JP2012031108A - Lumen formation inhibitor of endothelial cell - Google Patents

Lumen formation inhibitor of endothelial cell Download PDF

Info

Publication number
JP2012031108A
JP2012031108A JP2010172767A JP2010172767A JP2012031108A JP 2012031108 A JP2012031108 A JP 2012031108A JP 2010172767 A JP2010172767 A JP 2010172767A JP 2010172767 A JP2010172767 A JP 2010172767A JP 2012031108 A JP2012031108 A JP 2012031108A
Authority
JP
Japan
Prior art keywords
deoxy
derivative
formula
sugar
erythro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010172767A
Other languages
Japanese (ja)
Other versions
JP5649358B2 (en
Inventor
Ikuko Tsukamoto
郁子 塚本
Ryoji Konishi
良士 小西
Yasuo Kubota
泰夫 窪田
Kenji Osumi
賢二 大隅
Masamori Mizuno
真盛 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Kagawa University NUC
Original Assignee
Noguchi Institute
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute, Kagawa University NUC filed Critical Noguchi Institute
Priority to JP2010172767A priority Critical patent/JP5649358B2/en
Publication of JP2012031108A publication Critical patent/JP2012031108A/en
Application granted granted Critical
Publication of JP5649358B2 publication Critical patent/JP5649358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lumen formation inhibitor which is characterized by not substantially inhibiting the growth of an endothelial cell with a deoxy sugar derivative or a sugar alcohol derivative as an effective component.SOLUTION: There is provided the lumen forming inhibitor which is characterized in that it does not substantially inhibit the growth of the endothelial cell with the deoxy sugar derivative or the sugar alcohol derivative except for 1, 5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH, formula (4)) as the effective component. Particularly, D-Glucal (formula (1)) as the sugar alcohol derivative, or 2, 3-Dideoxy-D-erythro-hexose(DEH, formula (2)) as the deoxy sugar derivative, or Alkyl 2, 3-dideoxy-D-erythro-hexapyranoside (ADEH, formula (5)) is used as the effective component. (In the formula (5), R denotes a 1-5C alkyl group).

Description

本発明は、デオキシ糖誘導体、または糖アルコール誘導体を有効成分とする、血管内皮細胞の管腔形成抑制剤に関する。更に詳しくは、デオキシ糖誘導体、または糖アルコール誘導体を有効成分として、血管内皮細胞の増殖を実質的に阻害しないことを特徴とする管腔形成抑制剤に関する。   The present invention relates to a vascular endothelial cell tube formation inhibitor containing a deoxy sugar derivative or a sugar alcohol derivative as an active ingredient. More specifically, the present invention relates to a luminal formation inhibitor characterized by having a deoxy sugar derivative or a sugar alcohol derivative as an active ingredient and does not substantially inhibit the proliferation of vascular endothelial cells.

血管新生は、新しい血管が形成される現象である。血管形成において血管を構築する血管内皮細胞の増殖と、遊走と、血管内皮細胞による管腔の形成が主要な役割を果たしている。そのため、血管新生阻害剤の評価は、血管内皮細胞の増殖と遊走と管腔形成に対する阻害剤の作用を観察することで行われている。血管新生は組織の発達や創傷治癒過程などの正常な生命活動の他に、関節リウマチ、糖尿病網膜症、癌の増殖や転移の際などにおいても活発化し、疾患の進行に深くかかわっている。したがって、このような病的な血管新生を阻害することが、前述の疾患の治療につながることから、血管新生に関連した治療薬の研究開発が多くの企業等で行われてきた。(非特許文献1参照)   Angiogenesis is a phenomenon in which new blood vessels are formed. In angiogenesis, the proliferation and migration of vascular endothelial cells that form blood vessels and the formation of lumens by vascular endothelial cells play a major role. Therefore, evaluation of angiogenesis inhibitors is performed by observing the effects of inhibitors on the proliferation and migration of vascular endothelial cells and tube formation. In addition to normal life activities such as tissue development and wound healing processes, angiogenesis is also activated during rheumatoid arthritis, diabetic retinopathy, cancer growth and metastasis, and is deeply involved in the progression of the disease. Therefore, inhibiting such pathological angiogenesis leads to the treatment of the aforementioned diseases, and therefore, research and development of therapeutic agents related to angiogenesis have been carried out by many companies. (See Non-Patent Document 1)

血管新生を阻害する物質としては、アバスチン、インターフェロンα、マリマスタット、ネオバスタット、サリドマイド、TNP−470など多くの化合物が報告されている(非特許文献1、2参照)。しかし、副作用の問題や、病的な血管新生だけを選択的に阻害することが難しいなどの問題があり、新たな血管新生阻害剤候補の開発が強く求められている。
血管新生阻害剤候補の開発において、単糖やデオキシ糖による血管新生に対する効果が検討された。単糖やデオキシ糖などの糖質は生体内に広く存在し様々な生命現象に関与していることから、血管新生に対して何らかの作用を及ぼすものと期待された。
As substances that inhibit angiogenesis, many compounds such as Avastin, interferon α, marimastat, neobasstat, thalidomide, TNP-470 have been reported (see Non-Patent Documents 1 and 2). However, there are problems such as side effects and difficulty in selectively inhibiting only pathological angiogenesis, and development of new angiogenesis inhibitor candidates is strongly demanded.
In the development of angiogenesis inhibitor candidates, the effects of monosaccharides and deoxysugars on angiogenesis were examined. Since sugars such as monosaccharides and deoxy sugars are widely present in the living body and are involved in various life phenomena, they are expected to have some effect on angiogenesis.

まず、2−デオキシ−D−リボースは、チミジンホスホリラーゼ(TP)による血管新生の活性を有するが、その立体異性体である2−デオキシ−L−リボース、2−デオキシ−L−リボースのヒドロキシル基のメチル化および/またはアシル化誘導体、並びに2−デオキシ−D−リボースのヒドロキシル基のメチル化および/またはアシル化誘導体が、血管内皮細胞の遊走実験と、マウスでの血管新生阻害実験により血管新生阻害剤であることが開示された(特許文献1参照)。   First, 2-deoxy-D-ribose has angiogenic activity by thymidine phosphorylase (TP), but the stereoisomers of 2-deoxy-L-ribose and 2-hydroxy-L-ribose have hydroxyl groups. Methylated and / or acylated derivatives and methylated and / or acylated derivatives of the hydroxyl group of 2-deoxy-D-ribose inhibited angiogenesis by migration experiments of vascular endothelial cells and angiogenesis inhibition experiments in mice It was disclosed that it is an agent (see Patent Document 1).

一方、多数の希少糖、単糖について血管内皮細胞の増殖や管腔形成に及ぼす効果を検討した結果、D−アロース、D−マンノース、2−デオキシ−D−グルコース、3−デオキシ−D−グルコース、L−ソルボース、2−デオキシ−D−リボースと2−デオキシ−L−リボースに血管内皮細胞の増殖抑制が見られた。管腔形成の抑制は、D−アロース、D−アルトロース、D−グロース、D−タロース、L−アロース、2−デオキシ−D−グルコース、3−デオキシ−D−グルコース、D−リボース、L−リボース、2−デオキシ−D−リボースと2−デオキシ−L−リボースに認められた。(2−デオキシ−D−リボースの効果が前記の特許文献1と一致しないが理由は不明である。)D−アロース、2−デオキシ−D−グルコース、3−デオキシ−D−グルコース、2−デオキシ−D−リボースと2−デオキシ−L−リボースは、増殖と管腔形成の両方の阻害作用を有していた。これらの結果から血管新生阻害作用という生理活性発現の原因は、D−グルコースの2位や3位の水酸基の不在にあると考えられた。(特許文献2、非特許文献3参照)   On the other hand, as a result of investigating the effects of many rare sugars and monosaccharides on proliferation and lumen formation of vascular endothelial cells, D-allose, D-mannose, 2-deoxy-D-glucose, 3-deoxy-D-glucose L-sorbose, 2-deoxy-D-ribose and 2-deoxy-L-ribose were found to inhibit the proliferation of vascular endothelial cells. Inhibition of tube formation is performed by D-allose, D-altrose, D-gulose, D-talose, L-allose, 2-deoxy-D-glucose, 3-deoxy-D-glucose, D-ribose, L- It was found in ribose, 2-deoxy-D-ribose and 2-deoxy-L-ribose. (The reason is unclear although the effect of 2-deoxy-D-ribose does not agree with the above-mentioned Patent Document 1.) D-allose, 2-deoxy-D-glucose, 3-deoxy-D-glucose, 2-deoxy -D-ribose and 2-deoxy-L-ribose had an inhibitory effect on both proliferation and tube formation. From these results, it was considered that the cause of the physiological activity of angiogenesis inhibitory action was the absence of the hydroxyl group at the 2nd or 3rd position of D-glucose. (See Patent Document 2 and Non-Patent Document 3)

