JP2012032153A - Non-contact dc voltage detector - Google Patents

Non-contact dc voltage detector Download PDF

Info

Publication number
JP2012032153A
JP2012032153A JP2010169088A JP2010169088A JP2012032153A JP 2012032153 A JP2012032153 A JP 2012032153A JP 2010169088 A JP2010169088 A JP 2010169088A JP 2010169088 A JP2010169088 A JP 2010169088A JP 2012032153 A JP2012032153 A JP 2012032153A
Authority
JP
Japan
Prior art keywords
electrode
electric field
measurement
liquid crystal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169088A
Other languages
Japanese (ja)
Other versions
JP5674369B2 (en
Inventor
Ichiro Ideno
市郎 出野
Tadashi Yoshida
匡志 吉田
Yoshiyuki Tsuda
善行 津田
Masaki Nagamori
正樹 長森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUDA ELECTRIC METERS CO Ltd
East Japan Railway Co
Original Assignee
TSUDA ELECTRIC METERS CO Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUDA ELECTRIC METERS CO Ltd, East Japan Railway Co filed Critical TSUDA ELECTRIC METERS CO Ltd
Priority to JP2010169088A priority Critical patent/JP5674369B2/en
Publication of JP2012032153A publication Critical patent/JP2012032153A/en
Application granted granted Critical
Publication of JP5674369B2 publication Critical patent/JP5674369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact DC voltage detector capable of highly efficiently measuring a potential being applied under the state where no current flows, in spite of simple configuration.SOLUTION: A non-contact DC voltage detector includes: a liquid crystal element 2 in which light transmissivity is changed by a potential difference between two electrodes 2A and 2B; a measuring electrode panel 3 which is electrically connected to the electrode 2A and receives an electric field; a comparison electrode 4 electrically connected to the electrode 2B; a reflector plate 5 disposed at a side of the electrode 2A; a light-emitting element 6 and a light-receiving element 7 disposed at a side of the electrode 2B; and a measuring circuit 8 for measuring electric field strength from an intensity signal of light measured by the light-receiving element 7.

Description

本発明は、直流の電圧を非接触によって検出する非接触式直流電圧検出器に関する。   The present invention relates to a non-contact type DC voltage detector that detects a DC voltage by non-contact.

従来、直流電圧を検出する方法として測定対象と基準点にそれぞれプローブを当接して電位差を測定することが行われている。また、交流電圧が印加された部分においてはこれから発生する電磁波を検出することにより、印加されている交流電圧の大きさを測定することが可能である。しかしながら、電流が流れていない直流電圧源からは電磁波が発生しないので、この電磁波を用いた測定ができないという問題がある。   Conventionally, as a method for detecting a DC voltage, a potential difference is measured by bringing a probe into contact with a measurement object and a reference point. Moreover, it is possible to measure the magnitude | size of the applied alternating voltage by detecting the electromagnetic wave generated from now in the part to which the alternating voltage was applied. However, an electromagnetic wave is not generated from a DC voltage source in which no current flows, and there is a problem that measurement using this electromagnetic wave cannot be performed.

とりわけ高電圧が印加されている場合は危険防止のために非接触による電圧計測を行うことが好ましいが、直流電圧のみが印加されている場合は電磁波による電圧計測を行うことはできないため、接触電極を用いることが行われている。例えば、鉄道の高圧き電線の点検やメンテナンスを行うためには、き電線への給電を停止した状態で作業を行うが、給電が確実に停止されていることを確認するために接触式の電圧計を用いることが行われている。   In particular, when high voltage is applied, it is preferable to perform non-contact voltage measurement to prevent danger, but when only DC voltage is applied, voltage measurement using electromagnetic waves cannot be performed. Is being used. For example, in order to inspect and maintain a high-voltage feeder line in a railway, work is performed with the power supply to the feeder line stopped, but a contact-type voltage is used to confirm that the power supply is stopped reliably. The use of a meter is carried out.

一方、特許文献1の液晶電界センサでは測定対象の近傍に電界に対して平衡に配置された液晶セルを用いて電界強度を測定することが考えられている。このように液晶セルは高絶縁で印加される電位差によって光の透過率を変化させるものであるから、これを用いて電界測定を行うことができる。   On the other hand, in the liquid crystal electric field sensor of Patent Document 1, it is considered to measure the electric field strength using a liquid crystal cell arranged in equilibrium with the electric field in the vicinity of the measurement target. As described above, since the liquid crystal cell changes the light transmittance by the potential difference applied with high insulation, the electric field can be measured using this.

特開平8−86815号公報JP-A-8-86815

しかしながら、特許文献1の液晶電界センサのような構成では液晶セルを直接的に電界に曝すことによりその電界強度を測定するので、測定対象に近づける必要があり、危険防止のための非接触測定には向かなかった。また、電流を流さない状態で電圧が印加されたき電線から発生する電界と、静電気によって発生する電界を区別することは難しく、測定者自身の動作によって発生する静電気が測定の邪魔になり誤検知が発生するという問題がある。   However, in the configuration such as the liquid crystal electric field sensor of Patent Document 1, the electric field strength is measured by directly exposing the liquid crystal cell to an electric field. Did not go. In addition, it is difficult to distinguish between the electric field generated from a feeder line to which voltage is applied without current flowing and the electric field generated by static electricity. There is a problem that occurs.

本発明は上述の事柄を考慮に入れてなされたものであり、簡素な構成でありながら、電流が流れていない状態で印加されている電位を高効率に測定することができる非接触式直流電圧検出器を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned matters, and is a non-contact type DC voltage capable of measuring a potential applied in a state in which no current is flowing with high efficiency while having a simple configuration. An object is to provide a detector.

前記課題を解決するため、本発明は、二枚の電極の電位差によって光の透過率が変化する液晶素子と、この液晶素子の一方の電極に電気的に接続されて電界を受ける測定電極パネルと、前記液晶素子の他方の電極に電気的に接続された比較電極と、前記一方の電極側に配置された反射板と、前記他方の電極側に配置された発光素子と、前記他方の電極側に前記発光素子から直接光が入射しないように配置された受光素子と、受光素子によって測定した光の強度信号によって電界強度を測定する測定回路とを備えることを特徴とする非接触式直流電圧検出器を提供する。(請求項1)   In order to solve the above-described problems, the present invention provides a liquid crystal element whose light transmittance varies depending on a potential difference between two electrodes, and a measurement electrode panel that is electrically connected to one electrode of the liquid crystal element and receives an electric field. A reference electrode electrically connected to the other electrode of the liquid crystal element, a reflector disposed on the one electrode side, a light emitting element disposed on the other electrode side, and the other electrode side A non-contact type DC voltage detection comprising: a light receiving element disposed so that light is not directly incident on the light emitting element; and a measurement circuit that measures an electric field intensity by an intensity signal of the light measured by the light receiving element. Provide a bowl. (Claim 1)

電界を受ける測定電極パネルが液晶素子の一方の電極に取り付けられているので、測定対象から発生する電界を離れた位置において効率よく受け止めることができ、この測定電極パネルに電気的に接続された液晶素子の一方の電極に前記電界の大きさに応じた量の電荷を蓄えることができ、液晶素子の両電極間に電界が生じるので、この電界内に配置された液晶素子は電界強度に合わせてその光の透過率が変化する。測定電極パネルは例えばアルミなどの導電性に優れた金属によって形成されていることが好ましく、その面積はより効率よく電界を受け止めるために大きく形成することが好ましく、例えば、非接触式直流電圧検出器の測定端のほぼ全面を覆う程度の大きさを備える。   Since the measurement electrode panel that receives the electric field is attached to one electrode of the liquid crystal element, the electric field generated from the measurement object can be efficiently received at a position away from the liquid crystal element, and the liquid crystal electrically connected to the measurement electrode panel An amount of electric charge corresponding to the magnitude of the electric field can be stored in one electrode of the element, and an electric field is generated between both electrodes of the liquid crystal element. Therefore, the liquid crystal element disposed in the electric field matches the electric field strength. The light transmittance changes. The measurement electrode panel is preferably formed of a metal having excellent conductivity, such as aluminum, and the area thereof is preferably large in order to receive the electric field more efficiently, for example, a non-contact type DC voltage detector It is large enough to cover almost the entire measurement end.

前記液晶素子は内側面に光透過性の前記電極(透明電極)を転写させた一対のガラス機材と、これらのガラス機材によって挟み込まれて互いに90°異なる偏向特性を備える一対の配向膜と、両配向膜の間にスペーサおよび液晶からなる液晶層を配置させた状態で液晶層を封入するシール材とを備えるものである。したがって、前記反射板は一方の電極ガラス基材の外側面に当接することにより、一方の電極側に配置されている。また、前記発光素子および受光素子は他方の電極ガラス基材の外側面に面するように配置されていることにより、他方の電極側に配置されている。   The liquid crystal element includes a pair of glass materials having the light-transmitting electrodes (transparent electrodes) transferred to the inner surface, a pair of alignment films sandwiched by these glass materials and having deflection characteristics different from each other by 90 °, And a sealing material that encloses the liquid crystal layer in a state in which a spacer and a liquid crystal layer made of liquid crystal are disposed between the alignment films. Therefore, the said reflecting plate is arrange | positioned at the one electrode side by contact | abutting to the outer surface of one electrode glass base material. The light emitting element and the light receiving element are disposed on the other electrode side by being disposed so as to face the outer surface of the other electrode glass substrate.

なお、比較電極は液晶素子の他の電極に電気的に接続されており、これが、基準電位となる。したがって、比較電極の電位は安定していることが好ましく、例えば、基準電圧の供給源として例えば前記発光素子、受光素子、測定回路などを設けた基盤の負極電源ラインまたは負極電源ラインに接続されたプレートである。   Note that the reference electrode is electrically connected to the other electrode of the liquid crystal element, which serves as a reference potential. Therefore, it is preferable that the potential of the comparison electrode is stable. For example, the reference electrode is connected to a negative electrode power supply line or a negative electrode power supply line provided with, for example, the light emitting element, the light receiving element, and the measurement circuit as a reference voltage supply source. It is a plate.

