JP2012031787A - Device and method for exhaust emission control of internal combustion engine - Google Patents

Device and method for exhaust emission control of internal combustion engine Download PDF

Info

Publication number
JP2012031787A
JP2012031787A JP2010172142A JP2010172142A JP2012031787A JP 2012031787 A JP2012031787 A JP 2012031787A JP 2010172142 A JP2010172142 A JP 2010172142A JP 2010172142 A JP2010172142 A JP 2010172142A JP 2012031787 A JP2012031787 A JP 2012031787A
Authority
JP
Japan
Prior art keywords
reaction
ratio
selective reduction
exhaust
bed temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010172142A
Other languages
Japanese (ja)
Inventor
Taiga Hagimoto
大河 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010172142A priority Critical patent/JP2012031787A/en
Publication of JP2012031787A publication Critical patent/JP2012031787A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique avoiding the problem of insufficient or excessive supply of NHwhile securing a NOx purification rate required in a selective reduction type NOx catalyst.SOLUTION: By utilizing the difference among activity degrees of three reactions, i.e. first reaction R1 consuming both NO and NO, second reaction R2 consuming NO, and third reaction R3 consuming NO in each region acquired by dividing SCR catalyst into a plurality of regions in order from an exhaust flow upstream side when a bed temperature in each region is different, a ratio range between NO and NOflowing into the SCR catalyst for reaching a target purification rate is calculated on the basis of a bed temperature of each region derived from the bed temperature of the SCR catalyst acquired by an exhaust temperature sensor and an assumed ratio range between NO and NOflowing into the SCR catalyst (S101), and the ratio between NO and NOflowing into the SCR catalyst is controlled so as to be within the calculated ratio range (S102).

Description

本発明は、内燃機関の排気浄化装置及び内燃機関の排気浄化方法に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine and an exhaust gas purification method for the internal combustion engine.

内燃機関の排気通路に上流から順に、酸化触媒、還元剤添加弁、選択還元型NOx触媒(以下、SCR触媒という)を配置し、還元剤添加弁から添加した還元剤から生成されるNH(アンモニア)を用いて、SCR触媒に流入する排気中のNOxを浄化することが行われている。ここで、酸化触媒におけるNO吸着量の増減を推定し、推定したNO吸着量の増減に基づいて酸化触媒をバイパスする排気流量を調整し、SCR触媒へ流入するNOとNOとの比率を1対1に近付ける技術が開示されている(例えば特許文献1参照)。特許文献1の技術によれば、酸化触媒におけるNO吸着量を制御することで、SCR触媒に流入するNOとNOとの比率をできるだけ1対1に近付けて必要な還元剤量を添加し、NHの不足や過剰供給といった問題を回避しようとしている。 An oxidation catalyst, a reducing agent addition valve, and a selective reduction type NOx catalyst (hereinafter referred to as an SCR catalyst) are arranged in this order from the upstream in the exhaust passage of the internal combustion engine, and NH 3 (generated from the reducing agent added from the reducing agent addition valve ( Ammonia) is used to purify NOx in the exhaust gas flowing into the SCR catalyst. Here, the increase / decrease in the NO 2 adsorption amount in the oxidation catalyst is estimated, the exhaust gas flow rate bypassing the oxidation catalyst is adjusted based on the estimated increase / decrease in the NO 2 adsorption amount, and the ratio of NO and NO 2 flowing into the SCR catalyst Has been disclosed (see, for example, Patent Document 1). According to the technique of Patent Document 1, by controlling the NO 2 adsorption amount in the oxidation catalyst, the ratio of NO and NO 2 flowing into the SCR catalyst is made as close as possible to 1: 1, and the necessary reducing agent amount is added. , Trying to avoid problems such as lack of NH 3 and excessive supply.

特開2009−216019号公報JP 2009-216019 A

上記特許文献1の技術においては、SCR触媒では、基本的にNOとNOとの比率が1対1であるとNOx浄化率が最も良くなるとの考え方に基づいて制御を行っている。これは、低温域では、NO及びNOとNHとの反応(NO+NO+2NH→2N+3HO:第1反応)が他の反応に比べて進行し易いからである。しかしながら、SCR触媒での反応は、SCR触媒床温の変化に伴い、NOのみが浄化する反応(2NO+2NH→N+NHNO+HO:第2反応)や、NOのみが浄化する反応(4NO+4NH+O→4N+6HO:第3反応)も同時に起こる。また、SCR触媒の排気流れ上流側から順に複数に分けた際の各領域で、床温が異なる。これは、SCR触媒の上流側の箇所ほど流入する排気の温度の影響を受け易い等、各領域の床温について影響を受ける要因が種々存在するからである。このように、各領域の床温が異なることから、各領域では第1〜第3反応の活性度合いが夫々異なる。よって、各領域での第1〜第3反応の活性度合いを考慮してSCR触媒に流入するNOとNOとの比率を制御すれば、SCR触媒での必要なNOx浄化率を確保し易く、NHの不足や過剰供給といった問題を回避し易いと考えられた。 In the technique of Patent Document 1, the SCR catalyst performs control based on the idea that the NOx purification rate is best when the ratio of NO to NO 2 is basically 1: 1. This is because the reaction of NO and NO 2 with NH 3 (NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O: first reaction) is likely to proceed in comparison with other reactions at low temperatures. However, the reaction with the SCR catalyst is a reaction in which only NO 2 purifies with changes in the SCR catalyst bed temperature (2NO 2 + 2NH 3 → N 2 + NH 4 NO 3 + H 2 O: second reaction), or only NO The reaction to be purified (4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O: third reaction) also occurs at the same time. Further, the bed temperature is different in each region when the SCR catalyst is divided into a plurality in order from the exhaust gas upstream side. This is because there are various factors that affect the bed temperature in each region, such as being more susceptible to the temperature of the exhaust gas flowing into the upstream side of the SCR catalyst. Thus, since the bed temperature of each region is different, the activity levels of the first to third reactions are different in each region. Therefore, if the ratio of NO and NO 2 flowing into the SCR catalyst is controlled in consideration of the activity level of the first to third reactions in each region, it is easy to ensure the required NOx purification rate in the SCR catalyst, It was thought that it was easy to avoid problems such as shortage of NH 3 and excessive supply.

本発明は上記問題点に鑑みてなされたもので、本発明の目的は、選択還元型NOx触媒での必要なNOx浄化率を確保しつつ、NHの不足や過剰供給といった問題を回避する技術を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is a technique for avoiding problems such as shortage and excessive supply of NH 3 while ensuring a necessary NOx purification rate in a selective reduction type NOx catalyst. Is to provide.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
前記選択還元型NOx触媒の床温を、検出又は推定することにより取得する床温取得部と、
を備えた内燃機関の排気浄化装置であって、
前記選択還元型NOx触媒を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応、NOを消費する第2反応、及びNOを消費する第3反応という3つの反応の活性度合いが異なることを利用して、前記床温取得部が取得した前記選択還元型NOx触媒の床温により導かれる各領域の床温と、前記選択還元型NOx触媒へ流入すると想定されるNOとNOとの比率と、に基づいて、目標浄化率に到達するための前記選択還元型NOx触媒へ流入するNOとNOとの比率範囲を算出する比率範囲算出部と、
前記比率範囲算出部によって算出された比率範囲内に収まるように、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御するNOx比率制御部と、
を備えたことを特徴とする内燃機関の排気浄化装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
A bed temperature acquisition unit which acquires the bed temperature of the selective catalytic reduction NOx catalyst by detecting or estimating;
An exhaust purification device for an internal combustion engine comprising:
When the selective reduction type NOx catalyst is divided into a plurality of regions in order from the exhaust flow upstream side and the bed temperature in each region is different, a first reaction that consumes both NO and NO 2 in each region, By utilizing the fact that the degree of activity of the three reactions of the second reaction that consumes NO 2 and the third reaction that consumes NO is different, the bed temperature of the selective reduction type NOx catalyst acquired by the bed temperature acquisition unit is used. Based on the derived bed temperature of each region and the ratio of NO and NO 2 that is assumed to flow into the selective reduction NOx catalyst, the flow into the selective reduction NOx catalyst to reach the target purification rate A ratio range calculation unit for calculating a ratio range of NO and NO 2 to be performed;
And said ratio range calculation section so as to fall within a ratio range calculated by, NOx ratio controller for controlling the ratio between NO and NO 2 which flows into the selective reduction type NOx catalyst,
An exhaust emission control device for an internal combustion engine, comprising:

本発明によると、選択還元型NOx触媒の各領域での第1〜第3反応という3つの反応の活性度合いが異なることを利用して、目標浄化率に到達するための選択還元型NOx触媒へ流入するNOとNOとの比率範囲内に収まるように、選択還元型NOx触媒へ流入するNOとNOとの比率を制御する。これにより、選択還元型NOx触媒では目標浄化率以上のNOx浄化率を確保して、NHの不足や過剰供給といった問題を回避することができる。 According to the present invention, the selective reduction type NOx catalyst for reaching the target purification rate is obtained by utilizing the different degrees of activity of the first to third reactions in each region of the selective reduction type NOx catalyst. The ratio of NO and NO 2 flowing into the selective reduction NOx catalyst is controlled so as to be within the ratio range of NO and NO 2 flowing in. Thereby, in the selective reduction type NOx catalyst, a NOx purification rate equal to or higher than the target purification rate can be secured, and problems such as shortage of NH 3 and excessive supply can be avoided.