国際公開WO02/051423号パンフレットInternational Publication WO02 / 051423 Pamphlet 国際公開WO2005/115408号パンフレットInternational Publication WO2005 / 115408 Pamphlet

R.K.ジェイン、P.F.カルメリ「血管新生の科学」、別冊日経サイエンス139(ポストゲノム時代の医療革新)、p100−107(2002年)R. K. Jane, P. F. Carmeli "Science of Angiogenesis", separate volume Nikkei Science 139 (medical innovation in the post-genomic era), p100-107 (2002) 荒井雅吉、小林資正「血管新生を標的とする新しい抗がん剤」、化学63(10)、72−73(2008)Masayoshi Arai, Shigemasa Kobayashi "New anticancer drugs targeting angiogenesis", Chemistry 63 (10), 72-73 (2008) 塚本郁子「希少糖の話」、薬剤学67(5)、314−322(2007)Reiko Tsukamoto “Rare Sugar Story”, Pharmacology 67 (5), 314-322 (2007)

本発明の課題は、デオキシ糖誘導体、または糖アルコール誘導体を有効成分として、血管内皮細胞の増殖を実質的に阻害しないことを特徴とする管腔形成抑制剤を提供することである。   An object of the present invention is to provide a tube formation inhibitor characterized by having a deoxy sugar derivative or a sugar alcohol derivative as an active ingredient and not substantially inhibiting the proliferation of vascular endothelial cells.

本発明者らは、単糖の六員環に結合する1つの水酸基を不在としたデオキシ糖よりも、2つの水酸基を不在とした六員環構造を有するデオキシ糖誘導体、または糖アルコール誘導体の方が更に強い血管新生阻害作用を示す可能性があると着想し、D−Glucal(下式(1))と、2,3−Dideoxy−D−erythro−hexose(DEH、下式(2))、Methyl 2,3−dideoxy−α−D−erythro−hexopyranoside(MDEH、下式(3))、および1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH、下式(4))について、血管内皮細胞の増殖と管腔形成に及ぼす効果を調べたところ、最後のADAHは管腔形成も細胞増殖も阻害しなかったのに対して、前3者は驚くべきことに血管内皮細胞による管腔形成を阻害するが、血管内皮細胞の増殖を実質的に阻害しないことを見出して、本発明を完成するに至った。   The present inventors have found that a deoxy sugar derivative having a six-membered ring structure in which two hydroxyl groups are absent, or a sugar alcohol derivative, rather than a deoxy sugar in which one hydroxyl group bonded to a six-membered ring of a monosaccharide is absent. Have the potential to exhibit a stronger angiogenesis inhibitory action, D-Glucal (the following formula (1)), 2,3-Dideoxy-D-erythro-hexose (DEH, the following formula (2)), About Methyl 2,3-deoxy-α-D-erythro-hexanoside (MDEH, the following formula (3)) and 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH, the following formula (4)) The final ADAH did not inhibit luminal formation or cell proliferation when examined for its effects on vascular endothelial cell proliferation and luminal formation. On the other hand, the former three surprisingly found that it inhibits luminal formation by vascular endothelial cells, but does not substantially inhibit proliferation of vascular endothelial cells, and has completed the present invention. .

Figure 2012031108
Figure 2012031108

すなわち、本発明は、以下の通りの管腔形成抑制剤を提供するものである。
(1) デオキシ糖誘導体、または1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH、下式(4))を除く糖アルコール誘導体を有効成分として、血管内皮細胞の増殖を実質的に阻害しないことを特徴とする管腔形成抑制剤。
(2) 糖アルコール誘導体がD−Glucal(下式(1))である、もしくはデオキシ糖誘導体が2,3−Dideoxy−D−erythro−hexose(DEH、下式(2))、またはAlkyl 2,3−dideoxy−D−erythro−hexopyranoside(ADEH、下式(5))である、(1)に記載の管腔形成抑制剤。
That is, this invention provides the lumen formation inhibitor as follows.
(1) Substantial growth of vascular endothelial cells using a deoxy sugar derivative or a sugar alcohol derivative excluding 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH, the following formula (4)) as an active ingredient A lumen formation inhibitor characterized by not inhibiting.
(2) The sugar alcohol derivative is D-Glucal (the following formula (1)), or the deoxy sugar derivative is 2,3-Dideoxy-D-erythro-hexose (DEH, the following formula (2)), or Alkyl 2, The tube formation inhibitor according to (1), which is 3-deoxy-D-erythro-hexanopyranide (ADEH, the following formula (5)).

Figure 2012031108
(式(5)で、Rは炭素数1〜5のアルキル基を表す。)
Figure 2012031108
(In formula (5), R represents an alkyl group having 1 to 5 carbon atoms.)

本発明の管腔形成抑制剤は、血管内皮細胞による管腔形成を阻害するが、血管内皮細胞の増殖を阻害しないことから、細胞毒性のない血管新生阻害剤として有用である可能性が期待できる。   The tube formation inhibitor of the present invention inhibits tube formation by vascular endothelial cells, but does not inhibit the growth of vascular endothelial cells, so it can be expected to be useful as an angiogenesis inhibitor without cytotoxicity. .

実施例の管腔形成アッセイの結果(10日間培養後の管腔面積の相対値)を示す棒グラフ。The bar graph which shows the result (the relative value of the luminal area after 10-day culture | cultivation) of the luminal formation assay of an Example. 実施例の増殖アッセイの結果(添加48時間後の細胞数の相対値)を示す棒グラフ。The bar graph which shows the result (relative value of the cell number 48 hours after addition) of the proliferation assay of an Example.

本発明の管腔形成抑制剤は、デオキシ糖誘導体、または1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH)を除く糖アルコール誘導体を有効成分とする。好ましくは、糖アルコール誘導体としてD−Glucal、もしくはデオキシ糖誘導体として2,3−Dideoxy−D−erythro−hexose(DEH)、またはAlkyl 2,3−dideoxy−D−erythro−hexopyranoside(ADEH)を有効成分とする。ADEHのアルキル基は、炭素数1〜5が好ましく、炭素数1(メチル基)が特に好ましい。炭素数が6以上では、溶解性が悪くなり好ましくない。   The tube formation inhibitor of the present invention contains a deoxy sugar derivative or a sugar alcohol derivative excluding 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH) as an active ingredient. Preferably, D-Glucal as a sugar alcohol derivative, or 2,3-Dideoxy-D-erythro-hexose (DEH) as a deoxy sugar derivative, or Alkyl 2,3-dideoxy-D-erythro-hexanoside (ADEH) as an active ingredient And The alkyl group of ADEH preferably has 1 to 5 carbon atoms, and particularly preferably 1 carbon atom (methyl group). When the number of carbon atoms is 6 or more, the solubility is deteriorated, which is not preferable.