前記反射板は液晶素子の一方の電極側に配置されているので他方の電極側に配置された発光素子から生じ液晶素子を透過した光を反射して、再び液晶素子を透過させて受光素子に入射させることができる。なお、前記反射板は光の反射率の点で優れた鏡面体であることが好ましいが、さらに好ましくは、光の散乱を起こすために鏡面体と電極の間に紙や磨りガラスのような光拡散層を備えるものである。   Since the reflector is disposed on one electrode side of the liquid crystal element, it reflects light transmitted from the light emitting element disposed on the other electrode side and transmitted through the liquid crystal element, and transmits the liquid crystal element again to the light receiving element. It can be made incident. The reflector is preferably a mirror body excellent in terms of light reflectivity, and more preferably light such as paper or polished glass between the mirror body and the electrode in order to cause light scattering. A diffusion layer is provided.

また、液晶素子の一方の電極および反射板は液晶層以外の構成部材から物理的に浮いた状態で配置されることが好ましい。同様に、前記一方の電極に電気的に接続された前記測定電極パネルも適度な帯電性を得られるように他の部分から静電気をためることができる程度に絶縁されていることが好ましく、ABS樹脂や塩化ビニールなどの適切な絶縁性を備える合成樹脂からなる絶縁性容器の表面に、アクリル樹脂(メタクリル酸樹脂の重合体)のプレートを密着させていることが好ましい。   Moreover, it is preferable that one electrode and the reflecting plate of the liquid crystal element are disposed in a state of physically floating from the constituent members other than the liquid crystal layer. Similarly, it is preferable that the measurement electrode panel electrically connected to the one electrode is also insulated to the extent that static electricity can be accumulated from other parts so as to obtain appropriate chargeability. It is preferable that a plate of acrylic resin (polymer of methacrylic acid resin) is in close contact with the surface of an insulating container made of a synthetic resin having appropriate insulating properties such as vinyl chloride.

前記発光素子は安定した光量の光を発光するものであり、効率の良い発光を行う発光ダイオード(LED)であることが好ましいが、有機発光ダイオード(OLED:Organic light-emitting diode)や発光ポリマー(LEP:Light Emitting Polymer)などの有機ELを用いた発光素子であってもよい。   The light-emitting element emits a stable amount of light and is preferably a light-emitting diode (LED) that emits light efficiently, but an organic light-emitting diode (OLED) or a light-emitting polymer (LED) It may be a light emitting element using organic EL such as LEP (Light Emitting Polymer).

前記受光素子は発光素子から発光された光を受光してこれを電気信号に変換することができるものであればよく、例えばフォトレジスタ、フォトトランジスタ、フォトダイオードなどを用いることができる。なお、発光素子からの光が直接受光素子に入射しないように発光素子と受光素子の間に遮光板を設けることが好ましく、例えば、受光素子を円筒状のシリコンゴムからなる遮光筒に挿入して配置することが好ましい。   The light receiving element may be any element as long as it can receive light emitted from the light emitting element and convert it into an electrical signal. For example, a photoresistor, a phototransistor, a photodiode, or the like can be used. It is preferable to provide a light shielding plate between the light emitting element and the light receiving element so that light from the light emitting element does not directly enter the light receiving element. For example, the light receiving element is inserted into a light shielding cylinder made of cylindrical silicon rubber. It is preferable to arrange.

前記測定回路は前記受光素子によって測定した光の強度信号を用いて電界強度を測定するものであるが、電界強度が所定の閾値より大きくなったときに例えばブザーなどを用いて警告音などを出力するものであることが好ましい。しかしながら、測定回路は電界強度を電流または電圧などの電気信号に変換して出力するものであってもよい。   The measurement circuit measures the electric field strength using the light intensity signal measured by the light receiving element. When the electric field strength exceeds a predetermined threshold value, for example, a warning sound is output using a buzzer or the like. It is preferable that However, the measurement circuit may convert the electric field strength into an electric signal such as current or voltage and output it.

少なくとも、前記液晶素子、発光素子、受光素子の全体を覆う容器状に形成された電界遮蔽層を備える場合(請求項2)には、液晶素子およびその周辺部材が電界遮蔽層によって覆われているので、外乱の影響による動作不良を起こすことがない。電界の測定対象以外の方向からの電界の影響を受けにくくなる。つまり、作業者の動作に伴って生じる静電気の影響を受けることなく、測定対象の電位を測定することができる。なお、電界遮蔽層は測定電極パネルを容器形状にして形成してもよいが、電界遮蔽層として比較電極または電源ラインを用いてもよい。   In the case where an electric field shielding layer formed in a container shape covering at least the liquid crystal element, the light emitting element, and the light receiving element is provided (Claim 2), the liquid crystal element and its peripheral members are covered with the electric field shielding layer. Therefore, it does not cause malfunction due to the influence of disturbance. It becomes difficult to be affected by an electric field from a direction other than the measurement target of the electric field. In other words, the potential of the measurement target can be measured without being affected by static electricity generated by the operator's operation. The electric field shielding layer may be formed with the measurement electrode panel having a container shape, but a comparative electrode or a power supply line may be used as the electric field shielding layer.

また、前記液晶素子、発光素子、受光素子に加え、前記測定電極パネルおよび比較電極を備えるユニット化されたセンサ部を形成することにより、センサ部を独立構造にすることができるので、不要帯電の影響を減少させて、安定した電界測定を容易に実現できる。   In addition to the liquid crystal element, the light emitting element, and the light receiving element, by forming a unitized sensor unit that includes the measurement electrode panel and the comparison electrode, the sensor unit can be made an independent structure. The influence can be reduced, and stable electric field measurement can be easily realized.

前記液晶素子、測定電極パネル、比較電極、発光素子および受光素子をそれぞれ備える第1のセンサ部および第2のセンサ部を電界の検出方向の前後に並べて有し、前記測定回路は第1のセンサ部の測定電極のみに負のバイアス電圧を印加した状態で第1のセンサ部による電界強度の測定値から第2のセンサ部による電界強度の測定値を減算した値が所定の閾値以下であるときに警告を出力する警告出力部を備える場合(請求項3)には、電界の測定値に正負の区別を付けると共に、所定の電界強度において閾値を正確に設定することができる。   A first sensor unit and a second sensor unit each including the liquid crystal element, a measurement electrode panel, a comparison electrode, a light emitting element, and a light receiving element are arranged side by side in the electric field detection direction, and the measurement circuit is a first sensor When a value obtained by subtracting the measured value of the electric field strength by the second sensor unit from the measured value of the electric field strength by the first sensor unit in a state where a negative bias voltage is applied only to the measuring electrode of the unit is less than a predetermined threshold value When a warning output unit for outputting a warning is provided (Claim 3), the measured value of the electric field can be distinguished from positive and negative, and the threshold value can be accurately set at a predetermined electric field strength.

つまり、センサ部は正負いずれであっても比較電極との間に電位差がある場合に電界強度の測定値を得ることができるが、第1のセンサ部には負のバイアス電圧が印加されているので、第1のセンサ部の測定値から第2のセンサ部の測定値を減算することにより、測定対象の電位が比較電極の電位より低いとき、常にバイアス電圧に相当する測定値を出力する。測定対象の電位が比較電極の電位より高くなればなるほど、第1のセンサ部の測定値から第2のセンサ部の測定値を減算した値は小さくなる。   In other words, even if the sensor unit is positive or negative, a measured value of the electric field strength can be obtained when there is a potential difference with the reference electrode, but a negative bias voltage is applied to the first sensor unit. Therefore, by subtracting the measurement value of the second sensor unit from the measurement value of the first sensor unit, the measurement value corresponding to the bias voltage is always output when the potential of the measurement target is lower than the potential of the comparison electrode. As the potential of the measurement target becomes higher than the potential of the reference electrode, the value obtained by subtracting the measurement value of the second sensor unit from the measurement value of the first sensor unit becomes smaller.

なお、各センサ部間はABS樹脂などの絶縁物によって仕切られていることが好ましい。また、前記両センサ部は測定対象に対して縦方向に重ねて配置されているので、一つの電界強度を前後一対のセンサ部によって測定することができるので高精度の測定を行うことができる。   In addition, it is preferable that each sensor part is partitioned off with insulators, such as ABS resin. In addition, since both the sensor parts are arranged vertically with respect to the object to be measured, one electric field strength can be measured by the pair of front and rear sensor parts, so that highly accurate measurement can be performed.

所定のバイアス電圧を印加した状態で前記測定電極パネルに接触可能な接点を備えるバイアス印加部と、先端部に前記液晶素子および測定電極パネルが配置され基端部に前記比較電極として基準電位電極の接続部が配置された棒体と、前記電界強度の測定値が所定の閾値以上であるときに警告を出力する警告出力部を備える場合(請求項4)には、棒体の先端部に測定電極パネルを備え、バイアス印加部によって測定電極パネルの電位にバイアス電圧をかけることにより測定対象の電界に対する感度を調整し、測定感度のふらつきを防止できる。   A bias applying unit having a contact that can contact the measurement electrode panel in a state where a predetermined bias voltage is applied, and the liquid crystal element and the measurement electrode panel are arranged at a distal end portion, and a reference potential electrode as a comparison electrode at a base end portion. In the case where a rod body in which a connecting portion is disposed and a warning output unit that outputs a warning when the measured value of the electric field intensity is equal to or greater than a predetermined threshold (Claim 4), the measurement is performed at the tip of the rod body. An electrode panel is provided, and by applying a bias voltage to the potential of the measurement electrode panel by the bias application unit, the sensitivity to the electric field to be measured can be adjusted, and fluctuations in measurement sensitivity can be prevented.

図14は液晶素子の特性を示す図であり、液晶素子の両電極間の電位差と光の透過率の関係が直線的な比例関係ではないことを示している。このような特性の液晶素子に例えば1.2Vのバイアス電圧を印加して測定開始点をシフトさせることにより、電位差の変化に対する光透過率の変化が大となる範囲を活用して微小な電圧変化を検出することが可能となる。また、前記比較電極として基準電位電極の接続部が配置されているので、この接続部に例えばアース線を接続すると、大地電位が基準電位となるので、作業者の動作による静電気の発生による影響を受けないようにすることができる。棒体は長尺であるから、その上端部を高い位置にあるき電線にできるだけ近づけることができる。   FIG. 14 is a graph showing characteristics of the liquid crystal element, and shows that the relationship between the potential difference between both electrodes of the liquid crystal element and the light transmittance is not a linear proportional relationship. By applying a bias voltage of, for example, 1.2 V to the liquid crystal element having such characteristics and shifting the measurement start point, a minute voltage change can be made by utilizing the range in which the change in light transmittance with respect to the change in potential difference is large. Can be detected. In addition, since the reference potential electrode connecting portion is arranged as the comparison electrode, if a ground wire is connected to this connecting portion, for example, the ground potential becomes the reference potential, and therefore the influence of the generation of static electricity due to the operation of the operator is affected. It can be made not to receive. Since the rod is long, its upper end can be brought as close as possible to the feeder wire at a high position.

