JP2012032033A - Indirect type hot air generator - Google Patents

Indirect type hot air generator Download PDF

Info

Publication number
JP2012032033A
JP2012032033A JP2010169992A JP2010169992A JP2012032033A JP 2012032033 A JP2012032033 A JP 2012032033A JP 2010169992 A JP2010169992 A JP 2010169992A JP 2010169992 A JP2010169992 A JP 2010169992A JP 2012032033 A JP2012032033 A JP 2012032033A
Authority
JP
Japan
Prior art keywords
hot air
pipes
combustion gas
air generator
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169992A
Other languages
Japanese (ja)
Other versions
JP5619511B2 (en
Inventor
Norio Yumoto
範夫 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosoyama Nekki Co Ltd
Original Assignee
Hosoyama Nekki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosoyama Nekki Co Ltd filed Critical Hosoyama Nekki Co Ltd
Priority to JP2010169992A priority Critical patent/JP5619511B2/en
Publication of JP2012032033A publication Critical patent/JP2012032033A/en
Application granted granted Critical
Publication of JP5619511B2 publication Critical patent/JP5619511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly thermally efficient indirect type hot air generator suitable for miniaturization.SOLUTION: The indirect type hot air generator includes a housing having an inlet for heated air and a combustion gas outlet on one side and an outlet for heated air and a combustion gas supply source on the other side, and a plurality of pipes disposed in the housing in parallel to each other and in a zigzag form. One end in each of the plurality of pipes is connected to the combustion gas supply source and the other end is connected to the combustion gas outlet with a folded part for direction reversal between the one end and the other end. A gap between the pipes that are adjacent to each other in a zigzag form is shorter than a gap between the pipes on the upper side and on the lower side with the folded part between which are the closest to each other, and the pipes satisfy a formula L/D≥200 where L represents a length and D represents an inner diameter.

Description

本発明は、熱風発生機に関し、詳細には、被加熱対象である空気などの気体を高温の燃焼ガスと直接接触させることなく加熱する間接型熱風発生機に関する。   The present invention relates to a hot air generator, and more particularly, to an indirect hot air generator that heats a gas such as air to be heated without directly contacting it with a high-temperature combustion gas.

従来から、高品位メッキや塗装の乾燥用、或いは、薬品や食品の乾燥用の熱源として、熱風発生機が用いられている。中でも、空気などの被加熱気体を隔壁式の熱交換器を用いて間接的に加熱する間接型熱風発生機は、燃焼ガスと被加熱気体とが直接接触することがないので、クリーンな熱風が得られるという特徴を有しており、特許文献1〜4に見られるとおり、これまでにも種々の提案が為されている。   Conventionally, a hot air generator has been used as a heat source for drying high-quality plating and coating, or for drying chemicals and foods. Among them, indirect hot air generators that indirectly heat a heated gas such as air using a partition type heat exchanger, the combustion gas and the heated gas are not in direct contact with each other. As seen in Patent Documents 1 to 4, various proposals have been made so far.

しかし、本発明者らが知る限り、これら従来の間接型熱風発生機は、単位質量の燃料中に存在する水及び燃焼中に生成する水の蒸発の潜熱を総発熱量から減算した真発熱量基準で、通常、熱効率が60〜80%程度と比較的低く、熱効率の良いものでも、90%程度にとどまっている。熱風発生機は、気体燃料や液体燃料を燃焼させて、その燃焼熱によって被加熱対象である空気などの気体を加熱するものであるので、熱効率が低いということはエネルギー資源の有効利用という観点からは好ましくない。   However, as far as the present inventors know, these conventional indirect hot air generators have a net calorific value obtained by subtracting the latent heat of evaporation of water present in unit mass fuel and water generated during combustion from the total calorific value. As a standard, the thermal efficiency is usually as low as about 60 to 80%, and even those with good thermal efficiency remain at about 90%. Since the hot air generator burns gaseous fuel or liquid fuel and heats the gas such as air to be heated by the combustion heat, the low thermal efficiency means from the viewpoint of effective use of energy resources Is not preferred.

一方、熱効率を高めために、熱風発生機に内蔵される熱交換器の熱交換面積を大きくすることも考えられるが、装置が複雑で大型化してしまい、実用上、支障をきたす上に、期待するほどの熱効率の改善効果も認められないというのが現状である。   On the other hand, in order to increase the thermal efficiency, it may be possible to increase the heat exchange area of the heat exchanger built in the hot air generator, but the equipment becomes complicated and large, which is expected to cause practical problems. At present, the improvement effect of thermal efficiency is not recognized.

特開平7−19602号公報Japanese Patent Laid-Open No. 7-19602 特開平10−111087号公報Japanese Patent Laid-Open No. 10-111087 特開2001−4272号公報JP 2001-4272 A 特開2002−372308号公報JP 2002-372308 A

本発明は、従来の間接型熱風発生機における上記の問題点を解決するために為されたもので、熱効率が高く、かつ、小型化に適した間接型熱風発生機を提供することを課題とする。   The present invention has been made to solve the above-described problems in the conventional indirect hot air generator, and has an object to provide an indirect hot air generator that has high thermal efficiency and is suitable for downsizing. To do.

本発明者らは、上記の課題を解決すべく鋭意研究と試行錯誤を重ねた。その結果、熱交換器の隔壁として複数本の管を用い、それらを互いに比較的狭い間隙を隔てて千鳥状に配置し、管内には高温の燃焼ガスを通すとともに、管外には、管と直交する方向から空気などの被加熱気体を流すと、千鳥状に配置された管と管との間の比較的狭い間隙を通過する際に被加熱気体の流速が増し、間隙を抜けたところで周囲の被加熱気体を伴流して激しい渦流が発生し、あたかも大風量で被加熱気体を通過させた場合のように、管表面から被加熱気体へと急速に熱が伝達されることを見出した。併せて、管の長さをL、内径をDとして、L/D≧200となるように管の形状、大きさを選択すると、管内を通過する間に燃焼ガスの温度が露点以下にまで下がり、燃焼ガスに含まれる水蒸気が凝縮して水に変わることで、燃焼ガスに含まれる水蒸気が持っていた潜熱をも凝縮熱として有効に被加熱気体に伝達させることができ、真発熱量基準で100%を超える極めて高い熱効率が得られることを見出した。   The present inventors have conducted intensive research and trial and error in order to solve the above problems. As a result, a plurality of pipes are used as partition walls of the heat exchanger, they are arranged in a staggered manner with a relatively narrow gap between them, hot combustion gas is passed through the pipes, and pipes are placed outside the pipes. When a heated gas such as air is flowed from an orthogonal direction, the flow velocity of the heated gas increases when passing through a relatively narrow gap between the tubes arranged in a staggered pattern, and the surroundings pass through the gap. It was found that intense vortex flow was generated with the heated gas, and heat was rapidly transferred from the tube surface to the heated gas as if the heated gas was passed with a large air volume. At the same time, when the length and the inner diameter of the tube are set to L / D ≧ 200, the combustion gas temperature drops below the dew point while passing through the tube. The water vapor contained in the combustion gas condenses and turns into water, so that the latent heat of the water vapor contained in the combustion gas can be effectively transferred to the heated gas as the condensation heat. It has been found that extremely high thermal efficiency exceeding 100% can be obtained.