前記選択還元型NOx触媒よりも上流の前記排気通路に配置された酸化触媒と、
排気に前記酸化触媒を迂回させるバイパス通路と、
前記酸化触媒を流通する排気流量と前記バイパス通路を流通する排気流量とを調節する排気流量調節部と、
を更に備え、
前記NOx比率制御部は、前記排気流量調節部で前記酸化触媒を流通する排気流量と前記バイパス通路を流通する排気流量とを調節することにより、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御するとよい。
An oxidation catalyst disposed in the exhaust passage upstream of the selective reduction NOx catalyst;
A bypass passage for bypassing the oxidation catalyst to exhaust,
An exhaust flow rate adjusting unit for adjusting an exhaust flow rate flowing through the oxidation catalyst and an exhaust flow rate flowing through the bypass passage;
Further comprising
The NOx ratio control unit adjusts an exhaust flow rate through which the oxidation catalyst is circulated and an exhaust flow rate through which the bypass passage is circulated by the exhaust flow rate adjustment unit, whereby NO and NO 2 flowing into the selective reduction type NOx catalyst are adjusted. It is good to control the ratio.

本発明によると、目標浄化率に到達するための選択還元型NOx触媒へ流入するNOとNOとの比率範囲内に収まるように、選択還元型NOx触媒へ流入するNOとNOとの比率を制御することができる。 According to the present invention so as to fall within a ratio range of between NO and NO 2 which flows into the selective reduction type NOx catalyst to reach the target purification rate, the ratio of NO and NO 2 which flows into the selective reduction type NOx catalyst Can be controlled.

また、本発明は、
内燃機関の排気通路に配置された選択還元型NOx触媒よりも上流の前記排気通路に配置された還元剤添加部から還元剤を添加して、前記選択還元型NOx触媒へNHを供給し、前記選択還元型NOx触媒でNOxを浄化させる内燃機関の排気浄化方法であって、
前記選択還元型NOx触媒を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応、NOを消費する第2反応、及びNOを消費する第3反応という3つの反応の活性度合いが異なることを利用して、前記選択還元型NOx触媒の床温を、検出又は推定することにより取得する床温取得部が取得した前記選択還元型NOx触媒の床温により導かれる各領域の床温と、前記選択還元型NOx触媒へ流入すると想定されるNOとNOとの比率と、に基づいて、目標浄化率に到達するための前記選択還元型NOx触媒へ流入するNOとNOとの比率範囲を算出し、
算出された比率範囲内に収まるように、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御することを特徴とする内燃機関の排気浄化方法である。
The present invention also provides:
Adding a reducing agent from a reducing agent addition section arranged in the exhaust passage upstream of the selective reduction type NOx catalyst arranged in the exhaust passage of the internal combustion engine, and supplying NH 3 to the selective reduction type NOx catalyst; An exhaust purification method for an internal combustion engine that purifies NOx with the selective reduction type NOx catalyst,
When the selective reduction type NOx catalyst is divided into a plurality of regions in order from the exhaust flow upstream side and the bed temperature in each region is different, a first reaction that consumes both NO and NO 2 in each region, Obtained by detecting or estimating the bed temperature of the selective reduction-type NOx catalyst using the fact that the activity levels of the three reactions, the second reaction consuming NO 2 and the third reaction consuming NO, are different. Based on the bed temperature of each region derived from the bed temperature of the selective reduction NOx catalyst acquired by the bed temperature acquisition unit and the ratio of NO and NO 2 that is assumed to flow into the selective reduction NOx catalyst. Calculating a ratio range of NO and NO 2 flowing into the selective catalytic reduction NOx catalyst to reach the target purification rate,
An exhaust gas purification method for an internal combustion engine, wherein a ratio between NO and NO 2 flowing into the selective reduction type NOx catalyst is controlled so as to be within a calculated ratio range.

本発明によっても、選択還元型NOx触媒では目標浄化率以上のNOx浄化率を確保して、NHの不足や過剰供給といった問題を回避することができる。 According to the present invention, the selective reduction type NOx catalyst can secure a NOx purification rate that is equal to or higher than the target purification rate, and can avoid problems such as shortage and excessive supply of NH 3 .

本発明によると、選択還元型NOx触媒での必要なNOx浄化率を確保しつつ、NHの不足や過剰供給といった問題を回避することができる。 According to the present invention, it is possible to avoid problems such as shortage and excessive supply of NH 3 while ensuring the necessary NOx purification rate in the selective reduction type NOx catalyst.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. SCR触媒床温と3つの反応の活性度合いとの関係を示す図である。It is a figure which shows the relationship between SCR catalyst bed temperature and the activity degree of three reaction. SCR触媒の各領域の床温に応じた各領域の出入りするNOとNOとの比率及びNOx浄化率を示す図である。Depending on the bed temperature of each region of the SCR catalyst is a diagram showing a ratio and NOx purification rate of NO and NO 2 into and out of each region. SCR触媒全体が一定温度の場合におけるNO比率の目標比率範囲を求めるモデルを示す図である。Entire SCR catalyst is a diagram illustrating a model for determining the target ratio range of NO 2 ratio in the case of a constant temperature. SCR触媒が温度の異なる2つの領域に分けられる場合におけるNO比率の目標比率範囲を求めるモデルを示す図である。SCR catalyst is a diagram illustrating a model for determining the target ratio range of NO 2 ratio in the case is divided into two regions having different temperatures. 実施例1に係るNOx比率制御ルーチンを示すフローチャートである。3 is a flowchart showing a NOx ratio control routine according to the first embodiment.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
(内燃機関)
図1は、本発明の実施例1に係る内燃機関の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する車両駆動用の4ストロークサイクル・ディーゼルエンジンである。内燃機関1には、内燃機関1から排出された排気を流通させる排気通路2が接続されている。
<Example 1>
(Internal combustion engine)
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. The internal combustion engine 1 shown in FIG. 1 is a four-stroke cycle diesel engine for driving a vehicle having four cylinders. Connected to the internal combustion engine 1 is an exhaust passage 2 through which the exhaust discharged from the internal combustion engine 1 flows.

排気通路2の途中には、選択還元型NOx触媒(以下、SCR触媒という)3が配置されている。SCR触媒3は、NH(アンモニア)を用いて排気中のNOxを還元浄化する。SCR触媒3は、尿素やNHを吸着する機能を有する。 A selective reduction type NOx catalyst (hereinafter referred to as SCR catalyst) 3 is disposed in the middle of the exhaust passage 2. The SCR catalyst 3 reduces and purifies NOx in the exhaust gas using NH 3 (ammonia). The SCR catalyst 3 has a function of adsorbing urea and NH 3 .

SCR触媒3よりも上流の排気通路2には、SCR触媒3に供給するNHに加水分解される還元剤として尿素水溶液(以下、尿素水という)を添加する尿素水添加弁4が配置されている。尿素水添加弁4からは、尿素水タンク5に蓄えられた尿素水が指令に基づいて排気通路2内に噴射される。噴射された尿素水は、(NHCO+HO→2NH+COのような反応で排気熱を用いて加水分解され、NHが生成される。噴射された尿素水の尿素やNHは、SCR触媒3に吸着される。尿素水添加弁4が、本発明の還元剤添加部に対応する。還元剤としては、尿素水以外にもアンモニア水溶液等のアンモニア系溶液を用いることができる。 In the exhaust passage 2 upstream of the SCR catalyst 3, a urea water addition valve 4 for adding a urea aqueous solution (hereinafter referred to as urea water) as a reducing agent hydrolyzed to NH 3 supplied to the SCR catalyst 3 is arranged. Yes. From the urea water addition valve 4, urea water stored in the urea water tank 5 is injected into the exhaust passage 2 based on a command. The injected urea water is hydrolyzed using exhaust heat in a reaction such as (NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 , and NH 3 is generated. The urea and NH 3 thus injected are adsorbed on the SCR catalyst 3. The urea water addition valve 4 corresponds to the reducing agent addition part of the present invention. As the reducing agent, an ammonia-based solution such as an aqueous ammonia solution can be used in addition to the urea water.

尿素水添加弁4の上流の排気通路2には、酸化触媒6及びディーゼルパティキュレートフィルタ(以下、DPFという)7が配置されている。酸化触媒6は、排気中の物質を酸化させる。DPF7は、排気中の粒子状物質(以下、PMという)を捕集する。また、DPF7にPMが規定量を超えて堆積すると、内燃機関1でポスト噴射して酸化触媒6に燃料を供給し、この燃料の酸化によりDPF7を昇温させてDPF7に堆積したPMを強制的に酸化除去する。   An oxidation catalyst 6 and a diesel particulate filter (hereinafter referred to as DPF) 7 are disposed in the exhaust passage 2 upstream of the urea water addition valve 4. The oxidation catalyst 6 oxidizes substances in the exhaust. The DPF 7 collects particulate matter (hereinafter referred to as PM) in the exhaust gas. Further, when PM accumulates in the DPF 7 exceeding a specified amount, the post-injection is performed by the internal combustion engine 1 and fuel is supplied to the oxidation catalyst 6. The oxidation of the fuel raises the temperature of the DPF 7 and forcibly accumulates the PM accumulated in the DPF 7. To oxidize and remove.