第2発明は、二枚の電極の電位差によって光の透過率が変化する液晶素子と、この液晶素子の一方の電極に電気的に接続された第1の測定電極パネルと、前記液晶素子の他方の電極に電気的に接続された第2の測定電極パネルと、これらの測定電極パネルを電界の検出方向にほぼ垂直に配置した状態で両測定電極パネルに取付けられた第1の誘電体および第2の誘電体と、これらの誘電体の両方または何れか一方に接すると共に基準電圧源に接続された比較電極と、前記一方の電極側に配置された反射板と、前記他方の電極側に配置された発光素子と、前記他方の電極側に前記発光素子から直接光が入射しないように配置された受光素子と、受光素子によって検出した光の強度信号によって電界強度を測定する測定回路とを備えることを特徴とする非接触式直流電圧検出器を提供する(請求項5)。   According to a second aspect of the present invention, there is provided a liquid crystal element whose light transmittance is changed by a potential difference between two electrodes, a first measurement electrode panel electrically connected to one electrode of the liquid crystal element, and the other of the liquid crystal elements A second measurement electrode panel electrically connected to the electrodes, and a first dielectric and a first dielectric attached to both measurement electrode panels in a state where these measurement electrode panels are arranged substantially perpendicular to the electric field detection direction. 2 dielectrics, a comparison electrode in contact with and / or one of these dielectrics and connected to a reference voltage source, a reflector arranged on the one electrode side, and arranged on the other electrode side A light emitting element, a light receiving element arranged so that light is not directly incident on the other electrode side from the light emitting element, and a measurement circuit for measuring an electric field intensity by an intensity signal of light detected by the light receiving element. That features Providing a non-contact type DC voltage detector for (claim 5).

前記両測定電極パネルを電界の検出方向にほぼ垂直に配置することにより電界を効率よく受けることができ、両測定電極パネルの間にはこれに面する誘電体の誘電率、厚さ、測定電極パネルの電界検出方向の位置の違いによって電位差が発生し、これが液晶素子の両電極に印加され、この電位差に応じて液晶素子の光の透過率が変化する。つまり、発光素子が発光する光は液晶素子を透過して反射板によって反射し受光素子に入射する。前記測定回路は受光素子に入射した光の強度を用いて測定対象の電位を測定する。また、検出方向と異なる方向からの電界は比較電極によって吸収されるので、その影響を小さくすることができる。   By arranging the two measurement electrode panels substantially perpendicular to the electric field detection direction, the electric field can be efficiently received. Between the two measurement electrode panels, the dielectric constant, thickness, and measurement electrode of the dielectric facing the measurement electrode panel A potential difference is generated by the difference in the position of the panel in the electric field detection direction, which is applied to both electrodes of the liquid crystal element, and the light transmittance of the liquid crystal element changes according to the potential difference. That is, light emitted from the light emitting element is transmitted through the liquid crystal element, reflected by the reflecting plate, and incident on the light receiving element. The measurement circuit measures the potential of the measurement target using the intensity of light incident on the light receiving element. In addition, since the electric field from a direction different from the detection direction is absorbed by the comparison electrode, the influence can be reduced.

前記両測定電極パネルは比較電極に対して異なる誘電率の誘電体を介して同じ距離だけ離した位置に並べて配置することにより、測定対象の電界で異なる量の電荷をためることができる。しかしながら、両測定電極パネルの電界検出方向の位置を異ならせて両測定電極パネルの電位を異ならせてもよい。さらに、両測定電極パネルを電界測定方向に並べて配置してもよい。前記両測定電極パネルは他の部分から静電気をためることができる程度に適度に絶縁されていることが好ましい。   The two measurement electrode panels are arranged side by side at the same distance via a dielectric having a different dielectric constant with respect to the comparison electrode, so that different amounts of charges can be accumulated in the electric field to be measured. However, the potentials of both measurement electrode panels may be made different by changing the positions of both measurement electrode panels in the electric field detection direction. Further, both measurement electrode panels may be arranged side by side in the electric field measurement direction. It is preferable that both the measurement electrode panels are appropriately insulated to such an extent that static electricity can be accumulated from other portions.

電界を受ける測定電極パネルは導電性に優れた金属によって形成されていることが好ましく、その面積は大きいことが好ましい。比較電極の電位は安定していることが好ましく、例えば、基盤の負極電源ラインまたは負極電源ラインに接続されたプレートであることが好ましい。   The measurement electrode panel that receives an electric field is preferably formed of a metal having excellent conductivity, and its area is preferably large. The potential of the comparison electrode is preferably stable. For example, the negative electrode power line of the substrate or a plate connected to the negative electrode power line is preferable.

前記反射板は光の反射率の点で優れた鏡面体であることが好ましいが、さらに好ましくは鏡面体と光拡散層を備えるものである。前記発光素子は安定した光量の光を発光する発光ダイオードのみならず、有機発光ダイオードや発光ポリマーなどの有機ELを用いることができる。前記受光素子は例えばフォトレジスタ、フォトトランジスタ、フォトダイオードなどを用いることができ、例えば、受光素子を円筒状のシリコンゴムからなる遮光筒に挿入してあることが好ましい。   The reflector is preferably a mirror body excellent in terms of light reflectance, and more preferably includes a mirror body and a light diffusion layer. As the light emitting element, not only a light emitting diode that emits a stable amount of light but also an organic EL such as an organic light emitting diode or a light emitting polymer can be used. For example, a photoresistor, a phototransistor, or a photodiode can be used as the light receiving element. For example, the light receiving element is preferably inserted in a light shielding cylinder made of cylindrical silicon rubber.

前記測定回路は前記受光素子によって測定した光の強度信号を用いて電界強度を測定し、これが所定の閾値より大きくなったときに例えばブザーなどを用いて警告音などを出力するものである。また、測定回路は電界強度を電気信号に変換して出力するものであってもよい。   The measurement circuit measures the electric field intensity using the light intensity signal measured by the light receiving element, and outputs a warning sound or the like using a buzzer or the like, for example, when the signal intensity exceeds a predetermined threshold value. The measurement circuit may convert the electric field strength into an electric signal and output it.

前記比較電極に電気的に接続され前記測定電極パネル用の開口部を除いて液晶素子の全体を覆う容器状に形成された電界遮蔽層を備える場合(請求項6)には、電界の測定方向以外の方向からの電界の影響を電界遮蔽層によって遮断でき、開口部を形成した部分においてのみ電界の測定を行うことができる。従って、外乱による測定値のふらつきを押さえることができる。   In the case where an electric field shielding layer formed in a container shape that is electrically connected to the comparison electrode and covers the entire liquid crystal element except for the opening for the measurement electrode panel is provided (Claim 6), the electric field measurement direction The influence of the electric field from other directions can be blocked by the electric field shielding layer, and the electric field can be measured only at the portion where the opening is formed. Therefore, the fluctuation of the measured value due to disturbance can be suppressed.

前述したように、本発明によれば、測定対象から離れた位置においても電界を効果的に測定することができる。また、比較電極によって基準電位を定めることができるので、静電気などの周囲の外乱による影響を小さくすることができる。   As described above, according to the present invention, the electric field can be effectively measured even at a position away from the measurement target. In addition, since the reference potential can be determined by the comparison electrode, the influence of ambient disturbance such as static electricity can be reduced.

加えて、電界遮蔽層を備えることにより、不必要な電界の影響を可能な限り抑制できるセンサ部のユニットを形成することができる。複数の測定電極パネルを用いて比較を行うことにより、さらに安定した測定を行うことも可能である。   In addition, by providing the electric field shielding layer, it is possible to form a sensor unit that can suppress the influence of an unnecessary electric field as much as possible. By performing comparison using a plurality of measurement electrode panels, it is possible to perform more stable measurement.

本発明の第1実施形態に係る非接触式直流電圧検出器の全体構成を示す図である。It is a figure which shows the whole structure of the non-contact-type DC voltage detector which concerns on 1st Embodiment of this invention. 非接触式直流電圧検出器のセンサ部をユニット化した例を示す図である。It is a figure which shows the example which united the sensor part of the non-contact-type DC voltage detector. 図2のセンサ部の構成を回路にして示す図である。It is a figure which shows the structure of the sensor part of FIG. 2 as a circuit. 図2のセンサ部の電気特性を示す図である。It is a figure which shows the electrical property of the sensor part of FIG. 第2実施形態の非接触式直流電圧検出器の構成を示す図である。It is a figure which shows the structure of the non-contact-type DC voltage detector of 2nd Embodiment. 前記非接触式直流電圧検出器の構成を回路にして示す図である。It is a figure which shows the structure of the said non-contact-type DC voltage detector as a circuit. 前記非接触式直流電圧検出器の電気特性を示す図である。It is a figure which shows the electrical property of the said non-contact-type DC voltage detector. 第3実施形態の非接触式直流電圧検出器の構成を示す図である。It is a figure which shows the structure of the non-contact-type DC voltage detector of 3rd Embodiment. 前記非接触式直流電圧検出器の構成を回路にして示す図である。It is a figure which shows the structure of the said non-contact-type DC voltage detector as a circuit. 本発明の非接触式直流電圧検出器を用いた警報装置の例を示す図である。It is a figure which shows the example of the alarm device using the non-contact-type DC voltage detector of this invention. 第4実施形態の非接触式直流電圧検出器を示す図である。It is a figure which shows the non-contact-type DC voltage detector of 4th Embodiment. 第5実施形態の非接触式直流電圧検出器を示す図である。It is a figure which shows the non-contact-type DC voltage detector of 5th Embodiment. 前記非接触式直流電圧検出器の構成を回路にして示す図である。It is a figure which shows the structure of the said non-contact-type DC voltage detector as a circuit. 液晶素子の特性を示す図である。It is a figure which shows the characteristic of a liquid crystal element.

