JP2012032214A - Response analyzer, method and program - Google Patents

Response analyzer, method and program Download PDF

Info

Publication number
JP2012032214A
JP2012032214A JP2010170374A JP2010170374A JP2012032214A JP 2012032214 A JP2012032214 A JP 2012032214A JP 2010170374 A JP2010170374 A JP 2010170374A JP 2010170374 A JP2010170374 A JP 2010170374A JP 2012032214 A JP2012032214 A JP 2012032214A
Authority
JP
Japan
Prior art keywords
analysis
time
boundary
impulse response
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010170374A
Other languages
Japanese (ja)
Inventor
Hisahiro Nakamura
尚弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2010170374A priority Critical patent/JP2012032214A/en
Publication of JP2012032214A publication Critical patent/JP2012032214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve analysis precision of response analysis such that a range outside an inner area of an analysis object model shows nonlinear behavior.SOLUTION: Property values of the ground at respective analysis time points (at intervals Δt) are calculated (38) first by performing nonlinear time history response analysis of the ground in an outer area with respect to the analysis object model provided with an energy transmission border as a wave motion border model between an inner area and the outer area. A transmission border matrix and an impulse response of the energy transmission border including the ground in the outer area are calculated (40-44) at intervals Δtb (>Δt) based upon the calculated property values. Impulse responses at all the analysis time points are calculated (46) through interpolation operation. Time history response analysis of the analysis object model is carried out (52) at all the analysis time points.

Description

本発明は応答解析装置、方法及びプログラムに係り、特に、波動境界モデルを含む解析対象モデルに対して時間領域での振動問題の応答解析を行う応答解析装置、該応答解析装置に適用可能な応答解析方法、及び、コンピュータを前記応答解析装置として機能させるための応答解析プログラムに関する。   The present invention relates to a response analysis apparatus, method, and program, and in particular, a response analysis apparatus that performs a response analysis of a vibration problem in a time domain with respect to an analysis target model including a wave boundary model, and a response applicable to the response analysis apparatus The present invention relates to an analysis method and a response analysis program for causing a computer to function as the response analysis apparatus.

地震時の建物の挙動や損傷を精度良く評価するためには、建物と地盤との相互作用効果を考慮して地震応答解析を行う必要がある。また地震応答解析は、周波数領域で応答解析を行う周波数応答解析と、時間領域で応答解析を行う時刻歴応答解析とに大別されるが、大地震時には地盤・建物とも大きく塑性化するので、建物の挙動等を精度良く評価するためには、非線形の解析が可能な時刻歴応答解析を行うことが望ましい。   In order to accurately evaluate the behavior and damage of a building during an earthquake, it is necessary to perform an earthquake response analysis in consideration of the interaction effect between the building and the ground. Earthquake response analysis is broadly divided into frequency response analysis, which performs response analysis in the frequency domain, and time history response analysis, which performs response analysis in the time domain. In order to accurately evaluate the behavior of the building and the like, it is desirable to perform a time history response analysis capable of nonlinear analysis.

また、地震応答解析では地盤を有限要素法(FEM)の非線形ソリッド要素を用いてモデル化することが多い。地盤は本来半無限的な広がりを持つのに対し、FEM解析では解析領域を有限としてモデル化する必要があるため、解析対象モデルの側面や底面には波動境界モデルが設定される。建物で励起された波動は主として、下方へは実体波として、側方へは表面波として伝播するが、表面波の方がより遠方まで伝播するため、解析対象モデルの側面及び底面のうち、側面に設定する波動境界モデルが解析結果により大きな影響を及ぼす。時間領域の解析に適用可能な側面境界モデルとしては、例えば繰返し境界、粘性境界、無反射境界が知られている。このうち、繰返し境界はモデル化は極めて容易であるものの波動境界としての精度が低く、モデル化領域(解析対象モデル)を大きくとる必要があるので解析負荷が大きい。また、粘性境界は斜め方向からの波動に対しての精度が低く、解析精度を上げるため同様にモデル化領域を大きくする必要がある。更に、無反射境界は現実の問題への適用に課題が多く、あまり用いられていない。   In earthquake response analysis, the ground is often modeled using a finite element method (FEM) nonlinear solid element. The ground originally has a semi-infinite extent, but in FEM analysis, it is necessary to model the analysis region as finite, so that a wave boundary model is set on the side surface and bottom surface of the analysis target model. The wave excited in the building mainly propagates as a body wave downward and as a surface wave laterally, but the surface wave propagates farther, so the side surface of the model to be analyzed is the side surface. The wave boundary model set to has a greater effect on the analysis results. As side boundary models applicable to time domain analysis, for example, repetitive boundaries, viscous boundaries, and non-reflective boundaries are known. Of these, it is extremely easy to model the repetitive boundary, but the accuracy as a wave boundary is low, and it is necessary to take a large modeling area (analysis target model), so the analysis load is large. In addition, the viscous boundary has low accuracy with respect to waves from an oblique direction, and it is necessary to increase the modeling area in the same manner in order to increase the analysis accuracy. Furthermore, the non-reflective boundary has many problems in application to real problems and is not often used.

一方、より高精度な波動境界モデルとしてエネルギー伝達境界(Energy Transmitting Boundary、又は、Consistent Transmitting Boundary)が知られている。エネルギー伝達境界は、剛基盤上に平行成層をなす地盤の外端に設置され、水平方向には厳密で、上下方向は要素の変位仮定に従う(線形一次要素であれば、変位は直線的に変化する)高精度の境界であり、任意方向からの波動をほぼ完全に吸収する特性を有している。このため、解析対象モデルの側面の波動境界モデルとして上記のエネルギー伝達境界を用いれば、モデル化領域を大幅に小さくすることで、同等の解析精度での応答解析を、より小さな解析負荷で実現できる。   On the other hand, an energy transmission boundary (Energy Transmitting Boundary) is known as a more accurate wave boundary model. The energy transfer boundary is installed at the outer edge of the ground that forms parallel stratification on the rigid base, and is strictly in the horizontal direction, and the vertical direction follows the element's displacement assumption (if linear primary element, the displacement changes linearly) It is a highly accurate boundary and has a characteristic of absorbing the wave from an arbitrary direction almost completely. For this reason, if the above-mentioned energy transfer boundary is used as the wave boundary model on the side of the model to be analyzed, response analysis with the same analysis accuracy can be realized with a smaller analysis load by significantly reducing the modeling area. .

但し、エネルギー伝達境界の特性は伝達境界マトリクスと補正力ベクトルによって表されるものの、このうち伝達境界マトリクスは、周波数領域の複素数であり強い振動数依存性を有しているので、時間領域に変換することは困難であり、側面境界モデルとしてエネルギー伝達境界を適用した解析対象モデルによる応答解析は、周波数領域での等価線形解析に限られていた。これを解決するため、本願発明者は、波動境界モデルとしてエネルギー伝達境界が設けられた解析対象モデルに対する時間領域での応答解析を実現する技術を既に提案している(特許文献1参照)。なお、本願発明者は、周波数領域の複素関数である地盤の動的剛性を時間領域で表されるインパルス応答へ変換する技術も既に提案している(例えば特許文献2や非特許文献1を参照)。   However, although the characteristics of the energy transfer boundary are expressed by the transfer boundary matrix and the correction force vector, the transfer boundary matrix is a complex number in the frequency domain and has strong frequency dependence, so it is converted to the time domain. Therefore, the response analysis using the analysis target model to which the energy transfer boundary is applied as the side boundary model is limited to the equivalent linear analysis in the frequency domain. In order to solve this, the inventor of the present application has already proposed a technique for realizing response analysis in the time domain for an analysis target model provided with an energy transfer boundary as a wave boundary model (see Patent Document 1). The inventor has already proposed a technique for converting the dynamic stiffness of the ground, which is a complex function in the frequency domain, into an impulse response represented in the time domain (see, for example, Patent Document 2 and Non-Patent Document 1). ).

特開2009−250805号公報JP 2009-250805 A 特許3878626号公報Japanese Patent No. 3878626

中村尚弘,「地盤インピーダンスの時間領域変換による成層地盤に埋込まれた構造物の地震応答解析」,日本建築学会構造系論文集,2003年5月,第567号,p.63−70Naohiro Nakamura, “Earthquake response analysis of structures embedded in stratified ground by time domain transformation of ground impedance”, Architectural Institute of Japan, May 2003, No. 567, p. 63-70

しかしながら、特許文献1に記載の技術は、解析対象モデルのうちエネルギー伝達境界及びエネルギー伝達境界よりも外側の範囲(外部領域)に対しては線形解析を行う技術であり、例えば硬い地盤上に建設された建物に地震が到来した等の解析条件では良好な解析精度が得られるものの、例えば軟らかい地盤上に建設された建物に地震が到来した等のように、地震の到来に伴って非線形の挙動を示す範囲がエネルギー伝達境界にまで及ぶような解析条件で応答解析を行った場合には、エネルギー伝達境界や外部領域の塑性化(非線形化)を表現できないために解析精度が低下する、という問題があった。   However, the technique described in Patent Document 1 is a technique for performing linear analysis on the energy transfer boundary and the range outside the energy transfer boundary (external region) in the analysis target model, and is constructed on, for example, hard ground Analytical conditions such as the arrival of an earthquake in a built building can provide good analysis accuracy. When response analysis is performed under analysis conditions that extend to the energy transfer boundary, the accuracy of the analysis decreases because the plasticity (non-linearization) of the energy transfer boundary and the external region cannot be expressed. was there.

本発明は上記事実を考慮して成されたもので、解析対象モデルのうち内部領域より外側の範囲が非線形の挙動を示す応答解析における解析精度の向上を実現できる応答解析装置、応答解析方法及び応答解析プログラムを得ることが目的である。   The present invention has been made in consideration of the above facts, and a response analysis apparatus, a response analysis method, and a response analysis method capable of improving the analysis accuracy in a response analysis in which the range outside the internal region of the analysis target model exhibits nonlinear behavior The purpose is to obtain a response analysis program.

上記目的を達成するために請求項1記載の発明に係る応答解析装置は、地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算する物性値演算手段と、前記物性値演算手段により前記解析対象の各時刻毎に演算された前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算するマトリクス演算手段と、前記マトリクス演算手段により2以上の時刻について各々演算された前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算するインパルス応答演算手段と、前記インパルス応答演算手段によって前記解析対象の各時刻毎に演算された前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行う解析手段と、を含んで構成されている。   In order to achieve the above object, a response analysis apparatus according to claim 1 is formed by modeling an object to be analyzed consisting of a single ground or a ground and a building, and a wave boundary between an internal region and an external region of the model. Response to analyze the behavior when a specific external force that vibrates the object to be analyzed is input to the external region of the model to be analyzed provided with an energy transfer boundary as a model at each time of the object to be analyzed By performing the analysis, the physical property value calculating means for calculating the physical property value of the object to be analyzed in the external region for each time of the analysis target, and the physical property value calculating means for calculating the physical property value for each time of the analysis target The main component of the energy transfer boundary when the specific external force is input based on the physical property value of the object to be analyzed in the external region, and the frequency region Matrix calculation means for calculating the value of a transmission boundary matrix defined as a complex number and having a strong frequency dependence for each of two or more times of each time to be analyzed, and two or more by the matrix calculation means The energy when the specific external force is input as an impulse response representing the relationship between the external force that vibrates the object and the behavior of the object in the time domain based on the value of the transmission boundary matrix calculated for each time of An impulse response calculating means for calculating the impulse response of the transmission boundary at each time to be analyzed, and the impulse response of the energy transfer boundary calculated at each time of the analysis target by the impulse response calculating means Then, the behavior when the specific external force is input to the analysis target model is solved. It is configured to include an analysis unit that performs response analysis for analyzing for each time of the target, the.

請求項1記載の発明では、地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの外部領域に対し、物性値演算手段により、解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析が行われることで、外部領域における解析対象物体の物性値が解析対象の各時刻毎に各々演算される。なお、解析対象物体の物性値としては、例えば解析対象物体の剪断歪振幅値γ、剪断波速度Vs及び減衰定数hを適用することができる。これにより、特定の外力が入力された場合の外部領域における解析対象物体の挙動を表すデータ(解析対象の各時刻での物性値)が得られる。   In the first aspect of the present invention, an analysis object in which an analysis target object composed of the ground alone or the ground and a building is modeled, and an energy transmission boundary as a wave boundary model is provided between the internal region and the external region of the model. Response analysis that analyzes the behavior when a specific external force that vibrates the object to be analyzed is input at each time of the analysis target is performed on the external area of the model by the physical property value calculation means. The physical property value of the analysis target object in the region is calculated for each time of the analysis target. As the physical property value of the analysis target object, for example, the shear strain amplitude value γ, the shear wave velocity Vs, and the attenuation constant h of the analysis target object can be applied. Thereby, data (physical property value at each time of the analysis target) representing the behavior of the analysis target object in the external region when a specific external force is input is obtained.

また、マトリクス演算手段は、物性値演算手段により解析対象の各時刻毎に演算された外部領域における解析対象物体の物性値に基づき、特定の外力が入力されたときの、エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、解析対象の各時刻のうちの2以上の時刻について各々演算し、インパルス応答演算手段は、マトリクス演算手段により2以上の時刻について各々演算された伝達境界マトリクスの値に基づき、物体を振動させる外力と物体の挙動との関係を時間領域で表すインパルス応答として、特定の外力が入力されたときのエネルギー伝達境界のインパルス応答を解析対象の各時刻毎に各々演算する。   In addition, the matrix calculation means is based on the physical property value of the analysis target object in the external area calculated at each time of the analysis target by the physical property value calculation means, and the main energy transfer boundary when a specific external force is input. A component, which is defined as a complex number in the frequency domain and has a strong frequency dependence, calculates a value of a transmission boundary matrix for each of two or more times of each time to be analyzed. Based on the value of the transmission boundary matrix calculated for each of two or more times by the matrix calculation means, a specific external force is input as an impulse response that represents the relationship between the external force that vibrates the object and the behavior of the object in the time domain. The impulse response of the energy transfer boundary is calculated for each time to be analyzed.

このように、請求項1記載の発明では、解析対象モデルのうちの外部領域に対し、解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、特定の外力が入力されたときの外部領域における解析対象物体の物性値を解析対象の各時刻毎に演算しておき、解析対象の時刻のうちの少なくとも2以上の時刻について伝達境界マトリクスを各々演算し、2以上の時刻について演算した伝達境界マトリクスに基づいて、エネルギー伝達境界のインパルス応答を解析対象の各時刻毎に各々演算するので、特定の外力の入力に伴って解析対象モデルの外部領域が非線形の挙動を示す場合にも、解析対象の各時刻における外部領域の挙動を正確に反映したインパルス応答を得ることができる。   As described above, in the first aspect of the present invention, a response for analyzing the behavior when a specific external force that vibrates the analysis target object is input to the external region of the analysis target model at each time of the analysis target. By performing the analysis, the physical property value of the analysis target object in the external region when a specific external force is input is calculated for each time of the analysis target, and at least two or more times of the analysis target time Each transmission boundary matrix is calculated, and the impulse response of the energy transmission boundary is calculated for each time to be analyzed based on the transmission boundary matrix calculated for two or more times. Therefore, analysis is performed according to the input of a specific external force. Even when the outer region of the target model exhibits nonlinear behavior, an impulse response that accurately reflects the behavior of the outer region at each time to be analyzed can be obtained.

そして請求項1記載の発明では、解析手段により、インパルス応答演算手段によって解析対象の各時刻毎に演算されたエネルギー伝達境界のインパルス応答を用いて、解析対象モデルに対し、特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析が行われるので、解析対象モデルのうち内部領域より外側の範囲が非線形の挙動を示す応答解析における解析精度の向上を実現できる。   In the first aspect of the invention, the analysis means inputs a specific external force to the analysis target model using the impulse response of the energy transmission boundary calculated at each time of the analysis target by the impulse response calculation means. Response analysis is performed to analyze the behavior at each time of the analysis target, so that it is possible to improve the analysis accuracy in the response analysis in which the range outside the internal region of the analysis target model exhibits nonlinear behavior.

なお、請求項1記載の発明において、エネルギー伝達境界の伝達境界マトリクスは、例えば請求項2に記載したように、内部領域の質量マトリクスを[M]、剛性マトリクスを[KI]、変位ベクトルを{u(t)}、境界力ベクトルを{FR(t)}、外部領域における解析対象物体の応答変位を{uR (t)}、境界に作用する補正力ベクトルを−[DR(t)]{uR (t)}とし、
[MI]{u"(t)}+([K(t)]+[R(t)]){u(t)}
=−y"(t)[M]{1}+{FR(t)} …(1)
{FR(t)}=([R(t)]−[DR(t)]){uR (t)} …(2)
解析対象モデル全体の運動方程式を上記の(1),(2)式で表したときに、上記の(1),(2)式の[R(t)]で表すことができる。
In the invention described in claim 1, the transmission boundary matrix of the energy transmission boundary is, for example, as described in claim 2, the mass matrix of the internal region is [M I ], the stiffness matrix is [K I ], and the displacement vector {U (t)}, the boundary force vector is {F R (t)}, the response displacement of the object to be analyzed in the outer region is {u R * (t)}, and the correction force vector acting on the boundary is − [D R (t)] {u R * (t)}
[M I ] {u "(t)} + ([K I (t)] + [R (t)]) {u (t)}
= −y ″ (t) [M I ] {1} + {F R (t)} (1)
{F R (t)} = ([R (t)] − [D R (t)]) {u R * (t)} (2)
When the equation of motion of the entire analysis target model is expressed by the above equations (1) and (2), it can be expressed by [R (t)] in the above equations (1) and (2).