排気に酸化触媒6を迂回させるバイパス通路8が配置されている。バイパス通路8は、酸化触媒6の上流の排気通路2と、酸化触媒6の下流且つDPF7の上流の排気通路2と、を接続している。   A bypass passage 8 for bypassing the oxidation catalyst 6 to the exhaust is disposed. The bypass passage 8 connects the exhaust passage 2 upstream of the oxidation catalyst 6 and the exhaust passage 2 downstream of the oxidation catalyst 6 and upstream of the DPF 7.

バイパス通路8との分岐下流且つ酸化触媒6の上流の排気通路2には、酸化触媒6を流通する排気流量を調節する第1流量調節弁9が設けられている。また、バイパス通路8に
は、バイパス通路8を流通する排気流量を調節する第2流量調節弁10が設けられている。第1流量調節弁9及び第2流量調節弁10が、本発明の排気流量調節部に対応する。
In the exhaust passage 2 downstream of the bypass passage 8 and upstream of the oxidation catalyst 6, a first flow rate control valve 9 for adjusting the exhaust flow rate flowing through the oxidation catalyst 6 is provided. The bypass passage 8 is provided with a second flow rate adjusting valve 10 that adjusts the exhaust flow rate flowing through the bypass passage 8. The first flow rate adjusting valve 9 and the second flow rate adjusting valve 10 correspond to the exhaust flow rate adjusting unit of the present invention.

SCR触媒3の直下流の排気通路2には、排気の温度を検出する排気温度センサ11が配置されている。排気温度センサ11が、本発明のSCR触媒3の床温を、推定することにより取得する床温取得部に対応する。排気温度センサ11によって推定されるSCR触媒3の床温からは、後述するSCR触媒3の各領域の床温を導くことができる。なお、床温取得部は、SCR触媒3に設けられ、SCR触媒3の床温を、直接検出することにより取得するものでもよい。排気温度センサ11の直下流の排気通路2には、SCR触媒3から流出する排気中のNOx濃度を検出するNOxセンサ12が配置されている。   An exhaust temperature sensor 11 for detecting the temperature of the exhaust is disposed in the exhaust passage 2 immediately downstream of the SCR catalyst 3. The exhaust temperature sensor 11 corresponds to a bed temperature acquisition unit that acquires the bed temperature of the SCR catalyst 3 of the present invention by estimating. From the bed temperature of the SCR catalyst 3 estimated by the exhaust temperature sensor 11, the bed temperature of each region of the SCR catalyst 3 described later can be derived. The bed temperature acquisition unit may be provided in the SCR catalyst 3, and may be acquired by directly detecting the bed temperature of the SCR catalyst 3. A NOx sensor 12 that detects the NOx concentration in the exhaust gas flowing out from the SCR catalyst 3 is disposed in the exhaust passage 2 immediately downstream of the exhaust temperature sensor 11.

以上述べたように構成された内燃機関1には電子制御ユニット(以下、ECUという)13が併設されている。ECU13には、排気温度センサ11及びNOxセンサ12並びに不図示のクランクポジションセンサ及びアクセル開度センサが電気的に接続されている。これらの出力信号がECU13に入力される。また、ECU13には、尿素水添加弁4、第1流量調節弁9及び第2流量調節弁10が電気的に接続されており、ECU13によってこれらが制御される。ECU13は、SCR触媒3でNHを用いてNOxを還元浄化するよう尿素水添加弁4から尿素水を添加する。 The internal combustion engine 1 configured as described above is provided with an electronic control unit (hereinafter referred to as ECU) 13. The ECU 13 is electrically connected to an exhaust temperature sensor 11 and a NOx sensor 12, and a crank position sensor and an accelerator opening sensor (not shown). These output signals are input to the ECU 13. Further, the urea water addition valve 4, the first flow rate adjustment valve 9, and the second flow rate adjustment valve 10 are electrically connected to the ECU 13, and these are controlled by the ECU 13. The ECU 13 adds urea water from the urea water addition valve 4 so that the SCR catalyst 3 reduces and purifies NOx using NH 3 .

(SCR触媒でのNOx浄化制御)
排気エミッションの悪化を防止するため、SCR触媒3のNOx浄化率を目標浄化率に到達させるよう、尿素水添加弁4からの尿素水添加制御と、SCR触媒3へ流入するNOとNOとの比率を制御するNOx比率制御と、を行う。尿素水添加制御は、SCR触媒3でNOxを浄化するために必要なNOx量に対応した尿素水量を尿素水添加弁4から添加する制御である。NOx比率制御は、SCR触媒3のNOx浄化率が目標浄化率に到達するよう、第1流量調節弁9及び第2流量調節弁10で酸化触媒6を流通する排気流量とバイパス通路8を流通する排気流量とを調節することにより、SCR触媒3へ流入するNOとNOとの比率を変更する制御である。
(NOx purification control with SCR catalyst)
In order to prevent the exhaust emission from deteriorating, the urea water addition control from the urea water addition valve 4 and the NO and NO 2 flowing into the SCR catalyst 3 are controlled so that the NOx purification rate of the SCR catalyst 3 reaches the target purification rate. NOx ratio control for controlling the ratio is performed. The urea water addition control is a control in which the urea water amount corresponding to the NOx amount necessary for purifying NOx by the SCR catalyst 3 is added from the urea water addition valve 4. In the NOx ratio control, the exhaust flow rate through the oxidation catalyst 6 and the bypass passage 8 are circulated by the first flow rate control valve 9 and the second flow rate control valve 10 so that the NOx purification rate of the SCR catalyst 3 reaches the target purification rate. In this control, the ratio of NO and NO 2 flowing into the SCR catalyst 3 is changed by adjusting the exhaust gas flow rate.

(NOx比率制御)
NOx比率制御では、目標浄化率に到達するためのSCR触媒3へ流入するNOとNOとの比率範囲を算出し、算出された比率範囲内に収まるようにSCR触媒3へ流入するNOとNOとの比率を制御する。このようなNOx比率制御を正確に行うためには、目標浄化率に到達するためのSCR触媒3へ流入するNOとNOとの比率範囲を正確に算出する必要がある。
(NOx ratio control)
In the NOx ratio control, a ratio range of NO and NO 2 flowing into the SCR catalyst 3 for reaching the target purification rate is calculated, and NO and NO flowing into the SCR catalyst 3 so as to be within the calculated ratio range. 2 to control the ratio. In order to perform such accurately NOx ratio control, it is necessary to accurately calculate the ratio range of NO and NO 2 flowing into the SCR catalyst 3 to reach the target purification rate.

ところで、本発明者らの知見によると、SCR触媒3を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域でのNOx浄化率が異なることが判明した。これは、各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応(NO+NO+2NH→2N+3HO)R1、NOを消費する第2反応(2NH+2NO→N+NHNO+HO)R2、及びNOを消費する第3反応(4NO+4NH+O→4N+6HO)R3というR1〜R3の3つの反応の活性度合いが異なるからである。よって、上記比率範囲を正確に算出するためには、各領域でのこれら3つの反応の活性度合いを考慮しなければならない。 By the way, according to the knowledge of the present inventors, if the bed temperature in each region when the SCR catalyst 3 is divided into a plurality of regions in order from the exhaust flow upstream side is different, the NOx purification rate in each region may be different. found. This is because when the bed temperature in each region is different, the first reaction (NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O) R 1 and NO 2 is consumed in each region, which consumes both NO and NO 2. The second reaction (2NH 3 + 2NO 2 → N 2 + NH 4 NO 3 + H 2 O) R2, and the third reaction (4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O) R3 that consumes NO, R3 to R3 This is because the degree of activity differs. Therefore, in order to accurately calculate the above ratio range, it is necessary to consider the activity levels of these three reactions in each region.