すなわち、本発明は、一方に被加熱気体の入口と燃焼ガスの排出口を備え、他方に被加熱気体の出口と燃焼ガスの供給源を備えたハウジングと;前記ハウジング内に水平方向に並べて配置された、互いに平行な複数本の管とを有し;前記複数本の管は、交互に高さが変わる千鳥状に配置され、それぞれの管の一方端が前記燃焼ガスの供給源に接続されるとともに、他方端が前記燃焼ガスの排出口に接続され、前記一方端と前記他方端の途中に方向を反転する折り返し部を有しており、千鳥状に隣接する管と管との間隙Wが、前記折り返し部を挟んで上側と下側との間で最も近い管と管との間隙Vよりも短く、かつ、前記複数本の管のそれぞれの長さをL、内径をDとしたとき、L/D≧200である間接型熱風発生機を提供することによって、上記の課題を解決するものである。   That is, the present invention includes a housing having an inlet for a heated gas and a discharge port for a combustion gas on one side and an outlet for the heated gas and a supply source for the combustion gas on the other side; A plurality of pipes parallel to each other; the plurality of pipes are arranged in a staggered pattern with alternating heights, and one end of each pipe is connected to the combustion gas supply source. In addition, the other end is connected to the combustion gas discharge port, and has a folded portion that reverses the direction in the middle of the one end and the other end, and a gap W between the tubes adjacent to each other in a staggered manner. Is shorter than the nearest tube-to-tube gap V between the upper side and the lower side across the folded portion, and the length of each of the plurality of tubes is L and the inner diameter is D. By providing an indirect hot air generator with L / D ≧ 200 It is intended to solve the foregoing problems.

前記千鳥状に隣接する管と管の中心間の垂直方向距離Ivは、前記管の外径H以下であることが望ましい。前記垂直方向距離Ivが管の外径H以下である場合には、千鳥状に隣接する管と管との間隙が適度な大きさとなり、間隙を通過する際に被加熱気体の流速が増し、管表面から被加熱気体への熱の伝達が効率良く行われる。また、前記複数本の管は、一方端と他方端の間に、前記折り返し部を少なくとも3箇所有しているのが望ましい。少なくとも3箇所以上の折り返し部を設けることによって、L/D≧200という内径に比して長さが長い管であっても、コンパクトに折り曲げて、ハウジング内に配置することができるので、本発明の間接型熱風発生機をコンパクトで小型なものとすることができる。   The vertical distance Iv between the staggered adjacent tubes and the center of the tubes is preferably equal to or less than the outer diameter H of the tubes. When the vertical distance Iv is equal to or less than the outer diameter H of the pipe, the gap between the pipes adjacent to each other in a staggered manner becomes an appropriate size, and the flow velocity of the heated gas increases when passing through the gap, Heat is efficiently transferred from the tube surface to the heated gas. The plurality of pipes preferably have at least three folded portions between one end and the other end. By providing at least three or more folded portions, even a tube having a length longer than the inner diameter of L / D ≧ 200 can be folded compactly and placed in the housing. The indirect hot air generator can be made compact and small.

本発明の間接型熱風発生機における燃焼ガスの供給源としては、上記複数本の管内に高温の燃焼ガスを供給することができる限りどのようなものであっても良いが、汎用されており、かつ、小型化に適しているという観点からは、ハウジング内に設けられた燃焼室と、燃焼室内に先端部が開口したバーナを燃焼ガスの供給源とするのが好ましい。バーナとしては、液体燃料を燃焼させる油バーナであっても、気体燃料を燃焼させるガスバーナであっても、微粉炭を燃焼させる微粉炭バーナであっても良いが、ガスバーナが燃料の取り扱いが容易であるので好ましい。   As a supply source of the combustion gas in the indirect hot air generator of the present invention, any source may be used as long as a high-temperature combustion gas can be supplied into the plurality of pipes. From the viewpoint of being suitable for downsizing, it is preferable to use a combustion chamber provided in the housing and a burner having a tip opened in the combustion chamber as a supply source of the combustion gas. The burner may be an oil burner that burns liquid fuel, a gas burner that burns gaseous fuel, or a pulverized coal burner that burns pulverized coal, but the gas burner facilitates fuel handling. This is preferable.

また、バーナによって発生した燃焼ガスは、燃焼室の先端側から前記複数本の管内に導くようにしても良いが、燃焼室のバーナ側の根元近傍から前記複数本の管内に導くようにするのが良い。燃焼ガスを燃焼室の根元近傍から前記複数本の管内に導く場合には、高温の燃焼ガスが燃焼室内を一巡し、燃焼室全体の温度が高まるので、その周囲を通過して出口へと進む被加熱気体の温度をより均一に高めることができるという利点が得られる。   Further, the combustion gas generated by the burner may be introduced into the plurality of pipes from the front end side of the combustion chamber, but may be led into the plurality of pipes from the vicinity of the root on the burner side of the combustion chamber. Is good. When the combustion gas is led from the vicinity of the root of the combustion chamber into the plurality of pipes, the high-temperature combustion gas makes a round in the combustion chamber, and the temperature of the entire combustion chamber increases. There is an advantage that the temperature of the heated gas can be increased more uniformly.

本発明の間接型熱風発生機によれば、真発熱量基準で100%を超える高い熱効率で被加熱気体を加熱することができるので、大幅な省エネルギーを実現することができるという優れた利点が得られる。また、本発明の間接型熱風発生機は、比較的簡単な構造で、容易に製造することができるとともに、熱交換器の隔壁として複数本の管を用いているので、一般的に使用されるプレート式の熱交換器に比して熱ストレスに強く、丈夫であり、コンパクトに小型化し易いという利点を備えている。   According to the indirect hot air generator of the present invention, the heated gas can be heated with a high thermal efficiency exceeding 100% on the basis of the true calorific value, so that an excellent advantage that significant energy saving can be realized is obtained. It is done. The indirect hot air generator of the present invention is generally used because it has a relatively simple structure and can be easily manufactured, and uses a plurality of tubes as partition walls of the heat exchanger. Compared to plate-type heat exchangers, it has the advantages of being strong against heat stress, strong, and compact and easy to downsize.

本発明の間接型熱風発生機の一例を示す正面部分断面図である。It is a front fragmentary sectional view which shows an example of the indirect type hot air generator of this invention. 管の正面図である。It is a front view of a pipe | tube. 図1のX−X’断面図である。It is X-X 'sectional drawing of FIG. 入口側接続部と管との接続関係を表す斜視図である。It is a perspective view showing the connection relation of an entrance side connection part and a pipe. 管の垂直断面状態での配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship in the vertical cross-section state of a pipe | tube. 管と管との間隙を通過する被加熱気体の流れを示す模式図である。It is a schematic diagram which shows the flow of the to-be-heated gas which passes the clearance gap between a pipe | tube. 本発明の間接型熱風発生機の他の一例を示す正面部分断面図である。It is a front fragmentary sectional view which shows another example of the indirect type hot air generator of this invention.