以下、上記の(1),(2)式について説明する。図1には、地盤を一定サイズの多数個の構成要素の集合体としてモデル化すると共に、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界を設け、モデルの中心位置に関して逆対称条件を設けて1/2モデル化して成る右側の1/2モデル(モデルの右側にのみエネルギー伝達境界が存在し、エネルギー伝達境界を挟んで左側には内部領域が、右側には外部領域(自由地盤ともいう)が位置しているモデル)を示す。この1/2モデルにおいて、2次元面内問題での外部領域(自由地盤)の波動方程式は次の(3)式で表される。
([A(t)]k+i[B(t)]k+[G(t)]−ω[M]){u(ω)}={0} …(3)
ここで、kは波数、{u(ω)}は外部領域(自由地盤)の変位ベクトルである。また、[A(t)],[B(t)],[G(t)],[M]は2n×2n(nは節点数)のマトリクスで、以下の要素毎のサブマトリクス[A(t)]j,[B(t)]j,[G(t)]j,[M]jの重ね合せで表される。各サブマトリクスは、各要素のラメ定数G(t)j,λ(t)jを用いて次の(4)〜(7)式で表される。hjjは各要素の高さと密度である。
Hereinafter, the above equations (1) and (2) will be described. In FIG. 1, the ground is modeled as an assembly of a large number of components of a certain size, and an energy transfer boundary is provided as a wave boundary model between the internal region and the external region of the model. ½ model on the right side formed by ½ model with inverse symmetry condition (the energy transfer boundary exists only on the right side of the model, the internal area on the left side across the energy transfer boundary, the external area on the right side (Model where free ground is also located). In this 1/2 model, the wave equation of the external region (free ground) in the two-dimensional in-plane problem is expressed by the following equation (3).
([A (t)] k 2 + i [B (t)] k + [G (t)] − ω 2 [M]) {u * (ω)} = {0} (3)
Here, k is the wave number, and {u * (ω)} is the displacement vector of the external region (free ground). [A (t)], [B (t)], [G (t)], and [M] are 2n × 2n (n is the number of nodes) matrix, and the sub-matrix [A ( t)] j , [B (t)] j , [G (t)] j , [M] j . Each sub-matrix is expressed by the following equations (4) to (7) using the lame constants G (t) j and λ (t) j of each element. h j and ρ j are the height and density of each element.

ここで、
[C]=[G(t)]−ω[M(t)] …(8)
とし、次の(9)式の波数kに関する固有値問題を解く。
|[A(t)]k2+i[B(t)]k+[C(t)]|={0} …(9)
得られた4n個の固有モードより、右方向に伝播する成分2n個を抽出し、モードマトリクス[V]とする。これより、1/2モデルの右側に存在するエネルギー伝達境界の伝達境界マトリクスは次の(10)式の[R(t)]で表される。但し、[D(t)]は下記の(11)式で表されるサブマトリクス[D(t)]jの重ね合せで表される。
[R(t)]=i・[A(t)][V][K][V]−1+[D(t)] …(10)
here,
[C] = [G (t)] − ω 2 [M (t)] (8)
And solve the eigenvalue problem concerning the wave number k in the following equation (9).
| [A (t)] k2 + i [B (t)] k + [C (t)] | = {0} (9)
From the obtained 4n eigenmodes, 2n components propagating in the right direction are extracted and set as a mode matrix [V]. Thus, the transfer boundary matrix of the energy transfer boundary existing on the right side of the 1/2 model is represented by [R (t)] in the following equation (10). However, [D (t)] is represented by superposition of sub-matrix [D (t)] j represented by the following equation (11).
[R (t)] = i · [A (t)] [V] [K] [V] −1 + [D (t)] (10)

なお、先の(10)式ではマトリクスが非対称となるが、以下では対称位置の項を平均することによりマトリクスを対称化する。これより、解析対象モデル全体の運動方程式として先の(1)式が得られ、境界力ベクトル{FR(t)}の演算式として先の(2)式が得られる。なお、先の(2)式における補正力(切欠き力ともいう)ベクトル−[DR(t)]{uR (t)}は、地震動が鉛直下方より入射する場合は[Q(t)]=[D(t)]、それ以外の場合は[Q(t)]=ik[A(t)]+[D(t)]となる。但しkは波数である。また、[R(t)], {uR (t)},{FR(t)}は、(10)式までは境界部の自由度数2nで定義したが、内部領域の自由度に重ね合わせるため、(1),(2)式では内部領域の自由度数に拡張して用いている。 In the above equation (10), the matrix is asymmetric, but in the following, the matrix is symmetrized by averaging the terms at the symmetrical positions. As a result, the above equation (1) is obtained as the equation of motion of the entire model to be analyzed, and the above equation (2) is obtained as the arithmetic expression of the boundary force vector {F R (t)}. The correction force (also referred to as notch force) vector − [D R (t)] {u R * (t)} in the above equation (2) is [Q (t )] = [D (t)], otherwise [Q (t)] = ik [A (t)] + [D (t)]. Where k is the wave number. [R (t)], {u R * (t)}, {F R (t)} are defined with 2n degrees of freedom at the boundary up to equation (10). In order to superimpose, the equations (1) and (2) are used by expanding the number of degrees of freedom in the inner region.

また、請求項1又は請求項2記載の発明において、物性値演算手段は、例えば請求項3に記載したように、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)−(2ω/ωm)なる値(但しnは整数)を示す虚数部の正則成分、及び、振動数ωに拘わらず(2ω/ωm)なる値を示す虚数部の特異成分の和で表され、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)なる値を示す虚数部と、前記虚数部の正則成分のヒルベルト変換値に対応する実数部と、から成る因果的単位虚数関数を時間領域へ変換するか、又は前記虚数部のみを時間領域へ変換することで得られた前記因果的単位虚数関数のインパルス応答値を用いて、解析対象モデルのうちの外部領域に対する応答解析を行うことで、外部領域における解析対象物体の物性値として剪断歪振幅値γ、剪断波速度Vs及び減衰定数hを演算するように構成することが好ましい。   Further, in the invention according to claim 1 or claim 2, the physical property value calculating means, for example, as described in claim 3, has a frequency ω in the range of (n−1) · ωm to n · ωm (2n -1) is a sum of a regular component of the imaginary part showing a value of (2ω / ωm) (where n is an integer) and a singular component of an imaginary part showing a value of (2ω / ωm) regardless of the frequency ω. An imaginary part representing a value of (2n-1) in the range of (n-1) · ωm to n · ωm, and a real part corresponding to the Hilbert transform value of the regular component of the imaginary part, Using the impulse response value of the causal unit imaginary function obtained by converting only the imaginary part into the time domain, or using the impulse response value of the causal unit imaginary function obtained by converting only the imaginary part into the time domain. By performing a response analysis on the outer region, the shear strain amplitude value is used as the physical property value of the object to be analyzed in the outer region. It is preferably configured to compute the shear wave velocity Vs and damping constant h.

地盤単独又は地盤と建物から成る解析対象物体に、解析対象物体を振動させる特定の外力として、大地震時等のように大エネルギーかつ大振幅の外力が入力された場合、解析対象物体のうちの地盤は、非線形の挙動として、内部減衰の履歴吸収エネルギー(減衰定数h)が振動数ωにあまり依存しない振動数非依存特性(減衰定数hが振動数ωに拘わらず一定値を示す特性)を示すと共に、剛性低下率α(=剛性G/初期剛性G)及び減衰定数hが物体(地盤)の剪断歪振幅値γに応じて変化する歪振幅依存特性も示す。 When a large energy and large amplitude external force is input to the analysis target object consisting of the ground alone or the ground and the building as a specific external force that vibrates the analysis target object, such as during a large earthquake, The ground has a frequency-independent characteristic (a characteristic in which the damping constant h shows a constant value regardless of the frequency ω) as a nonlinear behavior, and the hysteresis absorption energy (damping constant h) of the internal damping does not depend much on the frequency ω. In addition, a strain amplitude dependence characteristic in which the stiffness reduction rate α (= rigidity G / initial stiffness G 0 ) and the damping constant h change according to the shear strain amplitude value γ of the object (ground) is also shown.

これに対して請求項3記載の発明では、因果的単位虚数関数のインパルス応答値を用いて解析対象モデルのうちの外部領域に対する応答解析を行うので、特開2008−304227号公報に記載の発明と同様に、地盤が振動数非依存特性及び歪振幅依存特性も示すことによる影響を受けることなく、外部領域における解析対象物体の挙動を高精度に解析することができ、解析対象の各時刻での物性値として、外部領域における解析対象物体の挙動を高精度に表す物性値が得られる。   On the other hand, in the invention described in claim 3, since the response analysis for the external region of the analysis target model is performed using the impulse response value of the causal unit imaginary function, the invention described in Japanese Patent Application Laid-Open No. 2008-304227. As with, the behavior of the object to be analyzed in the external region can be analyzed with high accuracy without being affected by the fact that the ground also exhibits frequency-independent characteristics and strain amplitude-dependent characteristics. As the physical property value, a physical property value that represents the behavior of the object to be analyzed in the external region with high accuracy can be obtained.

また、請求項1〜請求項3の何れかに記載の発明において、インパルス応答演算手段は、例えば請求項4に記載したように、マトリクス演算手段により2以上の時刻について各々演算された伝達境界マトリクスの値に基づき、特定の外力が入力されたときのエネルギー伝達境界のインパルス応答を、伝達境界マトリクスの値が演算された2以上の時刻について各々演算した後に、解析対象の各時刻のうちエネルギー伝達境界のインパルス応答が未演算の時刻でのエネルギー伝達境界のインパルス応答を、2以上の時刻について各々演算したエネルギー伝達境界のインパルス応答から補間演算によって求めるように構成することが好ましい。これにより、演算負荷が比較的大きい伝達境界マトリクスの演算回数を減少させることで、解析手段による応答解析における解析精度の低下は抑制しつつ、伝達境界マトリクスの演算に起因する演算負荷を低減することができる。   Further, in the invention according to any one of claims 1 to 3, the impulse response calculation means includes a transmission boundary matrix calculated for each of two or more times by the matrix calculation means as described in claim 4, for example. After calculating the impulse response of the energy transfer boundary when a specific external force is input based on the value of the value at two or more times at which the values of the transfer boundary matrix are calculated, the energy transfer of each time to be analyzed It is preferable that the impulse response of the energy transfer boundary at the time when the impulse response of the boundary is not calculated is obtained by interpolation from the impulse response of the energy transfer boundary calculated for each of two or more times. This reduces the number of computations of the transmission boundary matrix with a relatively large computation load, thereby reducing the computation load caused by the computation of the transmission boundary matrix while suppressing the deterioration of the analysis accuracy in the response analysis by the analysis means. Can do.

また、請求項4記載の発明において、インパルス応答演算手段によるインパルス応答の補間演算は、例えば請求項5に記載したように、エネルギー伝達境界のインパルス応答が未演算の時刻での外部領域における解析対象物体の剪断歪振幅値γが、伝達境界マトリクスの値が演算された2以上の時刻での外部領域における解析対象物体の剪断歪振幅値γを内分する比率に基づいて、エネルギー伝達境界のインパルス応答が未演算の時刻でのエネルギー伝達境界のインパルス応答を、2以上の時刻について各々演算したエネルギー伝達境界のインパルス応答から補間演算によって求めることによって実現できる。   Further, in the invention described in claim 4, the impulse response interpolation calculation by the impulse response calculation means is the analysis target in the external region at the time when the impulse response of the energy transfer boundary is not calculated as described in claim 5, for example. Based on the ratio that the shear strain amplitude value γ of the object internally divides the shear strain amplitude value γ of the object to be analyzed in the external region at two or more times when the value of the transmission boundary matrix is calculated, the impulse of the energy transfer boundary The impulse response of the energy transfer boundary at the time when the response is not calculated can be realized by obtaining the impulse response of the energy transfer boundary calculated at two or more times by interpolation.

また、請求項4記載の発明において、インパルス応答演算手段によるインパルス応答の補間演算は、例えば請求項6に記載したように、エネルギー伝達境界のインパルス応答が未演算の時刻が、伝達境界マトリクスの値が演算された2以上の時刻を内分する比率に基づいて、エネルギー伝達境界のインパルス応答が未演算の時刻でのエネルギー伝達境界のインパルス応答を、2以上の時刻について各々演算したエネルギー伝達境界のインパルス応答から補間演算によって求めることによっても実現できる。   In the invention according to claim 4, the impulse response interpolation calculation by the impulse response calculation means is performed, for example, as described in claim 6, the time when the impulse response of the energy transfer boundary is not calculated is the value of the transfer boundary matrix. The impulse response of the energy transfer boundary at the time when the impulse response of the energy transfer boundary is not calculated is calculated based on the ratio that internally divides the time of 2 or more when is calculated. It can also be realized by obtaining the impulse response by interpolation calculation.

また、請求項1〜請求項6の何れかに記載の発明において、インパルス応答演算手段は、例えば請求項7に記載したように、物体の変位に依存するインパルス応答の同時成分をk、物体の速度に依存するインパルス応答の同時成分をc、物体の加速度に依存するインパルス応答の同時成分をm、物体の変位に依存するインパルス応答のΔt刻みの時間遅れ成分をkj、物体の速度に依存するインパルス応答のΔt刻みの時間遅れ成分をcj(但しjは自然数でtj=Δt・j)、時間領域での物体の変位をu(t)、速度をu'(t)、加速度をu"(t)としたときに、前記物体の加速度に依存し少なくとも同時成分を含んで成る質量項も含む数式として、前記インパルス応答FB(t)を規定する数式である、 Further, in the invention according to any one of claims 1 to 6, the impulse response calculation means, as described in claim 7, for example, sets the simultaneous component of the impulse response depending on the displacement of the object to k 0 , The simultaneous component of the impulse response that depends on the velocity of the object is c 0 , the simultaneous component of the impulse response that depends on the acceleration of the object is m 0 , the time delay component in increments of Δt of the impulse response that depends on the displacement of the object is k j , The time delay component in increments of Δt of the impulse response depending on the velocity is c j (where j is a natural number t j = Δt · j), the displacement of the object in the time domain is u (t), and the velocity is u ′ (t) , When the acceleration is u "(t), it is an equation that defines the impulse response F B (t) as an equation including a mass term that depends on the acceleration of the object and includes at least a simultaneous component.

上記(12)式を用い、マトリクス演算手段によって伝達境界マトリクスが演算された時刻におけるエネルギー伝達境界のインパルス応答を、前記時刻における、前記振動がN種(N=n+1)の周波数のときの伝達境界マトリクスの値に基づいて演算するよう構成することができる。これにより、特許文献1からも明らかなように、本願発明者が非特許文献1で提案した演算方法に従ってエネルギー伝達境界のインパルス応答を演算する場合よりも、エネルギー伝達境界のインパルス応答としてより高精度な値を得ることができ、解析対象モデルに対する時間領域での応答解析の解析精度を向上させることができる。 Using the above equation (12), the impulse response of the energy transfer boundary at the time when the transfer boundary matrix is calculated by the matrix calculation means is the transfer boundary when the vibration at the time has N types (N = n + 1) frequencies. The calculation can be performed based on the value of the matrix. Thus, as is clear from Patent Document 1, the present inventor is more accurate as the impulse response of the energy transfer boundary than when the impulse response of the energy transfer boundary is calculated according to the calculation method proposed in Non-Patent Document 1. An accurate value can be obtained, and the analysis accuracy of the response analysis in the time domain for the analysis target model can be improved.

また、請求項7記載の発明において、インパルス応答演算手段は、例えば請求項8に記載したように、前記(12)式における物体の加速度に依存するインパルス応答の同時成分mに対する修正値Δm0、物体の変位に依存するインパルス応答の同時成分kに対する修正値Δk0を下記の(13)式によって演算し、 In the seventh aspect of the invention, the impulse response calculation means, for example, as described in claim 8, provides a correction value Δm 0 for the simultaneous component m 0 of the impulse response depending on the acceleration of the object in the equation (12). The correction value Δk 0 for the simultaneous component k 0 of the impulse response depending on the displacement of the object is calculated by the following equation (13):

(但し、上記(13)式において、 (However, in the above equation (13)

であり、上記(14)式におけるRe(S))は、前記(12)式を用いて演算した前記エネルギー伝達境界の前記インパルス応答から再現された、下記の(15)式で表される前記伝達境界マトリクスS(ω)の振動数ωでの実部の値を表し、 Re (S Bi )) in the above equation (14) is the following equation (15) reproduced from the impulse response of the energy transfer boundary calculated using the above equation (12). The value of the real part at the frequency ω i of the transmission boundary matrix S B (ω) represented

上記(14)式におけるRe(D(ω))は、(12)式に基づく前記エネルギー伝達境界の前記インパルス応答の演算に用いた、振動数ωでの前記伝達境界マトリクスのデータD(ω)のうちの実部の値を表す)、演算した修正値Δm0,Δk0を用いて前記同時成分m,kを修正するように構成することが好ましい。これにより、特許文献1からも明らかなように、上記の同時成分m,kの修正を行わない場合と比較して、エネルギー伝達境界のインパルス応答として更に高精度な値を得ることができ、解析対象モデルに対する時間領域での応答解析の解析精度を更に向上させることができる。 Re (D (ω i )) in the above equation (14) is the data D (of the transmission boundary matrix at the frequency ω i used in the calculation of the impulse response of the energy transmission boundary based on the equation (12). represents the value of the real part of ω i)), the calculated correction value Delta] m 0, it is preferably configured to modify the co-component m 0, k 0 using .DELTA.k 0. As a result, as is clear from Patent Document 1, it is possible to obtain a more accurate value as the impulse response at the energy transfer boundary as compared with the case where the above-described simultaneous components m 0 and k 0 are not corrected. The analysis accuracy of the response analysis in the time domain for the analysis target model can be further improved.

また、請求項7記載の発明において、インパルス応答演算手段は、例えば請求項9に記載したように、前記(3)式における物体の速度に依存するインパルス応答の同時成分をcに対する修正値Δc0も下記の(16)式によって演算し、
Δc0=−E/B …(16)
(但し、上記(16)式において、
In the seventh aspect of the present invention, the impulse response calculating means, for example, as described in the ninth aspect of the present invention, sets the simultaneous component of the impulse response depending on the speed of the object in the equation (3) as a correction value Δc for c 0 . 0 is also calculated by the following equation (16),
Δc 0 = −E / B (16)
(However, in the above equation (16)

であり、上記(17)式におけるIm(S(ωi))は、前記(12)式を用いて演算したエネルギー伝達境界のインパルス応答から再現された、前記(15)式で表される伝達境界マトリクスS(ω)の振動数ωでの虚部の値を表し、上記(17)式におけるIm(S))は、(12)式に基づくエネルギー伝達境界のインパルス応答の演算に用いた、振動数ωでの伝達境界マトリクスのデータD(ω)のうちの虚部の値を表す)、演算した修正値Δc0を用いて同時成分cも修正するように構成することが好ましい。 Im (S B (ωi)) in the above equation (17) is a transmission represented by the above equation (15) reproduced from the impulse response of the energy transmission boundary calculated using the above equation (12). The value of the imaginary part at the frequency ω i of the boundary matrix S B (ω) is expressed, and Im (S Bi )) in the above equation (17) is the impulse response of the energy transfer boundary based on the equation (12). (This represents the value of the imaginary part of the transmission boundary matrix data D (ω i ) at the frequency ω i ) and the calculated correction value Δc 0 to correct the simultaneous component c 0. It is preferable to configure.