図2は、SCR触媒床温と3つの反応の活性度合いとの関係を示す図である。図3は、SCR触媒3の各領域の床温に応じた各領域の出入りするNOとNOとの比率及びNOx浄化率を示す図である。図2に示すように、R1〜R3の3つの反応の活性度合いは、SCR触媒3の床温に応じて異なる。例えば図2に示すA点では、図3(a)に示すように第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合
いは0%である。このため、A点では、第1反応R1のみが80%の活性度合いで行われ、図示するNOとNOとの比率及びNOx浄化率となる。図2に示すB点では、図3(b)に示すように第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%である。このため、B点では、第1反応R1が90%の活性度合いで行われ、第2反応R2が40%の活性度合いで行われ、図示するNOとNOとの比率及びNOx浄化率となる。図2に示すC点では、図3(c)に示すように第1反応R1の活性度合いが100%であり、第2反応R2の活性度合いが60%であり、第3反応R3の活性度合いが30%である。このため、C点では、第1反応R1が100%の活性度合いで行われ、第2反応R2が60%の活性度合いで行われ、第3反応R3が30%の活性度合いで行われ、図示するNOとNOとの比率及びNOx浄化率となる。
FIG. 2 is a graph showing the relationship between the SCR catalyst bed temperature and the activity levels of the three reactions. FIG. 3 is a diagram showing the ratio of NO and NO 2 entering and exiting each region and the NOx purification rate according to the bed temperature of each region of the SCR catalyst 3. As shown in FIG. 2, the activity levels of the three reactions R <b> 1 to R <b> 3 vary depending on the bed temperature of the SCR catalyst 3. For example, at the point A shown in FIG. 2, the activity level of the first reaction R1 is 80% and the activity levels of the second reaction R2 and the third reaction R3 are 0% as shown in FIG. For this reason, at the point A, only the first reaction R1 is performed with the degree of activity of 80%, and the illustrated ratio of NO to NO 2 and the NOx purification rate are obtained. At point B shown in FIG. 2, as shown in FIG. 3B, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, and the activity level of the third reaction R3. Is 0%. Therefore, at the point B, the first reaction R1 is performed with a degree of activity of 90%, the second reaction R2 is performed with a degree of activity of 40%, and the ratio of NO to NO 2 and the NOx purification rate shown in the figure are obtained. . At the point C shown in FIG. 2, as shown in FIG. 3C, the activity level of the first reaction R1 is 100%, the activity level of the second reaction R2 is 60%, and the activity level of the third reaction R3. Is 30%. Therefore, at the point C, the first reaction R1 is performed with a degree of activity of 100%, the second reaction R2 is performed with a degree of activity of 60%, and the third reaction R3 is performed with a degree of activity of 30%. The ratio of NO to NO 2 and the NOx purification rate are obtained.

以上のことから、SCR触媒3を排気流れ上流側から順に複数の領域に分けた際の各領域の床温が、上記で例示したA点、B点、C点のように異なると、各領域でのR1〜R3の3つの反応の活性度合いが異なることになる。   From the above, if the bed temperature of each region when the SCR catalyst 3 is divided into a plurality of regions in order from the upstream side of the exhaust flow is different as in the points A, B, and C illustrated above, The activity levels of the three reactions R1 to R3 are different.

図4(a)は、SCR触媒3の床温がA点の温度で一定の場合の、SCR触媒3内で浄化されて行くNOとNOとの濃度分布(以下、NOx濃度分布ともいう)及び目標浄化率に到達するためのSCR触媒3へ流入するNOとNOとの比率範囲(以下、目標比率範囲ともいう)を示す図である。ここでは、目標浄化率として90%を求めるものである。 FIG. 4A shows the concentration distribution of NO and NO 2 that is purified in the SCR catalyst 3 when the bed temperature of the SCR catalyst 3 is constant at point A (hereinafter also referred to as NOx concentration distribution). 2 is a diagram showing a ratio range (hereinafter also referred to as a target ratio range) of NO and NO 2 flowing into the SCR catalyst 3 for reaching the target purification rate. Here, 90% is obtained as the target purification rate.

図4(a)のA1は、内燃機関1から排出されSCR触媒3に流入するNOとNOとの内NOの比率(NO/(NO+NO):以下、NO比率という)が50%の場合を想定している。A1の場合には、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、50%ずつのNOとNOとが全て1対1で第1反応R1に用い尽くされる。これにより、SCR触媒3のNOx浄化率は100%である。 A1 in FIG. 4A has a NO 2 ratio of NO to NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 (NO 2 / (NO + NO 2 ): hereinafter referred to as NO 2 ratio). % Is assumed. In the case of A1, since the activity level of the first reaction R1 is 80% and the activity levels of the second reaction R2 and the third reaction R3 are 0%, 50% NO and NO 2 are all 1 One pair is used up for the first reaction R1. Thereby, the NOx purification rate of the SCR catalyst 3 is 100%.

図4(a)のA2は、内燃機関1から排出されSCR触媒3に流入するNO比率が45%の場合を想定している。A2の場合には、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、45%ずつのNOとNOとが1対1で第1反応R1に用いられ、10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 A2 in FIG. 4A assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 45%. In the case of A2, the activity degree of the first reaction R1 is 80%, since the degree of activation of the second reaction R2 and the third reaction R3 is 0%, one by 45% NO and NO 2 and a pair 1 is used for the first reaction R1, and 10% of the excess NO is released without being able to react. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

図4(a)のA3は、内燃機関1から排出されSCR触媒3に流入するNO比率が55%の場合を想定している。A3の場合には、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、45%ずつのNOとNOとが1対1で第1反応R1に用いられ、10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 A3 in FIG. 4A assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 55%. In the case of A3 is the degree of activation of the first reaction R1 is 80%, since the degree of activation of the second reaction R2 and the third reaction R3 is 0%, one by 45% NO and NO 2 and a pair 1 is used for the first reaction R1, and 10% of the excess NO 2 cannot be reacted and is released. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

以上の図4(a)のA1〜A3では、目標浄化率である90%のNOx浄化率に到達するためには、A1を含みA2からA3までの範囲が許容できるので、NO比率の目標比率範囲が45%〜55%となる。 In A1~A3 above of FIG. 4 (a), in order to reach 90% of the NOx purification rate is the target purification rate, since the range from A2 include A1 to A3 are acceptable, NO 2 ratio objectives of The ratio range is 45% to 55%.

また、図4(b)は、SCR触媒3の床温がB点の温度で一定の場合の、SCR触媒3内のNOx濃度分布及び目標比率範囲を示す図である。ここでも、目標浄化率として90%を求めるものである。   FIG. 4B is a diagram showing the NOx concentration distribution and the target ratio range in the SCR catalyst 3 when the bed temperature of the SCR catalyst 3 is constant at the point B temperature. Again, 90% is obtained as the target purification rate.

図4(b)のB1は、内燃機関1から排出されSCR触媒3に流入するNO比率が5
0%の場合を想定している。B1の場合には、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、50%ずつのNOとNOとが全て1対1で第1反応R1に用い尽くされる。これにより、SCR触媒3のNOx浄化率は100%である。
In B1 of FIG. 4B, the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 5
The case of 0% is assumed. In the case of B1, the activity degree of the first reaction R1 is 90%, the activity degree of the second reaction R2 is 40%, the activity degree of the third reaction R3 is 0%, and the first reaction R1 is Since it is performed preferentially over the second reaction R2, 50% of NO and NO 2 are all used up for the first reaction R1 on a one-to-one basis. Thereby, the NOx purification rate of the SCR catalyst 3 is 100%.

図4(b)のB2は、内燃機関1から排出されSCR触媒3に流入するNO比率が45%の場合を想定している。B2の場合には、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、45%ずつのNOとNOとが1対1で第1反応R1に用いられ、10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 B2 in FIG. 4B assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 45%. In the case of B2, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, the activity level of the third reaction R3 is 0%, and the first reaction R1 is Since the reaction is preferentially performed over the second reaction R2, 45% of NO and NO 2 are used in the first reaction R1 on a one-to-one basis, and 10% of the excess NO is released without being reacted. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

図4(b)のB3は、内燃機関1から排出されSCR触媒3に流入するNO比率が70%の場合を想定している。B3の場合には、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、まず30%ずつのNOとNOとが1対1で第1反応R1に用いられ、次に30%のNOが第2反応R2に用いられ、残りの10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 B3 in FIG. 4B assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 70%. In the case of B3, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, the activity level of the third reaction R3 is 0%, and the first reaction R1 is Since the reaction is preferentially performed over the second reaction R2, 30% NO and NO 2 are first used in the first reaction R1 in a one-to-one relationship, and then 30% NO 2 is used in the second reaction R2. And the remaining 10% of the remaining NO 2 cannot be reacted and is released. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

以上の図4(b)のB1〜B3では、目標浄化率である90%のNOx浄化率に到達するためには、B1を含みB2からB3までの範囲が許容できるので、NO比率の目標比率範囲が45%〜70%となる。 In B1~B3 above in FIG. 4 (b), in order to reach 90% of the NOx purification rate is the target purification rate, since the range from B2 includes B1 to B3 are acceptable, NO 2 ratio objectives of The ratio range is 45% to 70%.

以上では、図4を用いSCR触媒3の床温が一定温度の場合を説明した。しかし、上述のように、SCR触媒3を排気流れ上流側から順に複数の領域に分けた際の各領域の床温が異なる場合もある。以下に、SCR触媒3の各領域の床温が異なる場合を説明する。   The case where the bed temperature of the SCR catalyst 3 is constant has been described above with reference to FIG. However, as described above, the bed temperature in each region may be different when the SCR catalyst 3 is divided into a plurality of regions in order from the exhaust flow upstream side. Below, the case where the bed temperature of each area | region of the SCR catalyst 3 differs is demonstrated.