以下、本発明を詳細に説明するが、本発明が図示のものに限られないことは勿論である。   Hereinafter, the present invention will be described in detail, but it is needless to say that the present invention is not limited to the illustrated one.

図1は、本発明の間接型熱風発生機の一例を示す正面部分断面図である。図1において、1は本発明の間接型熱風発生機であり、2はハウジング、3は基台、4は、ハウジング2の下部に設けられた被加熱気体入口、5は、ハウジング2の上部に設けられた被加熱気体出口、6は、被加熱気体入口4からハウジング2内に被加熱気体を送り込むファン、7は被加熱気体を平均に流すためのメッシュ状に開口を有する整流板である。なお、被加熱気体としては、一般に空気が用いられるが、被加熱気体は空気に限られず、例えば窒素ガスなどの不活性ガスであっても良い。   FIG. 1 is a front partial sectional view showing an example of the indirect hot air generator of the present invention. In FIG. 1, 1 is an indirect hot air generator of the present invention, 2 is a housing, 3 is a base, 4 is a heated gas inlet provided at the lower part of the housing 2, and 5 is an upper part of the housing 2. The heated gas outlet provided, 6 is a fan that feeds the heated gas from the heated gas inlet 4 into the housing 2, and 7 is a rectifying plate having an opening in a mesh shape for allowing the heated gas to flow on average. In addition, although air is generally used as the heated gas, the heated gas is not limited to air, and may be an inert gas such as nitrogen gas, for example.

8はガスバーナ、9は燃焼室であり、ガスバーナ8と燃焼室9とで燃焼ガスの供給源を構成している。図に示すとおり、ガスバーナ8の先端は燃焼室9内に開口しており、燃焼室9は先端が閉止された有底の円筒状形である。10は、燃焼室9のバーナ側の根元近傍に設けられた入口側接続部、11はハウジング2の下部に設けられた出口側接続部、12はハウジング2の下部に設けられた燃焼ガス排出口である。13は、出口側接続部11に設けられている水抜き用の排水口であり、燃焼ガス中の水蒸気が熱交換により潜熱を奪われ凝縮した水を外部に排出するためのものである。   Reference numeral 8 denotes a gas burner, and 9 denotes a combustion chamber. The gas burner 8 and the combustion chamber 9 constitute a supply source of combustion gas. As shown in the figure, the tip of the gas burner 8 opens into the combustion chamber 9, and the combustion chamber 9 has a bottomed cylindrical shape with the tip closed. 10 is an inlet side connecting portion provided in the vicinity of the burner side root of the combustion chamber 9, 11 is an outlet side connecting portion provided at the lower portion of the housing 2, and 12 is a combustion gas exhaust port provided at the lower portion of the housing 2. It is. Denoted at 13 is a drainage drain port provided in the outlet-side connecting portion 11 for discharging water condensed from the latent heat of the combustion gas by removing heat from the heat exchange.

P、Pは熱交換器の隔壁として機能する中空の管であり、水平方向に並べて、互いに平行で、かつ、交互に高さが変わる千鳥状に配置されており、それぞれの一方端である上端は入口側接続部10に、他方端である下端は出口側接続部11に接続されている。図1には管Pは2本しか示されていないが、後述するとおり、本例の間接型熱風発生機1には13本の管Pが備えられている。管Pの断面は円形であるのが好ましく、13本の管Pは、いずれも同形、同大、同長であるのが好ましい。 P and P are hollow tubes that function as partition walls of the heat exchanger, arranged horizontally in a staggered manner, parallel to each other, and alternately changing in height. Is connected to the inlet side connecting portion 10, and the lower end which is the other end is connected to the outlet side connecting portion 11. Although only two pipes P are shown in FIG. 1, as will be described later, the indirect hot air generator 1 of this example includes 13 pipes P. The cross section of the tube P is preferably circular, and all the 13 tubes P are preferably the same shape, the same size, and the same length.

図に示すとおり、管Pは、水平な直線部mと、比較的小さな曲率半径で曲げられている折り返し部rとを有しており、直線的に水平に進行した後、折り返し部rにおいて、その方向を180度反転することを繰り返し、蛇行しながら、入口側接続部10と出口側接続部11との間を接続し、コンパクトに折り畳まれた状態でハウジング2内に収容されている。このように、本発明の間接型熱風発生機1においては、各管Pは、それ自身が折り返し部rを有しており、管P内を流れる燃焼ガスは、折り返されている管Pの形状のままに、折り返し部rでその流れの方向を反転し、ハウジング2内の限られた空間内を蛇行しながら出口側接続部11へと流れていくので、ヘッダ(集合管)を必要とせず、極めて簡単な構造とすることが可能である。   As shown in the figure, the pipe P has a horizontal straight part m and a folded part r bent with a relatively small radius of curvature, and after proceeding linearly and horizontally, in the folded part r, The direction is inverted 180 degrees, and while meandering, the inlet side connection portion 10 and the outlet side connection portion 11 are connected and accommodated in the housing 2 in a compactly folded state. Thus, in the indirect hot air generator 1 of the present invention, each pipe P itself has the folded portion r, and the combustion gas flowing in the pipe P is in the shape of the folded pipe P. The direction of the flow is reversed at the turn-back portion r and flows to the outlet side connection portion 11 while meandering in the limited space in the housing 2, so that a header (collecting pipe) is not required. It is possible to have a very simple structure.

なお、本例においては、管Pの上端と下端の途中に設けられている折り返し部rの数は6箇所であるが、折り返し部rの数は6箇所に限られず、7箇所以上であっても、5箇所以下であっても良い。ただし、ハウジング2内の流路抵抗を適度なものとし、かつ、後述するとおり、管Pの長さをL、内径をDとして、L/D≧200という比較的長い管Pをコンパクトにハウジング2内に収容するという観点からは、折り返し部rは少なくとも3箇所以上設けることが望ましい。sは、複数本の管Pの間隙を一定に保つスペーサである。   In this example, the number of the folded portions r provided in the middle of the upper end and the lower end of the pipe P is six, but the number of the folded portions r is not limited to six, and is seven or more. Also, the number may be 5 or less. However, a relatively long pipe P of L / D ≧ 200 is compactly provided in the housing 2 with a moderate flow resistance in the housing 2 and, as will be described later, the length of the pipe P is L and the inner diameter is D. From the viewpoint of accommodating in the inside, it is desirable to provide at least three folded portions r. s is a spacer that keeps the gap between the plurality of pipes P constant.