これにより、特許文献1からも明らかなように、上記の同時成分cの修正を行わない場合と比較して、例えばインパルス応答の演算に用いるデータ点の振動数軸上における位置が等間隔でない等のように、演算したインパルス応答のうちの虚部についての精度が低下し易い条件の場合に、エネルギー伝達境界のインパルス応答として更に高精度な値を得ることができ、解析対象モデルに対する時間領域での応答解析の解析精度を更に向上させることができる。 Thus, as is clear from Patent Document 1, the positions of the data points used for the calculation of the impulse response, for example, on the frequency axis are not equally spaced compared to the case where the correction of the simultaneous component c 0 is not performed. In the case where the accuracy of the imaginary part of the calculated impulse response is likely to be reduced, a more accurate value can be obtained as the impulse response of the energy transfer boundary, and the time domain for the model to be analyzed The analysis accuracy of the response analysis at can be further improved.

請求項10記載の発明に係る応答解析方法は、コンピュータに、地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行わせることで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算させ、前記解析対象の各時刻毎に演算させた前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算させ、2以上の時刻について各々演算させた前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算させ、前記解析対象の各時刻毎に演算させた前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行わせるので、請求項1記載の発明と同様に、解析対象モデルのうち内部領域より外側の範囲が非線形の挙動を示す応答解析における解析精度の向上を実現できる。   The response analysis method according to the invention of claim 10 is formed by modeling an object to be analyzed consisting of a single ground or a ground and a building on a computer, and energy as a wave boundary model between an internal region and an external region of the model. A response analysis for analyzing the behavior when a specific external force that vibrates the object to be analyzed is input at each time of the object to be analyzed is performed on the external region of the model to be analyzed provided with a transmission boundary. Thus, the physical property value of the analysis target object in the outer region is calculated at each time of the analysis target, and the physical property value of the analysis target object in the outer region is calculated at each time of the analysis target. Based on this, it is the main component of the energy transfer boundary when the specific external force is input, is defined as a complex number in the frequency domain, and has a strong frequency dependence. The value of the transmission boundary matrix having the characteristic is calculated for each of two or more times among the respective times to be analyzed, and the object is vibrated based on the value of the transmission boundary matrix calculated for each of the two or more times. The impulse response representing the relationship between the external force and the behavior of the object in the time domain is calculated at each time to be analyzed by calculating the impulse response of the energy transfer boundary when the specific external force is input. Using the impulse response of the energy transfer boundary calculated at each time of the target, the behavior when the specific external force is input to the analysis target model is analyzed at each time of the analysis target Since the response analysis is performed, as in the first aspect of the invention, the response analysis in which the range outside the internal region of the analysis target model exhibits nonlinear behavior It can be realized to improve the definitive analysis accuracy.

請求項11記載の発明に係る応答解析プログラムは、コンピュータを、地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算する物性値演算手段、前記物性値演算手段により前記解析対象の各時刻毎に演算された前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算するマトリクス演算手段、前記マトリクス演算手段により2以上の時刻について各々演算された前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算するインパルス応答演算手段、及び、前記インパルス応答演算手段によって前記解析対象の各時刻毎に演算された前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行う解析手段として機能させる。   The response analysis program according to the invention as claimed in claim 11 is formed by modeling an object to be analyzed consisting of a single ground or a ground and a building, and energy as a wave boundary model between an internal region and an external region of the model. A response analysis is performed to analyze the behavior when a specific external force that vibrates the analysis target object is input to the external region of the analysis target model provided with a transmission boundary at each time of the analysis target. The physical property value calculating means for calculating the physical property value of the analysis object in the external region at each time of the analysis target, and the external region calculated at each time of the analysis target by the physical property value calculation means Is a main component of the energy transmission boundary when the specific external force is input based on the physical property value of the analysis target object in the frequency domain Matrix calculation means for calculating a value of a transmission boundary matrix defined as a complex number and having strong frequency dependence for each of two or more times of the time to be analyzed, two or more times by the matrix calculation means The energy transfer boundary when the specific external force is input as an impulse response that represents the relationship between the external force that vibrates the object and the behavior of the object in the time domain based on the value of the transfer boundary matrix calculated for each An impulse response calculating means for calculating the impulse response of each time to be analyzed, and the impulse response of the energy transfer boundary calculated at each time of the analysis target by the impulse response calculating means. , The behavior when the specific external force is input to the analysis target model. To function as an analysis means for performing a response analysis for analyzing for each time of the target.

請求項11記載の発明に係る応答解析プログラムは、コンピュータを、上記の物性値演算手段、マトリクス演算手段、インパルス応答演算手段及び解析手段として機能させるためのプログラムであるので、コンピュータが請求項11記載の発明に係る応答解析プログラムを実行することで、コンピュータが請求項1に記載の応答解析装置として機能することになり、請求項1記載の発明と同様に、解析対象モデルのうち内部領域より外側の範囲が非線形の挙動を示す応答解析における解析精度の向上を実現できる。   The response analysis program according to the invention described in claim 11 is a program for causing a computer to function as the physical property value calculation means, matrix calculation means, impulse response calculation means, and analysis means. By executing the response analysis program according to the present invention, the computer functions as the response analysis device according to claim 1, and, similar to the invention according to claim 1, outside the internal region of the analysis target model. It is possible to realize improvement in analysis accuracy in response analysis in which the range of non-linear behavior behaves.

以上説明したように本発明は、地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの外部領域に対し、解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、外部領域における解析対象物体の物性値を解析対象の各時刻毎に各々演算し、解析対象の各時刻毎に演算した物性値に基づき、特定の外力が入力されたときの伝達境界マトリクスの値を解析対象の各時刻のうちの2以上の時刻について各々演算し、2以上の時刻について各々演算した伝達境界マトリクスの値に基づき、特定の外力が入力されたときのエネルギー伝達境界のインパルス応答を解析対象の各時刻毎に各々演算し、解析対象の各時刻毎に演算したエネルギー伝達境界のインパルス応答を用いて、解析対象モデルに対し、特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うので、解析対象モデルのうち内部領域より外側の範囲が非線形の挙動を示す応答解析における解析精度の向上を実現できる、という優れた効果を有する。   As described above, the present invention is an analysis in which an object to be analyzed consisting of the ground alone or the ground and a building is modeled, and an energy transfer boundary is provided as a wave boundary model between the internal region and the external region of the model. By performing a response analysis to analyze the behavior when a specific external force that vibrates the analysis target object is input to the external region of the target model at each time of the analysis target, the analysis target object in the external region is analyzed. Calculate the physical property value at each analysis target time, and based on the physical property value calculated at each analysis target time, the value of the transmission boundary matrix when a specific external force is input The impulse of the energy transfer boundary when a specific external force is input based on the value of the transfer boundary matrix calculated for each of the two or more times Answers are calculated at each time to be analyzed, and the impulse response of the energy transfer boundary calculated at each time to be analyzed is used to analyze the behavior when a specific external force is input to the model to be analyzed. Since the response analysis is performed at each time of the target, the analysis accuracy can be improved in the response analysis in which the range outside the internal region of the analysis target model exhibits nonlinear behavior.

地盤モデル(1/2モデル)の一例を示すイメージ図である。It is an image figure which shows an example of a ground model (1/2 model). 実施形態に係るコンピュータの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the computer which concerns on embodiment. 地震応答解析処理の内容を示すフローチャートである。It is a flowchart which shows the content of an earthquake response analysis process. 地震応答解析処理における各ステップの関係(データの流れ)を示す概念図である。It is a conceptual diagram which shows the relationship (data flow) of each step in an earthquake response analysis process. 地震応答解析処理で用いる解析対象モデルの一例を示すイメージ図である。It is an image figure which shows an example of the analysis object model used by an earthquake response analysis process. 地盤の剪断歪振幅値γ−剛性低下率α特性、剪断歪振幅値γ−減衰定数h特性の一例を示す線図である。It is a diagram showing an example of the shear strain amplitude value γ-stiffness reduction rate α characteristic and the shear strain amplitude value γ-damping constant h characteristic of the ground. 因果的単位虚数関数の、(A)は虚数部全体、(B)は正則成分、(C)は特異成分を各々示す線図である。In the causal unit imaginary function, (A) is a diagram showing the entire imaginary part, (B) is a regular component, and (C) is a singular component. 解析対象モデルの他の例を示すイメージ図である。It is an image figure which shows the other example of an analysis object model. 本願発明者が実施した解析検討において、外部領域の地盤の時刻歴応答解析で最大歪記憶時間が各値のときの、(A)は最大加速度、(B)は最大歪、(C)は最大剪断応力の応答値の分布を各々示す線図である。In the analysis study conducted by the inventor of the present application, (A) is the maximum acceleration, (B) is the maximum strain, and (C) is the maximum when the maximum strain storage time is each value in the time history response analysis of the ground in the external region. It is a diagram which shows distribution of the response value of a shear stress, respectively. 本願発明者が実施した解析検討において、外部領域の地盤の時刻歴応答解析で得られた剪断歪の時間変化を地盤モデルの各部位毎に示す線図である。In the analysis examination which this inventor implemented, it is a diagram which shows the time change of the shear strain obtained by the time history response analysis of the ground of an external area | region for every site | part of a ground model. 本願発明者が実施した解析検討において、外部領域の地盤の時刻歴応答解析で得られた剪断波速度Vs及び減衰定数hの時間変化を地盤モデルの各部位毎に示す線図である。In the analysis examination which this inventor implemented, it is a diagram which shows the time change of the shear wave velocity Vs obtained by the time history response analysis of the ground of an external area | region, and the attenuation constant h for every site | part of a ground model. 本願発明者が実施した解析検討において、外部領域の地盤の時刻歴応答解析で得られた代表時刻毎の剪断歪、剪断波速度Vs及び減衰定数hの分布を示す線図である。In the analysis examination which this inventor implemented, it is a diagram which shows distribution of the shear strain, the shear wave velocity Vs, and the damping constant h for every representative time obtained by the time history response analysis of the ground of an external area | region. 本願発明者が実施した解析検討において、本発明を適用した時刻歴応答解析での応答値を示す線図である。It is a diagram which shows the response value in the time history response analysis which applied this invention in the analysis examination which this inventor implemented. 本願発明者が実施した解析検討において、本発明を適用した時刻歴応答解析での各モデルの応答値の基準値に対する比率を示す図表である。In the analysis examination which this inventor implemented, it is a graph which shows the ratio with respect to the reference value of the response value of each model in the time history response analysis to which this invention is applied. 本願発明者が実施した解析検討において、特許文献1に記載の発明を適用した時刻歴応答解析での応答値を示す線図である。In the analysis examination which this inventor implemented, it is a diagram which shows the response value in the time history response analysis to which the invention of patent document 1 is applied. 本願発明者が実施した解析検討において、特許文献1に記載の発明を適用した時刻歴応答解析での各モデルの応答値の基準値に対する比率を示す図表である。10 is a chart showing a ratio of response values of each model to a reference value in a time history response analysis to which the invention described in Patent Document 1 is applied in an analysis study performed by the inventor of the present application. 本願発明者が実施した解析検討において、波動境界モデルとしての粘性境界に対する等価線形の応答解析での応答値を示す線図である。In the analysis examination which this inventor implemented, it is a diagram which shows the response value in the equivalent linear response analysis with respect to the viscous boundary as a wave boundary model. 本願発明者が実施した解析検討において、波動境界モデルとしての粘性境界に対する等価線形の応答解析での各モデルの応答値の基準値に対する比率を示す図表である。In the analysis examination which this inventor implemented, it is a table | surface which shows the ratio with respect to the reference value of the response value of each model in the equivalent linear response analysis with respect to the viscous boundary as a wave boundary model.

以下、図面を参照して本発明の実施形態の一例を詳細に説明する。図2には本発明を適用可能なコンピュータ10が示されている。コンピュータ10は、CPU10A、ROMやRAM等から成るメモリ10B、HDD(Hard Disk Drive)やフラッシュメモリ等から成る不揮発性の記憶部10Cを備えており、CRT又はLCDから成るディスプレイ12、キーボード14、マウス16が各々接続されている。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 2 shows a computer 10 to which the present invention can be applied. The computer 10 includes a CPU 10A, a memory 10B including a ROM and a RAM, a non-volatile storage unit 10C including an HDD (Hard Disk Drive), a flash memory, and the like, a display 12 including a CRT or LCD, a keyboard 14, and a mouse. 16 are connected to each other.

コンピュータ10の記憶部10Cには、後述する地震応答解析処理を行うための地震応答解析プログラムがインストールされている。この地震応答解析プログラムは、請求項11に記載の応答解析プログラムに対応している。また、コンピュータ10は請求項10及び請求項11に記載のコンピュータに対応しており、CPU10Aが地震応答解析プログラムを実行することで、請求項1等に記載の発明に係る応答解析装置として機能する。なお、コンピュータ10としてはパーソナル・コンピュータ(PC)が好適であるが、これに限られるものではなく、例えばワークステーションであってもよいし、汎用の大型コンピュータであってもよい。   An earthquake response analysis program for performing an earthquake response analysis process to be described later is installed in the storage unit 10C of the computer 10. This earthquake response analysis program corresponds to the response analysis program according to claim 11. The computer 10 corresponds to the computer according to claims 10 and 11, and the CPU 10A functions as a response analysis apparatus according to the invention according to claim 1 or the like when the CPU 10A executes the earthquake response analysis program. . The computer 10 is preferably a personal computer (PC), but is not limited to this. For example, a workstation or a general-purpose large computer may be used.

次に本実施形態の作用として、CPU10Aが地震応答解析プログラムを実行することで実現される地震応答解析処理について、図3(及び図4)を参照して説明する。なお、本実施形態に係る地震応答解析処理では、地盤と当該地盤に埋め込まれた地下部分を有する建物が一体となった解析対象物体に地震動が入力された場合の挙動を時間領域でΔt刻みで解析する応答解析を、解析対象モデルとして、例として図5に示すように、解析対象物体を構成する地盤を一定サイズの多数個の構成要素(メッシュ領域ともいう)の集合体としてモデル化されると共に、解析対象物体を構成する建物が複数個の節点を含む構造体モデルとしてモデル化されて成り、地盤モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられ、モデルの中心位置に関して逆対称条件を設けて1/2モデル化されて成る右側の1/2モデル(モデルの右側にのみエネルギー伝達境界が存在し、エネルギー伝達境界を挟んで左側には内部領域が、右側には外部領域(自由地盤ともいう)が位置しているモデル)を用いて行う。   Next, as an operation of the present embodiment, an earthquake response analysis process realized by the CPU 10A executing the earthquake response analysis program will be described with reference to FIG. 3 (and FIG. 4). In the earthquake response analysis processing according to the present embodiment, the behavior when the ground motion is input to the object to be analyzed in which the ground and the building having the underground part embedded in the ground are integrated is expressed in increments of Δt in the time domain. The response analysis to be analyzed is modeled as an analysis target model, and as shown in FIG. 5 as an example, the ground constituting the analysis target object is modeled as an aggregate of a large number of constituent elements (also referred to as mesh regions) of a certain size. In addition, the building that constitutes the object to be analyzed is modeled as a structure model including multiple nodes, and an energy transfer boundary as a wave boundary model is provided between the internal region and the external region of the ground model. ½ model on the right side, which is modeled by ½ model with an anti-symmetric condition with respect to the center position (the energy transfer boundary exists only on the right side of the model, Inner region on the left across the boundary on the right side performed by using the outer region (the free soil also called) model is located).

地震応答解析処理のステップ30では、解析対象モデルの内部領域の地盤及び建物の動特性マトリクスを演算するためのデータを取得する。なお、本実施形態において、動特性マトリクスは、地盤や建物の応答解析を行うのに必要な特性を表すマトリクスを意味し、具体的には、質量マトリクス、減衰マトリクス及び剛性マトリクスから構成され、ステップ30で取得されるデータとしては、例えば内部領域の地盤各層毎の物性値(例えば剪断波速度Vs、ポアソン比ν、密度ρ、減衰定数h、剛性低下率特性γ−α及び減衰定数特性γ−h(一例を図6に示す)等(但し剪断波速度Vs及び減衰定数hは解析開始時刻における値(初期値))や、建物の各階毎の定数(質量、剪断剛性、回転慣性、減衰率h等)等が挙げられる。   In step 30 of the seismic response analysis process, data for calculating the ground and building dynamic characteristic matrix of the internal region of the analysis target model is acquired. In the present embodiment, the dynamic characteristic matrix means a matrix representing characteristics necessary for performing response analysis of the ground or the building, and specifically includes a mass matrix, an attenuation matrix, and a stiffness matrix, As the data acquired at 30, for example, physical property values for each ground layer in the inner region (for example, shear wave velocity Vs, Poisson's ratio ν, density ρ, damping constant h, stiffness reduction rate characteristic γ-α and damping constant characteristic γ− h (an example is shown in FIG. 6) etc. (however, the shear wave velocity Vs and the damping constant h are values at the analysis start time (initial values)) and constants (mass, shear rigidity, rotational inertia, damping rate) for each floor of the building. h) and the like.

次のステップ32では、ステップ30で取得したデータに基づき、有限要素法(FEM)による解析を行うことで内部領域の地盤及び建物の動特性マトリクスを演算する。これにより、前出の(1)式に示す内部領域の質量マトリクス[M]、内部領域の剛性マトリクス[K]、前出の(8)式に示す減衰マトリクス[C]が各々算出される。なお、本実施形態では材料減衰の振動数非依存性を表す減衰モデルとして因果的履歴減衰モデルを用いており、上記の減衰マトリクス[C]は因果的履歴減衰モデルを用いて算出される。 In the next step 32, based on the data acquired in step 30, the dynamic characteristic matrix of the ground and building of the inner region is calculated by performing analysis by the finite element method (FEM). As a result, the mass matrix [M I ] of the internal region shown in the above equation (1), the rigidity matrix [K I ] of the internal region, and the attenuation matrix [C] shown in the above equation (8) are calculated. The In the present embodiment, a causal history attenuation model is used as an attenuation model representing the frequency independence of material attenuation, and the above attenuation matrix [C] is calculated using the causal history attenuation model.

