 hardly changes even when the amount of LS-3675 added is increased. As described above, this is consistent with the fact that the amount of dimethylamino groups immobilized is hardly changed even when the amount of LS-3675 added is increased.

図9に複合体400及び感温性吸着剤100のSEM写真を示す。図9(A)が複合体400について、図9(B)が感温性吸着剤100について示している。双方ともに粒子径1μm程度の六角形状の粒子が凝集していることが分かる。一部、棒状の粒子も認められた。しかし、外観上は感温性高分子30の有無による形状の違いは認められなかった。感温性吸着剤100において、感温性高分子30の結合・被覆量が極めて少ないため、外観に影響を与えていないものと考えられる。   FIG. 9 shows SEM photographs of the composite 400 and the temperature-sensitive adsorbent 100. FIG. 9A shows the composite 400 and FIG. 9B shows the temperature-sensitive adsorbent 100. It can be seen that hexagonal particles having a particle diameter of about 1 μm are aggregated in both cases. Some rod-like particles were also observed. However, in terms of appearance, no difference in shape due to the presence or absence of the temperature-sensitive polymer 30 was observed. In the temperature-sensitive adsorbent 100, since the amount of binding / coating of the temperature-sensitive polymer 30 is extremely small, it is considered that the appearance is not affected.

図10に複合体400及び感温性吸着剤100のXRDパターンを示す。感温性高分子30の結合・被覆によって、わずかではあるが回折強度の低下が認められた。さらに、感温性吸着剤100の場合、(210)回折線がほとんど現れていない。このことから、感温性高分子30を結合・被覆することにより、若干の構造規則性の乱れが生じていると考えられる。   FIG. 10 shows XRD patterns of the composite 400 and the temperature-sensitive adsorbent 100. A slight decrease in diffraction intensity was observed due to bonding / coating of the thermosensitive polymer 30. Further, in the case of the temperature-sensitive adsorbent 100, (210) diffraction lines hardly appear. From this, it is considered that a slight disorder of the structural regularity is caused by bonding / coating the thermosensitive polymer 30.

図11に複合体400及び感温性吸着剤100のFT−IRスペクトルを示す。両スペクトルともに非常によく似ており、感温性高分子30を結合・被覆しても、感温性高分子30に特徴的なN−H伸縮吸収(1551cm−1)、C=O伸縮吸収(1633cm−1)は認められなかった。このことは、感温性高分子30の結合・被覆量が極めて少ないことを示唆している。 FIG. 11 shows FT-IR spectra of the composite 400 and the temperature-sensitive adsorbent 100. Both spectra are very similar, and even if the thermosensitive polymer 30 is bonded and coated, the NH stretch characteristic absorption (1551 cm −1 ) and C═O stretch absorption characteristic of the thermosensitive polymer 30 are obtained. (1633 cm −1 ) was not recognized. This suggests that the amount of bonding / coating of the thermosensitive polymer 30 is extremely small.

(熱重量分析結果)
図12に複合体400及び感温性吸着剤100の熱重量曲線を示す。双方ともに100℃から重量減少が起こり、500℃以上の温度では緩やかな重量減少を示した。感温性高分子30を単独で熱重量分析すると、320℃で大きな重量減少を示す。これは高分子が分解していることを示している。実際、320℃付近から複合体400と感温性吸着剤100との重量減少量は大きく変わっている。したがって、この重量減少量の違いが固定化された感温性高分子30の量と考えられる。図より、感温性吸着剤100における感温性高分子30の固定化量を見積もると、5質量%であることが分かった。また、複合体400と感温性吸着剤100について元素分析により窒素量を測定し、当該窒素量から感温性吸着剤100における感温性高分子30の固定化量を算出したところ5質量%となり、熱重量分析の結果と一致した。
(Thermogravimetric analysis results)
FIG. 12 shows thermogravimetric curves of the composite 400 and the thermosensitive adsorbent 100. In both cases, weight loss occurred from 100 ° C., and moderate weight loss was observed at temperatures of 500 ° C. or higher. Thermogravimetric analysis of the thermosensitive polymer 30 alone shows a large weight loss at 320 ° C. This indicates that the polymer has decomposed. In fact, the amount of weight reduction between the composite 400 and the temperature-sensitive adsorbent 100 has changed greatly from around 320 ° C. Therefore, it is considered that the difference in the weight reduction amount is the amount of the thermosensitive polymer 30 immobilized. From the figure, it was found that the immobilization amount of the temperature-sensitive polymer 30 in the temperature-sensitive adsorbent 100 was estimated to be 5% by mass. Moreover, when the nitrogen amount was measured by the elemental analysis about the composite 400 and the temperature sensitive adsorbent 100, and the immobilization amount of the temperature sensitive polymer 30 in the temperature sensitive adsorbent 100 was calculated from the nitrogen amount, it was 5% by mass. This was consistent with the results of thermogravimetric analysis.