以下、図1を用いて、本発明の第1実施形態に係る非接触式直流電圧検出器1の構成を説明する。本発明の非接触式直流電圧検出器1は二枚の電極2A,2Bの電位差によって光の透過率が変化する液晶素子2と、この液晶素子2の一方の電極2Aに電気的に接続されて電界を受ける測定電極パネル3と、前記液晶素子2の他方の電極2Bに電気的に接続された比較電極4と、前記一方の電極2A側に配置された反射板5と、前記他方の電極2B側に配置された発光素子6と、前記他方の電極2B側に前記発光素子6から直接光が入射しないように配置された受光素子7と、受光素子7によって測定した光の強度信号によって電界強度を測定する測定回路8と、この測定回路8の電源9とを備える。   Hereinafter, the configuration of the non-contact DC voltage detector 1 according to the first embodiment of the present invention will be described with reference to FIG. The non-contact type DC voltage detector 1 of the present invention is electrically connected to a liquid crystal element 2 whose light transmittance is changed by a potential difference between two electrodes 2A and 2B, and one electrode 2A of the liquid crystal element 2. A measurement electrode panel 3 that receives an electric field, a comparison electrode 4 that is electrically connected to the other electrode 2B of the liquid crystal element 2, a reflector 5 that is disposed on the one electrode 2A side, and the other electrode 2B The light-emitting element 6 arranged on the side, the light-receiving element 7 arranged so that light does not directly enter the light-emitting element 6 on the other electrode 2B side, and the electric field intensity by the intensity signal of the light measured by the light-receiving element 7 And a power source 9 for the measurement circuit 8.

前記液晶素子2は拡大図に示すように、内側面に光透過性の前記電極(透明電極)2A,2Bを転写させた一対のガラス基材2A1,2B1と、これらのガラス基材2A1,2B1によって挟み込まれて互いに90°異なる偏向特性を備える一対の配向膜2C,2Dと、両配向膜2C,2Dの間にスペーサおよび液晶からなる液晶層2Eを配置させた状態で液晶層2Eを封入するシール材2Fとを備えるものである。液晶層2Eは絶縁に優れており、両電極2A,2Bの電位差によって編波面を所定角度ねじ曲げることができるものである。かつ、液晶層2Eはできるだけ低い電位差を検出できるように、その厚さdはできるだけ薄く形成されている。   As shown in the enlarged view, the liquid crystal element 2 includes a pair of glass substrates 2A1, 2B1 having the light-transmitting electrodes (transparent electrodes) 2A, 2B transferred to the inner surface, and these glass substrates 2A1, 2B1. The liquid crystal layer 2E is sealed in a state where a pair of alignment films 2C and 2D having a deflection characteristic different from each other by 90 ° are sandwiched by the liquid crystal layer 2C and a liquid crystal layer 2E made of a spacer and liquid crystal is disposed between the alignment films 2C and 2D. And a sealing material 2F. The liquid crystal layer 2E is excellent in insulation, and the knitted wave surface can be twisted by a predetermined angle by the potential difference between the electrodes 2A and 2B. In addition, the thickness d of the liquid crystal layer 2E is formed as thin as possible so that a potential difference as low as possible can be detected.

前記測定電極パネル3は測定対象から生じる電界の測定方向Xに対してほぼ垂直に配置された状態で電界に曝されるときに、できるだけ多くの電荷を受けることできるように、大きな面積を備える導電率の高いアルミニウムなど金属からなる板状体である。また、この測定電極パネル3は裏面にアクリル樹脂からなるプレート3Aを密着させて、非接触式直流電圧検出器1の全体を覆う例えばABSからなるケース1Aに取り付けられ、リード線3Bによって前記電極2Aに電気的に同電位となるように接続される。   The measurement electrode panel 3 has a large area so that it can receive as much charge as possible when it is exposed to the electric field in a state of being arranged substantially perpendicular to the measurement direction X of the electric field generated from the measurement object. It is a plate-like body made of metal such as high-rate aluminum. The measurement electrode panel 3 is attached to a case 1A made of ABS, for example, which covers the entire contactless DC voltage detector 1 with a plate 3A made of acrylic resin in close contact with the back surface, and the electrode 2A is connected by a lead wire 3B. Are connected so as to have the same electric potential.

本実施形態の比較電極4は測定電極パネル3とほぼ同じ形状であり、大きな面積を備える導電率の高いアルミニウムなどの金属からなる板状体(以下、板状の比較電極4を比較電極パネルともいう)を構成する。また、この比較電極パネル4の裏面には例えば塩化ビニールのプレート4Aを介してケース1Aに取り付けられ、リード線4Bによって前記電極2Bに電気的に接続される。   The comparison electrode 4 of the present embodiment has substantially the same shape as the measurement electrode panel 3, and is a plate-like body made of a metal such as aluminum having a high area and high conductivity (hereinafter, the plate-like comparison electrode 4 is referred to as a comparison electrode panel). Construct). The back surface of the comparison electrode panel 4 is attached to the case 1A via a vinyl chloride plate 4A, for example, and is electrically connected to the electrode 2B by a lead wire 4B.

前記反射板5は液晶素子2の一方の電極2A側に配置されているので他方の電極2B側に配置された発光素子6から生じ液晶素子2を透過した光L1を反射して、再び液晶素子を透過させて受光素子7に入射させることができる。なお、前記反射板5は光L1の反射率の点で優れた鏡面体5Aと電極の間に紙などの光拡散層5Bを備える。   Since the reflection plate 5 is arranged on the one electrode 2A side of the liquid crystal element 2, the light L1 generated from the light emitting element 6 arranged on the other electrode 2B side and transmitted through the liquid crystal element 2 is reflected, and again the liquid crystal element Can be transmitted and incident on the light receiving element 7. The reflector 5 is provided with a light diffusion layer 5B such as paper between the mirror body 5A which is excellent in the reflectance of the light L1 and the electrode.

発光素子6はエネルギー変換効率の優れた発光ダイオードである。また、受光素子7はフォトレジスタであり、発光ダイオード6からの光が直接的に受光素子7に入射しないように、円筒状のゴムパッキン7Aを介して電極2Bに密着するように接続される。   The light emitting element 6 is a light emitting diode excellent in energy conversion efficiency. The light receiving element 7 is a photo-resistor and is connected so as to be in close contact with the electrode 2B through a cylindrical rubber packing 7A so that light from the light emitting diode 6 does not directly enter the light receiving element 7.

本実施形態の制御回路8は、発光素子6および受光素子7が取り付けられる第1基盤8Aと、この第1基盤8Aと電気的に接続された第2基盤8Bと、これらの回路8A、8Bに取り付けられて、受光素子7の測定値から電界を検出する検出回路8Cと、測定電極パネル3に印加するバイアス電圧を調整するバイアス電圧調整部8Dと、このバイアス電圧調整部8Dによって調整されたバイアス電圧を断続的に測定電極パネル3に印加させるバイアス電圧印加スイッチ8Eと、測定した電界強度の設定を行う閾値設定部8Fと、警告を音声またはブザー音によって出力するブザー8Gと、電源スイッチ8Hとを備える。なお、本実施形態では測定回路8を2枚の基盤8A,8Bに分けて形成しているが、これらを一つにまとめて形成してもよく、各信号処理を行う部分8C,8D,8FをIC化して小型化してもよい。   The control circuit 8 of the present embodiment includes a first base 8A to which the light emitting element 6 and the light receiving element 7 are attached, a second base 8B electrically connected to the first base 8A, and the circuits 8A and 8B. A detection circuit 8C that is attached and detects an electric field from a measurement value of the light receiving element 7, a bias voltage adjustment unit 8D that adjusts a bias voltage applied to the measurement electrode panel 3, and a bias that is adjusted by the bias voltage adjustment unit 8D A bias voltage application switch 8E for intermittently applying a voltage to the measurement electrode panel 3, a threshold value setting unit 8F for setting the measured electric field strength, a buzzer 8G for outputting a warning by sound or buzzer sound, and a power switch 8H Is provided. In the present embodiment, the measurement circuit 8 is divided into two substrates 8A and 8B. However, these may be formed as a single unit, and portions 8C, 8D, and 8F that perform signal processing. May be miniaturized by making an IC.

前記電源9は例えばバッテリであり、これによって、非接触式直流電圧検出器1を小型化すると共に可搬性を備える。   The power source 9 is, for example, a battery, thereby reducing the size of the contactless DC voltage detector 1 and providing portability.

前記非接触式直流電圧検出器1は電界の測定方向Xに対して測定電極パネル3と比較電極パネル4が垂直かつ所定の間隔をおいて配置されるときに、両電極パネル3,4によって電界を効果的に受けることができ、その間に電位差を発生させる。このとき、両電極パネル3,4はプレート3A,4Aによってケース1Aに対して適度な絶縁性を保って接触するように構成しているので、帯電電荷が移動でき、その帯電性が向上する。   When the measurement electrode panel 3 and the comparison electrode panel 4 are arranged perpendicular to the measurement direction X of the electric field and spaced apart from each other by a predetermined distance, the non-contact type DC voltage detector 1 Can be effectively received, and a potential difference is generated between them. At this time, since both the electrode panels 3 and 4 are configured to be in contact with the case 1A while maintaining an appropriate insulating property by the plates 3A and 4A, the charged charges can move and the chargeability is improved.

また、両電極パネル3,4が帯電することにより、これらに電気的に接続された液晶素子2の第1および第2の電極2A,2B間には矢印Y方向の電界が発生し、液晶層8Cはこの矢印Y方向の電界に対して垂直に配置された状態でその電界強度に合わせた編波面のねじれを発生させ、電極2A,2Bの偏向特性との組み合わせによって、液晶素子2全体としての光の透過率が測定対象の電界強度に合わせて変動する。とりわけ、第1の電極2Aが液晶層2E以外の部分は完全に浮かせた状態で取り付けられているので、第2電極2Bに対して高絶縁を保つことができ、十分な感度を得ることができる。   Further, when both the electrode panels 3 and 4 are charged, an electric field in the direction of arrow Y is generated between the first and second electrodes 2A and 2B of the liquid crystal element 2 electrically connected thereto, and the liquid crystal layer 8C generates twisting of the knitting wave surface in accordance with the electric field strength in a state of being arranged perpendicular to the electric field in the direction of arrow Y, and by combining with the deflection characteristics of the electrodes 2A and 2B, the liquid crystal element 2 as a whole The light transmittance fluctuates according to the electric field strength of the measurement object. In particular, since the first electrode 2A is attached in a state where the portions other than the liquid crystal layer 2E are completely floated, high insulation can be maintained with respect to the second electrode 2B, and sufficient sensitivity can be obtained. .