ステップ34では入力地震動のデータ(本発明における「特定の外力」を表すデータ)を取得し、次のステップ36では外部領域の地盤(無限遠方地盤)の動特性マトリクス及び地震応答を演算するためのデータとして、外部領域の地盤各層の物性値(例えば剪断波速度V、ポアソン比ν、密度ρ、減衰定数h、剛性低下率特性γ−α及び減衰定数特性γ−h等(但し、剪断波速度Vs及び減衰定数hは解析開始時刻における値(初期値)))を取得する。 In step 34, input seismic motion data (data representing “specific external force” in the present invention) is acquired, and in the next step 36, the dynamic characteristic matrix and seismic response of the ground in the external region (infinitely distant ground) are calculated. As data, physical property values (for example, shear wave velocity V s , Poisson's ratio ν, density ρ, damping constant h, stiffness reduction rate characteristic γ-α, damping constant characteristic γ-h, etc.) The speed Vs and the attenuation constant h are values at the analysis start time (initial values))).

ステップ38では、先のステップ34で取得した入力地震動のデータと、先のステップ36で取得した外部領域の地盤(無限遠方地盤)の地震応答を演算するためのデータに基づいて、取得したデータが表す入力地震動が入力されたときの、外部領域の地盤(無限遠方地盤)の非線形の地震応答を時間領域で演算・解析する(図4も参照)。大地震時等のように大エネルギーかつ大振幅の外力が入力された地盤は、内部減衰の履歴吸収エネルギー(減衰定数h)が振動数ωにあまり依存しない振動数非依存特性(減衰定数hが振動数ωに拘わらず一定値を示す特性)を示すと共に、剛性低下率α(=剛性G/初期剛性G)及び減衰定数hが物体(地盤)の剪断歪振幅値γに応じて変化する歪振幅依存特性も示す。 In step 38, the acquired data is obtained based on the input ground motion data acquired in the previous step 34 and the data for calculating the earthquake response of the ground of the external area (infinitely distant ground) acquired in the previous step 36. Calculate and analyze the non-linear seismic response of the ground in the external region (ground at infinity) in the time domain when the input seismic motion is expressed (see also Fig. 4). The ground where large energy and large amplitude external force is input, such as during a large earthquake, has a frequency-independent characteristic in which the history absorption energy (damping constant h) of internal damping does not depend much on the frequency ω. (A characteristic indicating a constant value regardless of the frequency ω), and the stiffness reduction rate α (= rigidity G / initial stiffness G 0 ) and the damping constant h vary according to the shear strain amplitude value γ of the object (ground). The distortion amplitude dependence characteristics are also shown.

このため、本実施形態では、例として図7に示すように、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)−(2ω/ωm)なる値(但しnは整数)を示す虚数部の正則成分(図7(B)参照)、及び、振動数ωに拘わらず(2ω/ωm)なる値を示す虚数部の特異成分(図7(C)参照)の和で表され、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)なる値を示す虚数部と、前記虚数部の正則成分のヒルベルト変換値に対応する実数部と、から成る因果的単位虚数関数Z'(ω)を時間領域へ変換するか、又は前記虚数部のみを時間領域へ変換することで、因果的単位虚数関数Z'(ω)のインパルス応答値として、物体の速度に依存する同時成分c(t0)、物体の変位に依存する同時成分k(t0)、物体の変位に依存するΔt刻みの時間遅れ成分k(tj)(但しjは自然数でtj=Δt・j)が予め演算されて記憶部10Cに記憶されている。 For this reason, in this embodiment, as shown in FIG. 7 as an example, the value of the frequency ω is (2n−1) − (2ω / ωm) in the range of (n−1) · ωm to n · ωm (however, n is an integer) regular component of the imaginary part (see FIG. 7B), and imaginary part singular component of (2ω / ωm) regardless of the frequency ω (see FIG. 7C) Corresponding to the imaginary part showing the value of (2n-1) in the range of (n-1) · ωm to n · ωm, and the Hilbert transform value of the regular component of the imaginary part. An impulse of the causal unit imaginary function Z ′ (ω) by converting the causal unit imaginary function Z ′ (ω) composed of the real part and the time domain, or by converting only the imaginary part into the time domain As response values, a simultaneous component c (t 0 ) that depends on the speed of the object, a simultaneous component k (t 0 ) that depends on the displacement of the object, and a time delay component k (t j ) in increments of Δt that depends on the displacement of the object ( Where j is a natural number t j = Δt · j) are stored in advance calculated and stored portion 10C.

そして、ステップ38における応答解析は以下のようにして行われる。すなわち、まず因果的単位虚数関数Z'(ω)のインパルス応答値(c(t0),k(t0),k(tj))を記憶部10Cから読み出し、物体(この場合は外部領域の地盤)の質量マトリクスを[Ms]、物体の初期剛性マトリクスを[K0]、時間領域での物体の変位ベクトルを{u(t)}、速度ベクトルを{u'(t)}、反力ベクトルを{F(γ,t)}、物体を振動させる外力の時間領域での加速度をy"(t)、時間遅れ成分k(tj)の総数をnとしたときに、記憶部から読み出した因果的単位虚数関数Z'(ω)のインパルス応答値(c(t0),k(t0),k(tj))を、
[Ms]{u"(t)}+{F(γ,t)}=−y"(t)[Ms]{1} …(18)
但し、
Then, the response analysis in step 38 is performed as follows. That is, first, the impulse response values (c (t 0 ), k (t 0 ), k (t j )) of the causal unit imaginary function Z ′ (ω) are read from the storage unit 10C, and the object (in this case, the external region) The mass matrix of the ground) is [Ms], the initial stiffness matrix of the object is [K 0 ], the displacement vector of the object in the time domain is {u (t)}, the velocity vector is {u '(t)}, When the force vector is {F (γ, t)}, the acceleration in the time domain of the external force that vibrates the object is y 0 "(t), and the total number of time delay components k (t j ) is n, the storage unit The impulse response values (c (t 0 ), k (t 0 ), k (t j )) of the causal unit imaginary function Z ′ (ω) read out from
[Ms] {u "(t)} + {F (γ, t)} = − y 0 “ (t) [Ms] {1} (18)
However,

上式に代入する。 Substitute into the above formula.

そして、ステップ34で取得した入力地震動のデータから、解析対象の時刻t(初期値はt=0)に外部領域の地盤に加わる外力を表すデータを抽出し、抽出したデータが表す外力に基づいて、解析対象時刻tにおける外部領域の地盤の変位ベクトル{u(t)}、速度ベクトル{u'(t)}、加速度ベクトル{u"(t)}を各々推定し、推定した変位ベクトル{u(t)}に基づいて解析対象時刻tにおける外部領域の地盤の剪断歪振幅値γを演算し、外部領域の地盤の剛性低下率特性γ−α及び減衰定数特性γ−hに基づき、剪断歪振幅値γ(但し、このときの剪断歪振幅値γは解析対象の時刻tから過去Δtm秒(=最大歪記憶時間)の間の剪断歪振幅値γの最大値)に対応する剛性低下率α及び減衰定数hを各々演算し、推定した変位ベクトル{u(t)}、速度ベクトル{u'(t)}、加速度ベクトル{u"(t)}、演算した剛性低下率α及び減衰定数hも前出の(18),(19)式に代入して解析対象時刻tにおける外部領域の地盤の挙動を演算し、演算の結果、解析対象時刻tに外部領域の地盤に加わる外力と、解析対象時刻tにおける外部領域の地盤の反力との偏差が許容範囲内か否か判定し、偏差が許容範囲内でなければ変位ベクトル{u(t)}、速度ベクトル{u'(t)}、加速度ベクトル{u"(t)}を修正して上記の演算を繰り返すことで、解析対象時刻tに外力に対する外部領域の地盤の反力の偏差が許容範囲内になる外部領域の地盤の変位ベクトル{u(t)}、速度ベクトル{u'(t)}、加速度ベクトル{u"(t)}の値を求め、外力に対する外部領域の地盤の反力の偏差が許容範囲内になった時点での外部領域の地盤の剪断歪振幅値γ、剪断波速度Vs及び減衰定数hを、解析対象時刻tにおける外部領域の地盤の物性値としてメモリ10Bに記憶させる。   Then, data representing the external force applied to the ground in the external region at the time t (initial value is t = 0) to be analyzed is extracted from the input ground motion data acquired in step 34, and based on the external force represented by the extracted data. , The displacement vector {u (t)}, velocity vector {u ′ (t)}, acceleration vector {u ”(t)} of the ground in the external region at the analysis target time t are estimated, and the estimated displacement vector {u (t)} to calculate the shear strain amplitude value γ of the ground in the outer region at the analysis target time t, and based on the stiffness reduction rate characteristic γ-α and the damping constant property γ-h of the ground in the outer region, The stiffness reduction rate α corresponding to the amplitude value γ (where the shear strain amplitude value γ is the maximum value of the shear strain amplitude value γ from the time t to be analyzed to the past Δtm seconds (= maximum strain storage time)). And the damping constant h, respectively, and the estimated displacement vector {u (t)}, velocity vector {u ′ (t)}, acceleration Substituting the degree vector {u "(t)}, the calculated stiffness reduction rate α, and the damping constant h into the above equations (18) and (19) to calculate the behavior of the ground in the external region at the time t to be analyzed As a result of the calculation, it is determined whether or not the deviation between the external force applied to the ground of the external region at the analysis target time t and the reaction force of the ground of the external region at the analysis target time t is within the allowable range. Otherwise, the displacement vector {u (t)}, velocity vector {u '(t)}, acceleration vector {u "(t)} is corrected and the above calculation is repeated, so that the external force with respect to the external force is analyzed at the analysis target time t. The values of the displacement vector {u (t)}, velocity vector {u '(t)}, acceleration vector {u "(t)} of the ground of the external region where the deviation of the ground ground reaction force falls within the allowable range The shear strain amplitude value γ, shear wave velocity Vs, and attenuation constant of the ground in the external region at the time when the deviation of the reaction force of the ground in the external region with respect to the external force is within the allowable range. The h, is stored in the memory 10B as a physical property value of the ground in the outer region in the analysis target time t.

上述した一連の処理は、入力地震動のデータが表す外力が加わった場合の単一の解析対象時刻tにおける外部領域の地盤の挙動を解析する処理であり、解析対象時刻tをΔtずつ増加させながら、解析対象の全時刻について上述した一連の処理を各々行う(特開2008−304227号公報も参照)ことで、入力地震動のデータが表す外力が加わった場合の解析対象の全時刻における外部領域の地盤の挙動を表す物性値(剪断歪振幅値γや剪断波速度Vs、減衰定数h等)が各々求まることになる。なお、上記のステップ38は本発明に係る物性値演算手段(より詳しくは請求項3に記載の物性値演算手段)による処理の一例である。   The series of processes described above are processes for analyzing the behavior of the ground in the external region at a single analysis target time t when an external force represented by the input ground motion data is applied, while increasing the analysis target time t by Δt. By performing the above-described series of processes for all times to be analyzed (see also Japanese Patent Application Laid-Open No. 2008-304227), the external region at all times to be analyzed when the external force represented by the input earthquake motion data is applied. Physical property values (shear strain amplitude value γ, shear wave velocity Vs, damping constant h, etc.) representing the ground behavior are obtained. The above step 38 is an example of processing by the physical property value calculating means according to the present invention (more specifically, the physical property value calculating means according to claim 3).

次のステップ40では、先のステップ36で取得した外部領域の地盤の地震応答を演算するためのデータと、ステップ38の応答解析によって得られた、入力地震動のデータが表す外力が加わった場合のΔt刻みの解析対象の全時刻における外部領域の地盤の挙動を表す物性値から、外部領域の地盤の挙動を表す物性値(剪断波速度Vs、減衰定数h)をΔtb刻み(但しΔtb>Δtであり、例えばΔtb=1秒、Δt=0.01秒程度の値が好適である)で抽出し、抽出したΔtb刻みの各時刻における物性値に基づいて(なお、ポアソン比ν及び密度ρについては時刻に拘わらず一定値を用いる)、入力地震動のデータが表す外力が加わった場合のΔtb刻みの各時刻における外部領域の地盤の動特性マトリクスを各々演算する(図4も参照)。これにより、外部領域の地盤の動特性マトリクスとして、先の(3)式におけるマトリクス[A(t)],[B(t)],[G(t)],[M]やモードマトリクス[V]、先の(11)式で表されるサブマトリクス[D(t)]jの重ね合せで表されるマトリクス[D(t)]がΔtb刻みの各時刻毎に算出される。 In the next step 40, when the external force represented by the input ground motion data obtained by the response analysis of step 38 and the data for calculating the earthquake response of the ground in the external region obtained in the previous step 36 is applied. From the physical property values representing the behavior of the ground in the outer region at all times to be analyzed in Δt increments, the physical property values representing the ground behavior in the outer region (shear wave velocity Vs, attenuation constant h) are in increments of Δtb (where Δtb> Δt Yes, for example, values of Δtb = 1 second and Δt = 0.01 seconds are suitable), and based on physical property values at each time of the extracted Δtb increments (note that Poisson's ratio ν and density ρ are Regardless of the constant value used), the dynamic characteristic matrix of the ground in the external region at each time in Δtb increments when the external force represented by the input seismic motion data is applied is calculated (see also FIG. 4). As a result, the matrix [A (t)], [B (t)], [G (t)], [M] and the mode matrix [V] in the above equation (3) are used as the dynamic characteristic matrix of the ground in the outer region. ], The matrix [D (t)] represented by the superposition of the sub-matrix [D (t)] j represented by the above equation (11) is calculated for each time in increments of Δtb.

次のステップ42では、ステップ40の演算によって得られたΔtb刻みの各時刻における外部領域の地盤の動特性マトリクスを先の(10)式に各々代入することで、入力地震動のデータが表す外力が加わった場合の外部領域の地盤を含むエネルギー伝達境界の伝達境界マトリクスをΔtb刻みの各時刻毎に演算する(図4も参照)。これにより、外部領域の地盤を含むエネルギー伝達境界の伝達境界マトリクスとして、先の(10)式で表される伝達境界マトリクス[R(t)]が、Δtb刻みの各時刻毎に、Δtb刻みの各時刻における外部領域の地盤の挙動を表す物性値(剪断波速度Vs、ポアソン比ν、密度ρ、減衰定数h:但し、 ポアソン比ν及び密度ρは時刻に拘わらず一定)に基づいて算出されることになる。   In the next step 42, the external force represented by the input earthquake motion data is obtained by substituting the dynamic characteristic matrix of the ground in the external region at each time in Δtb increments obtained by the calculation of step 40 into the above equation (10). When added, the transmission boundary matrix of the energy transmission boundary including the ground of the outer region is calculated for each time in increments of Δtb (see also FIG. 4). As a result, the transmission boundary matrix [R (t)] expressed by the above equation (10) as the transmission boundary matrix of the energy transmission boundary including the ground of the external region is expressed in Δtb increments for each time in Δtb increments. Calculated based on physical properties (shear wave velocity Vs, Poisson's ratio ν, density ρ, damping constant h: Poisson's ratio ν and density ρ are constant regardless of time) representing the behavior of the ground in the external region at each time Will be.

ステップ44では、ステップ42でΔtb刻みの各時刻毎に算出された外部領域の地盤を含むエネルギー伝達境界の伝達境界マトリクスを時間領域へ各々変換することで、外部領域の地盤を含むエネルギー伝達境界のインパルス応答をΔtb刻みの各時刻毎に算出する。或る時刻における外部領域の地盤を含むエネルギー伝達境界のインパルス応答は、具体的には以下のようにして演算することができる。   In step 44, the energy transfer boundary matrix including the ground in the external region is converted into the time domain by converting the energy transfer boundary matrix including the ground in the external region calculated at each time in Δtb increments in step 42, respectively. The impulse response is calculated for each time in increments of Δtb. Specifically, the impulse response of the energy transfer boundary including the ground of the external region at a certain time can be calculated as follows.

すなわち、まずステップ48の演算によって得られた伝達境界マトリクスのデータから、予め設定された演算対象の周波数範囲内のN種の周波数(N種の角振動数ω1,…,ωN)における伝達境界マトリクスの値を表すN個の複素データSB1),…,SBN)を各々抽出する。なお、演算対象の周波数範囲としては、例えば0〜20(Hz)の範囲を適用することができる。次に、インパルス応答を規定する数式として先の(12)式を、伝達境界マトリクスを規定する数式として先の(15)式を用い、(12),(15)式に基づいて導出した次の(20),(21)式の連立方程式にN個の複素データS(ω1),…,S(ωN)を代入し、この連立方程式の解を求めることで、外部領域の地盤を含むエネルギー伝達境界のインパルス応答を、予め設定されたΔt刻みで演算する。 That is, first, transmission at N types of frequencies (N types of angular frequencies ω 1 ,..., Ω N ) within a preset frequency range to be calculated from the data of the transmission boundary matrix obtained by the calculation at step 48. N complex data S B1 ),..., S BN ) representing the values of the boundary matrix are extracted. In addition, as a frequency range of calculation object, the range of 0-20 (Hz) is applicable, for example. Next, using the previous equation (12) as the mathematical formula for defining the impulse response and the previous formula (15) as the mathematical formula for defining the transmission boundary matrix, the following derived from the formulas (12) and (15) Substituting N complex data S (ω 1 ),..., S (ω N ) into the simultaneous equations of equations (20) and (21) and finding the solution of these simultaneous equations includes the ground in the external region The impulse response at the energy transfer boundary is calculated in increments of Δt set in advance.

