JP2012033328A - Battery deterioration detection device - Google Patents

Battery deterioration detection device Download PDF

Info

Publication number
JP2012033328A
JP2012033328A JP2010170461A JP2010170461A JP2012033328A JP 2012033328 A JP2012033328 A JP 2012033328A JP 2010170461 A JP2010170461 A JP 2010170461A JP 2010170461 A JP2010170461 A JP 2010170461A JP 2012033328 A JP2012033328 A JP 2012033328A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
deterioration
detection electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010170461A
Other languages
Japanese (ja)
Inventor
Muneaki Nakamura
宗昭 中村
Ami Yamada
亜美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2010170461A priority Critical patent/JP2012033328A/en
Publication of JP2012033328A publication Critical patent/JP2012033328A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a device which is able to identify a deteriorated secondary battery in a battery pack of a plurality of secondary batteries combined, and detect deterioration of such secondary battery at an early stage, as well as prevent the battery pack getting large by a device to detect the deterioration of the secondary battery.SOLUTION: This battery deterioration detection device comprises: a secondary battery; a housing to cover the secondary battery; a secondary battery assembly in which a plurality of secondary batteries are contacted each other; and a housing to cover the periphery of the secondary battery assembly. The secondary battery assembly has a first secondary battery which is one of the secondary batteries contacted each other, and a second secondary battery adjacent to thereof. The first and second secondary batteries have a first detection electrode and a second detection electrode, respectively, for each housing, and the first detection electrode of the first secondary battery and the second detection electrode of the second secondary battery are in the housing being contacted each other. When the contact is released between the first detection electrode and the second detection electrode, the deterioration of the secondary battery is determined.

Description

この発明は電池劣化検出装置に係り、特に、ハウジングで覆われた二次電池集合体内の二次電池の劣化を、二次電池の膨張によって検出する電池劣化検出装置に関する。   The present invention relates to a battery deterioration detection device, and more particularly to a battery deterioration detection device that detects deterioration of a secondary battery in a secondary battery assembly covered with a housing by expansion of the secondary battery.

電気自動車やハイブリッド自動車では、図8に示すようなリチウム電池のような二次電池101が使用される。これら二次電池101は、電解液等の内容物102を外装体103により覆われて正電極104・負電極105を突出させており、劣化と共に、外装体102が膨張することがある(図9参照)。この膨張を引き起こす一因としては、充放電の際に熱ストレスを受けた内部電極の変形や、充放電の際に発生する不活性物質の堆積といった点が挙げられる。また、軽量化のために電池単体の外装体102を可能な限り薄くしていることも一因として考えられる。そして、二次電池の膨張が進行すると、電池内部の電解液の漏れが発生し、配線短絡、破裂といった事故につながる恐れがある。それ故に、二次電池の膨張(劣化)を検出するシステムは重要である。
そして、実際の二次電池の使用では、図8のような二次電池101の単体(セル)で使用することはなく、図10で示すようにいくつかの二次電池101の単体を1セットとして組み合わせた二次電池集合体である組電池106(スタック)とし、ハウジング107で覆った組電池106を複数個組み合わせて使用する。そのため、ある二次電池101の単体が劣化して膨張した場合、膨張(劣化)した二次電池101の単体そのものが分からない限り、組電池106ごと交換することとなり、まだ使用可能な二次電池101も含めて廃棄となる。このため、環境的にも経済的にも難がある。従って、組電池106内の多数の二次電池101の中から、どの二次電池101が膨張(劣化)しているのかを識別できる装置の実現が望まれている。
仮に、歪みゲージを用いた二次電池の膨張検出を考えた場合、二次電池の膨張の仕方によっては1個の歪みゲージでは検出できないため、二次電池1個に対して複数の歪みゲージを貼付する必要があり、複数の二次電池からなる組電池での使用を考えると現実的ではない。
In an electric vehicle or a hybrid vehicle, a secondary battery 101 such as a lithium battery as shown in FIG. 8 is used. In these secondary batteries 101, the contents 102 such as an electrolyte solution are covered with an exterior body 103 to protrude the positive electrode 104 and the negative electrode 105, and the exterior body 102 may expand with deterioration (FIG. 9). reference). One cause of this expansion is deformation of the internal electrode that has been subjected to thermal stress during charging and discharging, and deposition of an inert substance that occurs during charging and discharging. Another possible reason is that the outer casing 102 of a single battery is made as thin as possible for weight reduction. When the expansion of the secondary battery proceeds, leakage of the electrolyte inside the battery may occur, leading to an accident such as a short circuit or rupture of the wiring. Therefore, a system for detecting expansion (deterioration) of the secondary battery is important.
Further, in the actual use of the secondary battery, it is not used as a single unit (cell) of the secondary battery 101 as shown in FIG. 8, but one set of several secondary batteries 101 as shown in FIG. As the assembled battery 106 (stack) which is a combined secondary battery, a plurality of assembled batteries 106 covered with the housing 107 are used in combination. Therefore, if a single secondary battery 101 deteriorates and expands, the assembled battery 106 is replaced unless the expanded (deteriorated) secondary battery 101 itself is known, and a secondary battery that can still be used. 101 is also discarded. For this reason, there are difficulties both environmentally and economically. Therefore, it is desired to realize an apparatus that can identify which secondary battery 101 is expanding (deteriorating) among a large number of secondary batteries 101 in the assembled battery 106.
If the expansion detection of a secondary battery using a strain gauge is considered, since it cannot be detected by one strain gauge depending on how the secondary battery expands, a plurality of strain gauges are attached to one secondary battery. It is necessary to affix, and it is not realistic considering the use with the assembled battery which consists of a some secondary battery.

二次電池の劣化を検出する装置の従来技術としては、特開2004−39512号公報に開示されるものがある。この公報では、各二次電池にその膨張を検出するレバー式電池外装体膨れ検知手段を設けたものが提案されている。この検知手段は、電池外装体の最も広い側面、いわば電池外装体の膨張が最も現れやすい面に沿って設けられており、電池外装体の所定量の膨張がある場合に、この検知手段によって個々の二次電池の劣化の判定を可能としている。   Japanese Unexamined Patent Application Publication No. 2004-39512 discloses a conventional technique for detecting deterioration of a secondary battery. This publication proposes each secondary battery provided with a lever-type battery exterior body swelling detection means for detecting the swelling thereof. This detection means is provided along the widest side surface of the battery exterior body, that is, the surface where the expansion of the battery exterior body is most likely to occur. It is possible to determine the deterioration of the secondary battery.