ガスバーナ8が点火されると、炎を伴う高温の燃焼ガスがガスバーナ8の先端開口部から燃焼室9内に噴出し、燃焼室9の閉止された先端部にぶつかって向きを変え、燃焼室9の根元側近傍に開口している入口側接続部10に流入し、管P内へと導かれる。管P内を通過して熱が奪われ温度が低下した燃焼ガスは、出口側接続部11を通過し、燃焼ガス排出口12から外部へと排出される。一方、ファン6によって、被加熱気体入口4からハウジング2内に送り込まれる被加熱気体は、整流板7によって風量が水平面内で平均化された後、管P、Pの間隙を通過し、管P、Pの表面から熱を奪って加熱される。続いて、被加熱気体は、ハウジング2の上部に配置されている燃焼室9の周囲を通過して、さらに加熱され、熱風となって被加熱気体出口5から適宜の箇所へと導かれ、種々の用途に利用される。   When the gas burner 8 is ignited, a high-temperature combustion gas accompanied by a flame is jetted into the combustion chamber 9 from the opening at the front end of the gas burner 8, hits the closed front end of the combustion chamber 9, and changes its direction. It flows into the inlet side connection part 10 opened in the vicinity of the root side and is led into the pipe P. The combustion gas that has passed through the inside of the pipe P and has been deprived of heat and whose temperature has dropped passes through the outlet side connecting portion 11 and is discharged from the combustion gas discharge port 12 to the outside. On the other hand, the heated gas fed into the housing 2 from the heated gas inlet 4 by the fan 6 is averaged in the horizontal plane by the rectifying plate 7 and then passes through the gap between the tubes P and P. , P is heated from the surface of P. Subsequently, the heated gas passes through the periphery of the combustion chamber 9 disposed in the upper part of the housing 2, is further heated, and becomes hot air, and is led from the heated gas outlet 5 to appropriate locations. It is used for

本発明の間接型熱風発生機1は、上記のとおり、燃焼ガスの供給源であるガスバーナ8と燃焼室9とがハウジング2の一方である上部に位置し、被加熱気体入口4がハウジング2の他方である下部に位置しており、燃焼ガスは、管P内を、ハウジング2の上方から下方に向かって流れる。一方、空気などの被加熱気体はハウジング2内を下方から上方に向かって流れて相互に熱交換を行うので、全体として見れば対向流型の熱交換器である。そのため、管Pの周囲を流れる被加熱気体の温度は、管Pの上端から下端に向かうに連れて次第に低くなり、出口側接続部11に近い部分では、被加熱気体入口4からハウジング2内送り込まれたばかりのほぼ室温に近い被加熱気体が管Pの周囲を流れ、管Pから熱を奪うことになる。特に、本発明の間接型熱風発生機1においては、後述するとおり、被加熱気体は管Pの表面から急速に熱を奪うので、管Pの出口側接続部11に近い部分では、管P内を流れる燃焼ガスの温度は露点以下となり、含まれている水蒸気が凝縮し、その凝縮熱を被加熱気体に伝達することが可能となる。水蒸気が凝縮して生成した水は、排出口13から外部へと排出される。   In the indirect hot air generator 1 according to the present invention, as described above, the gas burner 8 and the combustion chamber 9 which are supply sources of the combustion gas are positioned at one upper portion of the housing 2, and the heated gas inlet 4 is located in the housing 2. The combustion gas flows in the pipe P from the upper side to the lower side of the housing 2. On the other hand, the heated gas such as air flows through the housing 2 from below to exchange heat with each other, so that it is a counter-flow heat exchanger as a whole. Therefore, the temperature of the heated gas flowing around the pipe P gradually decreases from the upper end to the lower end of the pipe P, and is fed into the housing 2 from the heated gas inlet 4 at a portion close to the outlet side connection portion 11. The heated gas that has just been brought to near room temperature flows around the pipe P and takes heat from the pipe P. In particular, in the indirect hot air generator 1 of the present invention, as will be described later, the heated gas rapidly takes heat away from the surface of the pipe P. Therefore, in the portion close to the outlet side connection portion 11 of the pipe P, The temperature of the combustion gas flowing through the gas becomes below the dew point, and the contained water vapor is condensed, and the heat of condensation can be transmitted to the heated gas. Water produced by the condensation of water vapor is discharged from the discharge port 13 to the outside.

なお、本例の間接型熱風発生機1においては、被加熱気体出口5と、燃焼ガスの供給源であるガスバーナ8及び燃焼室9とが、ハウジング2の上部に位置し、被加熱気体入口4と、燃焼ガス排出口12とが、ハウジング2の下部に位置しているが、全体として対向流型の熱交換器が構成される限り、この位置関係は逆であっても良い。すなわち、例えば、被加熱気体入口4と、燃焼ガス排出口12とを、ハウジング2の一方である上部に配置し、被加熱気体出口5と、燃焼ガスの供給源であるガスバーナ8及び燃焼室9とを、ハウジング2の他方である下部に配置しても良い。   In the indirect hot air generator 1 of this example, the heated gas outlet 5, the gas burner 8 and the combustion chamber 9 as the combustion gas supply source are located in the upper part of the housing 2, and the heated gas inlet 4 And the combustion gas discharge port 12 is located in the lower part of the housing 2, but as long as a counterflow type heat exchanger is constituted as a whole, this positional relationship may be reversed. That is, for example, the heated gas inlet 4 and the combustion gas discharge port 12 are arranged in the upper part which is one side of the housing 2, and the heated gas outlet 5, the gas burner 8 and the combustion chamber 9 which are the supply source of the combustion gas. May be arranged in the lower part which is the other side of the housing 2.

図2は、管Pだけを取り出して示した正面図であり、右下に、管Pの右側面図を拡大した図を併せて示してある。図に示すとおり、管Pは、水平な直線部mと、折り返し部rとを有しており、折り返し部rにおいて比較的小さな曲率半径で180度、垂直方向に曲げられているので、管Pは垂直平面内で蛇行してコンパクトに折り畳まれた形状をしている。なお、直線部mは、必ずしも水平である必要はなく、水平から若干傾斜していても良く、また、折り返し部rにおける折り曲げの角度は、180度よりも若干大きくても良い。   FIG. 2 is a front view showing only the pipe P taken out, and an enlarged view of the right side view of the pipe P is also shown in the lower right. As shown in the figure, the pipe P has a horizontal straight part m and a folded part r, and is bent in the vertical direction by 180 degrees with a relatively small radius of curvature at the folded part r. Is meandering in a vertical plane and compactly folded. The straight line portion m does not necessarily need to be horizontal, and may be slightly inclined from the horizontal, and the folding angle at the folded portion r may be slightly larger than 180 degrees.