この演算により、外部領域の地盤を含むエネルギー伝達境界のインパルス応答として、物体の変位に依存するインパルス応答の同時成分k0、物体の速度に依存するインパルス応答の同時成分c0、物体の加速度に依存するインパルス応答の同時成分m0のデータが得られると共に、物体の変位に依存するインパルス応答の時間遅れ成分kjのデータがΔt刻みでn個(n=N−1)得られ、物体の速度に依存するインパルス応答の時間遅れ成分cjのデータがΔt刻みでn−1個得られる。 As a result of this calculation, the impulse response of the energy transfer boundary including the ground of the external region is converted into the simultaneous component k 0 of the impulse response that depends on the displacement of the object, the simultaneous component c 0 of the impulse response that depends on the velocity of the object, and the acceleration of the object. The data of the simultaneous component m 0 of the dependent impulse response is obtained, and n pieces (n = N−1) of data of the time delay component k j of the impulse response depending on the displacement of the object are obtained in increments of Δt. N-1 pieces of data of the time delay component c j of the impulse response depending on the speed are obtained in increments of Δt.

続いて、先の(13),(14)式に従って修正値Δm0,Δk0を演算し、演算した修正値Δm0,Δk0を用いてインパルス応答の同時成分m,kを修正する。更に、例えばインパルス応答の演算に用いるデータ点の振動数軸上における位置が等間隔でない等のように、演算したインパルス応答のうちの虚部についての精度が低下し易い条件である場合には、先の(16),(17)式に従って修正値Δc0も演算し、演算した修正値Δc0を用いて同時成分cを修正する。上記の演算により、或る解析対象時刻tにおける外部領域の地盤を含むエネルギー伝達境界のインパルス応答が得られる。そして、上記の演算をΔtb刻みの各時刻について各々行うことで、外部領域の地盤を含むエネルギー伝達境界のインパルス応答がΔtb刻みの各時刻毎に得られる。 Subsequently, the correction values Δm 0 and Δk 0 are calculated according to the above equations (13) and (14), and the simultaneous components m 0 and k 0 of the impulse response are corrected using the calculated correction values Δm 0 and Δk 0. . Furthermore, when the conditions for the imaginary part of the calculated impulse response are likely to decrease, such as the positions on the frequency axis of the data points used for the calculation of the impulse response are not equally spaced, The correction value Δc 0 is also calculated according to the previous equations (16) and (17), and the simultaneous component c 0 is corrected using the calculated correction value Δc 0 . By the above calculation, an impulse response of the energy transfer boundary including the ground of the external region at a certain analysis target time t is obtained. Then, by performing the above calculation for each time in increments of Δtb, an impulse response of the energy transfer boundary including the ground in the outer region is obtained for each time in increments of Δtb.

次のステップ46では、Δtb刻みの各時刻毎に演算したエネルギー伝達境界のインパルス応答に基づいて、Δt刻みの全解析対象時刻におけるエネルギー伝達境界のインパルス応答を補間演算によって求める。この補間演算を行うことで、演算負荷が比較的大きい伝達境界マトリクスの算出や伝達境界マトリクスからのエネルギー伝達境界のインパルス応答の算出を解析対象の全時刻について行う場合と比較して前記算出の回数が削減され、前記算出を行うことでコンピュータ10に加わる演算負荷を低減することができる。
このステップ46は請求項4に記載のインパルス応答演算手段による演算の一例である。
In the next step 46, based on the impulse response of the energy transfer boundary calculated for each time in increments of Δtb, the impulse response of the energy transfer boundary in all the analysis target times in increments of Δt is obtained by interpolation calculation. By performing this interpolation calculation, the number of times of the calculation is compared with the case where the calculation of the transmission boundary matrix with a relatively large calculation load and the calculation of the impulse response of the energy transmission boundary from the transmission boundary matrix are performed at all times to be analyzed. The calculation load applied to the computer 10 can be reduced by performing the calculation.
This step 46 is an example of the calculation by the impulse response calculation means.

なお、ステップ46における補間演算は、具体的には、例えばインパルス応答演算対象の時刻tにおける剪断歪振幅値γに基づいて、伝達境界マトリクス(及びエネルギー伝達境界のインパルス応答)が演算済みの時刻の中から、個々の時刻における剪断歪振幅値γ1,γ2が「γ1<γ<γ2」なる関係を満たす時刻t1,t2を選択し、時刻t1におけるエネルギー伝達境界のインパルス応答をX1、時刻t2におけるエネルギー伝達境界のインパルス応答をX2としたときに、インパルス応答演算対象の時刻tにおけるエネルギー伝達境界のインパルス応答Xを規定する次の(22)式を用い、
X=X1+(X2−X1)・{γ/(γ2−γ1)} …(22)
演算対象時刻tにおけるエネルギー伝達境界のインパルス応答を構成する各成分(k0,c0,m0,kj,cj)を上記の(22)式によって各々算出することによって実現できる。この演算を、解析対象の全時刻のうち伝達境界マトリクス(及びエネルギー伝達境界のインパルス応答)が未演算の全ての時刻について行うことで、Δt刻みの全解析対象時刻におけるエネルギー伝達境界のインパルス応答が得られる。
The interpolation calculation in step 46 is specifically performed at the time when the transfer boundary matrix (and the impulse response of the energy transfer boundary) has been calculated based on the shear strain amplitude value γ at the time t of the impulse response calculation target, for example. The time t1, t2 satisfying the relationship that the shear strain amplitude values γ1, γ2 at each time “γ1 <γ <γ2” are selected from among them, and the impulse response at the energy transfer boundary at the time t1 is X1, and the energy at the time t2. When the impulse response at the transmission boundary is X2, the following equation (22) that defines the impulse response X at the energy transmission boundary at the time t of the impulse response calculation target is used,
X = X1 + (X2−X1) · {γ / (γ2−γ1)} (22)
This can be realized by calculating each component (k 0 , c 0 , m 0 , k j , c j ) constituting the impulse response of the energy transfer boundary at the time t to be calculated by the above equation (22). By performing this calculation for all times in which the transfer boundary matrix (and the impulse response of the energy transfer boundary) is not calculated among all the times to be analyzed, the impulse response of the energy transfer boundary at all the times to be analyzed in increments of Δt is obtained. can get.

上記の(22)式における"{γ/(γ2−γ1)}"は、請求項5に記載の「エネルギー伝達境界のインパルス応答が未演算の時刻での外部領域における解析対象物体の剪断歪振幅値γが、伝達境界マトリクスの値が演算された2以上の時刻での外部領域における解析対象物体の剪断歪振幅値γを内分する比率」の一例であり、(22)式の補間演算によってインパルス応答値を求める処理は請求項5に記載のインパルス応答演算手段による処理の一例である。   “{Γ / (γ 2 −γ 1)}” in the above equation (22) is “the shear strain amplitude of the object to be analyzed in the external region at the time when the impulse response of the energy transfer boundary is not calculated” according to claim 5. The value γ is an example of a ratio that internally divides the shear strain amplitude value γ of the object to be analyzed in the outer region at two or more times when the value of the transmission boundary matrix is calculated. The process for obtaining the impulse response value is an example of the process performed by the impulse response calculation means.

また、ステップ46における補間演算は(22)式を用いることに限られるものではなく、例えばインパルス応答演算対象の時刻tに基づいて、伝達境界マトリクス(及びエネルギー伝達境界のインパルス応答)が演算済みの時刻の中から「t1<γ<t2」なる関係を満たす時刻t1,t2を選択し、時刻t1におけるエネルギー伝達境界のインパルス応答をX1、時刻t2におけるエネルギー伝達境界のインパルス応答をX2としたときに、インパルス応答演算対象の時刻tにおけるエネルギー伝達境界のインパルス応答Xを規定する次の(23)式を用い、
X=X1+(X2−X1)・{t/(t2−t1)} …(23)
演算対象時刻tにおけるエネルギー伝達境界のインパルス応答を構成する各成分(k0,c0,m0,kj,cj)を上記の(23)式によって各々算出するようにしてもよい。この演算を、解析対象の全時刻のうち伝達境界マトリクス(及びエネルギー伝達境界のインパルス応答)が未演算の全ての時刻について行った場合にも、Δt刻みの全解析対象時刻におけるエネルギー伝達境界のインパルス応答が得られる。
Further, the interpolation calculation in step 46 is not limited to using the expression (22). For example, the transfer boundary matrix (and the impulse response of the energy transfer boundary) has already been calculated based on the time t of the impulse response calculation target. When times t1 and t2 satisfying the relationship of “t1 <γ <t2” are selected from the times, and the impulse response at the energy transfer boundary at time t1 is X1, and the impulse response at the energy transfer boundary at time t2 is X2. Using the following equation (23) that defines the impulse response X of the energy transfer boundary at time t of the impulse response calculation target:
X = X1 + (X2-X1). {T / (t2-t1)} (23)
Each component (k 0 , c 0 , m 0 , k j , c j ) constituting the impulse response of the energy transfer boundary at the calculation target time t may be calculated by the above equation (23). Even when this calculation is performed for all times in which the transfer boundary matrix (and the impulse response of the energy transfer boundary) is not calculated among all the times to be analyzed, the impulses of the energy transfer boundary at all the times to be analyzed in increments of Δt. A response is obtained.

上記の(22)式における"{t/(t2−t1)}"は、請求項6に記載の「エネルギー伝達境界のインパルス応答が未演算の時刻が、伝達境界マトリクスの値が演算された2以上の時刻を内分する比率」の一例であり、(23)式の補間演算によってインパルス応答値を求める処理は請求項6に記載のインパルス応答演算手段による処理の一例である。   “{T / (t 2 −t 1)}” in the above equation (22) is “2 when the impulse response of the energy transfer boundary is not calculated, and the value of the transfer boundary matrix is calculated 2 according to claim 6. The above-described ratio of dividing the time internally is an example, and the process of obtaining the impulse response value by the interpolation calculation of equation (23) is an example of the process by the impulse response calculation means according to claim 6.

次のステップ48では、ステップ38の演算によって得られた外部領域の地盤の地震応答、先のステップ36で取得したデータ、ステップ46で解析対象の全時刻について各々演算したエネルギー伝達境界のインパルス応答に基づいて、時間領域における外部領域の地盤の補正力ベクトルを解析対象の全時刻について各々演算する(図4も参照)。これにより、外部領域の地盤の補正力ベクトルとして、先の(1)式における補正力ベクトル−[DR(t)]{uR (t)}が解析対象の全時刻について各々算出される。 In the next step 48, the earthquake response of the ground in the external region obtained by the calculation of step 38, the data acquired in the previous step 36, and the impulse response of the energy transfer boundary calculated for all the times to be analyzed in step 46 are obtained. Based on this, the correction force vector of the ground in the external region in the time region is calculated for all times to be analyzed (see also FIG. 4). Thereby, the correction force vector − [D R (t)] {u R * (t)} in the above equation (1) is calculated for all the times to be analyzed as the correction force vector of the ground in the outer region. .

ステップ50では、先のステップ32の演算によって得られた内部領域の地盤及び建物の動特性マトリクス、先のステップ38の演算によって得られた時間領域における外部領域の地盤の地震応答、先のステップ40〜ステップ46の演算により得られた外部領域の地盤を含むエネルギー伝達境界のインパルス応答のうち解析対象時刻t(初期値は解析対象時刻t=0)におけるインパルス応答、及び、先のステップ48の演算によって得られた外部領域の地盤の補正力ベクトルのうち解析対象時刻t(初期値は解析対象時刻t=0)における補正力ベクトルを結合することで、解析対象モデルに対して時間領域の応答解析を行うための時間領域の運動方程式(次の(24)式参照)を求める(図4も参照)。
[MI]{u"(t)}+[KI]{u(t)}+{R0}=−y"(t)[MI]{1}+{F(t)}+{Rf(t)} …(24)
但し、
In step 50, the ground and building dynamic characteristics matrix obtained by the calculation in the previous step 32, the earthquake response of the ground in the outer region in the time domain obtained by the previous step 38, the previous step 40 To impulse response at the analysis target time t (initial value is the analysis target time t = 0) out of the impulse response of the energy transfer boundary including the ground of the outer region obtained by the calculation of step 46, and the calculation of the previous step 48 By combining the correction force vector at the analysis target time t (initial value is the analysis target time t = 0) among the correction force vectors of the ground of the external region obtained by the above, a time domain response analysis is performed on the analysis target model. (See also the following equation (24)) is obtained (see also FIG. 4).
[M I ] {u ″ (t)} + [K I ] {u (t)} + {R 0 } = − y ″ (t) [M I ] {1} + {F (t)} + { R f (t)} (24)
However,

そしてステップ52では、先のステップ34で取得した入力地震動のデータが表す解析対象時刻tにおける地震動を(24),(25)式の運動方程式に代入し、先に説明したステップ38と同様に、演算結果が収束する迄繰り返し演算を行って解析対象時刻tにおける解析対象物体の挙動を求めることを、解析対象時刻tをΔtずつ増加させると共に、(24),(25)式の運動方程式に代入するエネルギー伝達境界のインパルス応答、外部領域の地盤の補正力ベクトル及び地震動を、Δt増加後の解析対象時刻tに対応する値に切り替えながら繰り返すことで、解析対象モデルに対する時間領域の地震応答解析(時刻歴応答解析)を解析対象の全時刻について各々行う。これにより、内部領域の地盤、建物及び外部領域の地盤が一体となった解析対象物体に地震動が入力された場合の解析対象物体の挙動を、地盤や建物の塑性化を考慮しつつ、また非線形の挙動を示す範囲がエネルギー伝達境界にまで及ぶような解析条件であっても影響を受けることなく、精度良く評価することができる。   In step 52, the seismic motion at the analysis target time t represented by the input seismic motion data acquired in the previous step 34 is substituted into the equation of motion of the equations (24) and (25), and as in step 38 described above, Repeating the calculation until the calculation result converges to obtain the behavior of the analysis target object at the analysis target time t, increasing the analysis target time t by Δt and substituting it into the equations of motion of equations (24) and (25) The time domain seismic response analysis for the model to be analyzed is repeated by switching the impulse response of the energy transfer boundary, the correction force vector of the ground in the external region and the ground motion while switching to a value corresponding to the time t to be analyzed after the increase of Δt ( Time history response analysis) is performed for all times to be analyzed. As a result, the behavior of the analysis target object when the ground motion is input to the analysis target object in which the ground in the inner region, the building, and the ground in the outer region are integrated is considered nonlinear while considering the plasticization of the ground and the building. Even if the analysis condition is such that the range showing the behavior of the above extends to the energy transfer boundary, it can be evaluated accurately without being affected.

なお、上記では解析対象モデルとして、例として図5に示すように、モデルの中心位置に関して逆対称条件を設けて1/2モデル化したモデルを用いる態様を説明したが、本発明はこれに限定されるものではなく、解析対象モデルとして、例として図8に示すように、内部領域の左側及び右側に外部領域が各々設けられると共に、内部領域と左右の外部領域との間に波動境界モデルとしてのエネルギー伝達境界が各々設けられたモデルを用いてもよい。このような解析対象モデルを用いて応答解析を行うことで、左右の外部領域の地盤の物性値が相違していたり、地表が傾斜している等の理由で、解析対象モデルの中心位置を挟んで左側部分と右側部分の対称性が保証されない場合にも、応答解析の精度が低下することを防止することができる。   In the above, as an analysis target model, as shown in FIG. 5 as an example, a mode has been described in which a model that is ½ modeled by providing an inverse symmetry condition with respect to the center position of the model has been described, but the present invention is not limited to this. As an analysis target model, as shown in FIG. 8 as an example, external regions are provided on the left and right sides of the internal region, and a wave boundary model is provided between the internal region and the left and right external regions. A model in which energy transfer boundaries are provided may be used. By performing response analysis using such an analysis target model, the center position of the analysis target model is sandwiched because the ground physical property values of the left and right outer areas are different or the ground surface is inclined. Thus, even when the symmetry between the left part and the right part is not guaranteed, it is possible to prevent the accuracy of the response analysis from being lowered.

上記のように、内部領域の左側及び右側にエネルギー伝達境界が各々設けられた解析対象モデルを用いた場合、左側及び右側の伝達境界マトリクスを[L(t)],[R(t)]、左側及び右側の境界力ベクトルを{FL(t)},{FR(t)}、左側及び右側の外部領域の地盤の応答変位を{uL (t)},{uR (t)}、左側境界及び右側境界に作用する補正力ベクトルを−[DL(t)]{uL (t)},−[DR(t)]{uR (t)}とすると、解析対象モデル全体の運動方程式は、
[MI]{u"(t)}+([K(t)]+[L(t)]+[R(t)]){u(t)}
=−y"(t)[M]{1}+{FL(t)}+{FR(t)} …(26)
{FL(t)}=([L(t)]−[DL(t)]){u (t)} …(27)
{FR(t)}=([R(t)]−[DR(t)]){uR (t)} …(28)
先に(1),(2)式に代えて上記の(26)〜(28)式で表される。
As described above, when using the analysis target model in which the energy transfer boundaries are provided on the left and right sides of the inner region, the left and right transfer boundary matrices are expressed as [L (t)], [R (t)], The left and right boundary force vectors are {F L (t)} and {F R (t)}, and the left and right outer ground response displacements are {u L * (t)} and {u R * ( t)}, and the correction force vectors acting on the left and right boundaries are − [D L (t)] {u L * (t)}, − [D R (t)] {u R * (t)} Then, the equation of motion of the entire model to be analyzed is
[M I ] {u "(t)} + ([K I (t)] + [L (t)] + [R (t)]) {u (t)}
= −y ″ (t) [M I ] {1} + {F L (t)} + {F R (t)} (26)
{F L (t)} = ([L (t)] − [D L (t)]) {u L * (t)} (27)
{F R (t)} = ([R (t)] − [D R (t)]) {u R * (t)} (28)
First, instead of the expressions (1) and (2), the above expressions (26) to (28) are used.

また、上記では解析対象物体を2次元のモデルにモデル化して応答解析を行う場合を説明したが、本発明はこれに限定されるものではなく、解析対象物体を3次元のモデルにモデル化して応答解析を行う場合にも適用可能である。   In the above description, the case where the analysis target object is modeled as a two-dimensional model and response analysis is performed has been described. However, the present invention is not limited to this, and the analysis target object is modeled as a three-dimensional model. It can also be applied to response analysis.