D−Glucalは、試薬として市販されている(シグマ−アルドリッチ、464058)。2,3−Dideoxy−D−erythro−hexose(DEH)は、S.Y−K.Tam and B.Fraser−Reid,Carbohydrate Research,45(1),29−43(1975)に記載の方法により合成することができる。Methyl 2,3−dideoxy−α−D−erythro−hexopyranoside(MDEH)を含むAlkyl 2,3−dideoxy−D−erythro−hexopyranoside(ADEH)は、S.Konstantinovic et al.,J.Serb.Chem.Soc.,66(8),499−505(2001)に記載の方法により合成できる。また、これらは公知の合成方法を組合せた別の方法により合成することも可能である。   D-Glucal is commercially available as a reagent (Sigma-Aldrich, 464058). 2,3-Dideoxy-D-erythro-hexose (DEH) YK. Tam and B.B. It can be synthesized by the method described in Fraser-Reid, Carbohydrate Research, 45 (1), 29-43 (1975). Alkyl 2,3-dideoxy-D-erythro-hexanoside (ADEH), including Methyl 2,3-dideoxy-α-D-erythro-hexanoside (MDEH), is Konstantinovic et al. , J .; Serb. Chem. Soc. 66 (8), 499-505 (2001). These can also be synthesized by another method combining known synthesis methods.

なお、前記の特許文献2、非特許文献3に記載された希少糖、単糖のうち、増殖抑制効果を有さないが管腔形成阻害効果を有するものとして、D−アルトロース、D−グロース、D−タロース、L−アロース、D−リボース、L−リボースが記載されている。前4つはアルドヘキソースであり、後2つはアルドペントースであるから、これらはデオキシ糖でも糖アルコールでもない。従って本発明は、特許文献2、非特許文献3には開示されていないし、これらの記載から容易に発明できるものでもないと考える。   Of the rare saccharides and monosaccharides described in Patent Document 2 and Non-Patent Document 3, those having no growth inhibitory effect but having a lumen formation inhibitory effect include D-altrose and D-gulose. , D-talose, L-allose, D-ribose, L-ribose. Since the first four are aldohexoses and the last two are aldopentoses, they are neither deoxy sugars nor sugar alcohols. Therefore, the present invention is not disclosed in Patent Document 2 and Non-Patent Document 3, and is not considered to be easily invented from these descriptions.

本発明において管腔形成を評価する方法に用いる血管内皮細胞としては、例えば、ヒト、ウシ、マウス、ラット由来の血管内皮細胞が挙げられる。さらに詳しくは、例えば、ヒト臍帯静脈血管内皮細胞、ウシ大動脈内皮細胞、マウス脳内皮細胞、ラット肝類洞内皮細胞が挙げられる。臍帯静脈内皮細胞、及びその他の血管内皮細胞の単離および培養方法は、当業者によく知られており、いずれの方法を用いて得られたものであってもよい。また、臍帯静脈血管内皮細胞由来の培養細胞は市販されており、これを用いるのが簡便である。本発明において管腔形成アッセイには、例えば、2%のウシ胎児血清を添加した市販の内皮細胞増殖培地中で、継代培養した臍帯由来血管内皮細胞が好適に用いられ、採取した後、3〜8代の細胞が特に好適に用いられる。   Examples of vascular endothelial cells used in the method for evaluating lumen formation in the present invention include human, bovine, mouse, and rat vascular endothelial cells. More specifically, examples include human umbilical vein endothelial cells, bovine aortic endothelial cells, mouse brain endothelial cells, and rat hepatic sinusoidal endothelial cells. Methods for isolating and culturing umbilical vein endothelial cells and other vascular endothelial cells are well known to those skilled in the art, and may be obtained by any method. In addition, cultured cells derived from umbilical vein vascular endothelial cells are commercially available, and it is easy to use them. In the present invention, for example, umbilical cord-derived vascular endothelial cells subcultured in a commercially available endothelial cell growth medium supplemented with 2% fetal bovine serum are preferably used for the tube formation assay. Cells of -8th generation are particularly preferably used.

本発明の管腔形成抑制剤は、血管新生を伴う疾患、例えば糖尿病性網膜症、又は加齢黄斑変性症による視力低下および失明、固形腫瘍の増殖、慢性関節リューマチの特に関節腔内におけるパンヌス形成、関節症における滑膜の増殖等の疾患、又は乾癬等病的血管新生を伴う疾患などの予防および治療において、甘味料、調味料、食品添加物、食品素材、飲食品、健康飲食品、医薬品・医薬部外品および飼料として利用できる可能性がある。
予防剤または治療剤は、これらのみで用いるほか、一般的賦形剤、安定剤、保存剤、結合剤、崩壊剤等の適当な添加剤を配合し、液剤、カプセル剤、顆粒剤、丸剤、散剤、錠剤等の適宜な剤型を選んで製剤し、経口的あるいは経腸的に投与することができる。
The tube formation inhibitor of the present invention is used for diseases associated with angiogenesis, such as diabetic retinopathy or age-related macular degeneration, decreased visual acuity and blindness, growth of solid tumors, rheumatoid arthritis, particularly pannus formation in the joint space In the prevention and treatment of diseases such as synovial proliferation in arthropathy or diseases associated with pathological angiogenesis such as psoriasis, sweeteners, seasonings, food additives, food materials, food and drink, health food and drink, pharmaceuticals・ It may be used as a quasi-drug and feed.
Prophylactic or therapeutic agents are used alone, and are formulated with appropriate additives such as general excipients, stabilizers, preservatives, binders, disintegrants, etc. to provide solutions, capsules, granules, pills An appropriate dosage form such as a powder or tablet can be selected and formulated, and can be administered orally or enterally.

本発明を飼料として用いる場合、家畜、家禽、その他蜜蜂、蚕、魚などの飼育動物のための飼料であって、本発明のデオキシ糖誘導体、または1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH)を除く糖アルコール誘導体(以下、「本発明の誘導体」と略す。)を配合した組成物が本発明の誘導体として飲食品中の炭水化物量(糖質量)に対して0.1〜50重量%となるように配合されていることを特徴とする。このような飼料を家畜、家禽、その他蜜蜂、蚕、魚などの飼育動物のための飼料動物に投与した場合、肥満傾向が緩和される。したがって、本発明の飼料は、ペットの肥満防止、糖尿病防止や、脂肪付の少ない肉を持つ食用獣肉を得るために有用な飼料である。   When the present invention is used as a feed, it is a feed for domestic animals, poultry, other bees, sharks, fish, and other domestic animals, and the deoxysugar derivative of the present invention, or 1,5-Anhydro-2-deoxy-D- A composition containing a sugar alcohol derivative excluding arabino-hexitol (ADAH) (hereinafter abbreviated as “derivative of the present invention”) is added to the amount of carbohydrate (sugar mass) in the food and drink as the derivative of the present invention. It mix | blends so that it may become 1 to 50 weight%, It is characterized by the above-mentioned. When such feed is administered to feed animals for domestic animals, poultry, and other domestic animals such as bees, rabbits, and fish, the tendency to obesity is alleviated. Therefore, the feed of the present invention is a useful feed for preventing pet obesity, preventing diabetes, and obtaining edible animal meat having meat with little fat.