図5(a)は、SCR触媒3を排気流れ上流側から順に2つの上流側領域と下流側領域とに分けた際の上流側領域の床温がA点の温度であり、下流側領域の床温がB点の温度である場合の、SCR触媒3内のNOx濃度分布及び比率範囲を示す図である。ここでも、目標浄化率として90%を求めるものである。   FIG. 5A shows that the bed temperature in the upstream region when the SCR catalyst 3 is divided into two upstream regions and a downstream region in order from the exhaust flow upstream side is the temperature at point A, and It is a figure which shows NOx density | concentration distribution and ratio range in the SCR catalyst 3 in case a bed temperature is the temperature of B point. Again, 90% is obtained as the target purification rate.

図5(a)のC1は、内燃機関1から排出されSCR触媒3に流入するNO比率が50%の場合を想定している。C1の場合には、上流側領域では、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、30%ずつのNOとNOとが全て1対1で第1反応R1に用いられる。下流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、残りの20%ずつのNOとNOとが全て1対1で第1反応R1に用い尽くされる。これにより、SCR触媒3のNOx浄化率は100%である。 C1 in FIG. 5A assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 50%. In the case of C1, in the upstream region, the degree of activity of the first reaction R1 is 80%, and the degree of activity of the second reaction R2 and the third reaction R3 is 0%. 2 are all used in the first reaction R1 on a one-to-one basis. In the downstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, the activity level of the third reaction R3 is 0%, and the first reaction R1 is Since the reaction is performed preferentially over the two reactions R2, the remaining 20% NO and NO 2 are all used up for the first reaction R1 in a one-to-one relationship. Thereby, the NOx purification rate of the SCR catalyst 3 is 100%.

図5(a)のC2は、内燃機関1から排出されSCR触媒3に流入するNO比率が45%の場合を想定している。C2の場合には、上流側領域では、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、30%ずつのNOとNOとが全て1対1で第1反応R1に用いられる。下流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、残りの15%ずつのNOとNOとが全て1対1で第1反応R1に用いられ、
10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。
C2 in FIG. 5A assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 45%. In the case of C2, in the upstream region, the degree of activity of the first reaction R1 is 80%, and the degree of activity of the second reaction R2 and the third reaction R3 is 0%. 2 are all used in the first reaction R1 on a one-to-one basis. In the downstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, the activity level of the third reaction R3 is 0%, and the first reaction R1 is Since it is preferentially performed over the two reactions R2, the remaining 15% NO and NO 2 are all used in the first reaction R1 in a one-to-one relationship.
More than 10% of NO is released without being able to react. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

図5(a)のC3は、内燃機関1から排出されSCR触媒3に流入するNO比率が60%の場合を想定している。C3の場合には、上流側領域では、第1反応R1の活性度合いが80%であり、第2反応R2及び第3反応R3の活性度合いは0%であるので、30%ずつのNOとNOとが全て1対1で第1反応R1に用いられる。下流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、残りの10%ずつのNOとNOとが全て1対1で第1反応R1に用いられ、次に10%のNOが第2反応R2に用いられ、残りの10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 C3 in FIG. 5A assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 60%. In the case of C3, in the upstream region, the degree of activity of the first reaction R1 is 80%, and the degree of activity of the second reaction R2 and the third reaction R3 is 0%. 2 are all used in the first reaction R1 on a one-to-one basis. In the downstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, the activity level of the third reaction R3 is 0%, and the first reaction R1 is Since the second reaction R2 is preferentially performed, the remaining 10% of NO and NO 2 are all used one-to-one for the first reaction R1, and then 10% of NO 2 is supplied to the second reaction R2. Used, the remaining 10% of the remaining NO 2 is released without being able to react. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

以上の図5(a)のC1〜C3では、目標浄化率である90%のNOx浄化率に到達するためには、C1を含みC2からC3までの範囲が許容できるので、NO比率の目標比率範囲が45%〜60%となる。 In C1~C3 above of FIG. 5 (a), in order to reach 90% of the NOx purification rate is the target purification rate, because allowable range from C2 includes a C1 to C3, NO 2 ratio objectives of The ratio range is 45% to 60%.

図5(b)は、SCR触媒3を排気流れ上流側から順に2つの上流側領域と下流側領域とに分けた際の上流側領域の床温がB点の温度であり、下流側領域の床温がC点の温度である場合の、SCR触媒3内のNOx濃度分布及び比率範囲を示す図である。ここでも、目標浄化率として90%を求めるものである。   FIG. 5B shows that the bed temperature in the upstream region when the SCR catalyst 3 is divided into two upstream regions and a downstream region in order from the upstream side of the exhaust flow is the temperature of the point B. It is a figure which shows NOx density | concentration distribution and ratio range in the SCR catalyst 3 in case a bed temperature is the temperature of C point. Again, 90% is obtained as the target purification rate.

図5(b)のD1は、内燃機関1から排出されSCR触媒3に流入するNO比率が50%の場合を想定している。D1の場合には、上流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、35%ずつのNOとNOとが全て1対1で第1反応R1に用いられる。下流側領域では、第1反応R1の活性度合いが100%であり、第2反応R2の活性度合いが60%であり、第3反応R3の活性度合いが30%であり、第1反応R1が第2反応R2よりも優先的に行われるので、残りの15%ずつのNOとNOとが全て1対1で第1反応R1に用い尽くされる。これにより、SCR触媒3のNOx浄化率は100%である。 D1 in FIG. 5B assumes a case where the NO 2 ratio discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 50%. In the case of D1, in the upstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, and the activity level of the third reaction R3 is 0%, Since the first reaction R1 is preferentially performed over the second reaction R2, 35% NO and NO 2 are all used in the first reaction R1 in a one-to-one relationship. In the downstream region, the activity level of the first reaction R1 is 100%, the activity level of the second reaction R2 is 60%, the activity level of the third reaction R3 is 30%, and the first reaction R1 is 2 so performed preferentially over reaction R2, it is exhausted used in the first reaction R1 is and the NO 2 remaining one by 15% NO by all one-to-one. Thereby, the NOx purification rate of the SCR catalyst 3 is 100%.

図5(b)のD2は、内燃機関1から排出されSCR触媒3に流入するNO比率が35%の場合を想定している。D2の場合には、上流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、35%ずつのNOとNOとが全て1対1で第1反応R1に用いられる。下流側領域では、第1反応R1の活性度合いが100%であり、第2反応R2の活性度合いが60%であり、第3反応R3の活性度合いが30%であるので、残りの20%のNOが第3反応R3に用いられ、10%の余りのNOが反応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。 D2 in FIG. 5B assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 35%. In the case of D2, in the upstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, and the activity level of the third reaction R3 is 0%, Since the first reaction R1 is preferentially performed over the second reaction R2, 35% NO and NO 2 are all used in the first reaction R1 in a one-to-one relationship. In the downstream region, the activity level of the first reaction R1 is 100%, the activity level of the second reaction R2 is 60%, and the activity level of the third reaction R3 is 30%, so that the remaining 20% NO is used for the third reaction R3, and 10% of the excess NO is not reacted and is released. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

図5(b)のD3は、内燃機関1から排出されSCR触媒3に流入するNO比率が75%の場合を想定している。D3の場合には、上流側領域では、第1反応R1の活性度合いが90%であり、第2反応R2の活性度合いが40%であり、第3反応R3の活性度合いが0%であり、第1反応R1が第2反応R2よりも優先的に行われるので、まず25%ずつのNOとNOとが全て1対1で第1反応R1に用いられ、次に5%のNOが第2反応R2に用いられる。下流側領域では、第1反応R1の活性度合いが100%であり、第2反応R2の活性度合いが60%であり、第3反応R3の活性度合いが30%であるので、残りの35%のNOが第2反応R2に用いられ、残りの10%の余りのNOが反
応できずに放出される。これにより、SCR触媒3のNOx浄化率は90%である。
D3 in FIG. 5B assumes a case where the ratio of NO 2 discharged from the internal combustion engine 1 and flowing into the SCR catalyst 3 is 75%. In the case of D3, in the upstream region, the activity level of the first reaction R1 is 90%, the activity level of the second reaction R2 is 40%, and the activity level of the third reaction R3 is 0%, Since the first reaction R1 is preferentially performed over the second reaction R2, 25% NO and NO 2 are all used one-to-one for the first reaction R1, and then 5% NO 2 is used. Used in second reaction R2. In the downstream region, the activity level of the first reaction R1 is 100%, the activity level of the second reaction R2 is 60%, and the activity level of the third reaction R3 is 30%, so the remaining 35% NO 2 is used for the second reaction R2, and the remaining 10% of the remaining NO 2 cannot be reacted and is released. Thereby, the NOx purification rate of the SCR catalyst 3 is 90%.

以上の図5(b)のD1〜D3では、目標浄化率である90%のNOx浄化率に到達するためには、D1を含みD2からD3までの範囲が許容できるので、NO比率の目標比率範囲が35%〜75%となる。 In D1~D3 above in FIG. 5 (b), in order to reach 90% of the NOx purification rate is the target purification rate, since the range from D2 include D1 to D3 is acceptable, NO 2 ratio objectives of The ratio range is 35% to 75%.