また、上記では外部領域における解析対象の各時刻毎の解析対象物体の物性値(剪断歪振幅値γや剪断波速度Vs、減衰定数h等)の演算を、因果的単位虚数関数のインパルス応答を用いて行う態様(請求項3記載の発明に対応する態様)を説明したが、本発明はこれに限定されるものではなく、上記の演算にあたって他の演算方法を適用することも本発明の権利範囲に含まれる。   In the above, the physical property values (shear strain amplitude value γ, shear wave velocity Vs, damping constant h, etc.) of the analysis target object at each time of the analysis target in the external region are calculated, and the impulse response of the causal unit imaginary function is calculated. Although the embodiment to be used (an embodiment corresponding to the invention described in claim 3) has been described, the present invention is not limited to this, and it is also possible to apply other calculation methods in the above calculation. Included in the range.

また、上記では、解析対象の各時刻のうちエネルギー伝達境界のインパルス応答が未演算の時刻でのエネルギー伝達境界のインパルス応答を、2以上の時刻について各々演算したエネルギー伝達境界のインパルス応答から求める際の補間演算として、エネルギー伝達境界のインパルス応答が未演算の時刻での外部領域における解析対象物体の剪断歪振幅値γが、伝達境界マトリクスの値が演算された2以上の時刻での外部領域における解析対象物体の剪断歪振幅値γを内分する比率を用いる演算方法と、エネルギー伝達境界のインパルス応答が未演算の時刻が、伝達境界マトリクスの値が演算された2以上の時刻を内分する比率を用いる演算方法を例示したが、本発明はこれに限定されるものではなく、上記の補間演算にあたって他の演算方法を適用することも本発明の権利範囲に含まれる。   Further, in the above, when the impulse response of the energy transfer boundary at the time when the impulse response of the energy transfer boundary is not calculated among the respective times to be analyzed is obtained from the impulse response of the energy transfer boundary calculated for each of two or more times. As the interpolation calculation, the shear strain amplitude value γ of the object to be analyzed in the external region at the time when the impulse response of the energy transfer boundary is not calculated is calculated in the external region at two or more times when the value of the transfer boundary matrix is calculated. The calculation method using the ratio that internally divides the shear strain amplitude value γ of the object to be analyzed, and the time when the impulse response of the energy transfer boundary is not calculated divides the two or more times when the values of the transfer boundary matrix are calculated Although the calculation method using the ratio is illustrated, the present invention is not limited to this, and other calculation methods are used for the above-described interpolation calculation. Is also within the scope of the present invention.

更に、上記では本発明に係る応答解析プログラムに対応する地震応答解析プログラムがコンピュータ10の記憶部10Cに予め記憶(インストール)されている態様を説明したが、本発明に係る応答解析プログラムは、CD−ROMやDVD−ROM等の記録媒体に記録されている形態で提供することも可能である。   Furthermore, although the aspect which the earthquake response analysis program corresponding to the response analysis program which concerns on this invention was previously memorize | stored (installed) in the memory | storage part 10C of the computer 10 was demonstrated above, the response analysis program which concerns on this invention is CD -It is also possible to provide in the form recorded on recording media, such as ROM and DVD-ROM.

次に、本発明の有用性を確認するために、本願発明者が行った解析検討の詳細を説明する。この解析検討では、図8に示すように、内部領域の左側及び右側に外部領域が各々設けられると共に、内部領域と左右の外部領域との間に波動境界モデルが各々設けられた解析対象モデルを用いた。   Next, in order to confirm the usefulness of the present invention, the details of the analysis study conducted by the present inventor will be described. In this analysis study, as shown in FIG. 8, an analysis target model in which an outer region is provided on each of the left and right sides of the inner region and a wave boundary model is provided between the inner region and the left and right outer regions. Using.

上記の表1に示すように、地盤は、剪断波速度Vs=500m/sの基盤上に、層厚40mで剪断波速度Vs=300m/sの表層地盤が存在する二層地盤とした。解析対象モデルのうちの地盤モデルは表層地盤のみモデル化し、基盤の特性は底面粘性境界で評価した。また、表層地盤は図6に示すγ−α特性、γ−h特性を有しているものとした。   As shown in Table 1 above, the ground was a two-layer ground in which a surface layer ground having a layer thickness of 40 m and a shear wave velocity Vs = 300 m / s was present on a base having a shear wave velocity Vs = 500 m / s. Of the models to be analyzed, the ground model was modeled only on the surface ground, and the characteristics of the foundation were evaluated at the bottom viscous boundary. Further, the surface layer ground has the γ-α characteristic and γ-h characteristic shown in FIG.

また、建物は平面形状が20m×20m、上記の表2に示すように、高さ24mで6階建の構造物とし、解析対象モデルでは、この建物を質点系剪断モデルで表した。建物の減衰は因果的履歴減衰で減衰定数hを3%とした。   In addition, the building has a planar shape of 20 m × 20 m, and as shown in Table 2 above, the building is a 6-story structure with a height of 24 m. In the analysis target model, this building is represented by a mass point shear model. The attenuation of the building was causal history attenuation with an attenuation constant h of 3%.

また、入力地震動は、El Centro1940NS波(継続時間10 秒、時間刻みΔt=0.01秒)を最大加速度=500Galに設定して用い、2E(上昇波の2倍)として定義した。時間積分はNewmark-β法とし、平均加速度法(β=1/4)とした。   The input seismic motion was defined as 2E (twice ascending waves) using El Centro 1940 NS wave (duration 10 seconds, time increment Δt = 0.01 seconds) with maximum acceleration = 500 Gal. Time integration was Newmark-β method and average acceleration method (β = 1/4).

本解析検討では、まず上記の解析条件で(1)外部領域の地盤の時刻歴応答解析(図3,4のステップ38に相当する解析)、(2)外部領域を含む伝達境界マトリクスの演算(図3,4のステップ40,42に相当する演算)、(3)伝達境界マトリクスのインパルス応答の演算(図3,4のステップ44に相当する演算)を順に行った。   In this analysis study, first, under the above analysis conditions, (1) time history response analysis of the ground in the external region (analysis corresponding to step 38 in FIGS. 3 and 4), (2) calculation of the transmission boundary matrix including the external region ( Calculations corresponding to steps 40 and 42 in FIGS. 3 and 4) and (3) calculation of impulse response of the transmission boundary matrix (calculation corresponding to step 44 in FIGS. 3 and 4) were sequentially performed.

(1)外部領域の地盤の時刻歴応答解析
外部領域の地盤の時刻歴応答解析では、非線形因果的履歴減衰モデル(fmax=10Hz、18項モデル)を用いた。先にも説明したように、この応答解析では、各解析対象時刻における剛性低下率α及び減衰定数hとして、剛性低下率特性γ−α及び減衰定数特性γ−hに基づき、解析対象時刻より最大歪記憶時間Δtm秒だけ前の時刻から解析対象時刻迄の間の剪断歪振幅値γの最大値に対応する値を用いるが、最大歪記憶時間Δtmの相違が応答値に与える影響を確認するため、最大歪記憶時間Δtmを0.1秒,0.5秒,1.0秒,2.0秒に切り替えて応答解析を各々行った。結果を図9に示す。図9(A)に示す最大加速度、図9(B)に示す最大歪、図9(C)に示す最大剪断応力の何れについても、最大歪記憶時間Δtm=0.1秒以外であれば応答値の相違は非常に小さい。この結果から、以降の解析検討では最大歪記憶時間Δtm=1.0秒を採用した。
(1) Time history response analysis of the ground in the external region In the time history response analysis of the ground in the external region, a nonlinear causal history attenuation model (fmax = 10 Hz, 18-term model) was used. As described above, in this response analysis, the stiffness reduction rate α and the damping constant h at each analysis target time are based on the stiffness reduction rate characteristic γ-α and the damping constant characteristic γ-h, and are the maximum from the analysis target time. A value corresponding to the maximum value of the shear strain amplitude value γ from the time before the strain storage time Δtm seconds to the analysis target time is used, but in order to confirm the influence of the difference in the maximum strain storage time Δtm on the response value. The response analysis was performed by switching the maximum strain storage time Δtm to 0.1 seconds, 0.5 seconds, 1.0 seconds, and 2.0 seconds. The results are shown in FIG. For any of the maximum acceleration shown in FIG. 9 (A), the maximum strain shown in FIG. 9 (B), and the maximum shear stress shown in FIG. 9 (C), if the maximum strain storage time Δtm = 0.1 seconds, the response value The difference is very small. From this result, the maximum strain storage time Δtm = 1.0 seconds was adopted in the subsequent analysis studies.

なお、最大歪記憶時間Δtm=1.0秒の場合に、時刻歴応答解析で得られる剪断歪の応答値及び剪断歪の絶対値の時間変化を、地盤モデルの深度方向に沿った各位置毎に図10に示す。但し、(A)は地盤モデルの地表(GL)から深度0.5mの位置(地表付近の位置)、(B)は地表から深度20.5mの位置(深度方向のおよそ中央の位置)、(C)は地表から深度39.5mの位置(地盤モデルの底部付近の位置)における剪断歪の時間変化を各々示す。また、最大歪記憶時間Δtm=1.0秒の場合の外部領域の地盤の時刻歴応答解析の結果として、図11には、剪断波速度Vs及び減衰定数hの時間変化を、地盤モデルの深度方向に沿った各位置毎に示し、図12には、地盤モデルの深度方向に沿った剪断歪、剪断波速度Vs及び減衰定数hの応答値の分布を代表的な時刻毎(1秒、3秒、8秒)毎に示す。   In addition, when the maximum strain storage time Δtm = 1.0 second, the temporal change of the shear strain response value and the absolute value of the shear strain obtained by the time history response analysis is shown for each position along the depth direction of the ground model. 10 shows. However, (A) is a position 0.5 m deep from the ground surface (GL) of the ground model (position near the ground surface), (B) is a position 20.5 m deep from the ground surface (position at the center in the depth direction), (C) Indicates the time variation of shear strain at a position of 39.5m depth from the ground surface (position near the bottom of the ground model). In addition, as a result of the time history response analysis of the ground in the external region in the case of the maximum strain storage time Δtm = 1.0 second, FIG. 11 shows the time variation of the shear wave velocity Vs and the attenuation constant h in the depth direction of the ground model. FIG. 12 shows the distribution of response values of shear strain, shear wave velocity Vs, and damping constant h along the depth direction of the ground model at typical times (1 second, 3 seconds, Shown every 8 seconds).

(2)外部領域を含む伝達境界マトリクスの演算
外部領域の地盤の時刻歴応答解析の結果に基づき、外部領域の地盤を含むエネルギー伝達境界の伝達境界マトリクスをΔtb毎に演算した。本解析検討ではΔtb=1秒とし、解析周波数は0.5Hz〜20Hzの0.5Hz刻みとした。外部領域の地盤の時刻歴応答解析によって得られた解析対象の各時刻毎の外部領域の地盤の物性値(剪断波速度Vs及び減衰定数h:図11参照)から、Δtb刻みの各時刻における外部領域の地盤の剪断波速度Vs及び減衰定数hを各々抽出し、抽出した剪断波速度Vs及び減衰定数hを用いてΔtb刻みの各時刻における伝達境界マトリクスを演算した。エネルギー伝達境界の自由度は、41節点×2(水平・上下自由度)の82であり、上記の演算により、Δtb刻みの各時刻毎に、外部領域の地盤を含むエネルギー伝達境界の伝達境界マトリクスとして、82×82成分の振動数依存の複素マトリクスが算出された。
(2) Calculation of transmission boundary matrix including external region Based on the results of time history response analysis of the ground in the external region, the transmission boundary matrix of the energy transmission boundary including the ground in the external region was calculated for each Δtb. In this analysis study, Δtb = 1 second, and the analysis frequency was 0.5 Hz to 20 Hz in increments of 0.5 Hz. From the physical property values (shear wave velocity Vs and damping constant h: see FIG. 11) of the ground in the external region for each time obtained by time history response analysis of the ground in the external region, the external at each time in Δtb increments The shear wave velocity Vs and the attenuation constant h of the ground in the region were respectively extracted, and the transmission boundary matrix at each time in Δtb increments was calculated using the extracted shear wave velocity Vs and the attenuation constant h. The degree of freedom of the energy transfer boundary is 82 of 41 nodes x 2 (horizontal / vertical degrees of freedom). By the above calculation, the transfer boundary matrix of the energy transfer boundary including the ground of the external area at each time in increments of Δtb As a result, a frequency-dependent complex matrix of 82 × 82 components was calculated.

(3)伝達境界マトリクスのインパルス応答の演算
Δtb刻みの各時刻毎に演算したエネルギー伝達境界の伝達境界マトリクスを時間領域へ変換することで、エネルギー伝達境界のインパルス応答をΔtb刻みの各時刻毎に演算した。この演算における時間領域変換の条件を次の表3に示す。
(3) Calculation of the impulse response of the transfer boundary matrix By converting the transfer boundary matrix of the energy transfer boundary calculated at every time in Δtb to the time domain, the impulse response of the energy transfer boundary is changed at every time in Δtb Calculated. The conditions for time domain conversion in this calculation are shown in Table 3 below.

また、Δtb刻みの各時刻毎に演算したエネルギー伝達境界のインパルス応答を、解析対象の各時刻(本解析検討ではΔt=0.01秒刻みの各時刻)毎の剪断歪振幅値γに基づいて内挿することで、解析対象の全時刻におけるエネルギー伝達境界のインパルス応答を補間演算によって各々求めた。なお、補間演算に用いる剪断歪振幅値γとしては、最大歪を生じる地盤モデルの最下層の構成要素における値を用いた。   Also, the impulse response of the energy transfer boundary calculated at each time in Δtb is interpolated based on the shear strain amplitude value γ at each time to be analyzed (each time in Δt = 0.01 seconds in this analysis study). As a result, the impulse response of the energy transfer boundary at all times to be analyzed was obtained by interpolation. In addition, as the shear strain amplitude value γ used for the interpolation calculation, the value in the lowermost component of the ground model that generates the maximum strain was used.

本解析検討では、続いて、上記の一連の演算によって得られたエネルギー伝達境界のインパルス応答を用い(次に述べるケースNT)、本発明を適用した時刻歴応答解析の有効性を確認することを目的として、次の表4に示すように、解析対象モデルにおける建物端部と波動境界モデルとの距離L(図8参照)を互いに相違させた複数種のモデルの各々に対し、本発明を適用した時刻歴応答解析(波動境界モデルとしてのエネルギー伝達境界に対する等価線形の応答解析:次の表5に示すケースNT)、特許文献1に記載の発明を適用した時刻歴応答解析(波動境界モデルとしてのエネルギー伝達境界に対する等価線形の応答解析:次の表5に示すケースLT)、波動境界モデルとして粘性境界を用いた等価線形の応答解析(次の表5に示すケースV)を各々行い、解析結果を比較した。   In this analysis study, subsequently, the impulse response of the energy transfer boundary obtained by the above series of operations (case NT described below) is used to confirm the effectiveness of the time history response analysis to which the present invention is applied. For the purpose, as shown in Table 4 below, the present invention is applied to each of a plurality of types of models in which the distance L (see FIG. 8) between the building edge and the wave boundary model in the analysis target model is different from each other. Time history response analysis (equivalent linear response analysis for energy transfer boundary as wave boundary model: case NT shown in the following Table 5), time history response analysis applying the invention described in Patent Document 1 (as wave boundary model) Equivalent linear response analysis for energy transfer boundary: Case LT shown in Table 5 below), Equivalent linear response analysis using viscous boundary as wave boundary model (Case V shown in Table 5 below) The analysis results were compared.

なお、この解析検討では、図8に示すように、地盤と当該地盤に埋め込まれた地下部分を有する建物が一体となった解析対象物体を表し、内部領域と、内部領域の左側及び右側に存在する外部領域と、の間に波動境界モデルが各々設けられたモデルを用い、波動境界モデルの差異が応答解析に与える影響を明確にするため、外部領域に対する応答解析を非線形解析に統一した。   In this analysis study, as shown in FIG. 8, an object to be analyzed in which the ground and a building having an underground portion embedded in the ground are integrated, and exists in the inner area and the left and right sides of the inner area. In order to clarify the effect of the difference in the wave boundary model on the response analysis, the response analysis for the external region was unified with nonlinear analysis.

図13には、本発明を適用した時刻歴応答解析(ケースNT)での解析結果として、距離L=5m,20m,40m,120mの各モデル毎の最大応答加速度の解析結果を図13(A)に、最大応答変位の解析結果を図13(B)に、最大応答剪断力の解析結果を図13(C)に各々示す。図13に解析結果を示した各モデルのうち最も高精度な解析結果が得られるモデルは、原理上、内部領域のサイズが最大の距離L=120mのモデルであるが、図13(A)〜(C)からも明らかなように、本発明を適用した時刻歴応答解析(ケースNT)では、Lがより小さいモデルの応答値が距離L=120mのモデルの応答値と一致しているか差が小さく、距離Lが小さい場合にも応答解析の精度が比較的高いことが理解できる。   FIG. 13 shows the analysis result of the maximum response acceleration for each model of distance L = 5 m, 20 m, 40 m, and 120 m as an analysis result in the time history response analysis (case NT) to which the present invention is applied. FIG. 13B shows the analysis result of the maximum response displacement, and FIG. 13C shows the analysis result of the maximum response shear force. Of the models whose analysis results are shown in FIG. 13, the most accurate analysis result can be obtained in principle with a maximum distance L = 120 m in the internal region. As is clear from (C), in the time history response analysis (case NT) to which the present invention is applied, there is a difference in whether the response value of the model with smaller L matches the response value of the model with distance L = 120 m. It can be understood that the response analysis accuracy is relatively high even when the distance L is small.

図14(A)〜(C)には、上記の解析結果(本発明を適用した時刻歴応答解析(ケースNT)での解析結果)のうち、距離L=120mのモデルでの応答値を数値で示すと共に、この応答値を基準値としたときの各モデルでの応答値の比率を示している。また、図中の各欄のうち、基準値(距離L=120mのモデルでの応答値)に対する偏差が±10%以下の欄は白色、前記偏差が±10%よりも大きく±20%以下の欄は灰色、前記偏差が±20%よりも大きい欄は黒色で表示している。   14A to 14C show the response values in the model with the distance L = 120 m among the above analysis results (analysis results in the time history response analysis (case NT) to which the present invention is applied). And the ratio of response values in each model when this response value is used as a reference value. Also, in each column in the figure, the column whose deviation from the reference value (response value in the model with distance L = 120 m) is ± 10% or less is white, and the deviation is larger than ± 10% but ± 20% or less Columns are displayed in gray, and columns where the deviation is greater than ± 20% are displayed in black.