甘味料、調味料、食品添加物、食品素材、飲食品、健康飲食品、医薬品・医薬部外品および飼料に、本発明の誘導体を配合した組成物の形態で含有せしめる方法は、その製品が完成するまでの工程で本発明の誘導体として0.1重量%以上、望ましくは0.5重量%以上含有せしめればよく、例えば、混和、混捏、溶解、融解、浸漬、浸透、散布、塗布、被覆、噴霧、注入、晶析、固化などの公知の方法が適宜選ばれる。   The method of adding the derivative of the present invention to a sweetener, seasoning, food additive, food material, food / beverage product, health food / beverage product, pharmaceutical / quasi drug, and feed, The derivative of the present invention may be contained in an amount of 0.1% by weight or more, preferably 0.5% by weight or more until completion, for example, mixing, kneading, dissolution, melting, dipping, infiltration, spraying, application, Known methods such as coating, spraying, pouring, crystallization, and solidification are appropriately selected.

本発明の誘導体を配合した組成物において、本発明の誘導体は、組成物中に0.1〜50重量%含まれるように配合されている。好ましくは0.5〜30重量%、より好ましくは1〜10重量%である。組成物中において、本発明の誘導体が0.1重量%未満だと、血糖値の急上昇の抑制作用が充分ではない。また、組成物中において、本発明の誘導体が50重量%を越えると、経済的な意味で好ましくない。   In the composition in which the derivative of the present invention is blended, the derivative of the present invention is blended so that it is contained in an amount of 0.1 to 50% by weight. Preferably it is 0.5-30 weight%, More preferably, it is 1-10 weight%. If the derivative of the present invention is less than 0.1% by weight in the composition, the effect of suppressing the rapid increase in blood glucose level is not sufficient. Further, if the derivative of the present invention exceeds 50% by weight in the composition, it is not preferable in an economical sense.

本発明のデオキシ糖誘導体、または1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH)を除く糖アルコール誘導体、あるいはその薬理的に許容される塩、又は/及び水和物(以下、「本発明の化合物」と略す。)の製剤についてさらに詳細に説明する。   The deoxy sugar derivative of the present invention, or a sugar alcohol derivative other than 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH), or a pharmacologically acceptable salt or / and hydrate thereof (hereinafter referred to as “deoxy sugar derivative”) And abbreviated as “compound of the present invention”).

本発明の化合物の剤型としては、有効成分を医学的に許容される担体、賦形剤、滑沢剤、結合剤等の添加物を含有する種々の形態、例えば水または各種の輸液用製剤に溶解させた液剤、散剤、顆粒剤、錠剤、注射剤、坐剤、又は外用製剤等が、公知の製剤技術により製造できる。本発明の化合物を人体用の医薬として使用する場合にその投与量は、一般的には、成人の経口一日量として0.1−100mg、通常0.1−10mgが適当で、漸減していくのが好ましいことがある。前記の1日量は、1日に1回、又は適当な間隔をおいて1日2もしくは3回に分けて、あるいは食前、食後あるいは食事とともに投与することが可能である。注射による投与の場合は通常経口の1/5量が適当であるが、必要に応じて漸減あるいは漸増することができる。また、病巣局所に投与する場合、例えば関節腔内、又は眼球内等に投与する場合はさらに投与量を減ずることができ、全身に対する作用を減弱させ、有効に用いることが可能である。またその投与量は、患者の症状、年齢、又は体重等により適宜増減してもよい。   The dosage form of the compound of the present invention includes various forms containing additives such as medically acceptable carriers, excipients, lubricants, binders and the like as active ingredients, such as water or various infusion preparations. Liquids, powders, granules, tablets, injections, suppositories, or external preparations dissolved in can be produced by known preparation techniques. When the compound of the present invention is used as a medicine for the human body, the dosage is generally 0.1-100 mg, usually 0.1-10 mg as an oral daily dose for an adult, It may be preferable to go. The daily dose can be administered once a day, divided into two or three times a day at an appropriate interval, or before, after or with a meal. In the case of administration by injection, an oral 1/5 amount is usually appropriate, but it can be gradually decreased or increased as necessary. In addition, when administered locally, for example, when administered intraarticularly or intraocularly, the dosage can be further reduced, and the action on the whole body can be attenuated and used effectively. The dose may be appropriately increased or decreased depending on the patient's symptoms, age, weight, or the like.

本発明の化合物を注射で投与する場合、水性注射剤、水性懸濁注射剤、脂肪乳剤、又はリポソーム注射剤等が可能である。水性注射剤、又は水性懸濁注射剤においては、本発明の化合物を、精製水と混合し、必要に応じて水溶性あるいは水膨潤性高分子、pH調整剤、界面活性剤、浸透圧調整剤、防腐剤、又は保存剤などを加え、混合して、必要に応じて加熱しながら溶解乃至懸濁させ、滅菌して注射剤容器に充填密封し、水性注射剤、又は水性懸濁注射剤とする。水性注射剤は、静脈内、皮下、筋肉内、皮内、又は関節腔内等に投与することができる。また、水性懸濁注射剤は皮下、筋肉内、皮内、又は関節腔内等に服用することができる。また経口でも投与することができる。   When the compound of the present invention is administered by injection, an aqueous injection, an aqueous suspension injection, a fat emulsion, a liposome injection or the like is possible. In an aqueous injection or aqueous suspension injection, the compound of the present invention is mixed with purified water, and if necessary, a water-soluble or water-swellable polymer, a pH adjuster, a surfactant, an osmotic pressure adjuster. , Preservatives, preservatives, etc., mixed, dissolved or suspended while heating if necessary, sterilized, filled and sealed in an injection container, aqueous injection or aqueous suspension injection To do. The aqueous injection can be administered intravenously, subcutaneously, intramuscularly, intradermally, intraarticularly, or the like. In addition, the aqueous suspension injection can be taken subcutaneously, intramuscularly, intradermally, or in a joint cavity. It can also be administered orally.

水溶性あるいは水膨潤性高分子としては、ゼラチン、セルロース誘導体、アクリル酸誘導体、ポビドン、マクロゴール、ポリアミノ酸誘導体、又は多糖体類が好ましく、ゼラチン類では精製ゼラチンが好ましく、セルロース誘導体では、メチルセルロース、ヒドロキシプロピルメチルセルロース2910、ヒドロキシプロピルメチルセルロース2208、ヒドロキシプロピルメチルセルロース2906、ヒドロキシプロピルセルロース、低置換度ヒドロキシプロピルセルロース、カルメロースナトリウム、アクリル酸誘導体として、アミノアクリルメタアクリレートコポリマー、メタアクリル酸コポリマー、ポリアミノ酸誘導体としては、ポリリジン、ポリグルタミン酸が好ましい。多糖体としては、ヒアルロン酸、デキストラン、又はデキストリンが特に好ましい。水溶性あるいは水膨潤性高分子の添加量は、エスクレチン、その誘導体、あるいはその薬理的に許容される塩の性質、量、並びに水溶性あるいは水膨潤性高分子の性質、分子量、適用部位によって異なるが概ね製剤全量に対し、0.01%乃至10%の範囲で使用可能である。   As the water-soluble or water-swellable polymer, gelatin, cellulose derivatives, acrylic acid derivatives, povidone, macrogol, polyamino acid derivatives, or polysaccharides are preferable, purified gelatin is preferable for gelatins, methylcellulose, for cellulose derivatives, Hydroxypropylmethylcellulose 2910, hydroxypropylmethylcellulose 2208, hydroxypropylmethylcellulose 2906, hydroxypropylcellulose, low-substituted hydroxypropylcellulose, carmellose sodium, acrylic acid derivative, aminoacryl methacrylate copolymer, methacrylic acid copolymer, polyamino acid derivative Are preferably polylysine and polyglutamic acid. As the polysaccharide, hyaluronic acid, dextran, or dextrin is particularly preferable. The amount of water-soluble or water-swellable polymer added varies depending on the nature and amount of esculetin, its derivatives, or pharmacologically acceptable salts, and the nature, molecular weight, and application site of the water-soluble or water-swellable polymer. However, it can be used in the range of 0.01% to 10% with respect to the total amount of the preparation.