前記測定回路8は発光素子6に安定した電力を供給して光L1を発光し、液晶素子2を透過した光L1は反射板5によって反射し、この反射光L2が受光素子7によって測定される。反射板5は鏡面体5Aと光拡散層5Bを備えているので、光L1は効率よく反射するだけでなく拡散した反射光L2を発生させることができ、受光素子7は反射光L2を効率よく測定できる。   The measurement circuit 8 supplies stable power to the light emitting element 6 to emit light L1, and the light L1 transmitted through the liquid crystal element 2 is reflected by the reflecting plate 5, and the reflected light L2 is measured by the light receiving element 7. . Since the reflecting plate 5 includes the mirror body 5A and the light diffusion layer 5B, the light L1 can not only efficiently reflect but also generate diffused reflected light L2, and the light receiving element 7 can efficiently reflect the reflected light L2. It can be measured.

受光素子7によって測定された光の強度は、検出回路8Cによって電界強度に変換され、これが閾値設定部8Fによって設定値に達すると、ブザー8Gが警告音を発生させ、使用者に危険を知らせることができる。   The intensity of light measured by the light receiving element 7 is converted into electric field intensity by the detection circuit 8C, and when this reaches the set value by the threshold setting unit 8F, the buzzer 8G generates a warning sound to notify the user of the danger. Can do.

前記測定電極パネル3は適度に絶縁を保つように取り付けられているので、この測定電極パネル3に何らかの外乱によって不要な電荷が蓄積されることも考えられるが、バイアス電圧印加スイッチ8Eによって測定電極パネル3にバイアス電圧を印加させることが可能であるから測定電極パネル3を用いた電界測定のための準備を速やかに行うことができる。   Since the measurement electrode panel 3 is attached so as to keep insulation moderately, it is considered that unnecessary charges are accumulated in the measurement electrode panel 3 due to some disturbance. However, the measurement electrode panel is measured by the bias voltage application switch 8E. 3 can be applied with a bias voltage, so that preparation for electric field measurement using the measurement electrode panel 3 can be quickly made.

図2、図3は前記非接触式直流電圧検出器1のセンサ部Suの構成をユニット化した例を示す図である。このセンサ部Suは、前記液晶素子2、発光素子6、受光素子7をほぼ密封された合成樹脂からなる容器形状のケース1B内に収容し、このケース1Bの表面は測定電極パネル3によって覆われており、この測定電極パネル3によって電界遮蔽層Sを形成している。液晶素子2の一方の電極2Aは前記測定電極パネル3、他方の電極2Bには発光素子6のコモン電源ラインを比較電極4として接続している。   2 and 3 are diagrams showing an example in which the configuration of the sensor unit Su of the non-contact type DC voltage detector 1 is unitized. The sensor unit Su houses the liquid crystal element 2, the light emitting element 6, and the light receiving element 7 in a container-shaped case 1 B made of a substantially sealed synthetic resin, and the surface of the case 1 B is covered with the measurement electrode panel 3. The electric field shielding layer S is formed by the measurement electrode panel 3. One electrode 2A of the liquid crystal element 2 is connected to the measurement electrode panel 3, and the other electrode 2B is connected to a common power line of the light emitting element 6 as a comparison electrode 4.

前記電界遮蔽層Sによって覆われた容器内においては外部の電界の影響が及ばないので、液晶素子2の動作が安定する。また、電極2Bにはコモン(負極)電源ラインComが比較電極4として接続されているので、その電位も安定し、測定電極パネル3によって受け止める電界を高精度に測定することができる。なお、Vccは正極電源ライン、Sigはセンサ信号出力部である。また、図3の回路は最もシンプルな検出回路8C(図1参照)を形成する例を示しているが、この検出回路8Cにはセンサ部Su内に受光素子7の出力を用いて電界測定値を求めてこれをセンサ信号として出力する直線化演算部(リニアライザ)を含めてもよいことは言うまでもない。   In the container covered with the electric field shielding layer S, the influence of the external electric field is not exerted, so that the operation of the liquid crystal element 2 is stabilized. Further, since the common (negative electrode) power supply line Com is connected to the electrode 2B as the comparison electrode 4, the electric potential thereof is stabilized, and the electric field received by the measurement electrode panel 3 can be measured with high accuracy. Vcc is a positive power supply line, and Sig is a sensor signal output unit. 3 shows an example in which the simplest detection circuit 8C (see FIG. 1) is formed. This detection circuit 8C uses the output of the light receiving element 7 in the sensor unit Su to measure the electric field. Needless to say, a linearization calculation unit (linearizer) that obtains and outputs this as a sensor signal may be included.

図4は前記構成の非接触式直流電圧検出器1の電気的な特性を説明する図である。図4に示すように、測定対象の電位Pの変化に伴ってその電界の影響で測定電極パネル3が比較電極4に比べて正の電位となるとき、実線f1に示すように、電界測定信号Fは電位Pの大きさに応じて大きな値を出力する。しかしながら、測定電極パネル3が比較電極4に対して負の電位となるにも、電界測定信号Fは破線f2に示すように、正であるときと同様の測定信号Fを出力する。つまり、液晶素子2を用いた電界測定では、測定対象の電位Pに正負の区別がなく、両電極2A,2Bの電位差の絶対値によって出力を得ることができる。   FIG. 4 is a diagram for explaining electrical characteristics of the non-contact type DC voltage detector 1 having the above-described configuration. As shown in FIG. 4, when the measurement electrode panel 3 becomes a positive potential compared to the comparison electrode 4 due to the influence of the electric field in accordance with the change in the potential P to be measured, as shown by the solid line f1, the electric field measurement signal F outputs a large value according to the magnitude of the potential P. However, even when the measurement electrode panel 3 has a negative potential with respect to the comparison electrode 4, the electric field measurement signal F outputs the same measurement signal F as when it is positive, as indicated by the broken line f2. That is, in the electric field measurement using the liquid crystal element 2, there is no distinction between positive and negative in the potential P to be measured, and an output can be obtained by the absolute value of the potential difference between the electrodes 2A and 2B.

図5,図6は電界の測定感度に正負の判別を付けるように構成した第2実施形態にかかる非接触式直流電圧検出器10の構成を示す図である。この非接触式直流電圧検出器10では、2個のセンサ部Su1,Su2を電界の測定方向Xに並べて配置し、各センサ部Su1,Su2間をABS樹脂からなる板状のセンサセパレータ11によって分離させている。   5 and 6 are diagrams showing the configuration of the non-contact type DC voltage detector 10 according to the second embodiment configured to make a positive / negative discrimination in the electric field measurement sensitivity. In this non-contact DC voltage detector 10, two sensor parts Su1, Su2 are arranged side by side in the electric field measurement direction X, and the sensor parts Su1, Su2 are separated by a plate-shaped sensor separator 11 made of ABS resin. I am letting.

また、12は本実施形態の非接触式直流電圧検出器10の測定回路であり、この測定回路12には測定対象に対して前方のセンサ部Su1にのみバイアス電圧を印加させるバイアス印加部としてのバイアス電極13が取り付けられている。本実施形態の電界遮蔽層Sは測定対象に対面する面だけに開口部を備える容器10Aの外壁を覆うように取り付けられたアルミフィルムであり、この電界遮蔽層Sは前記測定回路12のコモン電源ラインに接続されている。なお、その他の構成で図1〜図4と同じまたは同等の部材については同じ符号を付すことにより、その詳細な説明を省略する。   Reference numeral 12 denotes a measurement circuit of the non-contact DC voltage detector 10 according to the present embodiment. The measurement circuit 12 serves as a bias application unit that applies a bias voltage only to the front sensor unit Su1 with respect to the measurement target. A bias electrode 13 is attached. The electric field shielding layer S of the present embodiment is an aluminum film attached so as to cover the outer wall of the container 10A having an opening only on the surface facing the measurement object. The electric field shielding layer S is a common power source for the measurement circuit 12. Connected to the line. In addition, detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol about the member which is the same as that of FIGS.

図6に示すように、14はバッテリ9から得られる電力を安定した直流電圧に調整する電圧安定化回路、15は前記バイアス電極13に印加させるマイナス方向の電圧を生成する電圧調節部、16は両センサ部Su1,Su2の出力の差分を計算する演算回路、17は演算回路の出力を所定の閾値Thと比較する比較回路、18は比較回路17の出力が閾値Thを越えて警告レベルとなったときにブザー8Gを駆動する電力を供給する駆動回路、19はトランジスタなどを用いたスイッチ回路である。   As shown in FIG. 6, 14 is a voltage stabilization circuit that adjusts the power obtained from the battery 9 to a stable DC voltage, 15 is a voltage adjustment unit that generates a negative voltage to be applied to the bias electrode 13, and 16 is An arithmetic circuit for calculating the difference between the outputs of the two sensor units Su1 and Su2, 17 is a comparator for comparing the output of the arithmetic circuit with a predetermined threshold Th, and 18 is an alarm level when the output of the comparator 17 exceeds the threshold Th. A drive circuit for supplying electric power for driving the buzzer 8G when it is turned on, and a switch circuit 19 using a transistor or the like.

上記構成の非接触式直流電圧検出器10は測定前にバイアス電極13を第1のセンサ部Su1の測定電極パネル3に接触させてこれにマイナス方向の電圧を帯電させ、センサ部Su1,Su2のリセットをかけた後に、非接触式直流電圧検出器10の開口部を測定対象に向けることにより、各センサ部Su1,Su2の電位を測定対象の電位Pに合わせて変動させてその電位Pが閾値を超えるときに警告音を出力させることができる。   The non-contact type DC voltage detector 10 having the above-described configuration brings the bias electrode 13 into contact with the measurement electrode panel 3 of the first sensor unit Su1 before measurement, and charges the negative voltage to the sensor electrode Su1, Su2. After resetting, by directing the opening of the non-contact type DC voltage detector 10 toward the measurement object, the potential of each sensor unit Su1, Su2 is changed in accordance with the potential P of the measurement object, and the potential P is a threshold value. A warning sound can be output when exceeding.