(吸脱着実験結果)
図13に複合体400を用いた場合におけるメチルオレンジイオン交換吸着量のpH依存性を示す。ここでは、溶液温度を40℃とした。尚、仕込んだメチルオレンジがすべて吸着するとイオン交換量は約0.3mmol/gとなり、これはイオン交換サイトであるアミノ基量0.62mmol/gの約半分となる。複合体400の場合、感温性高分子30が固定化されていないので、通常の陰イオン交換体と同様の可逆的な吸脱着挙動を示すはずである。実際、図より、pH2.5の時は、約0.25mmol/gのメチルオレンジを吸着し、pH9.5の時はメチルオレンジをほぼ完全に脱着したことが確認された。一方、溶液中に存在するすべてのメチルオレンジが吸着されなかったのは、イオン交換時間を30分という短時間としたためであると考えられる。
(Results of adsorption / desorption experiments)
FIG. 13 shows the pH dependence of the methyl orange ion exchange adsorption amount when the complex 400 is used. Here, the solution temperature was 40 ° C. When all of the charged methyl orange is adsorbed, the ion exchange amount is about 0.3 mmol / g, which is about half of the amount of amino groups 0.62 mmol / g which is an ion exchange site. In the case of the composite 400, since the thermosensitive polymer 30 is not immobilized, it should exhibit a reversible adsorption / desorption behavior similar to that of a normal anion exchanger. Actually, it was confirmed from the figure that about 0.25 mmol / g of methyl orange was adsorbed at pH 2.5 and that methyl orange was almost completely desorbed at pH 9.5. On the other hand, all the methyl oranges present in the solution were not adsorbed because the ion exchange time was shortened to 30 minutes.

図14に複合体500’を用いた場合におけるメチルオレンジイオン交換吸着量のpH依存性を示す。ここでも溶液温度は40℃とした。複合体500’の場合、ジメチルアミノ基が存在せず、感温性高分子30がポーラスシリカ10に化学的に固定化されてはおらず、感温性高分30がポーラスシリカ10の外表面に単に物理的に接触している状態と考えられた。そして、溶液温度40℃においては、感温性高分子30は密な構造をとって吸着種を通さないため、感温性高分子30がポーラスシリカ10にただ単に物理的に接触している場合でも、感温性高分子30が障害となって、吸着挙動に大きな変化が表れるであろうと考えられた。しかしながら、結果を見てみると、複合体500’の場合も複合体400の場合と同様の可逆的吸脱着挙動を示した。このことは、複合体500’においては、感温性高分子30がポーラスシリカ10とただ単に共存しているだけであり、感温性高分子30がポーラスシリカ10の外表面にほとんど存在しておらず(図6)、感温性高分子30が、吸着挙動にほとんど影響を及ぼさなかったことを示唆している。すなわち、感温性高分子30の濃度(NIPAM水溶液の濃度)が低すぎたため、シリカ10外表面に感温性高分子30がうまく被覆されておらず、吸着挙動において、感温性高分子30の影響が現れなかったものと考えられる。これにより、感温性高分子30を、官能基20を介さずにシリカ10外表面に単に物理被覆する場合は、感温性高分子30の量を極めて多量とせざるを得ないことが分かった。一方、吸着量については約0.2mmol/gと複合体400に比べて若干の低下が認められた。これは感温性高分子30がポーラスシリカ10と共存していることにより、液中におけるメチルオレンジの拡散に抵抗が生じたため、30分という短時間では、メチルオレンジが吸着スポットへと十分に到達できなかったものと考えられる。   FIG. 14 shows the pH dependence of the methyl orange ion exchange adsorption amount when the complex 500 ′ is used. Again, the solution temperature was 40 ° C. In the case of the composite 500 ′, there is no dimethylamino group, the temperature-sensitive polymer 30 is not chemically immobilized on the porous silica 10, and the temperature-sensitive high portion 30 is on the outer surface of the porous silica 10. It was thought to be simply in physical contact. At a solution temperature of 40 ° C., the thermosensitive polymer 30 has a dense structure and does not pass the adsorbed species, and therefore the thermosensitive polymer 30 is simply in physical contact with the porous silica 10. However, it was thought that the thermosensitive polymer 30 would be an obstacle and a large change in the adsorption behavior would appear. However, looking at the results, the composite 500 'showed the same reversible adsorption / desorption behavior as the composite 400. This means that in the composite 500 ′, the temperature-sensitive polymer 30 simply coexists with the porous silica 10, and the temperature-sensitive polymer 30 is almost present on the outer surface of the porous silica 10. 6 (FIG. 6), suggesting that the temperature-sensitive polymer 30 had little influence on the adsorption behavior. That is, since the concentration of the temperature-sensitive polymer 30 (the concentration of the NIPAM aqueous solution) is too low, the outer surface of the silica 10 is not well coated with the temperature-sensitive polymer 30, and the adsorption behavior causes the temperature-sensitive polymer 30. It is probable that the influence of No. did not appear. As a result, it was found that when the thermosensitive polymer 30 is simply physically coated on the outer surface of the silica 10 without the functional group 20, the amount of the thermosensitive polymer 30 must be extremely large. . On the other hand, the adsorption amount was about 0.2 mmol / g, which was slightly lower than that of the composite 400. This is because the temperature-sensitive polymer 30 coexists with the porous silica 10 to cause resistance to the diffusion of methyl orange in the liquid, so that the methyl orange sufficiently reaches the adsorption spot in a short time of 30 minutes. It is thought that it was not possible.