pH調整剤には、人体に無害な酸あるいはアルカリが用いられ、界面活性剤には、非イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤が用いられる。また、浸透圧調整剤には、塩化ナトリウム、ブドウ糖等が、防腐剤にはパラベン類が、保存剤にはアスコルビン酸や亜硫酸塩類が例示される。これらの使用量は、特に限定はないが、その作用がそれぞれ発揮できる範囲で用いることができる。また、必要に応じ塩酸プロカイン等の局所麻酔剤、ベンジルアルコール等の無痛化剤、キレート剤、緩衝剤、あるいは水溶性有機溶剤等を加えてもよい。   An acid or alkali that is harmless to the human body is used as the pH adjuster, and a nonionic surfactant, an anionic surfactant, or an amphoteric surfactant is used as the surfactant. Examples of the osmotic pressure regulator include sodium chloride and glucose, examples of the preservative include parabens, and examples of the preservative include ascorbic acid and sulfites. Although there are no particular limitations on the amount of these used, they can be used within a range where their effects can be exhibited. If necessary, a local anesthetic such as procaine hydrochloride, a soothing agent such as benzyl alcohol, a chelating agent, a buffering agent, or a water-soluble organic solvent may be added.

脂肪乳剤は、適当な油脂に乳化剤と本発明の化合物を配合し、精製水を加えて、必要に応じて水溶性あるいは水膨潤性高分子、pH調整剤、界面活性剤、浸透圧調整剤、防腐剤、又は保存剤などを加え、適当な乳化装置で乳化し、滅菌して注射剤容器に充填密封することによって調製される。   The fat emulsion is prepared by blending an emulsifier and the compound of the present invention in an appropriate oil and fat, adding purified water, and if necessary, a water-soluble or water-swellable polymer, a pH adjuster, a surfactant, an osmotic pressure adjuster, It is prepared by adding a preservative or preservative, emulsifying with a suitable emulsifying device, sterilizing and filling and sealing the injection container.

本発明の化合物を主剤とする経口用製剤の剤型としては、例えば錠剤、散剤、顆粒剤、カプセル剤や、溶液剤、シロップ剤、エリキシル剤、又は油性ないし水性の懸濁液等を投与法に応じ適当な製剤を選択し、通常の賦形剤、滑沢剤、結合剤等の添加物と共に、公知の製剤技術により製造できる。   Examples of the dosage form of an oral preparation comprising the compound of the present invention as a main ingredient include administration methods such as tablets, powders, granules, capsules, solutions, syrups, elixirs, or oily or aqueous suspensions. A suitable formulation can be selected according to the above, and it can be produced by a known formulation technique together with usual excipients, lubricants, binders and other additives.

固形製剤としては活性化合物とともに製剤学上許容されている添加物を含み、例えば充填剤類や増量剤類、結合剤類、崩壊剤類、溶解促進剤類、湿潤剤類、又は潤滑剤類等を必要に応じて選択して混合し、製剤化することができる。
また外用製剤として溶液剤、懸濁液、乳濁液、軟膏、ゲル、クリーム、ローション、及びスプレー等を例示できる。
Solid preparations contain pharmaceutically acceptable additives as well as active compounds, such as fillers, extenders, binders, disintegrants, dissolution promoters, wetting agents, lubricants, etc. Can be selected and mixed as necessary to prepare a preparation.
Examples of external preparations include solutions, suspensions, emulsions, ointments, gels, creams, lotions, and sprays.

医薬品・医薬部外品や食品等の開発において最も重要で大きなハードルは、本発明の化合物の安全性の検証である。変異原性、生分解度試験および3種類の急性毒性試験(経口急性毒性試験、皮膚一次刺激試験、眼一次刺激試験)が、最も基本的な安全性試験として定められている。本発明の化合物は、安全であろうとの予想はできるものの、きちんとした検証が今後必要である。
以下に記載する実施例により本発明をさらに詳細に説明するが、本発明はこの実施例によって限定されるものではない。
The most important and important hurdle in the development of pharmaceuticals, quasi drugs and foods is the verification of the safety of the compound of the present invention. Mutagenicity, biodegradability test and three types of acute toxicity tests (oral acute toxicity test, primary skin irritation test, primary eye irritation test) are defined as the most basic safety tests. Although the compounds of the present invention can be expected to be safe, further verification is necessary in the future.
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

<D−glucalの合成>
Tri−O−acetyl−D−glucal(1.18g、4.28mmol)をメタノール(100ml)に溶解し0℃に冷却した。この溶液に28%ナトリウムメトキシド―メタノール溶液(113μl)をメタノール(20ml)に溶かした溶液を加え、室温まで温度を上げた。5時間30分撹拌したのち、陽イオン交換樹脂を用いて中和し、反応液をろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=15:1)、引き続きゲルろ過カラムクロマトグラフィー(Sephadex LH−20,メタノール溶出)により精製し、式(1)で示されるD−glucal(312.4mg、50%)を得た。
1H NMR(600MHz,D2O)δ:6.25(dd,1H,J=2.1,6.2Hz),4.64(dd,1H,J=2.7,6.2Hz),4.07(td,1H,J=2.1,6.9Hz),3.67−3.77(m,3H),3.51(dd,1H,J=6.9,8.9Hz).
<Synthesis of D-glucal>
Tri-O-acetyl-D-glucal (1.18 g, 4.28 mmol) was dissolved in methanol (100 ml) and cooled to 0 ° C. To this solution was added a solution of 28% sodium methoxide-methanol solution (113 μl) in methanol (20 ml), and the temperature was raised to room temperature. After stirring for 5 hours and 30 minutes, neutralization was performed using a cation exchange resin, and the reaction solution was filtered. The filtrate was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 15: 1), followed by gel filtration column chromatography (Sephadex LH-20, methanol elution), and D-- Glucal (312.4 mg, 50%) was obtained.
1 H NMR (600 MHz, D 2 O) δ: 6.25 (dd, 1 H, J = 2.1, 6.2 Hz), 4.64 (dd, 1 H, J = 2.7, 6.2 Hz), 4.07 (td, 1H, J = 2.1, 6.9 Hz), 3.67-3.77 (m, 3H), 3.51 (dd, 1H, J = 6.9, 8.9 Hz) .