特開2004−39512号公報JP 2004-39512 A

しかし、上記特許文献1の従来技術では、以下の問題を有する。
(1).二次電池の膨張が検出できるのは、電池外装体の最も広い側面の中央部が膨張した場合に限られる。電池外装体膨れ検知手段では検出できない箇所が膨張した場合は、二次電池の劣化が検出できない。
(2).箱形容器状の二次電池を複数並べて二次電池集合体の組電池(スタック)を作成する場合、組電池をできるだけ小さくまとめることが望まれる。この場合、特許文献1のように二次電池を覆う電池外装体の最も広い側面、いわば最も電池外装体の膨張が現れやすい面同士を隣接させるように組電池が形成されることが多い。特許文献1では、電池外装体が所定量だけ膨張した場合に二次電池が劣化していると判断するので、電池外装体が所定量だけ膨張し、その膨張を検出するための検出装置を設けるスペースが必要であり、このスペースを有する面を隣り合わせにして各二次電池を並べることとなり、そのスペース分だけ組電池が大きくなってしまう。
However, the conventional technique of Patent Document 1 has the following problems.
(1). The expansion of the secondary battery can be detected only when the central portion of the widest side surface of the battery outer body expands. When a portion that cannot be detected by the battery exterior body swelling detection means expands, the deterioration of the secondary battery cannot be detected.
(2). When a plurality of box-shaped container-like secondary batteries are arranged to form an assembled battery (stack) of a secondary battery assembly, it is desirable to make the assembled batteries as small as possible. In this case, as in Patent Document 1, the assembled battery is often formed so that the widest side surface of the battery outer body covering the secondary battery, that is, the surfaces where the expansion of the battery outer body most easily appears are adjacent to each other. In Patent Document 1, since it is determined that the secondary battery has deteriorated when the battery outer body expands by a predetermined amount, the battery outer body expands by a predetermined amount, and a detection device is provided for detecting the expansion. A space is required, and the secondary batteries are arranged with the surfaces having the spaces adjacent to each other, and the assembled battery becomes larger by the space.

この発明は、複数の二次電池を組み合わせた二次電池集合体の組電池の中で劣化している二次電池を特定でき、その二次電池の劣化を早期に検出できて、二次電池の劣化を検出するための装置によって組電池が大きくなることを防止できる電池劣化検出装置を提供することを目的とする。   The present invention can identify a secondary battery that has deteriorated in an assembled battery of a secondary battery assembly in which a plurality of secondary batteries are combined, can detect deterioration of the secondary battery at an early stage, and An object of the present invention is to provide a battery deterioration detection device that can prevent an assembled battery from becoming large by a device for detecting deterioration of the battery.

この発明は、二次電池と、前記二次電池を覆う外装体と、複数の前記二次電池を互いに当接させた二次電池集合体と、前記二次電池集合体の周囲を覆うハウジングと、を備える電池劣化検出装置において、前記二次電池集合体は互いに当接する前記二次電池のうちの一つである第1二次電池と、それに隣接する第2二次電池を備え、前記第1二次電池と前記第2二次電池は夫々の前記外装体に第1検知電極と第2検知電極を有し、前記第1二次電池の前記第1検知電極と、前記第2二次電池の前記第2検知電極とが当接して前記ハウジング内に収納され、前記第1検知電極と前記第2検知電極の当接状態が解除されることで前記二次電池の劣化を判定することを特徴とする。   The present invention includes a secondary battery, an exterior body that covers the secondary battery, a secondary battery assembly in which the plurality of secondary batteries are in contact with each other, and a housing that covers the periphery of the secondary battery assembly. The secondary battery assembly includes a first secondary battery that is one of the secondary batteries in contact with each other, and a second secondary battery adjacent to the first secondary battery. Each of the first secondary battery and the second secondary battery includes a first detection electrode and a second detection electrode in each of the exterior bodies, and the first detection electrode of the first secondary battery and the second secondary battery. Deterioration of the secondary battery is determined by releasing the contact state between the first detection electrode and the second detection electrode when the second detection electrode of the battery contacts and is accommodated in the housing. It is characterized by.

この発明の電池劣化検出装置は、ハウジングで覆われた二次電池集合体(組電池)内の劣化した二次電池を特定できる。
この発明の電池劣化検出装置は、検知電極を有する面内の膨張であれば、二次電池の劣化を検出できる。
この発明の電池劣化検出装置は、二次電池がわずかに膨張した場合であっても、二次電池の膨張を検出できるので、早期に二次電池劣化を検出できる。
この発明の電池劣化検出装置は、二次電池の劣化検出のための装置によって組電池が大きくなってしまうことを抑制できる。
The battery deterioration detection device of the present invention can identify a deteriorated secondary battery in a secondary battery assembly (assembled battery) covered with a housing.
The battery deterioration detection device of the present invention can detect deterioration of the secondary battery as long as it is in-plane expansion having the detection electrode.
Since the battery deterioration detection device of the present invention can detect the expansion of the secondary battery even when the secondary battery expands slightly, the secondary battery deterioration can be detected at an early stage.
The battery deterioration detection device according to the present invention can suppress the assembled battery from becoming large due to the device for detecting the deterioration of the secondary battery.

図1は本発明の二次電池を示した斜視図である。(実施例)FIG. 1 is a perspective view showing a secondary battery of the present invention. (Example) 図2は本発明の二次電池を複数組み合わせて組電池とした図である。(実施例)FIG. 2 is a view showing an assembled battery by combining a plurality of secondary batteries of the present invention. (Example) 図3は組電池の中の一つの二次電池が劣化し、膨張した状態を示す図である。(実施例)FIG. 3 is a diagram showing a state in which one secondary battery in the assembled battery has deteriorated and expanded. (Example) 図4は組電池内の二次電池の劣化を検出するための組電池周りの配線図である。(実施例)FIG. 4 is a wiring diagram around the assembled battery for detecting deterioration of the secondary battery in the assembled battery. (Example) 図5は二次電池の劣化検出回路を示す全体図である。(実施例)FIG. 5 is an overall view showing a deterioration detection circuit of the secondary battery. (Example) 図6は本発明の二次電池劣化を検出するためのフローチャートである。(実施例)FIG. 6 is a flowchart for detecting secondary battery deterioration according to the present invention. (Example) 図7は変形例の構成を示す組電池の斜視図である。FIG. 7 is a perspective view of an assembled battery showing a configuration of a modified example. 図8は一般的なラミネート型二次電池の斜視図である。(従来例)FIG. 8 is a perspective view of a general laminated secondary battery. (Conventional example) 図9はラミネート型二次電池の膨張形態を示した図である。(従来例)FIG. 9 is a view showing an expanded form of the laminate type secondary battery. (Conventional example) 図10はラミネート型二次電池を複数組み合わせて組電池とした図である。(従来例)FIG. 10 is a diagram showing an assembled battery by combining a plurality of laminated secondary batteries. (Conventional example)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図7は、この発明の実施例を示すものである。図1において、1は二次電池である。二次電池1は、電解液等の内容物2を直方体形状の外装体3により覆われて、正電極4・負電極5を突出させている。二次電池1は、隣接する2つの二次電池1の各外装体3の一側当接面3Aと他側当接面3Bとが対向するように、複数の二次電池1−1〜1−Nの外装体3−1〜3−Nを互いに当接させて二次電池集合体である組電池6に形成され、組電池6の周囲をハウジング7で覆っている(図2参照)。
複数の二次電池1を組み合わせた組電池6の中で劣化している二次電池1を検出するための電池劣化検出装置8は、図1に示すように、二次電池1の外装体3に検知電極9を有している。二次電池1は、検知電極9として、直方体形状の外装体3の一側当接面3Aの角部に設けた一側検知電極9Aと、外装体3の他側当接面3Bの角部に設けた他側検知電極9Bとを有している。
図2に示すように、組電池6は、互いに当接する複数の二次電池1−1〜1−Nのうちの一つである例えば二次電池1−1と、この二次電池1−1に隣接する別の二次電池1である例えば二次電池1−2と備え、複数の二次電池1−1〜1−Nの外装体3−1〜3−Nを互いに当接させて組電池6を形成する際に、複数の二次電池1−1〜1−Nのうちの一つである例えば二次電池1−1の一側検知電極9−1Aと、この二次電池1−1に隣接する別の二次電池1−2の他側検知電極9−2Bとが当接して、ハウジング7内に収納される。組電池6の全ての二次電池1−1〜1−Nは、各々の隣接する二次電池同士で相互に一側検知電極と他側検知電極とを当接している。
1 to 7 show an embodiment of the present invention. In FIG. 1, 1 is a secondary battery. In the secondary battery 1, a content 2 such as an electrolytic solution is covered with a rectangular parallelepiped outer package 3, and a positive electrode 4 and a negative electrode 5 are projected. The secondary battery 1 includes a plurality of secondary batteries 1-1 to 1-1 such that the one-side contact surface 3 </ b> A and the other-side contact surface 3 </ b> B of the respective exterior bodies 3 of the two adjacent secondary batteries 1 face each other. The -N exterior bodies 3-1 to 3-N are brought into contact with each other to form the assembled battery 6 as a secondary battery assembly, and the periphery of the assembled battery 6 is covered with a housing 7 (see FIG. 2).
As shown in FIG. 1, a battery deterioration detection device 8 for detecting a secondary battery 1 that has deteriorated in an assembled battery 6 in which a plurality of secondary batteries 1 are combined includes an outer package 3 of the secondary battery 1. Has a detection electrode 9. The secondary battery 1 includes, as the detection electrodes 9, one-side detection electrodes 9A provided at the corners of the one-side contact surface 3A of the rectangular parallelepiped exterior body 3, and corners of the other-side contact surface 3B of the exterior body 3. And the other-side detection electrode 9B.
As shown in FIG. 2, the assembled battery 6 is, for example, a secondary battery 1-1 that is one of a plurality of secondary batteries 1-1 to 1-N that are in contact with each other, and the secondary battery 1-1. For example, a secondary battery 1-2 which is another secondary battery 1 adjacent to the battery, and a plurality of secondary batteries 1-1 to 1-N having outer casings 3-1 to 3-N in contact with each other. When the battery 6 is formed, for example, one side detection electrode 9-1A of the secondary battery 1-1, which is one of the plurality of secondary batteries 1-1 to 1-N, and the secondary battery 1- 1 is in contact with the other side detection electrode 9-2B of another secondary battery 1-2 adjacent to 1 and accommodated in the housing 7. All the secondary batteries 1-1 to 1-N of the assembled battery 6 abut one side detection electrode and the other side detection electrode with each other adjacent secondary batteries.