図7(A),図7(B)は前記非接触式直流電圧検出器10の電気的な特性を説明する図であり、測定対象の電位Pが基準電位に対して正負の変化をするときに、センサ部Su1,Su2によって測定された測定信号F1,F2はそれぞれf3,f4に示すように変化する。また、第1のセンサ部Su1による電界強度の測定値から第2のセンサ部Su2による電界強度の測定値を減算した差Subの値が閾値Th1,Th2を越えて小さくなるときに警告を出力することにより、測定対象の電位Pが前記閾値Th1,Th2に対応する閾値Pt1,Pt2以上のときのみ警告ブザー8Gを用いて警告音を発生させることができる。   FIGS. 7A and 7B are diagrams for explaining the electrical characteristics of the non-contact type DC voltage detector 10. When the potential P to be measured changes positively and negatively with respect to the reference potential. In addition, the measurement signals F1 and F2 measured by the sensor units Su1 and Su2 change as indicated by f3 and f4, respectively. Further, a warning is output when the value of the difference Sub obtained by subtracting the measured value of the electric field intensity by the second sensor unit Su2 from the measured value of the electric field intensity by the first sensor unit Su1 becomes smaller than the threshold values Th1 and Th2. Thus, a warning sound can be generated using the warning buzzer 8G only when the potential P to be measured is equal to or higher than the threshold values Pt1 and Pt2 corresponding to the threshold values Th1 and Th2.

また、2つのセンサ部Su1,Su2の差Subの値を用いて測定を行っているので、センサ部Su1,Su2に外乱によるノイズNが含まれているときにも、その影響を相殺できるので、より精度の高い検出を行うことができる。   In addition, since the measurement is performed using the value of the difference Sub between the two sensor units Su1, Su2, even when the sensor unit Su1, Su2 includes noise N due to disturbance, the influence can be offset. More accurate detection can be performed.

図8、図9は第3実施形態に係る非接触式直流電圧検出器20の構成を示す図であり、液晶素子2の一方の電極2Aに電気的に接続された第1の測定電極パネル21と、他方の電極2Bに電気的に接続された第2の測定電極パネル22と、これらの測定電極パネル21,22を電界の検出方向Xにほぼ垂直に配置した状態で両測定電極パネル21,22に取付けられた互いに異なる比誘電率の第1の誘電体23および第2の誘電体24と、これらの誘電体23,24の両方に接すると共にコモン電源ラインに接続された比較電極25と、前記液晶素子2、発光素子6、受光素子7に加えて直線化演算部を備えるセンサ部26と、前記受光素子によって検出した光の強度信号によって電界強度を測定する測定回路27とを備える。その他の構成は図1〜6を用いてすでに詳述した構成と同一または同等であるから同じ符号を付すことにより、その詳細な説明を省略する。   FIG. 8 and FIG. 9 are diagrams showing the configuration of the non-contact type DC voltage detector 20 according to the third embodiment, and the first measurement electrode panel 21 electrically connected to one electrode 2A of the liquid crystal element 2. A second measurement electrode panel 22 electrically connected to the other electrode 2B, and the two measurement electrode panels 21, 22 in a state where these measurement electrode panels 21 and 22 are arranged substantially perpendicular to the electric field detection direction X. 22, a first dielectric 23 and a second dielectric 24 having different relative dielectric constants, and a reference electrode 25 in contact with both of the dielectrics 23 and 24 and connected to a common power line, In addition to the liquid crystal element 2, the light emitting element 6, and the light receiving element 7, a sensor unit 26 that includes a linearization calculation unit, and a measurement circuit 27 that measures the electric field strength using an intensity signal of light detected by the light receiving element are provided. Other configurations are the same as or equivalent to those already described in detail with reference to FIGS.

前記測定電極パネル21,22は何れもアルミなどの導電体からなる板状体であり、測定端において電界の測定方向Xに対して垂直に配置されている。また、両測定電極パネル21,22は比較電極25に対して間隔d1,d2を開けて配置されおり、かつ、測定電極パネル21,22と比較電極25の間は誘電率が異なる誘電体23,24で満たされている。各測定電極パネル21,22と比較電極25の間には誘電体23,24が介在しており、この測定電極パネル21,22に電荷を帯電できる程度に絶縁を保って接続されている。   The measurement electrode panels 21 and 22 are both plate-like bodies made of a conductor such as aluminum, and are arranged perpendicular to the electric field measurement direction X at the measurement end. In addition, the measurement electrode panels 21 and 22 are arranged at intervals d1 and d2 with respect to the comparison electrode 25, and the dielectrics 23 and 22 having different dielectric constants between the measurement electrode panels 21 and 22 and the comparison electrode 25 are provided. It is filled with 24. Dielectrics 23 and 24 are interposed between the measurement electrode panels 21 and 22 and the comparison electrode 25, and the measurement electrode panels 21 and 22 are connected with insulation to such an extent that charges can be charged.

なお、本実施形態では両間隔d1,d2を同程度として測定端における凹凸を防止し、誘電体23,24の誘電率を異ならせることにより、測定電極パネル21,22に帯電する電荷に差が生じるようにして電位差を発生しているが、前記間隔d1,d2を異ならせることによって電位差を発生させるようにしてもよい。この場合、誘電体23,24の誘電率は同じであってもよい。また、測定電極パネル21,22を測定方向Xに互いに間隔を開けて重ねるように配置してもよい。   In the present embodiment, the distances d1 and d2 are set to be approximately the same to prevent unevenness at the measurement end, and the dielectric constants of the dielectrics 23 and 24 are made different so that the charge charged to the measurement electrode panels 21 and 22 is different. Although the potential difference is generated as described above, the potential difference may be generated by making the distances d1 and d2 different. In this case, the dielectric constants of the dielectrics 23 and 24 may be the same. Further, the measurement electrode panels 21 and 22 may be arranged so as to overlap each other in the measurement direction X with a space therebetween.

前記比較電極25はコモン電源ラインに接続されると共に電界遮蔽層Sに連接されているので、測定方向Xと異なる方向からの電界の影響がセンサ部26および測定回路27に及ぶことがない。また、本実施形態の測定回路27は電圧安定化回路27Aを備え、センサ部26に安定した電力を供給すると共に、センサ部26による測定値をそのままアナログ信号Soutとして出力するものである。   Since the comparison electrode 25 is connected to the common power supply line and connected to the electric field shielding layer S, the influence of the electric field from a direction different from the measurement direction X does not reach the sensor unit 26 and the measurement circuit 27. In addition, the measurement circuit 27 of the present embodiment includes a voltage stabilization circuit 27A, supplies stable power to the sensor unit 26, and outputs a measurement value from the sensor unit 26 as it is as an analog signal Sout.

前記非接触式直流電圧検出器20を電界の測定方向Xに対して垂直に電界内に配置すると、誘電体23,24の誘電体の違いに伴って両測定電極パネル21,22間に電位差が発生し、この電位差により液晶素子2の光透過率を変化するので、センサ部26はこの光透過率の変化を用いてセンサ信号Sigを出力し、測定回路27は測定対象の電位Pを示すアナログ信号Soutを出力することができる。   When the non-contact type DC voltage detector 20 is arranged in the electric field perpendicular to the electric field measurement direction X, a potential difference is generated between the measurement electrode panels 21 and 22 due to the difference in the dielectrics 23 and 24. Since the light transmittance of the liquid crystal element 2 is changed by this potential difference, the sensor unit 26 outputs a sensor signal Sig using the change of the light transmittance, and the measurement circuit 27 is an analog indicating the potential P to be measured. The signal Sout can be output.

上記構成によれば、測定端を除いて全てがコモン電源ラインの電位を基準に安定した測定を行うことができるので、外乱の影響をほぼ完全に除去することができる。   According to the above configuration, since all can perform stable measurement except for the measurement end with reference to the potential of the common power supply line, the influence of disturbance can be almost completely eliminated.

図10は前記非接触式直流電圧検出器1,10,20の何れかを用いた警報装置30の例を示す図である。この警報装置30は作業者の頭を保護するヘルメット31と、このヘルメット31の鍔に取り付けられた非接触式直流電圧検出器1(10,20)とからなり、この非接触式直流電圧検出器1(10,20)にはその前面などの露出部に電源スイッチSwを備え、その上面に測定電極パネル3(21,22)を備える。   FIG. 10 is a diagram showing an example of an alarm device 30 using any one of the non-contact type DC voltage detectors 1, 10, and 20. The alarm device 30 includes a helmet 31 that protects the operator's head and a non-contact type DC voltage detector 1 (10, 20) attached to the helmet 31. The non-contact type DC voltage detector. 1 (10, 20) includes a power switch Sw on an exposed portion such as a front surface thereof, and a measurement electrode panel 3 (21, 22) on an upper surface thereof.

前記警報装置30を装着して作業を行うことにより、高電圧が印加されている部分が頭上に近づいたときにこれを検知し、非接触式直流電圧検出器1(10)にブザー8Gが備えられている場合には、これを警告音によって作業者に知らせることができる。また、非接触式直流電圧検出器20がブザー8Gを備えない場合には、図外の表示部に測定電位Pや測定電界Fを表示させたり、高電位を検出したときに音声その他の方法で作業者に危険を知らせる警報装置を設けてもよい。   By performing the work with the alarm device 30 attached, when a portion where a high voltage is applied approaches the head, this is detected, and the buzzer 8G is provided in the non-contact type DC voltage detector 1 (10). If this is the case, this can be notified to the operator by a warning sound. Further, when the non-contact type DC voltage detector 20 does not include the buzzer 8G, the measurement potential P and the measurement electric field F are displayed on the display unit not shown, or when a high potential is detected, the voice or other methods are used. You may provide the alarm device which notifies an operator of danger.

図11は第4実施形態のの非接触式直流電圧検出器40を示す図である。本実施形態において、測定電極パネル3は棒体41の一端側、比較電極パネル4は棒体41の多端側に取り付けられて、棒体41の両端部をそれぞれ覆うように取り付けられている。また、棒体41の内部に前記液晶素子、発光素子、受光素子およびその周辺回路を備える測定回路42を設けている。そのほかの構成については既に詳述したものと同じであるので、その詳細な説明を省略する。   FIG. 11 is a diagram showing a non-contact DC voltage detector 40 according to the fourth embodiment. In the present embodiment, the measurement electrode panel 3 is attached to one end side of the rod body 41 and the comparison electrode panel 4 is attached to the multi-end side of the rod body 41 so as to cover both ends of the rod body 41. Further, a measuring circuit 42 including the liquid crystal element, the light emitting element, the light receiving element and its peripheral circuit is provided inside the rod body 41. Since other configurations are the same as those already described in detail, detailed description thereof is omitted.

本実施形態のように電極パネル3,4間を棒体41の両端部に設けることにより、作業者は棒体41を電界の測定方向Xに向けることにより、両電極パネル3、4間の電位差が発生して、その電界強度(測定対象の電位)を測定することができる。   By providing between the electrode panels 3 and 4 at both ends of the bar 41 as in the present embodiment, the operator orients the bar 41 in the electric field measurement direction X, so that the potential difference between the electrode panels 3 and 4 is increased. Is generated, and the electric field strength (the potential to be measured) can be measured.