図14から明らかなように、本発明を適用した時刻歴応答解析(ケースNT)では、距離L=30m以上のモデルでは全ての応答値が基準値に対して±10%以内に収まっており、距離L=30m未満のモデルであっても、基準値に対する偏差が±10%よりも大きい応答値の数が、距離L=20mのモデルで1個、距離L=15mのモデルで3個、距離L=5,10mのモデルで5個と比較的少なく、また基準値に対する偏差が±20%よりも大きい応答値は存在していない。以上の結果から、本発明を適用した時刻歴応答解析(ケースNT)では、解析対象モデルのサイズ(距離L)が比較的小さい場合にも良好な精度の解析結果が得られる。   As is clear from FIG. 14, in the time history response analysis (case NT) to which the present invention is applied, in the model with the distance L = 30 m or more, all response values are within ± 10% of the reference value. Even if the model is less than distance L = 30m, the number of response values with a deviation from the reference value greater than ± 10% is one for the model with distance L = 20m, and three for the model with distance L = 15m. In the model with L = 5,10 m, there are relatively few response values, and there is no response value with a deviation from the reference value larger than ± 20%. From the above results, in the time history response analysis (case NT) to which the present invention is applied, an analysis result with good accuracy can be obtained even when the size (distance L) of the analysis target model is relatively small.

一方、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)での解析結果を図15に示す。図15を図13と比較しても明らかなように、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)では、距離L=120mのモデルでの応答値が、本発明を適用した時刻歴応答解析(ケースNT)における距離L=120mのモデルでの応答値とおよそ一致しているものの、距離Lがより小さいモデルでの応答値については、距離L=120mのモデルでの応答値に対しての偏差が若干増加していることが理解できる。   On the other hand, the analysis result in the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied is shown in FIG. As is clear from comparison of FIG. 15 with FIG. 13, in the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied, the response value in the model with the distance L = 120 m Although the response value in the model with the distance L = 120 m in the applied time history response analysis (case NT) is approximately the same, the response value in the model with a smaller distance L is the same as the model with the distance L = 120 m. It can be seen that the deviation from the response value is slightly increased.

また、図16(A)〜(C)には、上記の解析結果(本発明を適用した時刻歴応答解析(ケースNT)での解析結果)を図14(A)〜(C)と同様に示す(基準値として本発明を適用した時刻歴応答解析(ケースNT)における距離L=120mのモデルでの応答値を用いている)が、図16から明らかなように、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)では、本発明を適用した時刻歴応答解析(ケースNT)と比較して、全ての応答値が基準値に対して±10%以内に収まっているモデル群における距離Lの最小値が距離L=40mと大きくなっており、基準値に対する偏差が±10%よりも大きい応答値の数も増加し、距離L=5,10mのモデルでは基準値に対する偏差が±20%よりも大きい応答値も出現していることから、本発明を適用した時刻歴応答解析(ケースNT)よりも解析精度が低下していることが明らかである。   16 (A) to 16 (C) show the above analysis results (analysis results in time history response analysis (case NT) to which the present invention is applied) in the same manner as FIGS. 14 (A) to (C). As shown in FIG. 16, the response value in the model of the distance L = 120 m in the time history response analysis (case NT) to which the present invention is applied is used as a reference value. In the time history response analysis to which the invention is applied (case LT), all response values are within ± 10% of the reference value compared to the time history response analysis to which the present invention is applied (case NT). The minimum value of the distance L in the model group is as large as the distance L = 40 m, and the number of response values whose deviation from the reference value is larger than ± 10% also increases. In the model of the distance L = 5,10 m, the reference value Since response values with deviations greater than ± 20% also appear, time history response solutions to which the present invention is applied Analysis accuracy than (case NT) it is clear that the reduced.

また、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)での解析結果を図17に示す。図17を図13及び図15と比較しても明らかなように、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)では、距離L=120mのモデルでの応答値については、本発明を適用した時刻歴応答解析(ケースNT)や特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)とおよそ一致しているものの、距離Lがより小さいモデルでの応答値については、本発明を適用した時刻歴応答解析(ケースNT)や特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)と比較して、応答値のばらつきが増加している。   In addition, FIG. 17 shows an analysis result in an equivalent linear response analysis (case V) using a viscous boundary as a wave boundary model. As is clear from comparing FIG. 17 with FIG. 13 and FIG. 15, in the equivalent linear response analysis using the viscous boundary as the wave boundary model (case V), the response value in the model with the distance L = 120 m is as follows. The time history response analysis to which the present invention is applied (case NT) and the time history response analysis to which the invention described in Patent Document 1 is applied (case LT), but the response in a model with a smaller distance L As for the values, the variation of response values is increased as compared with the time history response analysis to which the present invention is applied (case NT) and the time history response analysis to which the invention described in Patent Document 1 is applied (case LT). .

また、図18(A)〜(C)には、上記の解析結果(波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)での解析結果)を図14や図16と同様に示す(基準値は本発明を適用した時刻歴応答解析(ケースNT)における距離L=120mのモデルでの応答値)。図18から明らかなように、波動境界モデルとしての粘性境界に対する等価線形の応答解析(ケースV) では、全ての応答値が基準値に対して±10%以内に収まっているモデル群における距離Lの最小値が距離L=100mと大幅に大きくなっており、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)と比較して、基準値に対する偏差が±20%よりも大きい応答値の数も著しく増加している。また、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)では、距離Lが十分に大きい場合を除き、距離Lの増加に対して解析精度が必ずしも向上しない傾向があることも確認できる。   18A to 18C show the above analysis results (analysis results in an equivalent linear response analysis (case V) using a viscous boundary as a wave boundary model) similar to FIGS. (The reference value is a response value in a model with a distance L = 120 m in time history response analysis (case NT) to which the present invention is applied). As is apparent from FIG. 18, in the equivalent linear response analysis (case V) to the viscous boundary as the wave boundary model, the distance L in the model group in which all the response values are within ± 10% of the reference value. The distance L is significantly larger than the distance L = 100 m, and the deviation from the reference value is larger than ± 20% compared to the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied. The number of response values has also increased significantly. In addition, in an equivalent linear response analysis using a viscous boundary as a wave boundary model (Case V), the analysis accuracy tends not to improve as the distance L increases unless the distance L is sufficiently large. I can confirm.

以上の結果から、本発明を適用した時刻歴応答解析(ケースNT)は、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)や、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)と比較して、内部領域のサイズ(距離L)がより小さいモデルで同等の解析精度が得られることが確認された。   From the above results, the time history response analysis (case NT) to which the present invention is applied is equivalent to the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied, and an equivalent using a viscous boundary as a wave boundary model. Compared to the linear response analysis (Case V), it was confirmed that the same analysis accuracy can be obtained with a model having a smaller size (distance L) of the inner region.

また上記の解析検討では、個々の応答解析をIBM Power5+(登録商標)プロセッサ(2.2GHz)搭載のコンピュータを用いて行うと共に、個々の応答解析での処理時間(演算時間)を、時刻歴応答解析の所要時間と、前処理(外部領域の地盤のマトリクス演算やエネルギー伝達境界のインパルス応答の演算等の処理)の所要時間と、に分けて各々計測した。計測結果を次の表6に示す   In the above analysis study, each response analysis is performed using a computer equipped with an IBM Power5 + (registered trademark) processor (2.2 GHz), and the processing time (calculation time) in each response analysis is analyzed by time history response analysis. And the time required for pre-processing (processing such as matrix calculation of the ground in the external region and calculation of impulse response at the energy transfer boundary) were measured separately. The measurement results are shown in Table 6 below.

表6から明らかなように、全体としては、解析対象モデルのサイズ(距離L)が大きくなるに従って処理時間(演算時間)が増加する傾向を示している。なお、部分的には、例えばケースLTにおける距離L=30mのモデルと距離L=40mのモデルの処理時間のように、解析対象モデルのサイズ(距離L)の増大に拘わらず処理時間(演算時間)が減少している場合があるが、これは内部領域に対する非線形の応答解析において、演算結果の収束に要した演算回数の差異に因るものと考えられる。   As is apparent from Table 6, as a whole, the processing time (calculation time) tends to increase as the size (distance L) of the analysis target model increases. Note that, in part, for example, the processing time (calculation time) regardless of the increase in the size (distance L) of the model to be analyzed, such as the processing time of the model with the distance L = 30 m and the model with the distance L = 40 m in the case LT. ) May decrease, but this is thought to be due to the difference in the number of computations required to converge the computation results in the nonlinear response analysis for the internal region.

処理時間(演算時間)を各ケース単位で比較すると、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)は、波動境界モデルが粘性境界であることから、波動境界モデルに関する演算が簡単であり処理時間も最も短くなっている。一方、本発明を適用した時刻歴応答解析(ケースNT)及び特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)は、何れも波動境界モデルがエネルギー伝達境界であることから、時刻歴応答解析の所要時間はほぼ同程度であり、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)よりもやや長く、更に前処理(外部領域の地盤のマトリクス演算やエネルギー伝達境界のインパルス応答の演算等の処理)も必要となる。   Comparing the processing time (calculation time) for each case, the equivalent linear response analysis using the viscous boundary as the wave boundary model (Case V) shows that the wave boundary model is a viscous boundary. Is simple and the processing time is the shortest. On the other hand, the time history response analysis (case NT) to which the present invention is applied and the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied are both because the wave boundary model is an energy transfer boundary. The time required for time history response analysis is almost the same, slightly longer than equivalent linear response analysis (case V) using a viscous boundary as a wave boundary model, and further preprocessing (matrix calculation and energy of the ground in the external region) Processing such as calculation of impulse response at the transmission boundary is also required.

なお、本発明を適用した時刻歴応答解析(ケースNT)は特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)よりも前処理の所要時間が増大しているが、これは、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)では、外部領域の地盤のマトリクスやエネルギー伝達境界のインパルス応答が1回の演算で算出できるのに対し、本発明を適用した時刻歴応答解析(ケースNT)では、外部領域の地盤のマトリクスやエネルギー伝達境界のインパルス応答の演算をΔtb刻みで繰り返し、更に全解析対象時刻についてエネルギー伝達境界のインパルス応答を補間演算によって算出する必要があるためである。   The time history response analysis (case NT) to which the present invention is applied has a longer pre-processing time than the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied. In the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied, the ground matrix in the external region and the impulse response at the energy transfer boundary can be calculated by one operation, whereas the present invention is applied. In the time history response analysis (case NT), the calculation of the impulse response of the ground matrix of the external region and the energy transfer boundary is repeated in increments of Δtb, and the impulse response of the energy transfer boundary is calculated by interpolation calculation for all analysis target times. This is necessary.

上記の結果から明らかなように、本発明を適用した時刻歴応答解析(ケースNT)は、解析対象モデルとして同一サイズ(距離Lが同一)のモデルを用いたとすると、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)や、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)よりも処理時間が長くなる。但し、本発明を適用した時刻歴応答解析(ケースNT)は、前述のように波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)や、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)よりも解析精度が高いため、サイズ(距離L)がより小さい解析対象モデルで同等の解析精度が得られる。   As is clear from the above results, in the time history response analysis to which the present invention is applied (case NT), if a model having the same size (the same distance L) is used as an analysis target model, a viscous boundary is used as a wave boundary model. The processing time becomes longer than the equivalent linear response analysis (case V) used and the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied. However, the time history response analysis (case NT) to which the present invention is applied applies the equivalent linear response analysis (case V) using the viscous boundary as the wave boundary model as described above, or the invention described in Patent Document 1. Since the analysis accuracy is higher than the time history response analysis (case LT), the same analysis accuracy can be obtained with an analysis target model having a smaller size (distance L).

例えば図14,16,18に示した結果によると、基準値に対する応答値の偏差を±10%以内とした場合、解析対象モデルの最小サイズ(距離Lの最小値)は、本発明を適用した時刻歴応答解析(ケースNT)では距離L=30m、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)では距離L=40m、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)では距離L=100mとなる(表6ではそれぞれを灰色の欄で示す)。従って、前処理を含めた処理時間(演算時間)は、本発明を適用した時刻歴応答解析(ケースNT)では距離L=30mのモデルで17.4分(=13.8分+3.6分)、特許文献1に記載の発明を適用した時刻歴応答解析(ケースLT)では距離L=40mのモデルで16.6分(=16.3分+0.3分)、波動境界モデルとして粘性境界を用いた等価線形の応答解析(ケースV)では距離L=100mのモデルで17.2分となり、大きな差異はない。   For example, according to the results shown in FIGS. 14, 16, and 18, when the deviation of the response value with respect to the reference value is within ± 10%, the present invention is applied to the minimum size of the analysis target model (minimum value of the distance L). In the time history response analysis (case NT), the distance L = 30 m, in the time history response analysis (case LT) to which the invention described in Patent Document 1 is applied, the distance L = 40 m, and an equivalent linear using a viscous boundary as a wave boundary model In the response analysis (case V), the distance L is 100 m (in Table 6, each is indicated by a gray column). Therefore, the processing time (calculation time) including the preprocessing is 17.4 minutes (= 13.8 minutes + 3.6 minutes) in the model of distance L = 30 m in the time history response analysis (case NT) to which the present invention is applied. In the time history response analysis (case LT) to which the invention described in 1 is applied, the distance L = 40m model is 16.6 minutes (= 16.3 minutes + 0.3 minutes), and the equivalent linear response analysis using the viscous boundary as the wave boundary model In (Case V), the distance L = 100m model is 17.2 minutes, and there is no significant difference.

上記で説明した応答解析は2次元の応答解析であり、解析対象モデルとしても2次元のモデルを用いているが、3次元の解析対象モデルを用いる3次元の応答解析では、解析対象モデルを構成する構成要素数が非常に多いため、演算負荷が高く応答解析に長い時間が掛かる反面、解析対象モデルが小サイズ化(距離Lが減少)すると、これに伴って解析対象モデルを構成する構成要素の数が大幅に減少し、演算負荷も大幅に削減される。従って、本発明を適用した時刻歴応答解析は、特に3次元の応答解析を行う場合に、特許文献1に記載の発明を適用した時刻歴応答解析や、波動境界モデルとして粘性境界を用いた等価線形の応答解析と比較して、処理時間(演算時間)の点で大きな優位性を有していると考えられる。   The response analysis described above is a two-dimensional response analysis, and a two-dimensional model is used as an analysis target model. However, in a three-dimensional response analysis using a three-dimensional analysis target model, the analysis target model is configured. Since the number of components to be processed is very large, the computation load is high and the response analysis takes a long time. On the other hand, when the analysis target model is reduced in size (distance L is reduced), the constituent elements constituting the analysis target model are accordingly accompanied. The number of computers is greatly reduced, and the computation load is also greatly reduced. Therefore, in the time history response analysis to which the present invention is applied, particularly when performing a three-dimensional response analysis, the time history response analysis to which the invention described in Patent Document 1 is applied, or an equivalent using a viscous boundary as a wave boundary model. Compared with linear response analysis, it is considered to have a great advantage in terms of processing time (calculation time).

10 コンピュータ
10C 記憶部
12 ディスプレイ
14 キーボード
16 マウス
10 Computer 10C Storage Unit 12 Display 14 Keyboard 16 Mouse

Claims (11)