前記組電池6のハウジング7内の両端に配置されていない各二次電池1−2〜1−(N−1)には、一側検知電極9A、他側検知電極9Bが夫々4つずつ設けられており、隣接する二次電池同士で各々の4つの一側検知電極9A、他側検知電極9Bの導通状態を検出して二次電池1の劣化を判定する。
一方、組電池6のハウジング7内の両端に配置された二次電池1は、当接する二次電池1の検知電極9が存在する側に検知電極9を備えている。具体的には、図4において、二次電池1−1は二次電池1−2の他側検知電極9−2Bが存在する側に一側検知電極9−1Aを備え、二次電池1−Nは二次電池1−(N−1)の一側検知電極9−(N−1)Aが存在する側に他側検知電極9−NBを備えている。
つまり、図2において、当接された複数の二次電池1−1〜1−Nのうち、当接方向一端の二次電池1−1は一側検知電極9−1Aだけを有し、当接方向他端の二次電池1−Nは他側検知電極9−NBだけを有している。
電池劣化検出装置8は、二次電池1−1を第1二次電池、二次電池1−2を第2二次電池とし、一側検知電極9Aを第1検知電極、他側検知電極9Bを第2検知電極とすると、第1二次電池の第1検知電極と第2二次電池の第2検知電極とが当接して組電池6のハウジング7内に収納された第1二次電池の第1検知電極と第2二次電池の第2検知電極の当接状態が解除(絶縁状態)されることで、二次電池の劣化を判定する。
Each of the secondary batteries 1-2 to 1- (N-1) not arranged at both ends in the housing 7 of the assembled battery 6 is provided with four one-side detection electrodes 9A and four other-side detection electrodes 9B. In addition, the deterioration of the secondary battery 1 is determined by detecting the conduction state of each of the four one-side detection electrodes 9A and the other-side detection electrodes 9B between adjacent secondary batteries.
On the other hand, the secondary battery 1 arranged at both ends in the housing 7 of the assembled battery 6 includes the detection electrode 9 on the side where the detection electrode 9 of the secondary battery 1 in contact exists. Specifically, in FIG. 4, the secondary battery 1-1 includes the one-side detection electrode 9-1A on the side where the other-side detection electrode 9-2B of the secondary battery 1-2 is present, and the secondary battery 1- N includes the other side detection electrode 9-NB on the side where the one side detection electrode 9- (N-1) A of the secondary battery 1- (N-1) is present.
That is, in FIG. 2, the secondary battery 1-1 at one end in the contact direction among the plurality of contacted secondary batteries 1-1 to 1-N includes only the one-side detection electrode 9-1A. The secondary battery 1-N at the other end in the contact direction has only the other side detection electrode 9-NB.
The battery deterioration detection device 8 uses the secondary battery 1-1 as the first secondary battery, the secondary battery 1-2 as the second secondary battery, the one-side detection electrode 9A as the first detection electrode, and the other-side detection electrode 9B. Is the second sensing electrode, the first sensing battery of the first secondary battery and the second sensing electrode of the second secondary battery are in contact with each other and are accommodated in the housing 7 of the assembled battery 6. The deterioration of the secondary battery is determined by releasing (insulating) the contact state between the first detection electrode and the second detection electrode of the second secondary battery.