Ptは管Pの上端、Pbは管Pの下端であり、それぞれにおけるzは、入口側接続部10及び出口側接続部11と接続される際に、入口側接続部10内、及び出口側接続部11内に差し込まれる部分である。したがって、管Pにおいて、熱交換器の隔壁として機能する部分は、管Pの両端から、それぞれzの部分を除いた部分であり、本明細書において、管Pの長さLとは、この管Pにおいて熱交換器の隔壁として機能する部分の長さを指すものとする。また、Dは管Pの内径、Hは管Pの外径である。   Pt is the upper end of the pipe P, Pb is the lower end of the pipe P, and z in each of them is connected to the inlet side connecting part 10 and the outlet side connecting part 11 and connected to the inlet side connecting part 10 and the outlet side connection. It is a part inserted into the part 11. Therefore, in the pipe P, the part functioning as the partition wall of the heat exchanger is a part obtained by removing the z part from both ends of the pipe P. In this specification, the length L of the pipe P is the length of the pipe P. In P, the length of the part which functions as a partition of a heat exchanger shall be pointed out. D is the inner diameter of the pipe P, and H is the outer diameter of the pipe P.

本発明の間接型熱風発生機においては、LとDの比、すなわち、L/Dは200以上であるのが好ましく、より好ましくは300以上である。L/Dが200未満である場合には、ファン6の送風量や、ハウジング2内の流路抵抗にも依るが、通常、真発熱量基準で100%を超える熱効率を達成することが困難である。本発明の間接型熱風発生機においては、管Pの長さLは、その内径Dに比べて比較的長いけれども、上述したとおり、小さな曲率半径の折り返し部rを少なくとも3箇所以上有しているので、管Pをコンパクトな形状に折り畳んだ状態で、ハウジング2内に収容することが可能であり、間接型熱風発生機を小型化し易いという利点を有している。   In the indirect hot air generator of the present invention, the ratio of L and D, that is, L / D is preferably 200 or more, more preferably 300 or more. When L / D is less than 200, it is usually difficult to achieve a thermal efficiency exceeding 100% on the basis of the true calorific value, although it depends on the air flow rate of the fan 6 and the flow path resistance in the housing 2. is there. In the indirect hot air generator of the present invention, the length L of the pipe P is relatively longer than the inner diameter D, but as described above, the pipe P has at least three folded portions r having a small radius of curvature. Therefore, the pipe P can be accommodated in the housing 2 in a state of being folded into a compact shape, and the indirect hot air generator can be easily miniaturized.

図3は、図1のX−X’断面図であり、図1におけると同じ部材には同じ符号を付してある。図2に示すとおり、複数本の管Pは、ハウジング2内に水平方向に並べて、交互に高さが変わる千鳥状に配置されている。また、図2でも説明したとおり、それぞれの管Pにおける直線部mと折り返し部rとは、同じ垂直面内にあり、各管Pはそれぞれ互いに平行である。本例においては、隣接する管Pと管Pとは、折り返し部rにおいて互いに接しているか、ほぼ接した状態にあり、極めて稠密な配置となっている。なお、本例においては、ハウジング2内に配置されている管Pは13本であるが、高い熱効率で被加熱気体を加熱することができる限り、管Pの数には特段の制限はなく、間接型熱風発生機1に求められる熱交換能力に応じて、適宜の本数とすれば良い。ただし、本発明の間接型熱風発生機においては、被加熱空気は、互いに隣接する管Pの間隙を通過することによって流速を増してより広い空間内に噴出することが重要であるので、管Pは少なくとも3本以上は必要であり、好ましくは5本以上配置するのが良い。   3 is a cross-sectional view taken along the line X-X ′ of FIG. 1, and the same members as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 2, the plurality of pipes P are arranged in a horizontal direction in the housing 2 and are arranged in a zigzag pattern in which the height changes alternately. In addition, as described with reference to FIG. 2, the straight line portion m and the folded portion r in each tube P are in the same vertical plane, and the tubes P are parallel to each other. In this example, the adjacent pipe P and the pipe P are in contact with each other or almost in contact with each other at the turn-back portion r, and are extremely densely arranged. In this example, the number of pipes P arranged in the housing 2 is 13, but the number of pipes P is not particularly limited as long as the heated gas can be heated with high thermal efficiency. What is necessary is just to set it as an appropriate number according to the heat exchange capability calculated | required by the indirect type hot air generator 1. FIG. However, in the indirect hot air generator of the present invention, it is important that the heated air is jetted into a wider space by increasing the flow velocity by passing through the gap between the adjacent pipes P. At least 3 or more are necessary, and 5 or more are preferably arranged.

図4は入口側接続部10と管Pとの接続関係を表す斜視図である。図に示すとおり、入口側接続部10には、管Pの上端を挿入する接続口10hが管Pの数だけ形成されている。なお、図面は省略するが、出口側接続部11にも、入口側接続部10と同様に、管Pの下端を挿入する接続口11hが管Pの数だけ形成されている。   FIG. 4 is a perspective view showing the connection relationship between the inlet side connecting portion 10 and the pipe P. FIG. As shown in the figure, the inlet side connection portion 10 is formed with connection ports 10h into which the upper ends of the pipes P are inserted by the number of the pipes P. Although not shown in the drawing, the outlet side connection portion 11 is also formed with the same number of connection ports 11h as the number of the tubes P into which the lower end of the tube P is inserted, similarly to the inlet side connection portion 10.

本発明の間接型熱風発生機1を組み立てるに際しては、図4に示すとおり、所要本数の管Pの一方端を、入口側接続部10の接続口10hにそれぞれ挿入して固定するとともに、他方端を、出口側接続部11の接続口11hにそれぞれ挿入して固定するだけで良い。複数本の管Pの千鳥状の配置と相互の間隔は、入口側接続部10の接続口10h及び出口側接続部11の接続口11hの配置と相互の間隔で決まり、構造が簡単である上に、極めて容易に組み立てることができる。さらには、熱交換器の隔壁として複数本の管を用いているので、例えばプレート式の熱交換器に比べて、熱ストレスに強く、頑丈で、製造コストも比較的安価に抑えることができるという利点が得られる。なお、必要であれば、各管P間の間隔を固定するスペーサを適宜の位置に配置すれば良い。   When assembling the indirect hot air generator 1 of the present invention, as shown in FIG. 4, one end of the required number of pipes P is inserted into the connection port 10h of the inlet side connection portion 10 and fixed, and the other end Need only be inserted into the connection port 11h of the outlet side connection part 11 and fixed. The staggered arrangement of the plurality of pipes P and the interval between them are determined by the arrangement and the interval between the connection port 10h of the inlet side connection portion 10 and the connection port 11h of the outlet side connection portion 11, and the structure is simple. In addition, it can be assembled very easily. Furthermore, since a plurality of tubes are used as the partition walls of the heat exchanger, for example, compared to a plate-type heat exchanger, it is resistant to thermal stress, is robust, and can be manufactured at a relatively low cost. Benefits are gained. In addition, what is necessary is just to arrange | position the spacer which fixes the space | interval between each pipe | tube P if necessary.