図15に感温性吸着剤100を用いた場合におけるメチルオレンジイオン交換吸着量のpH依存性を示す。ポリ(N−イソプロピルアクリルアミド)の相転移温度は約32℃であるが、この温度はポーラスシリカ10と複合化させてもほとんど変化しない。ここでは、溶液温度を40℃、25℃、40℃と順に変化させて吸脱着実験を行った。その結果、25℃では、複合体400、500と同様、メチルオレンジはpH変化に伴い、可逆的に吸脱着を繰り返した。一方、40℃では、吸着量は最大でも0.05mmol/gとなり、吸脱着しなくなった。このことは、感温性高分子30がポーラスシリカ10の細孔10aの入口付近に存在しており、ポーラスシリカ10の細孔10aの入り口を閉じていることを示している。すなわち、溶液温度が感温性高分子30の相転移温度よりも高い場合、感温性高分子30中に存在する水和水が脱水和し、感温性高分子が収縮して密な網目構造を採る結果、細孔10a内へメチルオレンジが侵入することを防いだものと考えられる。一方、溶液温度が感温性高分子30の相転移温度よりも低い場合は、感温性高分子30が再度水和して膨潤し、疎な網目構造を採る結果、メチルオレンジは細孔10a内へと容易に侵入することが可能となり、イオン交換基40に容易に吸着できるようになったものと考えられる。尚、感温性高分子30がポーラスシリカ10の外表面に結合していることは、メチルオレンジの吸着量が0.15mmol/g程度に低下していることからも明らかである。このように、本発明によれば、ポーラスシリカ10の外表面に、官能基20を介して感温性高分子30を結合することによって、少量の感温性高分子30であっても、ポーラスシリカ10の外表面に均一に固定化することができ、溶液温度の変化により吸脱着挙動を変化させることが可能となる。   FIG. 15 shows the pH dependence of the methyl orange ion exchange adsorption amount when the temperature sensitive adsorbent 100 is used. The phase transition temperature of poly (N-isopropylacrylamide) is about 32 ° C., but this temperature hardly changes even when it is combined with porous silica 10. Here, the adsorption / desorption experiment was performed by changing the solution temperature in the order of 40 ° C., 25 ° C., and 40 ° C. As a result, at 25 ° C., methyl orange repeatedly adsorbed and desorbed reversibly as the pH changed, as in the composites 400 and 500. On the other hand, at 40 ° C., the adsorption amount was 0.05 mmol / g at the maximum, and adsorption / desorption was not possible. This indicates that the temperature-sensitive polymer 30 is present near the entrance of the pore 10a of the porous silica 10 and closes the entrance of the pore 10a of the porous silica 10. That is, when the solution temperature is higher than the phase transition temperature of the temperature-sensitive polymer 30, the hydration water present in the temperature-sensitive polymer 30 is dehydrated, and the temperature-sensitive polymer contracts to form a dense network. As a result of adopting the structure, it is considered that methyl orange is prevented from entering the pores 10a. On the other hand, when the solution temperature is lower than the phase transition temperature of the temperature-sensitive polymer 30, the temperature-sensitive polymer 30 is hydrated again and swells, and as a result of taking a sparse network structure, methyl orange has pores 10a. It is considered that it can easily enter the inside and can be easily adsorbed to the ion exchange group 40. The fact that the thermosensitive polymer 30 is bonded to the outer surface of the porous silica 10 is also clear from the fact that the amount of methyl orange adsorbed is reduced to about 0.15 mmol / g. As described above, according to the present invention, the thermosensitive polymer 30 is bonded to the outer surface of the porous silica 10 via the functional group 20, so that even a small amount of the thermosensitive polymer 30 is porous. It can be uniformly fixed on the outer surface of the silica 10, and the adsorption / desorption behavior can be changed by changing the solution temperature.