ここで、検知電極9を設ける位置について説明する。隣り合う2つの二次電池1同士が当接する直方体形状の各外装体3の一側当接面3A・他側当接面3Bは、二次電池1の劣化による膨張が最も顕著に現れる最も広い面である。各側検知電極9A、9Bは夫々、図1に示すように、この最も広い面である一側当接面3A・他側当接面3Bの四隅(角部)に設けられている。各側検知電極9A、9Bを四隅に設けた理由は、一般に直方体の角部は剛性が高く、二次電池1の劣化による膨張の影響を受け難い場所であるためである。
二次電池1は、膨張すると一側当接面3A、他側当接面3Bの中央部が四隅(角部)に対して突出されるので、隣接する二次電池1同士の一側当接面3Aと他側当接面3Bとの四隅(角部)が離間し、各側検知電極9A、9Bは絶縁状態になる(図3参照)。これより早期に、且つ的確に二次電池1の膨張を検出できる。
各側検知電極9A・9Bは、二次電池1が組電池6のハウジング7内に収納された時に、隣接する2つの二次電池1の各側検知電極9A・9B同士の接触不良等が無いように、ハウジング7ヘの二次電池1の取り付け誤差や各二次電池1の製作時の各側検知電極9A・9Bの取り付け誤差等を事前に考慮して、配設する各側検知電極9A・9Bの大きさや位置を決定しておく。
つまり、前記二次電池1−1を第1二次電池、前記二次電池1−2を第2二次電池とし、外装体3の一側当接面3Aを第1面、外装体3の他側当接面3Bを第2面とし、前記一側検知電極9Aを第1検知電極、前記他側検知電極9Bを第2検知電極とすると、第1検知電極と第2検知電極は、互いに当接する前記第1二次電池の第1面と前記第2二次電池の第2面の夫々の面を構成する辺に沿うように設けられている。
また、第1検知電極は、前記第1面を構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられ、前記第2検知電極は、前記第2面を構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられている。
Here, the position where the detection electrode 9 is provided will be described. One side contact surface 3A and the other side contact surface 3B of each rectangular parallelepiped exterior body 3 in which two adjacent secondary batteries 1 are in contact with each other are the widest where expansion due to deterioration of the secondary battery 1 appears most prominently. Surface. As shown in FIG. 1, each of the side detection electrodes 9A and 9B is provided at the four corners (corner portions) of the one side contact surface 3A and the other side contact surface 3B, which are the widest surfaces. The reason why the side detection electrodes 9A and 9B are provided at the four corners is that the corners of the rectangular parallelepiped generally have high rigidity and are not easily affected by expansion due to deterioration of the secondary battery 1.
When the secondary battery 1 expands, the center part of the one-side contact surface 3A and the other-side contact surface 3B protrudes from the four corners (corner portions), so that the one-side contact between adjacent secondary batteries 1 The four corners (corner portions) of the surface 3A and the other-side contact surface 3B are separated from each other, and the respective side detection electrodes 9A and 9B are in an insulated state (see FIG. 3). The expansion of the secondary battery 1 can be detected earlier and accurately.
The side detection electrodes 9A and 9B have no poor contact between the side detection electrodes 9A and 9B of the two adjacent secondary batteries 1 when the secondary battery 1 is accommodated in the housing 7 of the assembled battery 6. As described above, each side detection electrode 9A to be disposed is provided in consideration of the mounting error of the secondary battery 1 to the housing 7 and the mounting error of the side detection electrodes 9A and 9B at the time of manufacturing each secondary battery 1.・ Determine the size and position of 9B.
That is, the secondary battery 1-1 is the first secondary battery, the secondary battery 1-2 is the second secondary battery, the one-side contact surface 3A of the outer package 3 is the first surface, and the outer package 3 is If the other side contact surface 3B is a second surface, the one side detection electrode 9A is a first detection electrode, and the other side detection electrode 9B is a second detection electrode, the first detection electrode and the second detection electrode are The first secondary battery is in contact with the first surface of the first secondary battery and the second surface of the second secondary battery so as to be along the sides forming the second surface.
The first sensing electrode is provided along at least two sides that intersect each other among the sides that constitute the first surface, and the second sensing electrode is at least that intersects each other among the sides that constitute the second surface. It is provided along two sides.

通常時の組電池6は、図2に示すように、隣り合う二次電池1に膨張が見られないため、各側検知電極9A・9Bが全て導通状態にある。しかし、図3に示すように、例えば二次電池1−3が膨張すると、外装体3−3の中央部が盛り上がるため、二次電池1−3の端部においては隣り合う二次電池1−2・二次電池1−4との間に間隙が生じる。
すると、これまで導通状態であった二次電池1−2の一側検知電極9−2Aと二次電池1−3の他側検知電極9−3Bとが絶縁状態となり、また、これまで導通状態であった二次電池1−3の一側検知電極9−3Aと二次電池1−4の他側検知電極9−4Bとが絶縁状態となる。よって、各側検知電極9A・9Bの導通状態をチェックすることで、二次電池1の膨張(劣化)を検知することができる。
なお、図3では、説明の都合上、二次電池1−3の膨張によってその他の二次電池1−1・1−2、1−4〜1−Nの位置が大きく変化しているが、実際は各二次電池1−1〜1−Nは、振動等によって自由にハウジング7内を動くことが無いよう配置されている。
As shown in FIG. 2, in the normal assembled battery 6, since the adjacent secondary battery 1 does not expand, all the side detection electrodes 9 </ b> A and 9 </ b> B are in a conductive state. However, as shown in FIG. 3, for example, when the secondary battery 1-3 expands, the central portion of the exterior body 3-3 rises, so that the secondary battery 1-1 adjacent to the end of the secondary battery 1-3 is formed. 2. A gap is generated between the secondary battery 1-4 and the secondary battery 1-4.
Then, the one-side detection electrode 9-2A of the secondary battery 1-2 that has been in a conductive state and the other-side detection electrode 9-3B of the secondary battery 1-3 are in an insulated state. The one-side detection electrode 9-3A of the secondary battery 1-3 and the other-side detection electrode 9-4B of the secondary battery 1-4 are in an insulated state. Therefore, the expansion (deterioration) of the secondary battery 1 can be detected by checking the conduction state of the side detection electrodes 9A and 9B.
In FIG. 3, for the convenience of explanation, the positions of the other secondary batteries 1-1 and 1-2, 1-4 to 1-N are greatly changed due to the expansion of the secondary battery 1-3. Actually, the secondary batteries 1-1 to 1-N are arranged so as not to freely move in the housing 7 due to vibration or the like.

前記電池劣化検出装置8は、図4に示すように、組電池6に形成された二次電池1−1〜1−Nは各一側検知電極9−1A〜9−(N−1)Aを切替スイッチ10に接続し、各他側検知電極9−2B〜9−NBを接地GNDに接続している。
切替スイッチ10は、制御手段11の切替駆動回路12に接続されている。切替スイッチ10は、制御手段11の切替駆動回路12からの制御信号を受けて一側検知電極9−1A〜9−(N−1)Aを順次に切り替え、一側検知電極9−1A〜9−(N−1)A・他側検知電極9−2B〜9−NBを組み合わせた導通チェック対象のチャンネルCh(1)〜Ch(N−1)の導通状態をチェックする。
切替スイッチ10の端子aと接地GNDの端子bとは、劣化検出回路13に接続している。劣化検出回路13は、図5に示すように、コンパレータ14とフォトカプラ15とNOT回路16とNOT回路17とを有している。なお、Vccはバッテリ電圧、R〜Rは抵抗、VRは可変抵抗である。
劣化検出回路13は、通常時(図2参照)には、一側検知電極9−1A〜9−(N−1)A・他側検知電極9−2B〜9−NBが全て導通状態であるため、コンパレータ14の一方の入力端子に入力するC1点の電位はLowであり、コンパレータ14の他方の入力端子に入力する基準電圧Vrefよりも電位が低い。それ故に、コンパレータ14の出力はLowとなる。従って、C2点の電位はLowである。
そして、NOT回路16を通った後のC3点の電位は、Highとなる。フォトカプラ15の入力側のC3点の電位がHighの場合、フォトカプラ15には電流が流れないため、フォトカプラ15の出力側のC4点の電位はHighとなる。そして、NOT回路17を通った後の端子cの出力VoはLowとなる。
As shown in FIG. 4, the battery deterioration detection device 8 includes secondary batteries 1-1 to 1-N formed in the assembled battery 6, and the one-side detection electrodes 9-1A to 9- (N−1) A. Is connected to the changeover switch 10, and the other-side detection electrodes 9-2B to 9-NB are connected to the ground GND.
The changeover switch 10 is connected to the changeover drive circuit 12 of the control means 11. The changeover switch 10 receives the control signal from the switching drive circuit 12 of the control means 11 and sequentially switches the one-side detection electrodes 9-1A to 9- (N-1) A, and the one-side detection electrodes 9-1A to 9-1A-9. -(N-1) A · Checks the continuity of channels Ch (1) to Ch (N-1) to be continuity checked in combination with the other side detection electrodes 9-2B to 9-NB.
The terminal a of the changeover switch 10 and the terminal b of the ground GND are connected to the deterioration detection circuit 13. As shown in FIG. 5, the deterioration detection circuit 13 includes a comparator 14, a photocoupler 15, a NOT 1 circuit 16, and a NOT 2 circuit 17. Vcc is a battery voltage, R 1 to R 6 are resistors, and VR 1 is a variable resistor.
In the normal state (see FIG. 2), the deterioration detection circuit 13 has the one-side detection electrodes 9-1A to 9- (N-1) A and the other-side detection electrodes 9-2B to 9-NB all in a conductive state. Therefore, the potential at the point C1 input to one input terminal of the comparator 14 is Low, and the potential is lower than the reference voltage Vref input to the other input terminal of the comparator 14. Therefore, the output of the comparator 14 is low. Therefore, the potential at the point C2 is Low.
Then, the potential at point C3 after passing through the NOT 1 circuit 16 becomes High. When the potential at the point C3 on the input side of the photocoupler 15 is High, no current flows through the photocoupler 15, so that the potential at the point C4 on the output side of the photocoupler 15 is High. Then, the output Vo of the terminal c after passing through the NOT 2 circuit 17 becomes Low.