図5は、本発明の間接型熱風発生機1における、管Pの垂直断面状態での配置関係を示す図である。図中、Cは管Pの中心、Hは管Pの外径、Dは内径であり、「上側」は折り返し部rの上側であることを、「下側」は折り返し部rの下側であることを示している。図に示すとおり、「上側」の管P、P、P・・・は交互に高さが変わる千鳥状に配置されており、本例の場合、隣接する管Pの中心C同士の垂直方向の距離Ivは管Pの外径Hの1/2と等しく、また、隣接する管Pの中心C同士の水平方向の距離Ihは管Pの外径Hよりも若干大きい。したがって、本例においては、隣接する管P同士は折り返し部rにおいて互いにほぼ接した状態にある。この配置関係は、折り返し部の下側にある管P、P、P・・・においても同様である。なお、距離Ivを外径Hと等しくして、隣接する管P同士が折り返し部rにおいて互いに接するようにしても良い。   FIG. 5 is a diagram showing an arrangement relationship of the pipe P in a vertical cross-sectional state in the indirect hot air generator 1 of the present invention. In the figure, C is the center of the pipe P, H is the outer diameter of the pipe P, D is the inner diameter, “upper side” is the upper side of the folded portion r, and “lower” is the lower side of the folded portion r. It shows that there is. As shown in the figure, the “upper” tubes P, P, P... Are alternately arranged in a staggered shape, and in this example, the vertical direction between the centers C of adjacent tubes P is arranged. The distance Iv is equal to 1/2 of the outer diameter H of the pipe P, and the horizontal distance Ih between the centers C of the adjacent pipes P is slightly larger than the outer diameter H of the pipe P. Therefore, in this example, the adjacent pipes P are in a state of being substantially in contact with each other at the folded portion r. This arrangement relationship is the same for the pipes P, P, P. The distance Iv may be equal to the outer diameter H so that the adjacent pipes P are in contact with each other at the turn-back portion r.

Wは千鳥状に配置された隣接する管Pと管Pとの間の間隙を示し、Vは折り返し部rを挟んで上側と下側との間で最も近い管Pと管Pとの間隙を示している。図に示すとおり、本発明の間接型熱風発生機1においては、WがVよりも短いことが重要である。すなわち、千鳥状に配置された隣接する管Pと管Pとの間の間隙Wが、折り返し部rを挟んで上側と下側との間で最も近い管Pと管Pとの間隙Vよりも短いことによって、管P、P、P・・・の間を下から上へと流れる被加熱気体は、図6に模式的に示すとおり、千鳥状に配置された管P、P、P・・・間の比較的狭い間隙Wを抜けた後、折り返し部rを挟んで上側の管P、P、P・・・と下側の管P、P、P・・・との間の比較的広い空間へと噴出し、周囲の被加熱気体を伴流して激しい渦流を発生させ、あたかも大風量で被加熱気体を通過させた場合のように、管P、P、P・・・の表面から急速に熱を奪い取ることが可能となる。   W indicates a gap between adjacent pipes P arranged in a staggered pattern, and V indicates a gap between the pipe P and the pipe P that is closest between the upper side and the lower side across the folded portion r. Show. As shown in the figure, in the indirect hot air generator 1 of the present invention, it is important that W is shorter than V. That is, the gap W between the adjacent pipes P arranged in a staggered pattern is larger than the gap V between the pipe P and the pipe P closest to the upper side and the lower side across the folded portion r. By being short, the heated gas flowing from the bottom to the top between the pipes P, P, P..., As schematically shown in FIG. 6, the pipes P, P, P,. After passing through the relatively narrow gap W, the relatively wide space between the upper pipes P, P, P... And the lower pipes P, P, P. It spouts into the space, generates a violent vortex accompanying the surrounding heated gas, and rapidly from the surface of the tubes P, P, P ... as if the heated gas was passed with a large air volume. It is possible to take away heat.

WはVよりも短ければ良く、VとWの比、すなわち、V/Wに特段の制限はないが、V/Wは2.5〜30.0であるのが好ましく、より好ましくは5.0〜20.0である。V/Wが2.5未満であると、WとVの違いがそれほどではなく、間隙Wを通過する際の被加熱気体の流速の増加や、間隙Wを抜けた後の周囲の被加熱気を伴流する激しい渦流の発生が十分ではなく、好ましくない。また、V/Wが30.0を超えると、間接型熱風発生機の垂直方向の高さが必要以上に大きくなるので好ましくない。   W may be shorter than V, and there is no particular limitation on the ratio of V to W, ie, V / W, but V / W is preferably 2.5 to 30.0, more preferably 5. 0 to 20.0. If V / W is less than 2.5, the difference between W and V is not so great, the increase in the flow velocity of the heated gas when passing through the gap W, and the surrounding heated air after passing through the gap W The generation of a vigorous vortex accompanying the water is not sufficient, which is not preferable. On the other hand, if V / W exceeds 30.0, the height of the indirect hot air generator in the vertical direction becomes undesirably large.

なお、千鳥状に配置された隣接する管Pと管Pとの間の間隙Wは、図5に示す隣接する管Pの中心C同士の垂直方向の距離Ivを調節することで調整することができる。図5に示す例では、Ivは、管Pの外径Hの1/2、すなわち0.5Hとされているが、距離Ivは0.5Hに限られない。隣接する管Pと管Pとが千鳥状に配置され、且つ、千鳥状に配置された隣接する管Pと管Pとの間の間隙Wが、折り返し部rを挟んで上側と下側との間で最も近い管Pと管Pとの間隙Vよりも短く、好ましくはV/Wが2.5〜30.0の範囲、より好ましくはV/Wが5.0〜20.0の範囲となる限り、距離Ivに特段の制限はない。   The gap W between the adjacent pipes P arranged in a staggered manner can be adjusted by adjusting the vertical distance Iv between the centers C of the adjacent pipes P shown in FIG. it can. In the example shown in FIG. 5, Iv is ½ of the outer diameter H of the pipe P, that is, 0.5H, but the distance Iv is not limited to 0.5H. Adjacent pipes P and pipes P are arranged in a staggered manner, and a gap W between adjacent pipes P and the pipes P arranged in a staggered pattern is formed between the upper side and the lower side across the folded portion r. Shorter than the gap V between the closest pipes P and P, preferably V / W is in the range of 2.5 to 30.0, more preferably V / W is in the range of 5.0 to 20.0. As far as possible, there is no particular limitation on the distance Iv.

また、千鳥状に配置された隣接する管Pと管Pとの間の間隙Wは、図5に示す隣接する管Pの中心C同士の水平方向の距離Ihを調節することで調整することができる。図5に示す例では、距離Ihは、管Pの外径Hよりも若干大きく、1.0H〜1.1Hの範囲、好ましくは1.01H〜1.02Hの範囲内にセットされているが、距離Ihは、前述した間隙Wが間隙Vよりも短く、好ましくはV/Wが2.5〜30.0の範囲、より好ましくはV/Wが5.0〜20.0の範囲となる限り、特段の制限はない。   Further, the gap W between the adjacent tubes P arranged in a staggered manner can be adjusted by adjusting the horizontal distance Ih between the centers C of the adjacent tubes P shown in FIG. it can. In the example shown in FIG. 5, the distance Ih is slightly larger than the outer diameter H of the pipe P, and is set in the range of 1.0H to 1.1H, preferably in the range of 1.01H to 1.02H. The distance Ih is such that the gap W is shorter than the gap V, preferably V / W is in the range of 2.5 to 30.0, more preferably V / W is in the range of 5.0 to 20.0. As long as there is no particular restriction.