以上のように、図5を用いSCR触媒3を排気流れ上流側から順に2つの領域に分けた際の各領域の床温が異なる場合を説明した。このように、SCR触媒3の各領域の床温が異なると、R1〜R3の3つの反応の活性度合いが各領域で異なるので、各領域でのR1〜R3の3つの反応の活性度合いが異なることを利用することにより、比率範囲を正確に算出することができる。すなわち、比率範囲は、図2及び図3のような各領域の床温とR1〜R3の3つの反応の活性度合いとを関連付けたマップと、各領域の床温と、SCR触媒3へ流入すると想定されるNOとNOとの比率と、に基づいて算出することができる。つまり、SCR触媒3へ流入すると仮に想定されるNOとNOとの比率に対して、各領域の床温をマップに取り込んで導出したR1〜R3の3つの反応の活性度合いを考慮して、各領域でのNOx浄化反応を推定してNOx浄化率を算出することができる。そして、算出したNOx浄化率が目標浄化率を達成できる限界の上限と下限のSCR触媒3へ流入すると想定されるNOとNOとの比率を求め、この上限から下限までの範囲を比率範囲として特定することができる。なお、本実施例では、SCR触媒3を排気流れ上流側から順に2つの領域に分けた場合を例示しているが、各領域はSCR触媒を3つ以上に分けるものでもよい。 As described above, the case where the bed temperature of each region is different when the SCR catalyst 3 is divided into two regions in order from the exhaust flow upstream side has been described with reference to FIG. Thus, when the bed temperature of each region of the SCR catalyst 3 is different, the activity levels of the three reactions R1 to R3 are different in each region, so the activity levels of the three reactions R1 to R3 in each region are different. By utilizing this, the ratio range can be accurately calculated. That is, when the ratio range flows into the SCR catalyst 3, the map associating the bed temperature of each region as shown in FIGS. 2 and 3 with the activity levels of the three reactions R1 to R3, the bed temperature of each region, and the SCR catalyst 3. the ratio between NO and NO 2 which is assumed, can be calculated based on. That is, for a ratio between NO and NO 2 provisionally envisaged when flowing into the SCR catalyst 3, in consideration of the degree of activation of the three reactions of R1~R3 derived captures bed temperature of each area on the map, The NOx purification rate can be calculated by estimating the NOx purification reaction in each region. Then, a ratio between NO and NO 2 that is assumed to flow into the upper limit and lower limit SCR catalysts 3 at which the calculated NOx purification rate can achieve the target purification rate is obtained, and the range from the upper limit to the lower limit is defined as the ratio range. Can be identified. In the present embodiment, the case where the SCR catalyst 3 is divided into two regions in order from the exhaust flow upstream side is illustrated, but each region may be divided into three or more SCR catalysts.

そこで本実施例では、SCR触媒3を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応R1、NOを消費する第2反応R2、及びNOを消費する第3反応R3という3つの反応の活性度合いが異なることを利用して、排気温度センサ11が取得したSCR触媒3の床温により導かれる各領域の床温と、SCR触媒3へ流入すると想定されるNOとNOとの比率と、に基づいて、目標浄化率に到達するためのSCR触媒3へ流入するNOとNOとの比率範囲を算出する。このように比率範囲を算出するECU13が、本発明の比率範囲算出部に対応する。 Therefore, in this embodiment, if the bed temperature in each region when the SCR catalyst 3 is divided into a plurality of regions in order from the exhaust flow upstream side is different, both NO and NO 2 in each region are consumed. The floor of the SCR catalyst 3 acquired by the exhaust gas temperature sensor 11 by utilizing the fact that the activity levels of the three reactions of the first reaction R1, the second reaction R2 consuming NO 2 and the third reaction R3 consuming NO are different. NO and NO flowing into the SCR catalyst 3 for reaching the target purification rate based on the bed temperature of each region guided by the temperature and the ratio of NO and NO 2 assumed to flow into the SCR catalyst 3 A ratio range of 2 is calculated. Thus, ECU13 which calculates a ratio range respond | corresponds to the ratio range calculation part of this invention.

そして、算出された比率範囲内に収まるように、SCR触媒3へ流入するNOとNOとの比率を、第1流量調節弁9及び第2流量調節弁10によって制御する。酸化触媒6は、NOをNOに酸化させる機能を有するので、内燃機関1から排出されるNO比率が目標比率範囲よりも低ければ、第1流量調節弁9を開き側に調整し、第2流量調節弁10を閉じ側に調整し、酸化触媒6を流通する排気流量を多くすることで、NO比率を高くする。内燃機関1から排出されるNO比率が目標比率範囲内であれば、第1流量調節弁9を全閉し、第2流量調節弁10を全開し、バイパス通路8だけに排気を流通させることで、NO比率を維持する。または、内燃機関1から排出されるNO比率が目標比率範囲内であり、排気が酸化触媒6を流通してもNO比率が目標比率範囲内に収まるようであれば、第1流量調節弁9を全開し、第2流量調節弁10を全閉し、酸化触媒6を流通するように排気を流通させることで、NO比率が変動しても目標比率範囲内に維持できる。内燃機関1から排出されるNO比率が目標比率範囲よりも高ければ、内燃機関1の運転状態をNO比率が低くなる運転状態に変更し、第1流量調節弁9を全閉し、第2流量調節弁10を全開し、バイパス通路8だけに排気を流通させることで、NO比率を低くする。また、このように比率を制御するECU13が、本発明のNOx比率制御部に対応する。 Then, the ratio of NO and NO 2 flowing into the SCR catalyst 3 is controlled by the first flow rate control valve 9 and the second flow rate control valve 10 so as to be within the calculated ratio range. The oxidation catalyst 6, because it has a function of oxidizing NO to NO 2, the NO 2 ratio discharged from the internal combustion engine 1 is lower than the target ratio range, and adjusted to the open side of the first flow rate control valve 9, the 2 The flow rate adjusting valve 10 is adjusted to the closed side, and the exhaust gas flow rate flowing through the oxidation catalyst 6 is increased to increase the NO 2 ratio. If the NO 2 ratio discharged from the internal combustion engine 1 is within the target ratio range, the first flow rate control valve 9 is fully closed, the second flow rate control valve 10 is fully opened, and the exhaust gas is allowed to flow only through the bypass passage 8. Thus, the NO 2 ratio is maintained. Or is in the NO 2 ratio target ratio range to be discharged from the internal combustion engine 1, the exhaust is equal so that NO 2 ratio also flows through the oxidation catalyst 6 falls within the target ratio range, the first flow rate control valve 9 is fully opened, the second flow rate control valve 10 is fully closed, and the exhaust gas is circulated so as to circulate through the oxidation catalyst 6, so that the NO 2 ratio can be maintained within the target ratio range. If the ratio of NO 2 discharged from the internal combustion engine 1 is higher than the target ratio range, the operating state of the internal combustion engine 1 is changed to an operating state in which the NO 2 ratio becomes low, the first flow rate control valve 9 is fully closed, 2 The flow rate adjusting valve 10 is fully opened and the exhaust gas is allowed to flow only through the bypass passage 8 to reduce the NO 2 ratio. The ECU 13 that controls the ratio in this way corresponds to the NOx ratio control unit of the present invention.

本実施例によると、SCR触媒3では目標浄化率以上のNOx浄化率を確保して、NHの不足や過剰供給といった問題を回避することができる。 According to the present embodiment, the SCR catalyst 3 can secure a NOx purification rate that is equal to or higher than the target purification rate, thereby avoiding problems such as shortage and excessive supply of NH 3 .

(NOx比率制御ルーチン)
ECU13が行うNOx比率制御ルーチンについて、図6に示すフローチャートに基づいて説明する。図6は、本実施例に係るNOx比率制御ルーチンを示すフローチャートである。本ルーチンは、所定の時間毎にECU13によって実行される。
(NOx ratio control routine)
The NOx ratio control routine performed by the ECU 13 will be described based on the flowchart shown in FIG. FIG. 6 is a flowchart showing a NOx ratio control routine according to the present embodiment. This routine is executed by the ECU 13 every predetermined time.