以上、現時点において、最も実践的であり、且つ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う感温性吸着剤及びその製造方法もまた本発明の技術範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the invention is not limited to the embodiments disclosed herein. The temperature-sensitive adsorbent and the method for producing the same are also within the technical scope of the present invention without departing from the spirit or concept of the invention that can be read from the claims and the entire specification. It must be understood as included.

例えば、上記説明では、感温性吸着剤100において、イオン交換基40を必須の構成として説明したが、本発明はこの形態に限定されるものではない。感温性吸着剤100の用途に応じて、細孔10aの内部をイオン交換基40で修飾してもよいし、しなくてもよい。ただし、感温性吸着剤100をイオン交換体として好適に機能させる観点からは、イオン交換基40を備えた感温性吸着剤100とすることが好ましい。   For example, in the above description, in the temperature-sensitive adsorbent 100, the ion exchange group 40 has been described as an essential configuration, but the present invention is not limited to this form. Depending on the application of the temperature sensitive adsorbent 100, the inside of the pore 10a may or may not be modified with the ion exchange group 40. However, from the viewpoint of suitably functioning the temperature-sensitive adsorbent 100 as an ion exchanger, the temperature-sensitive adsorbent 100 including the ion-exchange group 40 is preferable.

また、上記説明では、感温性吸着剤100の製造方法S10において、工程S1、S2にていわゆるco-condensation法を用いるものとして説明したが、本発明はこの形態に限定されるものではない。いわゆるgrafting法等を用いることも可能である。ただし、細孔10a内のイオン交換基40の量を容易に制御でき、且つ、感温性吸着剤100を容易に製造可能な観点からは、工程S1、S2においていわゆるco-condensation法を用いることが好ましい。   In the above description, in the manufacturing method S10 of the temperature-sensitive adsorbent 100, the so-called co-condensation method is used in steps S1 and S2, but the present invention is not limited to this embodiment. A so-called grafting method can also be used. However, from the viewpoint that the amount of the ion exchange groups 40 in the pores 10a can be easily controlled and the temperature-sensitive adsorbent 100 can be easily manufactured, a so-called co-condensation method is used in steps S1 and S2. Is preferred.

また、上記説明では、感温性吸着剤100の製造方法S10において、感温性高分子30を結合する工程S4を、液中にて、官能基付加複合体102の存在下、感温性高分子30を形成する単量体を重合させるものとして説明したが、感温性高分子30を官能基20に結合可能なものであれば、本発明はいずれの方法を用いてもよい。   In the above description, in the manufacturing method S10 of the temperature-sensitive adsorbent 100, the step S4 for bonding the temperature-sensitive polymer 30 is performed in the presence of the functional group-added complex 102 in the liquid. Although described as what polymerizes the monomer which forms the molecule | numerator 30, as long as the thermosensitive polymer 30 can be couple | bonded with the functional group 20, this invention may use any method.