以上のとおり、本発明の間接型熱風発生機1においては、被加熱気体の流れによって図6に示すような渦流が発生し、管Pの表面から急速に熱が奪われることに加えて、L/D≧200以上と、管Pの長さLが内径Dに比べて長いので、管P内を流れる燃焼ガスの温度は、出口側接続部11に近い場所では、露点以下となり、含まれている水蒸気が凝縮し、その凝縮熱を被加熱気体に伝達することが可能となる。W/Vの比や、ハウジング2内を通過させる被加熱気体の風量にも依るが、本発明者らが確認したところによれば、本発明の間接型熱風発生機においては、熱効率は、真発熱量基準で100%を超え、105〜108%程度の熱効率を実現することができる。   As described above, in the indirect hot air generator 1 of the present invention, the vortex flow as shown in FIG. 6 is generated by the flow of the heated gas, and in addition to the rapid removal of heat from the surface of the tube P, the L Since the length L of the pipe P is longer than the inner diameter D when / D ≧ 200 or more, the temperature of the combustion gas flowing in the pipe P is less than the dew point at a location close to the outlet side connection portion 11 and included. The condensed water vapor is condensed, and the heat of condensation can be transmitted to the heated gas. Although it depends on the ratio of W / V and the air volume of the heated gas that passes through the housing 2, the present inventors have confirmed that the indirect hot air generator of the present invention has a true thermal efficiency. Thermal efficiency exceeding 100% on the basis of the calorific value and about 105 to 108% can be realized.

図7は、本発明の間接型熱風発生機1の他の一例を示す正面部分断面図である。これまでと同じ部材には同じ符号を付してある。本例の間接型熱風発生機1においては、図1に示した間接型熱風発生機1とは反対に、被加熱気体入口4と燃焼ガス排出口12とがハウジング2の一方である上部に配置され、被加熱気体出口5と燃焼ガス供給源であるガスバーナ8及び燃焼室9とがハウジング2の他方である下部に配置されている。また、その結果、管Pの上端が出口側接続部11と接続され、下端が入口側接続部10と接続されている。このように、本発明の間接型熱風発生機1においては、燃焼ガスと被加熱気体とが、全体として対向流を形成しつつ熱交換を行えば良く、被加熱気体入口4及び燃焼ガス排出口12と、被加熱気体出口5及び燃焼ガス供給源とは、それぞれ、ハウジング2の一方と他方に位置しておれば良く、どちらがハウジング2の上部又は下部に配置されていても良い。   FIG. 7 is a front partial sectional view showing another example of the indirect hot air generator 1 of the present invention. The same reference numerals are given to the same members as before. In the indirect hot air generator 1 of the present example, the heated gas inlet 4 and the combustion gas discharge port 12 are arranged in the upper part of the housing 2, opposite to the indirect hot air generator 1 shown in FIG. In addition, the heated gas outlet 5, the gas burner 8 as the combustion gas supply source, and the combustion chamber 9 are arranged in the lower part as the other side of the housing 2. As a result, the upper end of the pipe P is connected to the outlet side connecting portion 11, and the lower end is connected to the inlet side connecting portion 10. As described above, in the indirect hot air generator 1 of the present invention, the combustion gas and the heated gas may be exchanged while forming a counter flow as a whole, and the heated gas inlet 4 and the combustion gas outlet 12, the heated gas outlet 5 and the combustion gas supply source may be located on one side and the other side of the housing 2, respectively, and either one may be arranged on the upper part or the lower part of the housing 2.

以上説明したように、本発明の間接型熱風発生機によれば、簡単で、組立容易な構造で、小型コンパクトで熱効率の高い熱風発生機を提供することができる。本発明の間接型熱風発生機によれば、間接加熱でありながら、真発熱量基準で100%を超え、105〜108%もの高い熱効率が実現でき、クリーンな熱風を、極めて効率良く発生させることができる。また、燃料の燃焼熱を直接被加熱気体に伝達するよりも多くのエネルギーを利用できるので、その省エネルギー効果には多大なものがあり、大いなる産業上の利用可能性を有するものである。   As described above, according to the indirect hot air generator of the present invention, it is possible to provide a hot air generator that is simple and easy to assemble, is small and compact, and has high thermal efficiency. According to the indirect hot air generator of the present invention, while being indirect heating, it is possible to realize a high thermal efficiency exceeding 100% on the basis of the true calorific value and as high as 105 to 108%, and generating clean hot air extremely efficiently. Can do. Further, since more energy can be used than directly transferring the combustion heat of the fuel to the heated gas, the energy saving effect is enormous, and it has great industrial applicability.

1 間接型熱風発生機
2 ハウジング
3 基台
4 被加熱気体入口
5 被加熱気体出口
6 ファン
7 整流板
8 バーナ
9 燃焼室
10 入口側接続部
11 出口側接続部
12 燃焼ガス排出口
13 排水口
P 管
H 管の外径
D 管の内径
L 管の長さ
W、V 間隙
DESCRIPTION OF SYMBOLS 1 Indirect type hot air generator 2 Housing 3 Base 4 Heated gas inlet 5 Heated gas outlet 6 Fan 7 Current plate 8 Burner 9 Combustion chamber 10 Inlet side connection part 11 Outlet side connection part 12 Combustion gas discharge port 13 Drainage port P Tube H Tube outer diameter D Tube inner diameter L Tube length W, V Gap

Claims (4)