図6に示すルーチンが開始されると、S101では、SCR触媒3へ流入するNOとNOとの比率範囲を算出する。比率範囲は以下のようにして特定する。まず、SCR触媒3へ流入すると想定されるNOとNOとの比率(NO比率)に50%を設定する。排気温度センサ11の出力値からは、SCR触媒3の床温が推定される。このSCR触媒3の床温を推定する際には、内燃機関1の運転状態等を加味してもよい。この排気温度センサ11の出力値から推定されたSCR触媒3の床温により、内燃機関1の運転状態等を加味することでSCR触媒3の各領域の床温を推定する。推定されたSCR触媒3の各領域の床温を、図2及び図3のような各領域の床温とR1〜R3の3つの反応の活性度合いとを関連付けたマップに取り込んで、各領域のR1〜R3の3つの反応の活性度合いを導出する。そして、NO比率50%に対する、各領域のR1〜R3の3つの反応の活性度合いを考慮して、各領域でのNOx反応を推定してNOx浄化率を算出する。このようなNOx浄化率の算出を、算出したNOx浄化率が目標浄化率を達成できる限界となるSCR触媒3へ流入すると想定されるNO比率が特定できるまで行う。つまり、NO比率50%から上方の比率及び下方の比率へ想定されるNO比率を変更してNOx浄化率を算出する。そして、算出したNOx浄化率が目標浄化率を達成できる限界の上限と下限のNO比率を求め、この上限から下限の範囲を比率範囲として特定する。本ステップの処理を行うECU13が、本発明の比率範囲算出部に対応する。 When the routine shown in FIG 6 is started, the S101, and calculates the ratio range of NO and NO 2 flowing into the SCR catalyst 3. The ratio range is specified as follows. First, 50% is set as the ratio of NO to NO 2 (NO 2 ratio) that is assumed to flow into the SCR catalyst 3. From the output value of the exhaust temperature sensor 11, the bed temperature of the SCR catalyst 3 is estimated. When estimating the bed temperature of the SCR catalyst 3, the operating state of the internal combustion engine 1 may be taken into consideration. Based on the bed temperature of the SCR catalyst 3 estimated from the output value of the exhaust temperature sensor 11, the bed temperature of each region of the SCR catalyst 3 is estimated by taking into account the operating state of the internal combustion engine 1 and the like. The estimated bed temperature of each region of the SCR catalyst 3 is taken into a map in which the bed temperature of each region and the activity levels of the three reactions R1 to R3 are associated with each other as shown in FIGS. The degree of activity of the three reactions R1 to R3 is derived. Then, considering the activity level of the three reactions R1 to R3 in each region with respect to the NO 2 ratio of 50%, the NOx purification rate is calculated by estimating the NOx reaction in each region. Such calculation of the NOx purification rate is performed until the NO 2 ratio that is assumed to flow into the SCR catalyst 3 at which the calculated NOx purification rate becomes the limit at which the target purification rate can be achieved can be specified. In other words, change the NO 2 ratio estimated from NO 2 ratio of 50% above the ratio and lower ratio calculating a NOx purification ratio. Then, the upper limit and lower limit NO 2 ratios at which the calculated NOx purification rate can achieve the target purification rate are obtained, and the lower limit range from this upper limit is specified as the ratio range. The ECU 13 that performs the processing of this step corresponds to the ratio range calculation unit of the present invention.

S102では、S101で算出された比率範囲内に収まるように、SCR触媒3へ流入するNOとNOとの比率(NO比率)を制御する。内燃機関1から排出されるNO比率が目標比率範囲よりも低ければ、第1流量調節弁9を開き側に調整し、第2流量調節弁10を閉じ側に調整し、酸化触媒6を流通する排気流量を多くすることで、NO比率を高くする。内燃機関1から排出されるNO比率が目標比率範囲内であれば、第1流量調節弁9を全閉し、第2流量調節弁10を全開し、バイパス通路8だけに排気を流通させることで、NO比率を維持する。または、内燃機関1から排出されるNO比率が目標比率範囲内であり、排気が酸化触媒6を流通してもNO比率が目標比率範囲内に収まるようであれば、第1流量調節弁9を全開し、第2流量調節弁10を全閉し、酸化触媒6を流通するように排気を流通させることで、NO比率が変動しても目標比率範囲内に維持できる。内燃機関1から排出されるNO比率が目標比率範囲よりも高ければ、内燃機関1の運転状態をNO比率が低くなる運転状態に変更し、第1流量調節弁9を全閉し、第2流量調節弁10を全開し、バイパス通路8だけに排気を流通させることで、NO比率を低くする。本ステップの処理を行うECU13が、本発明のNOx比率制御部に対応する。本ステップの処理の後、本ルーチンを一旦終了する。 In S102, so as to fall within a ratio range calculated in S101, controlling the ratio (NO 2 ratio) of NO and NO 2 flowing into the SCR catalyst 3. If the NO 2 ratio discharged from the internal combustion engine 1 is lower than the target ratio range, the first flow rate control valve 9 is adjusted to the open side, the second flow rate control valve 10 is adjusted to the close side, and the oxidation catalyst 6 is circulated. By increasing the exhaust flow rate to be increased, the NO 2 ratio is increased. If the NO 2 ratio discharged from the internal combustion engine 1 is within the target ratio range, the first flow rate control valve 9 is fully closed, the second flow rate control valve 10 is fully opened, and the exhaust gas is allowed to flow only through the bypass passage 8. Thus, the NO 2 ratio is maintained. Or is in the NO 2 ratio target ratio range to be discharged from the internal combustion engine 1, the exhaust is equal so that NO 2 ratio also flows through the oxidation catalyst 6 falls within the target ratio range, the first flow rate control valve 9 is fully opened, the second flow rate control valve 10 is fully closed, and the exhaust gas is circulated so as to circulate through the oxidation catalyst 6, so that the NO 2 ratio can be maintained within the target ratio range. If the ratio of NO 2 discharged from the internal combustion engine 1 is higher than the target ratio range, the operating state of the internal combustion engine 1 is changed to an operating state in which the NO 2 ratio becomes low, the first flow rate control valve 9 is fully closed, 2 The flow rate adjusting valve 10 is fully opened and the exhaust gas is allowed to flow only through the bypass passage 8 to reduce the NO 2 ratio. The ECU 13 that performs the processing of this step corresponds to the NOx ratio control unit of the present invention. After the processing of this step, this routine is once ended.

また、S102で決定されたNO比率の場合に得られるNOx浄化率、内燃機関1から排出されるNOx量、NOxセンサ12の検出値、さらにはSCR触媒3に吸着された尿素やNHの量を考慮して、必要な尿素水の量を算出し、尿素水添加制御を行う。このようにして尿素水が算出されると尿素水はNOxの浄化に最適な量となるので、NHの不足や過剰供給といった問題を回避することができる。 Further, the NOx purification rate obtained in the case of the NO 2 ratio determined in S102, the NOx amount discharged from the internal combustion engine 1, the detected value of the NOx sensor 12, and further, the urea and NH 3 adsorbed on the SCR catalyst 3 The amount of urea water required is calculated in consideration of the amount, and urea water addition control is performed. When the urea water is calculated in this way, the urea water becomes an optimum amount for the purification of NOx, so that problems such as insufficient NH 3 and excessive supply can be avoided.

以上説明した本ルーチンによると、SCR触媒3の各領域での床温が異なると、各領域でのR1〜R3という3つの反応の活性度合いが異なることを利用して、排気温度センサ11が取得したSCR触媒3の床温により導かれる各領域の床温と、SCR触媒3へ流入すると想定されるNO比率と、に基づいて、目標浄化率に到達するためのSCR触媒3
へ流入するNOとNOとの比率範囲を算出することができる。そして、算出された比率範囲内に収まるように、SCR触媒3へ流入するNO比率を制御することができる。よって、SCR触媒3では目標浄化率以上のNOx浄化率を確保して、NHの不足や過剰供給といった問題を回避することができる。
According to this routine described above, the exhaust temperature sensor 11 acquires the fact that the activity levels of the three reactions R1 to R3 in each region differ when the bed temperature in each region of the SCR catalyst 3 differs. The SCR catalyst 3 for reaching the target purification rate based on the bed temperature of each region guided by the bed temperature of the SCR catalyst 3 and the NO 2 ratio assumed to flow into the SCR catalyst 3
The ratio range between NO and NO 2 flowing into the engine can be calculated. Then, the NO 2 ratio flowing into the SCR catalyst 3 can be controlled so as to be within the calculated ratio range. Therefore, the SCR catalyst 3 can secure a NOx purification rate that is equal to or higher than the target purification rate, thereby avoiding problems such as shortage and excessive supply of NH 3 .

<その他>
上記実施例では、NOとNOとの比率を目標比率範囲内に収めるために、バイパス通路8と第1流量調節弁9と第2流量調節弁10とを用いて内燃機関1から排出されるNOとNOとの比率を変更していた。しかしこれに限られない。例えば、内燃機関1の運転状態を変更することで内燃機関1から排出されるNOとNOとの比率を変更するものでもよいし、他の手法であってもよい。
<Others>
In the above embodiment, the exhaust gas is discharged from the internal combustion engine 1 using the bypass passage 8, the first flow rate control valve 9, and the second flow rate control valve 10 in order to keep the ratio of NO and NO 2 within the target ratio range. I had to change the ratio of NO and NO 2. However, it is not limited to this. For example, the ratio of NO and NO 2 discharged from the internal combustion engine 1 may be changed by changing the operating state of the internal combustion engine 1, or another method may be used.

本発明に係る内燃機関の排気浄化装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。また、上記実施例は、本発明に係る内燃機関の排気浄化方法の実施例をも兼ねるものである。   The exhaust gas purification apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention. Further, the above embodiment also serves as an embodiment of the exhaust gas purification method for an internal combustion engine according to the present invention.