一方、劣化検出回路12は、例えば二次電池1−3の膨張時(図3参照)には、二次電池1−2の一側検知電極9−2A・二次電池1−3の他側検知電極9−3B(チャンネルCh(2))は導通状態から絶縁状態へと変化し、二次電池1−3の他側検知電極9−3A・二次電池1−4の一他側検知電極9−4B(チャンネルCh(3))は導通状態から絶縁状態へと変化する。チャンネルCh(2)及びチャンネルCh(3)が絶縁状態になると、C1点の電位はHighとなり、コンパレータ14の基準電圧Vrefよりも電位が高くなる。それ故に、コンパレータ14の出力はHighとなり、C2点の電位もHighとなる。
そして、NOT回路16を通った後のC3点の電位はLowとなる。C3点がLowの場合、フォトカプラ15に電流が流れるため、C4点はLowとなる。そして、NOT回路17を通った後の端子cの出力VoはHighとなる。
つまり、劣化検出回路13は、
・通常時のVo出力:Low
・膨張時のVo出力:High
となる。
前記劣化検出回路13の端子cは、制御手段11の劣化判定回路18に接続している。制御回路11の劣化判定回路18は、チャンネルCh(2)及びチャンネルCh(3)が絶縁状態になり、劣化検出回路13の端子cの出力VoがHighになると、組電池6のハウジング7内に収納された隣り合う一方の二次電池1−3の一側検知電極9−3Aとこの二次電極1−3に隣接する二次電極1−4の他側検知電極9−4Bとの当接状態が解除されたことを検出し、二次電極1−3の他側検知電極9−3Bとこの二次電極1−3に隣接する二次電極1−2の一側検知電極9−2Aとの当接状態が解除されたことを検出したことで、二次電池1−3が劣化していると判定する。
On the other hand, for example, when the secondary battery 1-3 expands (see FIG. 3), the deterioration detection circuit 12 includes the one-side detection electrode 9-2A of the secondary battery 1-2 and the other side of the secondary battery 1-3. The detection electrode 9-3B (channel Ch (2)) changes from the conductive state to the insulation state, and the other side detection electrode 9-3A of the secondary battery 1-3 and the other side detection electrode of the secondary battery 1-4. 9-4B (channel Ch (3)) changes from the conductive state to the insulated state. When the channel Ch (2) and the channel Ch (3) are in an insulated state, the potential at the point C1 becomes High, and the potential becomes higher than the reference voltage Vref of the comparator 14. Therefore, the output of the comparator 14 is High, and the potential at the point C2 is also High.
Then, the potential at the point C3 after passing through the NOT 1 circuit 16 becomes Low. When the point C3 is low, a current flows through the photocoupler 15, so the point C4 is low. Then, the output Vo of the terminal c after passing through the NOT 2 circuit 17 becomes High.
That is, the deterioration detection circuit 13
・ Normal Vo output: Low
-Vo output during expansion: High
It becomes.
The terminal c of the deterioration detection circuit 13 is connected to the deterioration determination circuit 18 of the control means 11. When the channel Ch (2) and the channel Ch (3) are in an insulated state and the output Vo of the terminal c of the deterioration detection circuit 13 becomes High, the deterioration determination circuit 18 of the control circuit 11 is placed in the housing 7 of the assembled battery 6. Contact between the one side detection electrode 9-3A of the adjacent secondary battery 1-3 stored therein and the other side detection electrode 9-4B of the secondary electrode 1-4 adjacent to the secondary electrode 1-3. It is detected that the state is released, and the other side detection electrode 9-3B of the secondary electrode 1-3 and the one side detection electrode 9-2A of the secondary electrode 1-2 adjacent to the secondary electrode 1-3 It is determined that the secondary battery 1-3 has deteriorated by detecting that the contact state is released.