Figure 2012031108
Figure 2012031108

<2,3−Dideoxy−D−erythro−hexose(DEH)の合成>
式(6)で示される化合物(1.4537g、5.90mmol;J.Serb.Chem.Soc.、2001年、66巻、p.499−505)を無水酢酸(100ml)に溶解し0℃に冷却した。この溶液に4%濃硫酸―無水酢酸溶液(3.5ml)を加えた。1時間撹拌したのち、反応液を酢酸エチルで抽出した。有機層を水、飽和炭酸水素ナトリウム水溶液の順に洗浄し、無水硫酸マグネシウムを用いて乾燥した。ろ過、溶媒を留去したのち、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、式(7)で示される化合物(631.1mg、40%)を得た。
1H NMR(600MHz,CDCl3)δ:6.12−6.17(m,1H,H−1α),5.79(dd,1H,J=2.7,8.9Hz,H−1β),4.80(dt,1H,J=4.8,11.0Hz,H−4α),4.68(dt,1H,J=4.8,9.6Hz,H−4β),4.27(dd,1H,J=4.8,12.4Hz,H−6α),4.20(dd,1H,J=5.5,12.4Hz,H−6β),4.15(dd,1H,J=4.1,12.4,H−6β),4.10(dd,1H,J=2.1,12.4Hz,H−6α),3.96−4.03(m,1H,H−5α),3.47−3.52(m,1H,H−5β),2.20−2.31(m,1H,H−3β),2.12,2.11,2.10,2.08,2.06,2.05(s×6,CH3×6),1.72−1.80(m,3H,H−2α,2β,3α),1.45−1.55(m,1H,H−3β).
<Synthesis of 2,3-Dideoxy-D-erythro-hexose (DEH)>
A compound represented by formula (6) (1.4537 g, 5.90 mmol; J. Serb. Chem. Soc., 2001, 66, p. 499-505) was dissolved in acetic anhydride (100 ml) at 0 ° C. Cooled down. To this solution was added a 4% concentrated sulfuric acid-acetic anhydride solution (3.5 ml). After stirring for 1 hour, the reaction solution was extracted with ethyl acetate. The organic layer was washed with water and a saturated aqueous sodium bicarbonate solution in that order, and dried using anhydrous magnesium sulfate. After filtration and evaporation of the solvent, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the compound represented by the formula (7) (631.1 mg, 40%).
1 H NMR (600 MHz, CDCl 3 ) δ: 6.12-6.17 (m, 1H, H-1α), 5.79 (dd, 1H, J = 2.7, 8.9 Hz, H-1β) 4.80 (dt, 1H, J = 4.8, 11.0 Hz, H-4α), 4.68 (dt, 1H, J = 4.8, 9.6 Hz, H-4β), 4.27. (Dd, 1H, J = 4.8, 12.4 Hz, H-6α), 4.20 (dd, 1H, J = 5.5, 12.4 Hz, H-6β), 4.15 (dd, 1H , J = 4.1, 12.4, H-6β), 4.10 (dd, 1H, J = 2.1, 12.4 Hz, H-6α), 3.96-4.03 (m, 1H) , H-5α), 3.47-3.52 (m, 1H, H-5β), 2.20-2.31 (m, 1H, H-3β), 2.12, 2.11, 2.. 10, 2.08, 2.06, 2 05 (s × 6, CH 3 × 6), 1.72-1.80 (m, 3H, H-2α, 2β, 3α), 1.45-1.55 (m, 1H, H-3β).

Figure 2012031108
Figure 2012031108
Figure 2012031108
Figure 2012031108

式(7)で示される化合物(670mg、2.5mmol)をメタノール(70ml)に溶解し0℃に冷却した。この溶液に28%ナトリウムメトキシド―メタノール溶液(113μl)をメタノール(20ml)に溶かした溶液を加え、室温まで温度を上げた。19時間30分撹拌したのち、陽イオン交換樹脂を用いて中和し、反応液をろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=40:1)、引き続きゲルろ過カラムクロマトグラフィー(Sephadex LH−20,メタノール溶出)により精製し、式(2)で示されるDEH(209.1mg、56%)を得た。
1H NMR(600MHz,CD3OD)δ:4.90−5.22(m,1H),3.91−4.20(m,1H),3.32−3.90(m,3H),1.67−2.09(m,4H).
The compound represented by formula (7) (670 mg, 2.5 mmol) was dissolved in methanol (70 ml) and cooled to 0 ° C. To this solution was added a solution of 28% sodium methoxide-methanol solution (113 μl) in methanol (20 ml), and the temperature was raised to room temperature. After stirring for 19 hours and 30 minutes, neutralization was performed using a cation exchange resin, and the reaction solution was filtered. The filtrate was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 40: 1), followed by gel filtration column chromatography (Sephadex LH-20, elution with methanol) to obtain DEH (2) represented by formula (2). 209.1 mg, 56%).
1 H NMR (600 MHz, CD 3 OD) δ: 4.90-5.22 (m, 1H), 3.91-4.20 (m, 1H), 3.32-3.90 (m, 3H) 1.67-2.09 (m, 4H).

Figure 2012031108
Figure 2012031108

<Methyl 2,3−dideoxy−α−D−erythro−hexopyranoside(MDEH)の合成>
式(3)のMDEHは、S.Konstantinovic et al.,J.Serb.Chem.Soc.,66(8),499−505(2001)に記載の方法に従って、Tri−O−acetyl−D−glucal(2.72g、9.99mmol)から926.5mg(収率31%)を合成した。
1H NMR(600MHz,CD3OD)δ:4.63−4.67(m,1H),3.79(d,1H,J=2.7,11.7Hz),3.65(d,1H,J=6.2,11.7Hz),3.39−3.50(m,2H),3.35(s,3H),1.66−1.85(m,4H).
<Synthesis of Methyl 2,3-deoxy-α-D-erythro-hexanoside (MDEH)>
The MDEH of formula (3) is S.I. Konstantinovic et al. , J .; Serb. Chem. Soc. , 66 (8), 499-505 (2001), 926.5 mg (yield 31%) was synthesized from Tri-O-acetyl-D-glucal (2.72 g, 9.99 mmol).
1 H NMR (600 MHz, CD 3 OD) δ: 4.63-4.67 (m, 1 H), 3.79 (d, 1 H, J = 2.7, 11.7 Hz), 3.65 (d, 1H, J = 6.2, 11.7 Hz), 3.39-3.50 (m, 2H), 3.35 (s, 3H), 1.66-1.85 (m, 4H).

Figure 2012031108
Figure 2012031108

<1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH)の合成>
Tri−O−acetyl−D−glucal(1.0240g、3.76mmol)のエタノール溶液(60ml)へ、10wt%パラジウム/活性炭(709.4mg)をエタノール(12ml)に懸濁させた溶液を加え、水素を充てんさせた。室温で27時間撹拌したのち、反応液をろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、式(8)で示される化合物(875.8mg、85%)を得た。
1H NMR(600MHz,CDCl3)δ:4.94−5.01(m,2H),4.24(dd,1H,J=5.5,12.4Hz),4.10(dd,1H,J=2.1,12.4Hz),4.04(ddd,1H,J=1.4,4.8,11.7Hz),4.48−4.56(m,2H),2.10(s,3H),2.07−2.14(m,1H),2.05(s,3H),2.04(s,3H),1.77−1.87(m,1H).
<Synthesis of 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH)>
To a solution of Tri-O-acetyl-D-glucal (1.0240 g, 3.76 mmol) in ethanol (60 ml), a solution of 10 wt% palladium / activated carbon (709.4 mg) suspended in ethanol (12 ml) was added, Filled with hydrogen. After stirring at room temperature for 27 hours, the reaction solution was filtered. The filtrate was concentrated, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the compound represented by the formula (8) (875.8 mg, 85%).
1 H NMR (600 MHz, CDCl 3 ) δ: 4.94-5.01 (m, 2H), 4.24 (dd, 1H, J = 5.5, 12.4 Hz), 4.10 (dd, 1H) , J = 2.1, 12.4 Hz), 4.04 (ddd, 1H, J = 1.4, 4.8, 11.7 Hz), 4.48-4.56 (m, 2H), 2. 10 (s, 3H), 2.07-2.14 (m, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 1.77-1.87 (m, 1H) .