1:内燃機関、2:排気通路、3:SCR触媒、4:尿素水添加弁、5:尿素水タンク、6:酸化触媒、7:DPF、8:バイパス通路、9:第1流量調節弁、10:第2流量調節弁、11:排気温度センサ、12:NOxセンサ、13:ECU 1: internal combustion engine, 2: exhaust passage, 3: SCR catalyst, 4: urea water addition valve, 5: urea water tank, 6: oxidation catalyst, 7: DPF, 8: bypass passage, 9: first flow control valve, 10: second flow control valve, 11: exhaust temperature sensor, 12: NOx sensor, 13: ECU

Claims (3)

内燃機関の排気通路に配置された選択還元型NOx触媒と、
前記選択還元型NOx触媒よりも上流の前記排気通路に配置され、前記選択還元型NOx触媒へNHを供給するための還元剤を添加する還元剤添加部と、
前記選択還元型NOx触媒の床温を、検出又は推定することにより取得する床温取得部と、
を備えた内燃機関の排気浄化装置であって、
前記選択還元型NOx触媒を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応、NOを消費する第2反応、及びNOを消費する第3反応という3つの反応の活性度合いが異なることを利用して、前記床温取得部が取得した前記選択還元型NOx触媒の床温により導かれる各領域の床温と、前記選択還元型NOx触媒へ流入すると想定されるNOとNOとの比率と、に基づいて、目標浄化率に到達するための前記選択還元型NOx触媒へ流入するNOとNOとの比率範囲を算出する比率範囲算出部と、
前記比率範囲算出部によって算出された比率範囲内に収まるように、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御するNOx比率制御部と、
を備えたことを特徴とする内燃機関の排気浄化装置。
A selective reduction type NOx catalyst disposed in an exhaust passage of the internal combustion engine;
A reducing agent addition unit that is disposed in the exhaust passage upstream of the selective reduction type NOx catalyst and adds a reducing agent for supplying NH 3 to the selective reduction type NOx catalyst;
A bed temperature acquisition unit which acquires the bed temperature of the selective catalytic reduction NOx catalyst by detecting or estimating;
An exhaust purification device for an internal combustion engine comprising:
When the selective reduction type NOx catalyst is divided into a plurality of regions in order from the exhaust flow upstream side and the bed temperature in each region is different, a first reaction that consumes both NO and NO 2 in each region, By utilizing the fact that the degree of activity of the three reactions of the second reaction that consumes NO 2 and the third reaction that consumes NO is different, the bed temperature of the selective reduction type NOx catalyst acquired by the bed temperature acquisition unit is used. Based on the derived bed temperature of each region and the ratio of NO and NO 2 that is assumed to flow into the selective reduction NOx catalyst, the flow into the selective reduction NOx catalyst to reach the target purification rate A ratio range calculation unit for calculating a ratio range of NO and NO 2 to be performed;
And said ratio range calculation section so as to fall within a ratio range calculated by, NOx ratio controller for controlling the ratio between NO and NO 2 which flows into the selective reduction type NOx catalyst,
An exhaust emission control device for an internal combustion engine, comprising:
前記選択還元型NOx触媒よりも上流の前記排気通路に配置された酸化触媒と、
排気に前記酸化触媒を迂回させるバイパス通路と、
前記酸化触媒を流通する排気流量と前記バイパス通路を流通する排気流量とを調節する排気流量調節部と、
を更に備え、
前記NOx比率制御部は、前記排気流量調節部で前記酸化触媒を流通する排気流量と前記バイパス通路を流通する排気流量とを調節することにより、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
An oxidation catalyst disposed in the exhaust passage upstream of the selective reduction NOx catalyst;
A bypass passage for bypassing the oxidation catalyst to exhaust,
An exhaust flow rate adjusting unit for adjusting an exhaust flow rate flowing through the oxidation catalyst and an exhaust flow rate flowing through the bypass passage;
Further comprising
The NOx ratio control unit adjusts an exhaust flow rate through which the oxidation catalyst is circulated and an exhaust flow rate through which the bypass passage is circulated by the exhaust flow rate adjustment unit, whereby NO and NO 2 flowing into the selective reduction type NOx catalyst are adjusted. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the ratio is controlled.
内燃機関の排気通路に配置された選択還元型NOx触媒よりも上流の前記排気通路に配置された還元剤添加部から還元剤を添加して、前記選択還元型NOx触媒へNHを供給し、前記選択還元型NOx触媒でNOxを浄化させる内燃機関の排気浄化方法であって、
前記選択還元型NOx触媒を排気流れ上流側から順に複数の領域に分けた際の各領域での床温が異なると、各領域での、NOとNOとの両方を消費する第1反応、NOを消費する第2反応、及びNOを消費する第3反応という3つの反応の活性度合いが異なることを利用して、前記選択還元型NOx触媒の床温を、検出又は推定することにより取得する床温取得部が取得した前記選択還元型NOx触媒の床温により導かれる各領域の床温と、前記選択還元型NOx触媒へ流入すると想定されるNOとNOとの比率と、に基づいて、目標浄化率に到達するための前記選択還元型NOx触媒へ流入するNOとNOとの比率範囲を算出し、
算出された比率範囲内に収まるように、前記選択還元型NOx触媒へ流入するNOとNOとの比率を制御することを特徴とする内燃機関の排気浄化方法。
Adding a reducing agent from a reducing agent addition section arranged in the exhaust passage upstream of the selective reduction type NOx catalyst arranged in the exhaust passage of the internal combustion engine, and supplying NH 3 to the selective reduction type NOx catalyst; An exhaust purification method for an internal combustion engine that purifies NOx with the selective reduction type NOx catalyst,
When the selective reduction type NOx catalyst is divided into a plurality of regions in order from the exhaust flow upstream side and the bed temperature in each region is different, a first reaction that consumes both NO and NO 2 in each region, Obtained by detecting or estimating the bed temperature of the selective reduction-type NOx catalyst using the fact that the activity levels of the three reactions, the second reaction consuming NO 2 and the third reaction consuming NO, are different. Based on the bed temperature of each region derived from the bed temperature of the selective reduction NOx catalyst acquired by the bed temperature acquisition unit and the ratio of NO and NO 2 that is assumed to flow into the selective reduction NOx catalyst. Calculating a ratio range of NO and NO 2 flowing into the selective catalytic reduction NOx catalyst to reach the target purification rate,
An exhaust gas purification method for an internal combustion engine, wherein a ratio between NO and NO 2 flowing into the selective reduction type NOx catalyst is controlled so as to be within a calculated ratio range.
JP2010172142A 2010-07-30 2010-07-30 Device and method for exhaust emission control of internal combustion engine Withdrawn JP2012031787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172142A JP2012031787A (en) 2010-07-30 2010-07-30 Device and method for exhaust emission control of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172142A JP2012031787A (en) 2010-07-30 2010-07-30 Device and method for exhaust emission control of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012031787A true JP2012031787A (en) 2012-02-16

Family

ID=45845489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172142A Withdrawn JP2012031787A (en) 2010-07-30 2010-07-30 Device and method for exhaust emission control of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012031787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073408A1 (en) 2012-11-07 2014-05-15 トヨタ自動車株式会社 Exhaust gas purification device for internal-combustion engine
JP2016532810A (en) * 2013-07-29 2016-10-20 マン・ディーゼル・アンド・ターボ・エスイー Operation method of internal combustion engine
JP2018525565A (en) * 2015-08-27 2018-09-06 スカニア シーブイ アクチボラグ Method and system for exhaust gas treatment
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073408A1 (en) 2012-11-07 2014-05-15 トヨタ自動車株式会社 Exhaust gas purification device for internal-combustion engine
US9593611B2 (en) 2012-11-07 2017-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2016532810A (en) * 2013-07-29 2016-10-20 マン・ディーゼル・アンド・ターボ・エスイー Operation method of internal combustion engine
US9803575B2 (en) 2013-07-29 2017-10-31 Man Diesel & Turbo Se Method for operating an internal combustion engine
JP2018525565A (en) * 2015-08-27 2018-09-06 スカニア シーブイ アクチボラグ Method and system for exhaust gas treatment
US10920632B2 (en) 2015-08-27 2021-02-16 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Similar Documents

Publication Publication Date Title
JP5880731B2 (en) Exhaust gas purification device for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US8656702B2 (en) Exhaust gas after treatment system
JP4702318B2 (en) Exhaust gas purification system for internal combustion engine
JP5272455B2 (en) NOx purification system control method and NOx purification system
US8161731B2 (en) Selective catalytic reduction using controlled catalytic deactivation
JP5002040B2 (en) Exhaust gas purification device for internal combustion engine
JP5127052B2 (en) Exhaust treatment device control device
JP2008163856A (en) Exhaust emission control device of internal combustion engine
EP2940267B1 (en) Exhaust gas purification apparatus for internal combustion engine
WO2010087005A1 (en) Exhaust purifying device
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
WO2010134189A1 (en) Exhaust emission controler device for internal combustion engine
US10364727B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2012031787A (en) Device and method for exhaust emission control of internal combustion engine
JP2009293605A (en) Control device for exhaust treatment device
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
JP2010185369A (en) Fuel supply device of engine
JP2010185434A (en) Exhaust emission control device for internal combustion engine
US8307635B2 (en) Exhaust purification system of internal combustion engine
JP2023113032A (en) Exhaust emission control system
JP6453702B2 (en) Abnormality diagnosis device for exhaust purification mechanism
JP2013238164A (en) Exhaust emission control apparatus of internal combustion engine
JP2013234624A (en) Abnormality determination system for exhaust emission control device of internal combustion engine
JP2018035766A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001