次に、図6に示すN個の二次電池1から成る組電池6に関して、電池劣化検出装置8による膨張(劣化)検出を説明する。
図6において、電池劣化検出装置8の検出が開始されると(A01)、制御手段11の切替駆動回路12から制御信号を受けた切替スイッチ10が導通チェック対象のチャンネルCh(1)〜チャンネルCh(N−1)を順次切り替えていく(A02)。そして、図5の劣化検出回路13により全てのチャンネルCh(1)〜チャンネルCh(N−1)の導通状態を検出する(A03)。チャンネルCh(1)〜チャンネルCh(N−1)の導通状態の検出結果は、劣化検出回路13により出力Vo〜VoN−1として出力される。
その後、劣化検出回路13の出力Vo〜VoN−1の状態High/Lowを制御手段11の劣化判定回路18により判定する。劣化判定回路18では、チャンネルCh(1)の出力VoのみがHighであれば(A04:YES)、二次電池1−1の膨張(劣化)検出と判定し(A05)、警告を発する(A06)。また、チャンネルCh(N−1)の出力VoN−1のみがHighであれば(A09:YES)、二次電池1−Nの膨張(劣化)検出と判定し(A10)、警告を発する(A06)。
さらに、チャンネルCh(i)の出力Vo及びチャンネルCh(i+1)の出力Voi+1の両方がHighであれば(A07:YES)、二次電池i+1の膨張(劣化)検出と判定し(A08)、警告を発する(A06)。例えば、チャンネルCh(2)の出力Vo及びチャンネルCh(3)の出力Voの両方がHighであれば、二次電池3の膨張(劣化)検出と判定し、警告を発する。
全てのチャンネルCh(1)〜チャンネルCh(N−1)の出力VoがLowの場合(A04:NO、A07:NO、A09:NO)は、組電池6を形成する二次電池1−1〜二次電池1−Nに膨張は見られないため、切替スイッチ10の切替(A02)へ戻り、再度、各チャンネルCh(1)〜チャンネルCh(N−1)の導通状態を検出し(A03)、判定ループ(A04)〜(A10)を繰り返す。膨張(劣化)と判定された場合(A04:YES、A07:YES、A09:YES)には、劣化を警告する(A06)。
この電池劣化検出装置8は、劣化している二次電池1を特定するにあたり、一つのチャンネルChの導通結果からは判断は行わず、必ず、隣り合うもう一方のチャンネルChの導通結果もみて、劣化している二次電池1を特定する。例えば、二次電池1−1の劣化を判断する場合はチャンネルCh(1)とチャンネルCh(2)の導通結果から判断し、二次電池1−3の劣化を判断する場合はチャンネルCh(2)とチャンネルCh(3)の導通結果から判断する。
そのため、電池劣化検出装置8は、組電池6内に存在しているすべての二次電池1のチャンネルCh(1)〜チャンネルCh(N−1)の導通状態を全て検出(A03)し、ステップ(A04)、(A07)、(A09)にて各二次電池1−1〜1−Nが劣化しているか否かを判定する。
Next, the expansion (deterioration) detection by the battery deterioration detection device 8 will be described with respect to the assembled battery 6 including the N secondary batteries 1 shown in FIG.
In FIG. 6, when the detection of the battery deterioration detection device 8 is started (A01), the changeover switch 10 that receives the control signal from the changeover drive circuit 12 of the control means 11 switches the channel Ch (1) to ChannelCh to be subjected to continuity check. (N-1) is sequentially switched (A02). Then, the deterioration detection circuit 13 of FIG. 5 detects the conduction state of all the channels Ch (1) to Ch (N-1) (A03). The detection results of the conduction states of the channels Ch (1) to Ch (N-1) are output as outputs Vo 1 to Vo N-1 by the deterioration detection circuit 13.
Thereafter, the state High / Low of the outputs Vo 1 to Vo N−1 of the deterioration detection circuit 13 is determined by the deterioration determination circuit 18 of the control means 11. The deterioration determination circuit 18, if only the output Vo 1 channel Ch (1) is a High (A04: YES), the expansion of the secondary battery 1-1 (deterioration) determines that the detection (A05), an alarm ( A06). If only the output Vo N-1 of the channel Ch (N-1) is High (A09: YES), it is determined that the expansion (deterioration) of the secondary battery 1-N has been detected (A10), and a warning is issued ( A06).
Further, if both the output Vo i of the channel Ch (i) and the output Vo i + 1 of the channel Ch (i + 1) are High (A07: YES), it is determined that the expansion (deterioration) of the secondary battery i + 1 is detected (A08). A warning is issued (A06). For example, if both the output Vo 2 of the channel Ch ( 2 ) and the output Vo 3 of the channel Ch (3) are High, it is determined that the expansion (deterioration) of the secondary battery 3 has been detected, and a warning is issued.
When the output Vo of all the channels Ch (1) to Channel Ch (N-1) is Low (A04: NO, A07: NO, A09: NO), the secondary batteries 1-1 to 1-1 that form the assembled battery 6 Since no expansion is observed in the secondary battery 1-N, the process returns to the changeover of the changeover switch 10 (A02), and the conduction states of the channels Ch (1) to Ch (N-1) are detected again (A03). The determination loops (A04) to (A10) are repeated. When it is determined as expansion (deterioration) (A04: YES, A07: YES, A09: YES), the deterioration is warned (A06).
The battery deterioration detection device 8 does not make a judgment from the conduction result of one channel Ch when identifying the deteriorated secondary battery 1, and always sees the conduction result of the other adjacent channel Ch, The deteriorated secondary battery 1 is specified. For example, when the deterioration of the secondary battery 1-1 is determined, it is determined from the conduction result between the channel Ch (1) and the channel Ch (2), and when the deterioration of the secondary battery 1-3 is determined, the channel Ch (2 ) And the channel Ch (3) conduction result.
Therefore, the battery deterioration detection device 8 detects all the conduction states of the channels Ch (1) to Ch (N-1) of all the secondary batteries 1 existing in the assembled battery 6 (A03), and the step In (A04), (A07), and (A09), it is determined whether or not each of the secondary batteries 1-1 to 1-N is deteriorated.

このように、電池劣化検出装置8は、例えば、図3に示すように、組電池6のハウジング7内に収納された二次電池1−2の一側検知電極9−2Aとこの二次電池1−2に隣接する二次電池1−3の他側検知電極9−3Bとの当接状態が解除(絶縁状態)され、二次電池1−3の一側検知電極9−3Aとこの二次電池1−3に隣接する二次電池1−4の他側検知電極9−4Bとの当接状態が解除(絶縁状態)されることで、二次電池1の劣化を判定する。
これにより、この電池劣化検出装置8は、ハウジング7で覆われた二次電池集合体である組電池6内の劣化した二次電池1を特定でき、一側検知電極9A・他側検知電極9Bを有する外装体3の一側当接面3A・他側当接面3B内の膨張であれば、二次電池1の劣化を検出できる。また、この電池劣化検出装置8は、二次電池1がわずかに膨張した場合であっても、二次電池1の膨張を検出できるので、早期に二次電池劣化を検出できる。さらに、この電池劣化検出装置8は、外装体3の一側当接面3A・他側当接面3Bに一側検知電極9A・他側検知電極9Bを備えているため、二次電池1の劣化検出のための装置によって組電池6が大きくなってしまうことを抑制できる。
さらに、この電池劣化検出装置8の一側検知電極9Aと他側検知電極9Bとは、互いに当接する例えば二次電池1−1の一側当接面3Aと二次電池1−2の他側当接面3Bとの、夫々の面を構成する辺に沿うように設けられている。
これにより、この電池劣化検出装置8は、二次電池1が膨張しやすい一側当接面3A・他側当接面3Bの中央より遠ざけて各側検知電極9A・9Bを配置することで、早期に二次電池1の膨張を検出できる。また、この電池劣化検出装置8は、各側検知電極9A・9Bを配置した直方体形状の外装体3の一側当接面3A・他側当接面3Bの端部(角部)は剛性が高く、二次電池1の膨張の影響を受け難いため、二次電池1の劣化をより正確に検出できる。
さらにまた、この電池劣化検出装置8の一側検知電極9Aは、一側当接面3Aを構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられ、他側検知電極9Bは、他側当接面3Bを構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられている。
これにより、この電池劣化検出装置8は、当接する一側当接面3A・他側当接面3Bの角部に一側検知電極9A・他側検知電極9Bを設置するので、より二次電池1の膨張の影響を受けずに、早期に二次電池1の膨張を検出できる。また、この電池劣化検出装置8は、外装体3の一側当接面3A・他側当接面3Bの角部は剛性が高く、二次電池1の膨張の影響を受け難いため、二次電池1の劣化をより正確に検出できる。
Thus, as shown in FIG. 3, for example, the battery deterioration detection device 8 includes the one-side detection electrode 9-2A of the secondary battery 1-2 housed in the housing 7 of the assembled battery 6 and the secondary battery. The contact state with the other side detection electrode 9-3B of the secondary battery 1-3 adjacent to 1-2 is released (insulated), and the one side detection electrode 9-3A of the secondary battery 1-3 is The deterioration of the secondary battery 1 is determined by releasing (insulating) the contact state with the other side detection electrode 9-4B of the secondary battery 1-4 adjacent to the secondary battery 1-3.
Thereby, this battery deterioration detection device 8 can specify the deteriorated secondary battery 1 in the assembled battery 6 which is a secondary battery assembly covered with the housing 7, and can detect the one side detection electrode 9A and the other side detection electrode 9B. The deterioration of the secondary battery 1 can be detected if the expansion is within the one-side contact surface 3A and the other-side contact surface 3B of the exterior body 3 having the above. Further, since the battery deterioration detection device 8 can detect the expansion of the secondary battery 1 even when the secondary battery 1 expands slightly, it can detect the secondary battery deterioration at an early stage. Further, since the battery deterioration detection device 8 includes the one-side detection electrode 9A and the other-side detection electrode 9B on the one-side contact surface 3A and the other-side contact surface 3B of the exterior body 3, It can suppress that the assembled battery 6 becomes large with the apparatus for deterioration detection.
Furthermore, the one side detection electrode 9A and the other side detection electrode 9B of the battery deterioration detection device 8 are in contact with each other, for example, the one side contact surface 3A of the secondary battery 1-1 and the other side of the secondary battery 1-2. The contact surfaces 3B are provided along the sides constituting the respective surfaces.
Thereby, this battery deterioration detection apparatus 8 arrange | positions each side detection electrode 9A * 9B away from the center of the one side contact surface 3A and the other side contact surface 3B in which the secondary battery 1 is easy to expand, The expansion of the secondary battery 1 can be detected at an early stage. Further, in this battery deterioration detection device 8, the end portions (corner portions) of the one-side contact surface 3A and the other-side contact surface 3B of the rectangular parallelepiped exterior body 3 in which the respective side detection electrodes 9A and 9B are arranged have rigidity. It is high and hardly affected by the expansion of the secondary battery 1, so that the deterioration of the secondary battery 1 can be detected more accurately.
Furthermore, the one side detection electrode 9A of the battery deterioration detection device 8 is provided along at least two sides intersecting each other among the sides constituting the one side contact surface 3A, and the other side detection electrode 9B is provided on the other side. It is provided along at least two sides that intersect with each other among the sides constituting the contact surface 3B.
Thereby, since this battery deterioration detection apparatus 8 installs the 1 side detection electrode 9A and the other side detection electrode 9B in the corner | angular part of the one side contact surface 3A and the other side contact surface 3B which contact | abut, more secondary batteries The expansion of the secondary battery 1 can be detected early without being affected by the expansion of 1. Further, in this battery deterioration detection device 8, the corners of the one-side contact surface 3A and the other-side contact surface 3B of the exterior body 3 have high rigidity and are not easily affected by the expansion of the secondary battery 1. The deterioration of the battery 1 can be detected more accurately.