図12、図13は第5実施形態の非接触式直流電圧検出器50を示す図である。この非接触式直流電圧検出器50は棒体51の先端部に前記センサ部Suと、このセンサ部Suの測定電極パネルにバイアス電圧を印加させるためのバイアス印加部52とを備え、棒体51の基端部に測定回路53と、電源スイッチ54と、前記比較電極4の一例としてアース線55を基準電位電極として接続する接続部56と、増幅率調節部57とを備える。また、この実施形態ではその他の構成は図1〜図11において既に詳述した構成と同じまたは同等の部材であるから、同一の符号を付すことにより、その詳細な説明を省略する。   12 and 13 are diagrams showing a non-contact type DC voltage detector 50 of the fifth embodiment. This non-contact DC voltage detector 50 includes the sensor unit Su at the tip of a bar 51 and a bias application unit 52 for applying a bias voltage to the measurement electrode panel of the sensor unit Su. Are provided with a measuring circuit 53, a power switch 54, a connecting portion 56 for connecting a ground wire 55 as a reference potential electrode as an example of the comparison electrode 4, and an amplification factor adjusting portion 57. Further, in this embodiment, the other components are the same or equivalent members as those already described in detail with reference to FIGS. 1 to 11, and thus detailed description thereof will be omitted by attaching the same reference numerals.

前記棒体51は例えば塩化ビニールからなる略1mの長さを備えるものであり、その内部に測定回路などを形成することができる筒体であることが好ましく、これは絶縁性を備えるものであれば紙筒であってもよい。   The rod body 51 is made of, for example, vinyl chloride and has a length of about 1 m, and is preferably a cylindrical body in which a measurement circuit or the like can be formed. It may be a paper tube.

前記バイアス印加部52は操作スイッチ52aと、操作スイッチ52aに直列に接続されたリレーコイル52bと、このリレーコイル52bに電流を流したときにオン状態になるリレー接点52cと、リード線52dとを備え、このリレー接点52cおよびリード線52dを介して電圧調整部15によって調整されたバイアス電圧を測定電極パネル3に印加させるものである。このリレー接点52c(すなわち電磁リレーのリレーコイル52bを含む)およびリード線52dはできるだけセンサ部Suの近くに設け、可能な限り棒体51の先端部に設けることが好ましく、棒体51の基端部側の前記検出器回路53と電源配線によって接続されることが好ましい。   The bias applying unit 52 includes an operation switch 52a, a relay coil 52b connected in series to the operation switch 52a, a relay contact 52c that is turned on when a current flows through the relay coil 52b, and a lead wire 52d. The bias voltage adjusted by the voltage adjusting unit 15 is applied to the measurement electrode panel 3 through the relay contact 52c and the lead wire 52d. The relay contact 52c (that is, including the relay coil 52b of the electromagnetic relay) and the lead wire 52d are preferably provided as close to the sensor unit Su as possible, and are preferably provided at the distal end portion of the rod body 51 as much as possible. It is preferable to be connected to the detector circuit 53 on the part side by power supply wiring.

また、本実施形態の接続部56は前記センサ部Suによるセンサ出力確認端子を兼ねる。さらに、前記増幅率調節部57は、例えば切替スイッチ57aと基本増幅率を定める可変抵抗57bと、切替スイッチ57aによって選択されて互いに抵抗値の異なる複数の抵抗57cとからなり、前記比較回路17における入力側の増幅率を定めるものとなる。   Moreover, the connection part 56 of this embodiment serves also as the sensor output confirmation terminal by the said sensor part Su. Further, the amplification factor adjusting unit 57 includes, for example, a changeover switch 57a, a variable resistor 57b that determines a basic amplification factor, and a plurality of resistors 57c that are selected by the changeover switch 57a and have different resistance values. The gain on the input side is determined.

作業者は前記アース線55を大地に接触させて測定回路53のコモン電源ラインをアース電位に安定させた状態で電源スイッチ54を操作して非接触式直流電圧検出器50の先端部を測定対象に向けることにより、測定対象からの電界をセンサ部Suによって受けて、その電位Pをより正確に測定することができる。本実施形態のようにセンサ部Suのユニットを独立構造としたことにより、不要帯電の影響を少なくすることができ、より安定した測定を行うことができる。また、不要帯電の影響が大きくなったときには、棒体51を測定対象に向けない状態で操作スイッチ52aを押してこれをオン状態にすることにより、リレーコイル52bをON状態にしてリレー接点52cを介してバイアス電圧を測定電極パネル3に印加させることにより、この状態をリセットすることができる。   An operator operates the power switch 54 in a state where the ground wire 55 is brought into contact with the ground and the common power line of the measurement circuit 53 is stabilized at the ground potential, and the tip of the non-contact type DC voltage detector 50 is measured. The electric field from the measurement object is received by the sensor unit Su, and the potential P can be measured more accurately. Since the unit of the sensor unit Su has an independent structure as in the present embodiment, the influence of unnecessary charging can be reduced, and more stable measurement can be performed. Further, when the influence of unnecessary charging becomes large, the relay coil 52b is turned on via the relay contact 52c by pressing the operation switch 52a without turning the rod 51 toward the measurement object to turn it on. This state can be reset by applying a bias voltage to the measurement electrode panel 3.

また、作業者の衣服などによって発生する静電気の影響が大きな環境では前記切替スイッチ57aによって感度調整を行うことにより、環境変化による式位置の調整を行って不要動作を防止することが可能となる。本実施形態では3段階の感度調整を可能としているが、基本的に2段階目の感度によって操作し、電源投入をした後、検出対象に対して基準となる箇所、例えば、地面、レールなどの近傍に検出器の先端部を近づけてバイアス電圧印加の操作スイッチ52aを押した後に、検出器の先端部を検出対象のき電線、トロリ線などへ接近させて対象の電圧加圧状態を遠隔にて検出することができる。   In an environment where the influence of static electricity generated by an operator's clothes or the like is large, sensitivity adjustment is performed by the changeover switch 57a, thereby making it possible to prevent unnecessary operations by adjusting the expression position due to environmental changes. In this embodiment, three levels of sensitivity adjustment are possible. Basically, after operating with the sensitivity of the second level and turning on the power, a reference point for the detection target, for example, the ground, rail, etc. Move the tip of the detector close to it and press the bias voltage application operation switch 52a, then bring the tip of the detector close to the feeder or trolley wire to be detected, and remotely pressurize the target voltage. Can be detected.

なお、本実施形態では接続部56にアース線55を接続する例を示しているが、この接続部56が棒体51の基端部に設けているので、アース線55を省略して使用者の身体などを基準電位としてもよく、その他の比較電極4を接続するようにしてもよい。また、上述の実施形態ではバイアス印加部52の接点を機械式のリレー接点52cとすることにより帯電電荷のリークを避けながら、手元の操作スイッチ52aによるバイアス電圧の印加を可能とし、かつ、物理的な接点をユニット化して堅牢性および防水性を向上しているが、バイアス印加部52は物理的に測定電極パネル3に接触可能な電極によって接点を形成するものであってもよい。   In the present embodiment, an example in which the ground wire 55 is connected to the connection portion 56 is shown. However, since the connection portion 56 is provided at the proximal end portion of the rod 51, the ground wire 55 is omitted and the user is omitted. The body or the like may be used as a reference potential, and other comparison electrodes 4 may be connected. Further, in the above-described embodiment, the bias application unit 52 is a mechanical relay contact 52c, so that a bias voltage can be applied by the operation switch 52a at hand while avoiding leakage of charged charges, However, the bias application unit 52 may be formed by an electrode that can physically contact the measurement electrode panel 3.

1,10,20,40,50 非接触式直流電圧検出器
2 液晶素子
2A,2B 電極
3,21,22 測定電極パネル
4 比較電極
5 反射板
6 発光素子
7 受光素子
8G 警告出力部
13,52 バイアス印加部
52a 接点
23,24 誘電体
S 電界遮蔽層
Su1,Su2 センサ部
1, 10, 20, 40, 50 Non-contact DC voltage detector 2 Liquid crystal element 2A, 2B Electrode 3, 21, 22 Measuring electrode panel 4 Reference electrode 5 Reflecting plate 6 Light emitting element 7 Light receiving element 8G Warning output unit 13, 52 Bias application part 52a Contact 23, 24 Dielectric S Electric field shielding layer Su1, Su2 Sensor part

Claims (6)