Figure 2012031108
Figure 2012031108

式(8)で示される化合物(865.3mg、3.15mmol)をメタノール(32ml)に溶解し0℃に冷却した。この溶液に28%ナトリウムメトキシド−メタノール溶液(40μl)を加え、室温まで温度を上げた。2時間30分撹拌したのち、陽イオン交換樹脂を用いて中和し、反応液をろ過した。ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=8:1)、引き続きゲルろ過カラムクロマトグラフィー(Sephadex LH−20,メタノール溶出)により精製し、式(4)で示されるADAH(1.0591g、91%)を得た。
1H NMR(600MHz,CD3OD)δ:3.91(ddd,1H,J=1.4,4.8,11.7Hz),3.83(dd,1H,J=2.1,11.7Hz),3.62(dd,1H,J=5.5,11.7Hz),3.47−3.54(m,1H),3.40−3.46(m,1H),3.27−3.33(m,1H),3.09−3.18(m,2H),1.85−1.92(m,1H),1.54−1.63(m,1H).
The compound represented by the formula (8) (865.3 mg, 3.15 mmol) was dissolved in methanol (32 ml) and cooled to 0 ° C. To this solution was added 28% sodium methoxide-methanol solution (40 μl), and the temperature was raised to room temperature. After stirring for 2 hours and 30 minutes, neutralization was performed using a cation exchange resin, and the reaction solution was filtered. The filtrate was concentrated, and the residue was purified by silica gel column chromatography (chloroform: methanol = 8: 1), followed by gel filtration column chromatography (Sephadex LH-20, methanol elution), and ADAH (4) 1.0591 g, 91%).
1 H NMR (600 MHz, CD 3 OD) δ: 3.91 (ddd, 1H, J = 1.4, 4.8, 11.7 Hz), 3.83 (dd, 1H, J = 2.1, 11 .7 Hz), 3.62 (dd, 1H, J = 5.5, 11.7 Hz), 3.47-3.54 (m, 1H), 3.40-3.46 (m, 1H), 3 .27-3.33 (m, 1H), 3.09-3.18 (m, 2H), 1.85-1.92 (m, 1H), 1.54-1.63 (m, 1H) .

Figure 2012031108
Figure 2012031108

<材料>
HUVEC(ヒト臍帯静脈内皮細胞)、ヒト繊維芽細胞、FBS(ウシ胎児血清)、HuMedia EG2、HuMedia EB2、VEGF(血管内皮増殖因子−A)、血管新生キット、およびCD31用管腔染色キットは、クラボー(株)(大阪、日本)から購入した。セルカウンティングキット8は、(株)同仁化学研究所(熊本、日本)から提供された。
<Material>
HUVEC (human umbilical vein endothelial cells), human fibroblasts, FBS (fetal bovine serum), HuMedia EG2, HuMedia EB2, VEGF (vascular endothelial growth factor-A), angiogenesis kit, and luminal staining kit for CD31 are: Purchased from Kurabo Corporation (Osaka, Japan). Cell counting kit 8 was provided by Dojindo Laboratories Co., Ltd. (Kumamoto, Japan).

<管腔形成アッセイ>
血管新生キットを用いて、HUVECをヒト繊維芽細胞と24ウェルプレート中で10日間、培養培地450μLと添加物50μLでインキュベートした。培地交換は、3日毎に添加物とともに行った。10日後、HUVECを、CD31用管腔染色キットのマウス抗ヒトCD31、ヤギ抗マウスIgG AlkPコンジュゲート、塩化ニトロブルーテトラゾリウム(NBT)および5−ブロモ−4−クロロ−3‘−インドリルフォスファターゼ p−トルイジン塩(BCIP)を用いて染色した。形成した管腔の面積をImageJプログラムで測定した。
<Lumen formation assay>
Using an angiogenesis kit, HUVECs were incubated with human fibroblasts in a 24-well plate for 10 days with 450 μL culture medium and 50 μL additive. Medium change was performed with additives every 3 days. After 10 days, HUVEC were immunized with CD31 luminal staining kit mouse anti-human CD31, goat anti-mouse IgG AlkP conjugate, nitroblue tetrazolium chloride (NBT) and 5-bromo-4-chloro-3'-indolylphosphatase p- Stained with toluidine salt (BCIP). The area of the formed lumen was measured with the ImageJ program.

添加物は、最終濃度の10倍の濃度で生理食塩水溶液とし、これを1/10容キット付属の培地に添加して管腔形成用培地を調製した。キット付属の培地のみで形成された管腔面積をコントロールに相対面積を計算し、添加物濃度0(=生理食塩水10%)の値(ほとんど「1」である)との間で有意差検定した。   The additive was a physiological saline solution at a concentration 10 times the final concentration, and this was added to the medium attached to the 1/10 volume kit to prepare a tube formation medium. The relative area was calculated using the lumen area formed only with the medium attached to the kit as a control, and a significant difference test was made between the additive concentration 0 (= 10% physiological saline) (almost “1”). did.

図1に示すように、管腔面積はVEGFで約2倍に増加したが、ADAHではコントロールとほぼ同等であった。一方、MDEH、D−glucal、DEHでは濃度依存的に管腔面積が減少した。よって、ADAHは管腔形成を阻害しないが、MDEH、D−glucal、DEHは管腔形成の阻害作用があり、特にDEHが強く阻害することがわかった。(図1参照)   As shown in FIG. 1, the luminal area increased about 2-fold with VEGF, but with ADAH, it was almost the same as the control. On the other hand, in MDEH, D-glucal, and DEH, the lumen area decreased in a concentration-dependent manner. Thus, ADAH did not inhibit tube formation, but MDEH, D-glucal, and DEH had an inhibitory effect on tube formation, and DEH was particularly strongly inhibited. (See Figure 1)

<増殖アッセイ>
HUVECは、湿潤の大気圧下、CO2(5%)、37℃で、組織培養フラスコ中で増殖した。HuMedia EG2を維持培地として使用した。アッセイにおいて、HUVECは、ゼラチンコートした96ウェルプレートに、維持培地100μL中、典型的には3000細胞/ウェルで播種した。播種の後、プレートを24時間インキュベートして細胞を付着させて、それから維持培地をアッセイ培地に交換した。アッセイ培地は、2%熱不活性化FBS添加HuMedia EB2を90μLと塩含有添加物10μLとからなる。HuMedia EB2の成分は、HuMedia EG2とほとんど同じであるが、FBS、成長因子や抗生物質を含んでいない。3〜8代の間の細胞を、アッセイに使用した。
<Proliferation assay>
HUVECs were grown in tissue culture flasks at 37 ° C. with CO 2 (5%) under humid atmospheric pressure. HuMedia EG2 was used as the maintenance medium. In the assay, HUVECs were seeded in gelatin-coated 96 well plates, typically 3000 cells / well, in 100 μL of maintenance medium. After seeding, the plates were incubated for 24 hours to allow the cells to attach and then the maintenance medium was replaced with assay medium. The assay medium consists of 90 μL of HuMedia EB2 supplemented with 2% heat-inactivated FBS and 10 μL of salt-containing additive. The components of HuMedia EB2 are almost the same as HuMedia EG2, but contain no FBS, growth factors or antibiotics. Cells between 3 and 8 generations were used for the assay.

増殖アッセイは、添加物の添加48時間後、セルカウンティングキット8を用いて行った。[2−(2−メトキシ−4−ニトロフェニル)−3−(4−ニトロフェニル)−5−(2,4−ジスルフォ−フェニル)−2H−テトラゾリウム、1Na塩](5 mM)、1−メトキシ−5−メチルフェナジニウム メチル硫酸(0.2mM)およびNaCl(150mM)を含む溶液10μLを各ウェルに添加して、120分後に450nmの吸光度をマイクロプレートリーダー(イムノミニNJ−2300、システムインスツルメンツ(株)、日本)で測定した。   Proliferation assays were performed using Cell Counting Kit 8 48 hours after addition of additives. [2- (2-methoxy-4-nitrophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfo-phenyl) -2H-tetrazolium, 1Na salt] (5 mM), 1-methoxy -5-methylphenazinium 10 μL of a solution containing methyl sulfate (0.2 mM) and NaCl (150 mM) was added to each well, and after 120 minutes, the absorbance at 450 nm was measured using a microplate reader (Immunomini NJ-2300, System Instruments ( Co., Japan).

添加物は最終濃度の10倍の濃度で生理食塩水溶液とし、これを1/10容、分析用培地に添加した。分析用培地のみで培養したウェルの吸光度をコントロールに相対値を計算した。   The additive was a physiological saline solution at a concentration 10 times the final concentration, and this was added to the analysis medium at 1/10 volume. Relative values were calculated using the absorbance of wells cultured in the analytical medium alone as a control.