この電池劣化検出装置8は、一側検知電極9A・他側検知電極9Bが二次電池1の膨張が顕著に現れる最も広い面の一側当接面3A・他側当接面3Bに設けられつつも、一側当接面3A・他側当接面3Bの中央よりも比較的剛性が高く、二次電池1の膨張の影響が現れ難い四隅(角部)に設けられていることにより、各二次電池1を当接させてハウジング7内に収納できる。
一側検知電極9A・他側検知電極9Bを設ける箇所は、隣り合う2つの二次電池1が当接する一側当接面3A・他側当接面3Bの端部、つまりその面を構成する4辺のいずれかの辺に沿うように配置してもよい。ここで辺に沿うとは、一側当接面3A・他側当接面3Bの中央よりも辺に近接させることを指し、当然ながら辺に接することも含む。この場合、この実施例のもの(角部)よりも剛性がやや低い箇所に一側検知電極9A・他側検知電極9Bが配置されることで、二次電池1の劣化による膨張の影響は受けやすくはなるが、この実施例とほぼ同様の効果を得ることができる。
一側検知電極9A・他側検知電極9Bは、一つの二次電池1に配設されている4つの一側検知電極9Aを直列回路で連結し、同様に4つの他側検知電極9Bを一側検知電極9Aとは別の直列回路で連結する構成としても良い。この構造とすることで、4組の接しあう一側検知電極9A、他側検知電極9Bの導通状態をそれぞれチェックすることなく二次電池1の劣化を判定でき、二次電池1の劣化判定を、より簡便に行うことができる。
In this battery deterioration detection device 8, the one-side detection electrode 9A and the other-side detection electrode 9B are provided on the one-side contact surface 3A and the other-side contact surface 3B on the widest surface where the expansion of the secondary battery 1 is noticeable. However, by being provided at the four corners (corners) where the rigidity is relatively higher than the center of the one-side contact surface 3A and the other-side contact surface 3B, and the influence of expansion of the secondary battery 1 is difficult to appear. Each secondary battery 1 can be brought into contact with each other and stored in the housing 7.
The location where the one-side detection electrode 9A and the other-side detection electrode 9B are provided constitutes the end of the one-side contact surface 3A and the other-side contact surface 3B with which the two adjacent secondary batteries 1 contact, that is, the surface thereof. It may be arranged along any one of the four sides. Here, along the side means to be closer to the side than the center of the one-side abutting surface 3A and the other-side abutting surface 3B, and of course includes contacting the side. In this case, the one-side detection electrode 9A and the other-side detection electrode 9B are arranged at locations where the rigidity is slightly lower than that of this embodiment (corner portion), so that the influence of expansion due to deterioration of the secondary battery 1 is affected. Although it is easy, it is possible to obtain substantially the same effect as this embodiment.
The one-side detection electrode 9A and the other-side detection electrode 9B are configured by connecting four one-side detection electrodes 9A arranged in one secondary battery 1 in a series circuit, and similarly connecting the four other-side detection electrodes 9B to one. It is good also as a structure connected with 9 A of side detection electrodes by a different series circuit. With this structure, it is possible to determine the deterioration of the secondary battery 1 without checking the conduction states of the four sets of the one-side detection electrode 9A and the other-side detection electrode 9B that are in contact with each other. Can be carried out more easily.

図7は、電池劣化検出装置8の変形例を示すものである。図7に示す電池劣化検出装置8は、一側検知電極9A、他側検知電極9Bに代えて、二次電池1の膨張により生じる間隙の検出に、LED(発光ダイオード)19とPD(フォトダイオード)20を組み合わせた光検知方式としたものである。
電池劣化検出装置8は、組電池6の互いに当接する複数の二次電池1−1〜1−Nのうちの一つである例えば二次電池1−1の直方体形状の外装体3−1の一側当接面3−1Aと、この二次電池1−1に隣接する別の二次電池1である二次電池1−2の外装体3−2の他側当接面3−2Bとの対向する角部に、夫々LED19−1〜19(N−1)とPD20−1〜20−(N−1)とを配置している。PD20−1〜20−(N−1)の出力は、制御手段の切替駆動回路で駆動される切替スイッチにより全てのチャンネルCh(1)〜チャンネルCh(N−1)を順次切り替えて劣化検出回路に入力して受光量の大小を検出し、制御手段の劣化判定回路により二次電池1−1〜1−Nの膨張(劣化)を検出する。
変形例の電池劣化検出装置8は、間隙量が僅かの場合には、LED19から照射される光がPD20へ到達する量もわずかであるが、間隙量が大きくなると共に、PD20の受光量も大きくなる。従って、PD20の受光量に閾値を設けておき、その閾値を超えた場合、つまり、ある間隙量を超えた場合に二次電池1の劣化と判定する。ただし、ある程度まで間隙量が大きくなると、PD20は受光量は飽和状態になることは予測される。
これにより、この変形例の電池劣化検出装置8は、前述実施例の検知電極方式と比較して、構造およびシステムは若干複雑になるが、間隙量も含めて監視することができる。
FIG. 7 shows a modification of the battery deterioration detection device 8. A battery deterioration detection device 8 shown in FIG. 7 uses an LED (light emitting diode) 19 and a PD (photodiode) for detecting a gap generated by expansion of the secondary battery 1 instead of the one side detection electrode 9A and the other side detection electrode 9B. ) 20 in combination with the light detection method.
The battery deterioration detection device 8 is one of a plurality of secondary batteries 1-1 to 1-N that are in contact with each other of the assembled battery 6, for example, a rectangular parallelepiped exterior body 3-1 of the secondary battery 1-1. One-side contact surface 3-1A and the other-side contact surface 3-2B of the exterior body 3-2 of the secondary battery 1-2 that is another secondary battery 1 adjacent to the secondary battery 1-1 LEDs 19-1 to 19 (N-1) and PDs 20-1 to 20- (N-1) are respectively arranged at the opposite corners. The outputs of the PDs 20-1 to 20- (N-1) are output from the deterioration detection circuit by sequentially switching all the channels Ch (1) to Ch (N-1) by a changeover switch driven by a changeover drive circuit of the control means. To detect the amount of received light, and the expansion (deterioration) of the secondary batteries 1-1 to 1-N is detected by the deterioration determination circuit of the control means.
In the battery deterioration detection device 8 of the modified example, when the gap amount is small, the amount of light irradiated from the LED 19 reaches the PD 20 is small, but the gap amount is large and the received light amount of the PD 20 is also large. Become. Accordingly, a threshold value is set for the amount of light received by the PD 20, and when the threshold value is exceeded, that is, when a certain gap amount is exceeded, it is determined that the secondary battery 1 has deteriorated. However, when the gap amount increases to a certain extent, it is predicted that the received light amount of the PD 20 is saturated.
As a result, the battery deterioration detection device 8 of this modification example can be monitored including the gap amount, although the structure and system are slightly complicated as compared with the detection electrode system of the above-described embodiment.