二枚の電極の電位差によって光の透過率が変化する液晶素子と、
この液晶素子の一方の電極に電気的に接続されて電界を受ける測定電極パネルと、
前記液晶素子の他方の電極に電気的に接続された比較電極と、
前記一方の電極側に配置された反射板と、
前記他方の電極側に配置された発光素子と、
前記他方の電極側に前記発光素子から直接光が入射しないように配置された受光素子と、
受光素子によって測定した光の強度信号によって電界強度を測定する測定回路とを備えることを特徴とする非接触式直流電圧検出器。
A liquid crystal element in which the light transmittance changes depending on the potential difference between the two electrodes;
A measurement electrode panel that is electrically connected to one electrode of the liquid crystal element and receives an electric field;
A reference electrode electrically connected to the other electrode of the liquid crystal element;
A reflector disposed on the one electrode side;
A light emitting device disposed on the other electrode side;
A light receiving element disposed so that light is not directly incident on the other electrode side from the light emitting element;
A non-contact type DC voltage detector, comprising: a measurement circuit that measures an electric field intensity based on an intensity signal of light measured by a light receiving element.
少なくとも、前記液晶素子、発光素子、受光素子の全体を覆う容器状に形成された電界遮蔽層を備える請求項1に記載の非接触式直流電圧検出器。   The non-contact type DC voltage detector according to claim 1, further comprising an electric field shielding layer formed in a container shape that covers at least the liquid crystal element, the light emitting element, and the light receiving element. 前記液晶素子、測定電極パネル、比較電極、発光素子および受光素子をそれぞれ備える第1のセンサ部および第2のセンサ部を電界の検出方向の前後に並べて有し、前記測定回路は第1のセンサ部の測定電極のみに負のバイアス電圧を印加した状態で第1のセンサ部による電界強度の測定値から第2のセンサ部による電界強度の測定値を減算した値が所定の閾値以下であるときに警告を出力する警告出力部を備える請求項1または請求項2に記載の非接触式直流電圧検出器。   A first sensor unit and a second sensor unit each including the liquid crystal element, a measurement electrode panel, a comparison electrode, a light emitting element, and a light receiving element are arranged side by side in the electric field detection direction, and the measurement circuit is a first sensor When a value obtained by subtracting the measured value of the electric field strength by the second sensor unit from the measured value of the electric field strength by the first sensor unit in a state where a negative bias voltage is applied only to the measuring electrode of the unit is less than a predetermined threshold value The non-contact type DC voltage detector according to claim 1, further comprising a warning output unit that outputs a warning to the terminal. 所定のバイアス電圧を印加した状態で前記測定電極パネルに接触可能な接点を備えるバイアス印加部と、先端部に前記液晶素子および測定電極パネルが配置され基端部に前記比較電極として基準電位電極の接続部が配置された棒体と、前記電界強度の測定値が所定の閾値以上であるときに警告を出力する警告出力部を備える請求項1または請求項2に記載の非接触式直流電圧検出器。   A bias applying unit having a contact that can contact the measurement electrode panel in a state where a predetermined bias voltage is applied, and the liquid crystal element and the measurement electrode panel are arranged at a distal end portion, and a reference potential electrode as a comparison electrode at a base end portion. The non-contact type DC voltage detection according to claim 1 or 2, further comprising: a rod body in which a connecting portion is disposed; and a warning output unit that outputs a warning when the measured value of the electric field strength is equal to or greater than a predetermined threshold value. vessel. 二枚の電極の電位差によって光の透過率が変化する液晶素子と、
この液晶素子の一方の電極に電気的に接続された第1の測定電極パネルと、
前記液晶素子の他方の電極に電気的に接続された第2の測定電極パネルと、
これらの測定電極パネルを電界の検出方向にほぼ垂直に配置した状態で両測定電極パネルに取付けられた第1の誘電体および第2の誘電体と、
これらの誘電体の両方または何れか一方に接すると共に基準電圧源に接続された比較電極と、
前記一方の電極側に配置された反射板と、
前記他方の電極側に配置された発光素子と、
前記他方の電極側に前記発光素子から直接光が入射しないように配置された受光素子と、
受光素子によって検出した光の強度信号によって電界強度を測定する測定回路とを備えることを特徴とする非接触式直流電圧検出器。
A liquid crystal element in which the light transmittance changes depending on the potential difference between the two electrodes;
A first measurement electrode panel electrically connected to one electrode of the liquid crystal element;
A second measurement electrode panel electrically connected to the other electrode of the liquid crystal element;
A first dielectric and a second dielectric attached to both measurement electrode panels in a state in which these measurement electrode panels are arranged substantially perpendicular to the electric field detection direction;
A reference electrode in contact with one or both of these dielectrics and connected to a reference voltage source;
A reflector disposed on the one electrode side;
A light emitting device disposed on the other electrode side;
A light receiving element disposed so that light is not directly incident on the other electrode side from the light emitting element;
A non-contact type DC voltage detector, comprising: a measurement circuit that measures an electric field intensity based on an intensity signal of light detected by a light receiving element.
前記比較電極に電気的に接続され前記測定電極パネル用の開口部を除いて液晶素子の全体を覆う容器状に形成された電界遮蔽層を備える請求項5に記載の非接触式直流電圧検出器。   The non-contact type DC voltage detector according to claim 5, further comprising an electric field shielding layer formed in a container shape that is electrically connected to the comparison electrode and covers the entire liquid crystal element except for the opening for the measurement electrode panel. .
JP2010169088A 2010-07-28 2010-07-28 Non-contact DC voltage detector Active JP5674369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169088A JP5674369B2 (en) 2010-07-28 2010-07-28 Non-contact DC voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169088A JP5674369B2 (en) 2010-07-28 2010-07-28 Non-contact DC voltage detector

Publications (2)

Publication Number Publication Date
JP2012032153A true JP2012032153A (en) 2012-02-16
JP5674369B2 JP5674369B2 (en) 2015-02-25

Family

ID=45845762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169088A Active JP5674369B2 (en) 2010-07-28 2010-07-28 Non-contact DC voltage detector

Country Status (1)

Country Link
JP (1) JP5674369B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121939A (en) * 2014-12-25 2016-07-07 西日本旅客鉄道株式会社 Dc voltage detector for overhead contact line
CN110308413A (en) * 2019-08-08 2019-10-08 上海安平静电科技有限公司 A kind of contactless static detector calibrating installation and calibration method
CN114779147A (en) * 2022-04-07 2022-07-22 中国工程物理研究院计量测试中心 Remote control non-contact type electrostatic voltmeter calibration method
CN115308475A (en) * 2022-10-08 2022-11-08 南方电网数字电网研究院有限公司 Voltage measuring method, voltage measuring circuit and voltage measuring device
CN115808578A (en) * 2022-12-02 2023-03-17 南方电网数字电网研究院有限公司 Voltage acquisition method, device, equipment and storage medium for power equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184465A (en) * 1985-02-13 1986-08-18 Toshiba Corp Charging detection apparatus
JPS62135778A (en) * 1985-12-09 1987-06-18 Katsumi Yoshino Method and element for detecting electric field and magnetic field for which ferroelectric liquid crystal
JPS6321568A (en) * 1986-07-16 1988-01-29 Takaoka Ind Ltd Loaded power display
JPS6430449U (en) * 1987-08-13 1989-02-23
JPH08327679A (en) * 1995-05-29 1996-12-13 Fujikura Ltd Liquid crystal detector
JPH0961476A (en) * 1995-08-23 1997-03-07 Japan Aviation Electron Ind Ltd Liquid crystal electric field sensor
JP2000356654A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Voltage sensor
JP2001159644A (en) * 1999-12-01 2001-06-12 Mitsubishi Electric Corp Voltage sensor
JP2003232823A (en) * 2002-02-12 2003-08-22 Atsushi Nakazoe Potential measuring element
JP2006153631A (en) * 2004-11-29 2006-06-15 Hokuto Denshi Kogyo Kk Surface potential measuring method and surface potential meter
JP2010010870A (en) * 2008-06-25 2010-01-14 Audio Technica Corp Method of measuring surface voltage of electret and device therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184465A (en) * 1985-02-13 1986-08-18 Toshiba Corp Charging detection apparatus
JPS62135778A (en) * 1985-12-09 1987-06-18 Katsumi Yoshino Method and element for detecting electric field and magnetic field for which ferroelectric liquid crystal
JPS6321568A (en) * 1986-07-16 1988-01-29 Takaoka Ind Ltd Loaded power display
JPS6430449U (en) * 1987-08-13 1989-02-23
JPH08327679A (en) * 1995-05-29 1996-12-13 Fujikura Ltd Liquid crystal detector
JPH0961476A (en) * 1995-08-23 1997-03-07 Japan Aviation Electron Ind Ltd Liquid crystal electric field sensor
JP2000356654A (en) * 1999-06-15 2000-12-26 Mitsubishi Electric Corp Voltage sensor
JP2001159644A (en) * 1999-12-01 2001-06-12 Mitsubishi Electric Corp Voltage sensor
JP2003232823A (en) * 2002-02-12 2003-08-22 Atsushi Nakazoe Potential measuring element
JP2006153631A (en) * 2004-11-29 2006-06-15 Hokuto Denshi Kogyo Kk Surface potential measuring method and surface potential meter
JP2010010870A (en) * 2008-06-25 2010-01-14 Audio Technica Corp Method of measuring surface voltage of electret and device therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121939A (en) * 2014-12-25 2016-07-07 西日本旅客鉄道株式会社 Dc voltage detector for overhead contact line
CN110308413A (en) * 2019-08-08 2019-10-08 上海安平静电科技有限公司 A kind of contactless static detector calibrating installation and calibration method
CN114779147A (en) * 2022-04-07 2022-07-22 中国工程物理研究院计量测试中心 Remote control non-contact type electrostatic voltmeter calibration method
CN114779147B (en) * 2022-04-07 2022-11-22 中国工程物理研究院计量测试中心 Remote control non-contact type electrostatic voltmeter calibration method
CN115308475A (en) * 2022-10-08 2022-11-08 南方电网数字电网研究院有限公司 Voltage measuring method, voltage measuring circuit and voltage measuring device
CN115308475B (en) * 2022-10-08 2023-01-20 南方电网数字电网研究院有限公司 Voltage measurement method, voltage measurement circuit and voltage measurement device
CN115808578A (en) * 2022-12-02 2023-03-17 南方电网数字电网研究院有限公司 Voltage acquisition method, device, equipment and storage medium for power equipment
CN115808578B (en) * 2022-12-02 2023-12-12 南方电网数字电网研究院有限公司 Method, device, equipment and storage medium for acquiring voltage of power equipment

Also Published As

Publication number Publication date
JP5674369B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5674369B2 (en) Non-contact DC voltage detector
KR101353886B1 (en) Display surface and control device combined therewith for a data processing system
CN208013385U (en) A kind of photoelectric detection system of lithium battery bulge
DE69926792D1 (en) VOLTAGE SENSOR
US9665199B2 (en) Touch button
Rossiter et al. A novel tactile sensor using a matrix of LEDs operating in both photoemitter and photodetector modes
KR101302531B1 (en) Electrochemical gas detection device
CN212007087U (en) Diaphragm thickness detection device
JPH0238988A (en) Liquid sensor
JP2010025918A (en) Voltage detection device and line voltage detection device
US7595479B2 (en) Tilt detector and tilt detecting method for the same
CN207020310U (en) A kind of range unit
WO2006078105A1 (en) Capacitance type leakage sensor
US10234547B2 (en) Sensor with oblique-angle display
KR20180065367A (en) Potential Sensor combining displacement sensor for measuring static electricity and its operating method
KR101496093B1 (en) Ultraviolet-ray detector having self-generation function and ultraviolet-ray sensor having the same
JP4130188B2 (en) Surface electrometer
CN201188117Y (en) Infrared temperature measurement induction neon-electroscope
CN109100732A (en) A kind of range unit
WO1980001412A1 (en) A transducer
CN201688827U (en) Measuring device for small length change
JP2009121833A (en) Sensing method, and sensor and marker applying sensing method
US20020100319A1 (en) Measuring device of the surface level of liquid
KR20130093959A (en) Water level sensor and water level sensing system of apparatus using same
CN210322070U (en) Ionization chamber and medical ray treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250