本発明に係る感温性吸着剤は、ポーラスシリカの細孔入口径を制御可能であり、細孔入口径を変化させることで、吸着種の選択分離等を効率的に行うことができる。例えば、イオン交換クロマトグラフィー用のカラム充填剤として好適に利用することができる。また、本発明に係る感温性吸着剤の諸特性を応用することにより、細孔の内部に所定の薬物を保持した感温性吸着剤を体内に投与し、体内の所定の箇所にて温度変化によって薬物を脱離・放出させることも可能と考えられ、新規ドラッグデリバリーシステムとしての応用も可能である。   The temperature-sensitive adsorbent according to the present invention can control the pore inlet diameter of porous silica, and can efficiently perform selective separation and the like of adsorbed species by changing the pore inlet diameter. For example, it can be suitably used as a column packing material for ion exchange chromatography. In addition, by applying various characteristics of the temperature-sensitive adsorbent according to the present invention, a temperature-sensitive adsorbent holding a predetermined drug inside the pores is administered into the body, and the temperature is measured at a predetermined position in the body. It is thought that the drug can be released and released by change, and can be applied as a new drug delivery system.

10 ポーラスシリカ
20 官能基
30 感温性高分子
40 イオン交換基
50 界面活性剤
100 感温性吸着剤
101 複合体
102 官能基付加複合体
103 感温性高分子結合体
10 Porous Silica 20 Functional Group 30 Thermosensitive Polymer 40 Ion Exchange Group 50 Surfactant 100 Thermosensitive Adsorbent 101 Complex 102 Functional Group Addition Complex 103 Thermosensitive Polymer Conjugate

Claims (12)

温度変化に対応して体積が変化する感温性高分子が、官能基を介して、ポーラスシリカの外表面に結合されてなる、感温性吸着剤。   A temperature-sensitive adsorbent comprising a temperature-sensitive polymer whose volume changes in response to a temperature change and bonded to the outer surface of porous silica via a functional group. 前記感温性高分子の量が、感温性吸着剤全体を基準(100質量%)として、5質量%以下である、請求項1に記載の感温性吸着剤。   2. The temperature-sensitive adsorbent according to claim 1, wherein the amount of the temperature-sensitive polymer is 5% by mass or less based on the whole temperature-sensitive adsorbent (100% by mass). 前記官能基が、アミノ基、モノ置換アミノ基、ジ置換アミノ基又はビニル基から選ばれる少なくとも一種である、請求項1又は2に記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 1 or 2, wherein the functional group is at least one selected from an amino group, a mono-substituted amino group, a di-substituted amino group, and a vinyl group. 前記官能基が、ジメチルアミノ基である、請求項3に記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 3, wherein the functional group is a dimethylamino group. 前記感温性高分子が、(メタ)アクリルアミド誘導体由来の単量体単位を備える、請求項1〜4のいずれかに記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 1, wherein the temperature-sensitive polymer comprises a monomer unit derived from a (meth) acrylamide derivative. 前記感温性高分子が、ポリ(N−イソプロピル(メタ)アクリルアミド)である、請求項5に記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 5, wherein the temperature-sensitive polymer is poly (N-isopropyl (meth) acrylamide). 前記ポーラスシリカの細孔内部にイオン交換基を有している、請求項1〜6のいずれかに記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 1, which has an ion exchange group inside the pores of the porous silica. 前記イオン交換基が、1〜3級アミノ基、4級アンモニウム基,カルボキシル基、又はスルホン酸基である、請求項7に記載の感温性吸着剤。   The temperature-sensitive adsorbent according to claim 7, wherein the ion exchange group is a primary to tertiary amino group, a quaternary ammonium group, a carboxyl group, or a sulfonic acid group. ポーラスシリカ骨格の外表面に官能基を付加する、官能基付加工程と、
前記官能基に、温度変化に対応して体積が変化する感温性高分子を結合する、感温性高分子結合工程と、
を備える、感温性吸着剤の製造方法。
Adding a functional group to the outer surface of the porous silica skeleton;
A thermosensitive polymer binding step of binding a thermosensitive polymer whose volume changes in response to a temperature change to the functional group;
A method for producing a temperature-sensitive adsorbent.
界面活性剤とシリカ源とを含む溶液を用いて、該界面活性剤を鋳型として前記ポーラスシリカ骨格を形成し、
その後、前記界面活性剤を除去することにより、細孔を形成する、請求項9に記載の感温性吸着剤の製造方法。
Using a solution containing a surfactant and a silica source, the porous silica skeleton is formed using the surfactant as a template,
Then, the manufacturing method of the thermosensitive adsorbent of Claim 9 which forms a pore by removing the said surfactant.
前記溶液が前記界面活性剤及び前記シリカ源に加えて、イオン交換基源をさらに含む、請求項10に記載の感温性吸着剤の製造方法。   The method for producing a thermosensitive adsorbent according to claim 10, wherein the solution further contains an ion exchange group source in addition to the surfactant and the silica source. 前記感温性高分子結合工程において、前記官能基が付加された前記ポーラスシリカ骨格を含む液中にて、前記感温性高分子を形成する単量体を重合することにより、前記官能基に前記感温性高分子を結合する、請求項9〜11のいずれかに記載の感温性吸着剤の製造方法。   In the thermosensitive polymer binding step, the functional group is polymerized with a monomer that forms the thermosensitive polymer in a liquid containing the porous silica skeleton to which the functional group has been added. The method for producing a temperature-sensitive adsorbent according to claim 9, wherein the temperature-sensitive polymer is bound.
JP2010176475A 2010-08-05 2010-08-05 Temperature sensitive adsorbent and method of manufacturing the same Pending JP2012035179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176475A JP2012035179A (en) 2010-08-05 2010-08-05 Temperature sensitive adsorbent and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176475A JP2012035179A (en) 2010-08-05 2010-08-05 Temperature sensitive adsorbent and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012035179A true JP2012035179A (en) 2012-02-23