この発明は、二次電池の膨張により劣化を検出することで、複数の二次電池のうちの特定の二次電池の劣化を特定できるものであり、二次電池に限らず、複数の当接して配置された部品であって、劣化により膨張する部品の検出に応用することができる。   The present invention can identify the deterioration of a specific secondary battery among a plurality of secondary batteries by detecting the deterioration due to the expansion of the secondary battery, and is not limited to the secondary battery. It is possible to apply to the detection of parts that are arranged in a row and expand due to deterioration.

1 二次電池
3 外装体
3A 一側当接面
3B 他側当接面
6 組電池
7 ハウジング
8 電池劣化検出装置
9A 一側検知電極
9B 他側検知電極
10 切替スイッチ
11 制御手段
12 切替駆動回路
13 劣化検出回路
18 劣化判定回路
DESCRIPTION OF SYMBOLS 1 Secondary battery 3 Exterior body 3A One side contact surface 3B Other side contact surface 6 Battery assembly 7 Housing 8 Battery deterioration detection device 9A One side detection electrode 9B Other side detection electrode 10 Changeover switch 11 Control means 12 Switch drive circuit 13 Deterioration detection circuit 18 Deterioration determination circuit

Claims (3)

二次電池と、前記二次電池を覆う外装体と、複数の前記二次電池を互いに当接させた二次電池集合体と、前記二次電池集合体の周囲を覆うハウジングと、を備える電池劣化検出装置において、
前記二次電池集合体は互いに当接する前記二次電池のうちの一つである第1二次電池と、それに隣接する第2二次電池を備え、
前記第1二次電池と前記第2二次電池は夫々の前記外装体に第1検知電極と第2検知電極を有し、
前記第1二次電池の前記第1検知電極と、前記第2二次電池の前記第2検知電極とが当接して前記ハウジング内に収納され、
前記第1検知電極と前記第2検知電極の当接状態が解除されることで前記二次電池の劣化を判定することを特徴とする電池劣化検出装置。
A battery comprising: a secondary battery; an exterior body covering the secondary battery; a secondary battery assembly in which a plurality of the secondary batteries are in contact with each other; and a housing covering the periphery of the secondary battery assembly. In the degradation detection device,
The secondary battery assembly includes a first secondary battery that is one of the secondary batteries in contact with each other, and a second secondary battery adjacent thereto.
The first secondary battery and the second secondary battery each have a first detection electrode and a second detection electrode on each of the exterior bodies,
The first detection electrode of the first secondary battery and the second detection electrode of the second secondary battery are in contact with each other and housed in the housing;
A battery deterioration detection apparatus, wherein the deterioration of the secondary battery is determined by releasing the contact state between the first detection electrode and the second detection electrode.
前記第1検知電極と前記第2検知電極は、互いに当接する前記第1二次電池の第1面と前記第2二次電池の第2面の夫々の面を構成する辺に沿うように設けられていることを特徴とする請求項1に記載の電池劣化検出装置。   The first sensing electrode and the second sensing electrode are provided so as to be along sides forming respective surfaces of the first surface of the first secondary battery and the second surface of the second secondary battery that are in contact with each other. The battery deterioration detection apparatus according to claim 1, wherein the battery deterioration detection apparatus is provided. 前記第1検知電極は、前記第1面を構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられ、
前記第2検知電極は、前記第2面を構成する辺のうち互いに交わる少なくとも2辺に沿うように設けられていることを特徴とする請求項1又は請求項2に記載の電池劣化検出装置。
The first detection electrode is provided along at least two sides intersecting each other among sides constituting the first surface,
3. The battery deterioration detection device according to claim 1, wherein the second detection electrode is provided so as to extend along at least two sides intersecting each other among sides constituting the second surface.
JP2010170461A 2010-07-29 2010-07-29 Battery deterioration detection device Pending JP2012033328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170461A JP2012033328A (en) 2010-07-29 2010-07-29 Battery deterioration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170461A JP2012033328A (en) 2010-07-29 2010-07-29 Battery deterioration detection device

Publications (1)

Publication Number Publication Date
JP2012033328A true JP2012033328A (en) 2012-02-16

Family

ID=45846538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170461A Pending JP2012033328A (en) 2010-07-29 2010-07-29 Battery deterioration detection device

Country Status (1)

Country Link
JP (1) JP2012033328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115219A (en) * 2013-12-12 2015-06-22 株式会社東芝 Battery pack, expansion detection system for battery pack, electricity storage device and automobile
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
WO2016163470A1 (en) * 2015-04-09 2016-10-13 オリンパス株式会社 Medical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115219A (en) * 2013-12-12 2015-06-22 株式会社東芝 Battery pack, expansion detection system for battery pack, electricity storage device and automobile
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
US10833376B2 (en) 2014-01-02 2020-11-10 Cps Technology Holdings Llc Battery with life estimation
WO2016163470A1 (en) * 2015-04-09 2016-10-13 オリンパス株式会社 Medical device

Similar Documents

Publication Publication Date Title
US7746035B2 (en) Battery module having simple-structure safety device
EP3413387B1 (en) Secondary battery and lifespan prediction device therefor
US20120148890A1 (en) Battery system
US20120100401A1 (en) Battery pack
JP2006269345A (en) Overvoltage detecting method, device, and battery pack
US10796873B2 (en) Fusible link in battery module voltage sensing circuit
JP2007265658A (en) Electric storage element module
JP2011096621A (en) Battery pack
KR101327689B1 (en) Battery module
US20110305936A1 (en) Connecting structure of battery stacks
CN109983598B (en) Battery pack
JP2012033328A (en) Battery deterioration detection device
CN108565515B (en) Battery instability suppression mechanism and system
KR101636380B1 (en) Voltage Sensing Assembly and Battery Module Including the Same
KR102425827B1 (en) Battery module
KR20150128096A (en) Secondary battery
JP2015005359A (en) Lithium ion battery and malfunction detection method of the same
JP2015115219A (en) Battery pack, expansion detection system for battery pack, electricity storage device and automobile
JP6907583B2 (en) Storage battery
JP5786808B2 (en) Power storage device provided with current interrupt device and power storage device module provided with a plurality thereof
JP6572710B2 (en) Terminal structure, power storage device and power storage module
JP2020053202A (en) Power storage element management device, power storage device, and power storage element management method
US8993139B2 (en) Sealed secondary battery
CN115836427A (en) Rechargeable battery pack with pouch cells and method
KR20210042658A (en) Battery Pack with improved series connection and voltage sensing scheme