一方に被加熱気体の入口と燃焼ガスの排出口を備え、他方に被加熱気体の出口と燃焼ガスの供給源を備えたハウジングと;前記ハウジング内に水平方向に並べて配置された、互いに平行な複数本の管とを有し;前記複数本の管は、交互に高さが変わる千鳥状に配置され、それぞれの管の一方端が前記燃焼ガスの供給源に接続されるとともに、他方端が前記燃焼ガスの排出口に接続され、前記一方端と前記他方端の途中に方向を反転する折り返し部を有しており、千鳥状に隣接する管と管との間隙Wが、前記折り返し部を挟んで上側と下側との間で最も近い管と管との間隙Vよりも短く、かつ、前記複数本の管のそれぞれの長さをL、内径をDとしたとき、L/D≧200である間接型熱風発生機。 A housing having a heated gas inlet and a combustion gas outlet on one side and a heated gas outlet and a combustion gas supply source on the other; parallel to each other, arranged horizontally in the housing A plurality of tubes; the plurality of tubes are arranged in a zigzag pattern with alternately changing heights, and one end of each tube is connected to the combustion gas supply source and the other end is Connected to the combustion gas discharge port, and has a folded portion that reverses the direction in the middle of the one end and the other end, and a gap W between the tubes adjacent to each other in a staggered pattern L / D ≧ 200 when the length of each of the plurality of pipes is L and the inner diameter is D, which is shorter than the gap V between the pipes closest to the upper and lower sides. An indirect hot air generator. 前記複数本の管が、前記一方端と前記他方端の間に、前記折り返し部を少なくとも3箇所有している請求項1記載の間接型熱風発生機。   2. The indirect hot air generator according to claim 1, wherein the plurality of pipes have at least three folded portions between the one end and the other end. 前記燃焼ガスの供給源が、ハウジング内に設けられた燃焼室と、燃焼室内に先端部が開口したバーナである請求項1又は2記載の間接型熱風発生機。   3. The indirect hot air generator according to claim 1, wherein the supply source of the combustion gas is a combustion chamber provided in a housing and a burner having a tip opened in the combustion chamber. 一方が前記燃焼室のバーナ側の根元近傍に開口し、他方が前記複数本の管の前記一方端と接続されている入口側接続部によって、前記複数本の管の一方端が前記燃焼ガスの供給源と接続され;一方がハウジング外部に開口し、他方が前記複数本の管の前記他方端と接続されている出口側接続部によって、前記複数本の管の他方端が前記燃焼ガスの排出口と接続されている請求項3記載の間接型熱風発生機。   One end of the plurality of tubes is connected to the one end of the combustion gas by one of the inlet side connecting portions that open to the burner side root of the combustion chamber and the other is connected to the one end of the plurality of tubes. Connected to a supply source; one end opening to the outside of the housing and the other end connected to the other end of the plurality of tubes, the other end of the plurality of tubes is exhausted of the combustion gas. The indirect hot air generator according to claim 3 connected to the outlet.
JP2010169992A 2010-07-29 2010-07-29 Indirect hot air generator Active JP5619511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169992A JP5619511B2 (en) 2010-07-29 2010-07-29 Indirect hot air generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169992A JP5619511B2 (en) 2010-07-29 2010-07-29 Indirect hot air generator

Publications (2)

Publication Number Publication Date
JP2012032033A true JP2012032033A (en) 2012-02-16
JP5619511B2 JP5619511B2 (en) 2014-11-05

Family

ID=45845666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169992A Active JP5619511B2 (en) 2010-07-29 2010-07-29 Indirect hot air generator

Country Status (1)

Country Link
JP (1) JP5619511B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180429A (en) * 2015-09-21 2015-12-23 济南大学 Novel practical and efficient hot blaster heater
CN105423549A (en) * 2015-12-28 2016-03-23 安徽泰格生物技术股份有限公司 Coal fired chain grate hot-blast stove and application thereof
CN106091375A (en) * 2016-07-29 2016-11-09 杭州天霸光电科技有限公司 A kind of gas fuel air stove
CN110186264A (en) * 2019-05-22 2019-08-30 西安航空职业技术学院 A kind of rapeseed drying device
JP2020067256A (en) * 2018-10-26 2020-04-30 株式会社タクボ精機製作所 Drying air supply device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106156U (en) * 1972-12-28 1974-09-11
JPS6311597B2 (en) * 1986-03-26 1988-03-15 Hitachi Ltd
JPH02103339A (en) * 1988-10-12 1990-04-16 Hitachi Ltd Hot air heater
JPH02171584A (en) * 1988-12-24 1990-07-03 Tokyo Gas Co Ltd Dehumidifier
JPH0375445A (en) * 1989-08-17 1991-03-29 Nepon Kk Hot air furnace
JP2000046415A (en) * 1998-05-27 2000-02-18 Hory Corp Warm air heater
JP2005241240A (en) * 2004-02-26 2005-09-08 Baltimore Aircoil Co Inc High-density heat transfer tube bundle
JP3144345U (en) * 2008-04-28 2008-08-28 オリンピア工業株式会社 Structure for air heating in hot air machines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106156U (en) * 1972-12-28 1974-09-11
JPS6311597B2 (en) * 1986-03-26 1988-03-15 Hitachi Ltd
JPH02103339A (en) * 1988-10-12 1990-04-16 Hitachi Ltd Hot air heater
JPH02171584A (en) * 1988-12-24 1990-07-03 Tokyo Gas Co Ltd Dehumidifier
JPH0375445A (en) * 1989-08-17 1991-03-29 Nepon Kk Hot air furnace
JP2000046415A (en) * 1998-05-27 2000-02-18 Hory Corp Warm air heater
JP2005241240A (en) * 2004-02-26 2005-09-08 Baltimore Aircoil Co Inc High-density heat transfer tube bundle
JP3144345U (en) * 2008-04-28 2008-08-28 オリンピア工業株式会社 Structure for air heating in hot air machines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180429A (en) * 2015-09-21 2015-12-23 济南大学 Novel practical and efficient hot blaster heater
CN105180429B (en) * 2015-09-21 2017-12-19 济南大学 A kind of hot-blast stove
CN105423549A (en) * 2015-12-28 2016-03-23 安徽泰格生物技术股份有限公司 Coal fired chain grate hot-blast stove and application thereof
CN106091375A (en) * 2016-07-29 2016-11-09 杭州天霸光电科技有限公司 A kind of gas fuel air stove
JP2020067256A (en) * 2018-10-26 2020-04-30 株式会社タクボ精機製作所 Drying air supply device
CN110186264A (en) * 2019-05-22 2019-08-30 西安航空职业技术学院 A kind of rapeseed drying device

Also Published As

Publication number Publication date
JP5619511B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
RU2717176C1 (en) Tubular heat exchanger
US8783334B2 (en) Heat exchanger particularly for thermal generators
JP5619511B2 (en) Indirect hot air generator
RU2717732C2 (en) Condensing heat exchanger equipped with heat exchanging device
JP2019113280A (en) Heat exchange device and heat source machine
US20120145373A1 (en) Firetube having thermal conducting passageways
US20150323265A1 (en) Heat exchanger having a compact design
KR20170025476A (en) Heat exchanger
PL229328B1 (en) Fired heat exchanger
US10094619B2 (en) Heat exchanger having arcuately and linearly arranged heat exchange tubes
KR101031101B1 (en) separation type heat exchanger
JP2010007968A (en) Hot water supply device
JP5288169B2 (en) Heat exchanger and water heater
CN214664323U (en) Steam generator
JP2012017905A (en) Combustion device
JP4400921B2 (en) Multi-pipe once-through boiler
JP2009019859A (en) Heat exchanger and water heater
KR101183546B1 (en) Shell and tube heat exchanger
RU2296270C1 (en) Air heater
RU2327083C1 (en) Hot water boiler
CN105737381B (en) A kind of biomass-burning heat-conducting oil furnace
US20180164047A1 (en) Heat exchanger including twisted tubes
JP2005274044A (en) Heat source device
JP7356024B2 (en) Heat exchanger and hot water equipment
US11629882B1 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250