Family

ID=45847796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176475A Pending JP2012035179A (en) 2010-08-05 2010-08-05 Temperature sensitive adsorbent and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012035179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023145A1 (en) 2014-11-21 2016-05-25 Toyota Jidosha Kabushiki Kaisha Temperature-responsive hygroscopic material and method for producing the same
KR101867231B1 (en) * 2017-06-12 2018-06-12 금호타이어 주식회사 Tire rubber composition comprising porous silica
KR101909431B1 (en) * 2016-07-06 2018-10-19 한국세라믹기술원 Method for selectively adsorbing hazardous pollutants using mesoporous silica coated with thermo-responsive polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023145A1 (en) 2014-11-21 2016-05-25 Toyota Jidosha Kabushiki Kaisha Temperature-responsive hygroscopic material and method for producing the same
US9889427B2 (en) 2014-11-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Temperature-responsive hygroscopic material and method for producing the same
KR101909431B1 (en) * 2016-07-06 2018-10-19 한국세라믹기술원 Method for selectively adsorbing hazardous pollutants using mesoporous silica coated with thermo-responsive polymer
KR101867231B1 (en) * 2017-06-12 2018-06-12 금호타이어 주식회사 Tire rubber composition comprising porous silica

Similar Documents

Publication Publication Date Title
Pang et al. Highly monodisperse MIII-based soc-MOFs (M= In and Ga) with cubic and truncated cubic morphologies
Fizir et al. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug
Abbasi et al. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method
Kim et al. Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size
Li et al. Core–shell metal–organic frameworks as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography
Bradshaw et al. Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications
Doherty et al. Using functional nano-and microparticles for the preparation of metal–organic framework composites with novel properties
Wang et al. Template synthesis of stimuli-responsive nanoporous polymer-based spheres via sequential assembly
US10464811B2 (en) Method of forming a particulate porous metal oxide or metalloid oxide
Kruk et al. Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure
RU2676067C2 (en) Sorbent for binding metals and production thereof
Wan et al. Ionic liquid groups modified 3D porous cellulose microspheres for selective adsorption of AO7 dye
Jung et al. Molecularly imprinted mesoporous silica particles showing a rapid kinetic binding
Duan et al. Preparation and evaluation of water-compatible surface molecularly imprinted polymers for selective adsorption of bisphenol A from aqueous solution
Zhang et al. Fe3O4@ SiO2@ CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase
Liu et al. A novel dual temperature responsive mesoporous imprinted polymer for Cd (II) adsorption and temperature switchable controlled separation and regeneration
EP2543636A1 (en) Process for producing porous silica, and porous silica
JP5364277B2 (en) Hollow silica particles
CN110872381B (en) Hydrazone bond-connected covalent organic framework material, preparation and application thereof
Cheng et al. Smart adsorbents with photoregulated molecular gates for both selective adsorption and efficient regeneration
Karim et al. Influence of multi-walled carbon nanotubes on textural and adsorption characteristics of in situ synthesized mesostructured silica
Chen et al. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues
Lunn et al. Peptide Brush Ordered Mesoporous Silica Nanocomposite Materials
Hikosaka et al. Adsorption and desorption characteristics of DNA onto the surface of amino functional mesoporous silica with various particle morphologies
Zhang et al. Facile preparation of titanium (IV)-immobilized hierarchically porous hybrid monoliths