地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算する物性値演算手段と、
前記物性値演算手段により前記解析対象の各時刻毎に演算された前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算するマトリクス演算手段と、
前記マトリクス演算手段により2以上の時刻について各々演算された前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算するインパルス応答演算手段と、
前記インパルス応答演算手段によって前記解析対象の各時刻毎に演算された前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行う解析手段と、
を含む応答解析装置。
An analysis target object consisting of the ground alone or the ground and a building is modeled, and an energy transfer boundary as a wave boundary model is provided between the internal region and the external region of the model. On the other hand, by performing a response analysis that analyzes the behavior when a specific external force that vibrates the analysis target object is input at each time of the analysis target, the physical property value of the analysis target object in the external region is analyzed. Physical property value calculating means for calculating each target time,
Main configuration of the energy transmission boundary when the specific external force is input based on the physical property value of the analysis target object in the external region calculated at each time of the analysis target by the physical property value calculation means Matrix calculation means for calculating values of a transmission boundary matrix that is an element and is defined as a complex number in the frequency domain and has strong frequency dependence for each of two or more times of the time to be analyzed;
Based on the value of the transmission boundary matrix calculated for each of two or more times by the matrix calculating means, the specific external force is expressed as an impulse response that represents the relationship between the external force that vibrates the object and the behavior of the object in the time domain. Impulse response calculation means for calculating the impulse response of the energy transfer boundary when input, for each time to be analyzed;
Using the impulse response of the energy transfer boundary calculated at each time of the analysis target by the impulse response calculation means, the behavior when the specific external force is input to the analysis target model is analyzed. An analysis means for performing a response analysis for analyzing each target time;
Including a response analysis device.
前記エネルギー伝達境界の前記伝達境界マトリクスは、前記内部領域の質量マトリクスを[M]、剛性マトリクスを[KI]、変位ベクトルを{u(t)}、境界力ベクトルを{FR(t)}、前記外部領域における前記解析対象物体の応答変位を{uR (t)}、境界に作用する補正力ベクトルを−[DR(t)]{uR (t)}とし、
[MI]{u"(t)}+([K(t)]+[R(t)]){u(t)}
=−y"(t)[M]{1}+{FR(t)} …(1)
{FR(t)}=([R(t)]−[DR(t)]){uR (t)} …(2)
前記解析対象モデル全体の運動方程式を上記の(1),(2)式で表したときに、上記の(1),(2)式の[R(t)]で表される請求項1記載の応答解析装置。
The transmission boundary matrix of the energy transmission boundary includes a mass matrix [M I ], a stiffness matrix [K I ], a displacement vector {u (t)}, and a boundary force vector {F R (t )}, The response displacement of the object to be analyzed in the external region is {u R * (t)}, the correction force vector acting on the boundary is − [D R (t)] {u R * (t)},
[M I ] {u "(t)} + ([K I (t)] + [R (t)]) {u (t)}
= −y ″ (t) [M I ] {1} + {F R (t)} (1)
{F R (t)} = ([R (t)] − [D R (t)]) {u R * (t)} (2)
The equation of motion of the entire model to be analyzed is expressed by [R (t)] in the above equations (1) and (2) when the equations of motion are expressed by the above equations (1) and (2). Response analysis device.
前記物性値演算手段は、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)−(2ω/ωm)なる値(但しnは整数)を示す虚数部の正則成分、及び、振動数ωに拘わらず(2ω/ωm)なる値を示す虚数部の特異成分の和で表され、振動数ωが(n−1)・ωmからn・ωmの範囲で(2n−1)なる値を示す虚数部と、前記虚数部の正則成分のヒルベルト変換値に対応する実数部と、から成る因果的単位虚数関数を時間領域へ変換するか、又は前記虚数部のみを時間領域へ変換することで得られた前記因果的単位虚数関数のインパルス応答値を用いて、前記解析対象モデルのうちの前記外部領域に対する応答解析を行うことで、前記外部領域における前記解析対象物体の物性値として剪断歪振幅値γ、剪断波速度Vs及び減衰定数hを演算する請求項1又は請求項2記載の応答解析装置。   The physical property value calculating means is a regular imaginary part indicating a value (2n-1)-(2ω / ωm) (where n is an integer) in the range of the frequency ω from (n−1) · ωm to n · ωm. It is represented by the sum of the singular component of the imaginary part indicating the component and the value of (2ω / ωm) regardless of the frequency ω, and the frequency ω is in the range of (n−1) · ωm to n · ωm (2n -1) A causal unit imaginary function consisting of an imaginary part indicating the value of -1 and a real part corresponding to the Hilbert transform value of the regular component of the imaginary part is converted into the time domain, or only the imaginary part is timed. Using the impulse response value of the causal unit imaginary function obtained by converting to a region, by performing a response analysis on the external region of the analysis target model, the analysis target object in the external region The shear strain amplitude value γ, the shear wave velocity Vs, and the damping constant h are calculated as physical property values. Response Analysis device according. 前記インパルス応答演算手段は、前記マトリクス演算手段により2以上の時刻について各々演算された前記伝達境界マトリクスの値に基づき、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を、前記伝達境界マトリクスの値が演算された前記2以上の時刻について各々演算した後に、前記解析対象の各時刻のうち前記エネルギー伝達境界の前記インパルス応答が未演算の時刻での前記エネルギー伝達境界の前記インパルス応答を、前記2以上の時刻について各々演算した前記エネルギー伝達境界の前記インパルス応答から補間演算によって求める請求項1〜請求項3の何れか1項記載の応答解析装置。   The impulse response calculation means, based on the value of the transfer boundary matrix calculated for each of two or more times by the matrix calculation means, the impulse response of the energy transfer boundary when the specific external force is input, After calculating each of the two or more times at which the values of the transfer boundary matrix are calculated, the energy transfer boundary at the time when the impulse response of the energy transfer boundary is not calculated among the times to be analyzed. The response analysis apparatus according to any one of claims 1 to 3, wherein an impulse response is obtained by interpolation calculation from the impulse response of the energy transmission boundary calculated for each of the two or more times. 前記インパルス応答演算手段は、前記エネルギー伝達境界の前記インパルス応答が未演算の時刻での前記外部領域における前記解析対象物体の剪断歪振幅値γが、前記伝達境界マトリクスの値が演算された前記2以上の時刻での前記外部領域における前記解析対象物体の剪断歪振幅値γを内分する比率に基づいて、前記エネルギー伝達境界の前記インパルス応答が未演算の時刻での前記エネルギー伝達境界の前記インパルス応答を、前記2以上の時刻について各々演算した前記エネルギー伝達境界の前記インパルス応答から補間演算によって求める請求項4記載の応答解析装置。   The impulse response calculation means is configured to calculate the shear strain amplitude value γ of the object to be analyzed in the external region at the time when the impulse response of the energy transfer boundary is not calculated, Based on the ratio of internally dividing the shear strain amplitude value γ of the object to be analyzed in the external region at the above time, the impulse of the energy transfer boundary at a time when the impulse response of the energy transfer boundary is not calculated. The response analysis apparatus according to claim 4, wherein a response is obtained by interpolation calculation from the impulse response of the energy transfer boundary calculated for each of the two or more times. 前記インパルス応答演算手段は、前記エネルギー伝達境界の前記インパルス応答が未演算の時刻が、前記伝達境界マトリクスの値が演算された前記2以上の時刻を内分する比率に基づいて、前記エネルギー伝達境界の前記インパルス応答が未演算の時刻での前記エネルギー伝達境界の前記インパルス応答を、前記2以上の時刻について各々演算した前記エネルギー伝達境界の前記インパルス応答から補間演算によって求める請求項4記載の応答解析装置。   The impulse response calculation means is configured to calculate the energy transfer boundary based on a ratio of dividing the time at which the impulse response of the energy transfer boundary is not calculated into the two or more times at which the values of the transfer boundary matrix are calculated. 5. The response analysis according to claim 4, wherein the impulse response of the energy transfer boundary at a time when the impulse response is not calculated is obtained by interpolation from the impulse response of the energy transfer boundary calculated for each of the two or more times. apparatus. 前記インパルス応答演算手段は、物体の変位に依存するインパルス応答の同時成分をk、物体の速度に依存するインパルス応答の同時成分をc、物体の加速度に依存するインパルス応答の同時成分をm、物体の変位に依存するインパルス応答のΔt刻みの時間遅れ成分をkj、物体の速度に依存するインパルス応答のΔt刻みの時間遅れ成分をcj(但しjは自然数でtj=Δt・j)、時間領域での物体の変位をu(t)、速度をu'(t)、加速度をu"(t)としたときに、前記物体の加速度に依存し少なくとも同時成分を含んで成る質量項も含む数式として、前記インパルス応答FB(t)を規定する数式である、

上記(3)式を用い、前記マトリクス演算手段によって前記伝達境界マトリクスが演算された時刻における前記エネルギー伝達境界の前記インパルス応答を、前記時刻における、前記振動がN種(N=n+1)の周波数のときの前記伝達境界マトリクスの値に基づいて演算する請求項1〜請求項6の何れか1項記載の応答解析装置。
The impulse response calculation means includes k 0 as a simultaneous component of the impulse response depending on the displacement of the object, c 0 as a simultaneous component of the impulse response depending on the velocity of the object, and m as a simultaneous component of the impulse response depending on the acceleration of the object. 0 , the time delay component of Δt in the impulse response depending on the displacement of the object is k j , the time delay component of the impulse response in the Δt step depending on the speed of the object is c j (where j is a natural number, t j = Δt · j) When the displacement of the object in the time domain is u (t), the velocity is u '(t), and the acceleration is u "(t), it depends on the acceleration of the object and contains at least simultaneous components As a mathematical formula that also includes a mass term, it is a mathematical formula that defines the impulse response F B (t).

Using the above equation (3), the impulse response of the energy transfer boundary at the time when the transfer boundary matrix is calculated by the matrix calculation means is the frequency of the N vibrations (N = n + 1) at the time. The response analysis device according to claim 1, wherein the response analysis device performs calculation based on a value of the transmission boundary matrix.
前記インパルス応答演算手段は、前記(3)式における物体の加速度に依存するインパルス応答の同時成分mに対する修正値Δm0、物体の変位に依存するインパルス応答の同時成分kに対する修正値Δk0を下記の(4)式によって演算し、

(但し、上記(4)式において、

であり、上記(5)式におけるRe(S))は、前記(3)式を用いて演算した前記エネルギー伝達境界の前記インパルス応答から再現された、下記の(6)式で表される前記伝達境界マトリクスS(ω)の振動数ωでの実部の値を表し、

上記(5)式におけるRe(D(ω))は、(3)式に基づく前記エネルギー伝達境界の前記インパルス応答の演算に用いた、振動数ωでの前記伝達境界マトリクスのデータD(ω)のうちの実部の値を表す)、演算した修正値Δm0,Δk0を用いて前記同時成分m,kを修正する請求項7記載の応答解析装置。
The impulse response calculation means is a correction value Δm 0 for the simultaneous component m 0 of the impulse response depending on the acceleration of the object in the equation (3), and a correction value Δk 0 for the simultaneous component k 0 of the impulse response depending on the displacement of the object. Is calculated by the following equation (4),

(However, in the above equation (4),

Re (S Bi )) in the above equation (5) is the following equation (6) reproduced from the impulse response of the energy transfer boundary calculated using the above equation (3). The value of the real part at the frequency ω i of the transmission boundary matrix S B (ω) represented

Re (D (ω i )) in the above equation (5) is the data D (of the transmission boundary matrix at the frequency ω i used in the calculation of the impulse response of the energy transmission boundary based on the equation (3). ω represents the value of the real part of the i)), the calculated correction value Delta] m 0, response analysis apparatus according to claim 7, wherein modifying the simultaneous component m 0, k 0 using .DELTA.k 0.
前記インパルス応答演算手段は、前記(3)式における物体の速度に依存するインパルス応答の同時成分をcに対する修正値Δc0も下記の(7)式によって演算し、
Δc0=−E/B …(7)
(但し、上記(7)式において、

であり、上記(8)式におけるIm(S(ωi))は、前記(3)式を用いて演算した前記エネルギー伝達境界の前記インパルス応答から再現された、前記(6)式で表される前記伝達境界マトリクスS(ω)の振動数ωでの虚部の値を表し、上記(8)式におけるIm(S))は、(3)式に基づく前記エネルギー伝達境界の前記インパルス応答の演算に用いた、振動数ωでの前記伝達境界マトリクスのデータD(ω)のうちの虚部の値を表す)、演算した修正値Δc0を用いて前記同時成分cも修正する請求項7記載の応答解析装置。
The impulse response calculating means calculates a correction value Δc 0 for c 0 with respect to the simultaneous component of the impulse response depending on the speed of the object in the equation (3) according to the following equation (7):
Δc 0 = −E / B (7)
(However, in the above equation (7),

In the above equation (8), Im (S B (ωi)) is expressed by the equation (6) reproduced from the impulse response of the energy transfer boundary calculated using the equation (3). Represents the value of the imaginary part at the frequency ω i of the transmission boundary matrix S B (ω), and Im (S Bi )) in the above equation (8) is the energy transfer based on the equation (3). This represents the value of the imaginary part of the transmission boundary matrix data D (ω i ) at the frequency ω i used in the calculation of the impulse response of the boundary), and the calculated correction value Δc 0 The response analysis apparatus according to claim 7, wherein component c 0 is also corrected.
コンピュータに、
地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行わせることで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算させ、
前記解析対象の各時刻毎に演算させた前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算させ、
2以上の時刻について各々演算させた前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算させ、
前記解析対象の各時刻毎に演算させた前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行わせる応答解析方法。
On the computer,
An analysis target object consisting of the ground alone or the ground and a building is modeled, and an energy transfer boundary as a wave boundary model is provided between the internal region and the external region of the model. On the other hand, by performing a response analysis that analyzes the behavior when a specific external force that vibrates the analysis target object is input at each time of the analysis target, the physical property value of the analysis target object in the external region Calculate at each time to be analyzed,
The main component of the energy transfer boundary when the specific external force is input based on the physical property value of the analysis target object in the external region calculated at each time of the analysis target, the frequency domain A transmission boundary matrix value defined as a complex number and having a strong frequency dependence is calculated for each of two or more times of the time to be analyzed,
Based on the value of the transmission boundary matrix calculated for each of two or more times, the impulse response that represents the relationship between the external force that vibrates the object and the behavior of the object in the time domain is obtained when the specific external force is input. The impulse response of the energy transfer boundary is calculated for each time to be analyzed,
Using the impulse response of the energy transfer boundary calculated at each time of the analysis target, the behavior when the specific external force is input to the analysis target model at each time of the analysis target. A response analysis method for performing a response analysis to be analyzed.
コンピュータを、
地盤単独又は地盤と建物から成る解析対象物体がモデル化されて成り、モデルの内部領域と外部領域の間に波動境界モデルとしてのエネルギー伝達境界が設けられた解析対象モデルのうちの前記外部領域に対し、前記解析対象物体を振動させる特定の外力が入力されたときの挙動を解析対象の各時刻毎に解析する応答解析を行うことで、前記外部領域における前記解析対象物体の物性値を前記解析対象の各時刻毎に各々演算する物性値演算手段、
前記物性値演算手段により前記解析対象の各時刻毎に演算された前記外部領域における前記解析対象物体の物性値に基づき、前記特定の外力が入力されたときの、前記エネルギー伝達境界の主要な構成要素であり、周波数領域の複素数として定義され、かつ強い振動数依存性を有する伝達境界マトリクスの値を、前記解析対象の各時刻のうちの2以上の時刻について各々演算するマトリクス演算手段、
前記マトリクス演算手段により2以上の時刻について各々演算された前記伝達境界マトリクスの値に基づき、物体を振動させる外力と前記物体の挙動との関係を時間領域で表すインパルス応答として、前記特定の外力が入力されたときの前記エネルギー伝達境界の前記インパルス応答を解析対象の各時刻毎に各々演算するインパルス応答演算手段、
及び、前記インパルス応答演算手段によって前記解析対象の各時刻毎に演算された前記エネルギー伝達境界の前記インパルス応答を用いて、前記解析対象モデルに対し、前記特定の外力が入力されたときの挙動を前記解析対象の各時刻毎に解析する応答解析を行う解析手段
として機能させる応答解析プログラム。
Computer
An analysis target object consisting of the ground alone or the ground and a building is modeled, and an energy transfer boundary as a wave boundary model is provided between the internal region and the external region of the model. On the other hand, by performing a response analysis that analyzes the behavior when a specific external force that vibrates the analysis target object is input at each time of the analysis target, the physical property value of the analysis target object in the external region is analyzed. Physical property value calculation means for calculating each target time,
Main configuration of the energy transmission boundary when the specific external force is input based on the physical property value of the analysis target object in the external region calculated at each time of the analysis target by the physical property value calculation means Matrix calculation means for calculating values of a transmission boundary matrix that is an element and is defined as a complex number in the frequency domain and has strong frequency dependence, for each of two or more times of each time to be analyzed,
Based on the value of the transmission boundary matrix calculated for each of two or more times by the matrix calculating means, the specific external force is expressed as an impulse response that represents the relationship between the external force that vibrates the object and the behavior of the object in the time domain. Impulse response calculation means for calculating the impulse response of the energy transfer boundary when input, for each time to be analyzed,
And using the impulse response of the energy transfer boundary calculated at each time of the analysis target by the impulse response calculation means, the behavior when the specific external force is input to the analysis target model A response analysis program that functions as an analysis unit that performs a response analysis to be analyzed at each time to be analyzed.
JP2010170374A 2010-07-29 2010-07-29 Response analyzer, method and program Pending JP2012032214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170374A JP2012032214A (en) 2010-07-29 2010-07-29 Response analyzer, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170374A JP2012032214A (en) 2010-07-29 2010-07-29 Response analyzer, method and program

Publications (1)

Publication Number Publication Date
JP2012032214A true JP2012032214A (en) 2012-02-16

Family

ID=45845813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170374A Pending JP2012032214A (en) 2010-07-29 2010-07-29 Response analyzer, method and program

Country Status (1)

Country Link
JP (1) JP2012032214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036774A (en) * 2017-01-23 2017-08-11 中国机械工业集团有限公司 A kind of assessment technology of strong rammer operation to concrete structure vibration effect
CN115683510A (en) * 2022-10-12 2023-02-03 中国长江三峡集团有限公司 Sheet vibration displacement calculation method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107036774A (en) * 2017-01-23 2017-08-11 中国机械工业集团有限公司 A kind of assessment technology of strong rammer operation to concrete structure vibration effect
CN107036774B (en) * 2017-01-23 2019-02-05 中国机械工业集团有限公司 A kind of assessment technology that strong rammer operation influences concrete structure vibration
CN115683510A (en) * 2022-10-12 2023-02-03 中国长江三峡集团有限公司 Sheet vibration displacement calculation method and device
WO2024078247A1 (en) * 2022-10-12 2024-04-18 中国长江三峡集团有限公司 Thin plate vibration displacement calculation method and apparatus

Similar Documents

Publication Publication Date Title
Torabi et al. Three dimensional finite element modeling of seismic soil–structure interaction in soft soil
Kampitsis et al. Seismic soil–pile–structure kinematic and inertial interaction—A new beam approach
Wang et al. Real-time dynamic hybrid testing for soil–structure interaction analysis
Taborda et al. On the assessment of energy dissipated through hysteresis in finite element analysis
Zhai et al. Inelastic displacement ratios for design of structures with constant damage performance
CN111914446B (en) Supercritical angle oblique incidence seismic oscillation input method in finite element numerical analysis
Wang et al. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation
Zarzalejos et al. Influences of type of wave and angle of incidence on seismic bending moments in pile foundations
Alexander Estimating the nonlinear resonant frequency of a single pile in nonlinear soil
Cheng et al. Prediction of wave propagation in buildings using data from a single seismometer
Erazo et al. High‐resolution seismic monitoring of instrumented buildings using a model‐based state observer
JP2012032214A (en) Response analyzer, method and program
Li et al. Analysis and reversal of dry and hydroelastic vibration modes of stiffened plates
JP4813991B2 (en) Time history response analysis method, apparatus, and program
Chen et al. Horizontal vibration characteristics of offshore twin–pile foundations
Moghaddam et al. Ground response analysis using non-recursive matrix implementation of hybrid frequency-time domain (HFTD) approach
JP2012037305A (en) Sequential nonlinear earthquake response analysis method for foundation and storage medium with analysis program stored thereon
Liang et al. 2D nonlinear inversion of bedrock motion from the surface motion of a layered half-space
Quiroz‐Ramírez et al. Evaluation of the intensity measure approach in performance‐based earthquake engineering with simulated ground motions
JP2018197965A (en) Design support device of small speaker and design support method of speaker
JP2009250805A (en) Response analysis device, method, and program
JP4850132B2 (en) Time history response analysis method, apparatus, and program
JP4369333B2 (en) Impulse response calculation method, apparatus and program
JP3878626B2 (en) Impulse response calculation method, apparatus and program
Shi et al. An adaptive finite‐unit method for simulating frequency‐dependent responses of shallow foundations in layered soil under vertical dynamic loads