図2に示すように、細胞数はVEGFでコントロールよりも増加したが、ADAH、MDEH、D−glucal、DEHは濃度が高くなってもコントロールとほぼ同等であり、これらは細胞増殖をほとんど阻害しないことがわかった。t−testで、VEGFだけがp<0.01で有意差があった。(図2参照)   As shown in FIG. 2, the number of cells increased with VEGF as compared to the control, but ADAH, MDEH, D-glucal, and DEH were almost the same as the control even at higher concentrations, and these hardly inhibited cell proliferation. I understood it. At t-test, only VEGF was significantly different at p <0.01. (See Figure 2)

本発明の管腔形成抑制剤は、血管新生を伴う疾患、例えば糖尿病性網膜症、又は加齢黄斑変性症による視力低下および失明、固形腫瘍の増殖、慢性関節リューマチの特に関節腔内におけるパンヌス形成、関節症における滑膜の増殖等の疾患、又は乾癬等病的血管新生を伴う疾患などの予防および治療に用いることができる、甘味料、調味料、食品添加物、食品素材、飲食品、健康飲食品、医薬品・医薬部外品および飼料として利用できる可能性がある。特に、血管新生を標的とする新しい治療薬として、癌などの疾病治療や予防に有効であることが期待され、新しい医薬品として利用できる可能性がある。   The tube formation inhibitor of the present invention is used for diseases associated with angiogenesis, such as diabetic retinopathy or age-related macular degeneration, decreased visual acuity and blindness, growth of solid tumors, rheumatoid arthritis, particularly pannus formation in the joint space , Sweeteners, seasonings, food additives, food materials, food and drink, health, which can be used for prevention and treatment of diseases such as synovial proliferation in arthropathy or diseases associated with pathological angiogenesis such as psoriasis It may be used as a food / beverage product, pharmaceutical / quasi-drug, and feed. In particular, as a new therapeutic agent targeting angiogenesis, it is expected to be effective in the treatment and prevention of diseases such as cancer, and may be used as a new pharmaceutical product.

Claims (2)

デオキシ糖誘導体、または1,5−Anhydro−2−deoxy−D−arabino−hexitol(ADAH、下式(4))を除く糖アルコール誘導体を有効成分として、血管内皮細胞の増殖を実質的に阻害しないことを特徴とする管腔形成抑制剤。   Does not substantially inhibit the proliferation of vascular endothelial cells, using a deoxy sugar derivative or a sugar alcohol derivative other than 1,5-Anhydro-2-deoxy-D-arabino-hexitol (ADAH, the following formula (4)) as an active ingredient A lumen formation inhibitor characterized by that. 糖アルコール誘導体がD−Glucal(下式(1))である、もしくはデオキシ糖誘導体が2,3−Dideoxy−D−erythro−hexose(DEH、下式(2))、またはAlkyl 2,3−dideoxy−D−erythro−hexopyranoside(ADEH、下式(5))である、請求項1に記載の管腔形成抑制剤。
Figure 2012031108
(式(5)で、Rは炭素数1〜5のアルキル基を表す。)
The sugar alcohol derivative is D-Glucal (the following formula (1)), or the deoxy sugar derivative is 2,3-Dideoxy-D-erythro-hexose (DEH, the following formula (2)), or Alkyl 2,3-dideoxy. The tube formation inhibitor of Claim 1 which is -D-erythro-hexopyranoside (ADEH, the following Formula (5)).
Figure 2012031108
(In formula (5), R represents an alkyl group having 1 to 5 carbon atoms.)
JP2010172767A 2010-07-30 2010-07-30 Tube formation inhibitor of vascular endothelial cells Expired - Fee Related JP5649358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172767A JP5649358B2 (en) 2010-07-30 2010-07-30 Tube formation inhibitor of vascular endothelial cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172767A JP5649358B2 (en) 2010-07-30 2010-07-30 Tube formation inhibitor of vascular endothelial cells

Publications (2)

Publication Number Publication Date
JP2012031108A true JP2012031108A (en) 2012-02-16
JP5649358B2 JP5649358B2 (en) 2015-01-07

Family

ID=45844969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172767A Expired - Fee Related JP5649358B2 (en) 2010-07-30 2010-07-30 Tube formation inhibitor of vascular endothelial cells

Country Status (1)

Country Link
JP (1) JP5649358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336856A (en) * 2018-11-15 2019-02-15 河南师范大学 A kind of preparation method of the bromo- D- glucal of 6-

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051423A1 (en) * 2000-12-22 2002-07-04 Japan Science And Technology Corporation Angiogenesis inhibitors
WO2005115408A1 (en) * 2004-05-26 2005-12-08 National University Corporation Kagawa University Method of controlling the proliferation of vascular endothelial cells and inhibiting lumen formation
WO2009143515A2 (en) * 2008-05-23 2009-11-26 University Of Miami Treatment using continuous low dose application of sugar analogs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051423A1 (en) * 2000-12-22 2002-07-04 Japan Science And Technology Corporation Angiogenesis inhibitors
WO2005115408A1 (en) * 2004-05-26 2005-12-08 National University Corporation Kagawa University Method of controlling the proliferation of vascular endothelial cells and inhibiting lumen formation
WO2009143515A2 (en) * 2008-05-23 2009-11-26 University Of Miami Treatment using continuous low dose application of sugar analogs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336856A (en) * 2018-11-15 2019-02-15 河南师范大学 A kind of preparation method of the bromo- D- glucal of 6-

Also Published As

Publication number Publication date
JP5649358B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP4943839B2 (en) Angiogenesis inhibitor
WO2018073154A1 (en) Combinations comprising an ssao/vap-1 inhibitor and a sglt2 inhibitor, uses thereof
EP1757297A1 (en) Composition for inhibiting the onset of arteriosclerosis and inhibition method
JP5576484B2 (en) Inflammatory disease therapeutic agent containing adenosine N1-oxide as an active ingredient
JP5680499B2 (en) Composition for improving sugar metabolism
JP4754532B2 (en) A therapeutic agent containing hyaluronic acid oligosaccharide as an active ingredient
WO2016152293A1 (en) Composition and method for inhibiting glut1 expression by cancer cells
JP2013112636A (en) Sirtuin 1 (sirt1) gene activator, and telomerase reverse transcriptase (tert) gene activator
JP2009531301A (en) Hexose compounds for cancer treatment
TW201219370A (en) Agent for regulating the formation of nitrogen monoxide
WO2011002033A1 (en) Glucose metabolism-improving agent and glucose metabolism-improving composition
JP5649358B2 (en) Tube formation inhibitor of vascular endothelial cells
JPH1067656A (en) Cell adhesion suppressant
CN110022880B (en) Pharmaceutical composition for preventing or treating ischemic reperfusion injury comprising bile acid
WO2019244937A1 (en) Rosmarinic acid derivative or salt thereof
JP5680498B2 (en) Composition for improving sugar metabolism
JPWO2018066707A1 (en) Aging inhibitor, soft tissue calcification inhibitor, and lung tissue destruction inhibitor
JP7398207B2 (en) Toxic AGEs generation inhibitor
JP2014185170A (en) Sirtuin 1 (sirt1) gene activator, and telomerase reverse transcriptase (tert) gene activator
KR20150080249A (en) Pharmaceutical composition for prevention or treatment of diseases induced by activation of NFAT5 containing protoberberine derivative or pharmaceutically acceptable salts as an active ingredient
KR20130091604A (en) Anti-inflammatory compositions comprising cynandione a
WO2004045628A1 (en) Platelet aggregation inhibitor comprising anhydrofructose and its derivative
KR101547735B1 (en) Composition for treating or preventing brain damage comprising Paradol
EP2474552A1 (en) New saccharide mimics and their use as inhibitors of angiogenesis and metastasis formation
JP2003026577A (en) Improving agent for blood fluidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5649358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees