JP2012030940A - Noncontact carrying device - Google Patents

Noncontact carrying device Download PDF

Info

Publication number
JP2012030940A
JP2012030940A JP2010172443A JP2010172443A JP2012030940A JP 2012030940 A JP2012030940 A JP 2012030940A JP 2010172443 A JP2010172443 A JP 2010172443A JP 2010172443 A JP2010172443 A JP 2010172443A JP 2012030940 A JP2012030940 A JP 2012030940A
Authority
JP
Japan
Prior art keywords
holding means
silicon wafer
workpiece
air
annular groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010172443A
Other languages
Japanese (ja)
Inventor
Toshihiko Kimura
利彦 木村
Tetsuya Yamaguchi
哲也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FINETECH CO Ltd
Original Assignee
JAPAN FINETECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FINETECH CO Ltd filed Critical JAPAN FINETECH CO Ltd
Priority to JP2010172443A priority Critical patent/JP2012030940A/en
Publication of JP2012030940A publication Critical patent/JP2012030940A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact carrying device which prevents rotation of a workpiece when the workpiece is sucked and held in a noncontacting state by generating a swirl on an outside upper face of the workpiece to keep the central part of the workpiece depressurized.SOLUTION: The noncontact carrying device 10 includes: a holding means 13 for generating the swirl on the outside upper face of a workpiece 11 to make the central part of the workpiece 11 a negative pressure, and for sucking and holding the workpiece 11 in the noncontacting state; a moving means 16 fixed to the upper part of the holding means 13; and a cover means 17 which is attached to the holding means 13, covers the upper side and circumference of the holding means 13, and is open downward. The workpiece 11 is rectangular, and the cover means 17 is disposed on the upper side of the holding means 13, and is provided movably up and down with respect to the holding means 13 by a plurality of guide members 62. The cover means 17 has: an upper masking shield 55 rectangular in plan view; a spring 54 attached to each guide member 62 for urging the upper masking shield 55 downward; and a sidewall member 56 which is provided in the circumference of the upper masking shield 55 and can fit the work piece 11 inside.

Description

本発明は、シリコンウェハ等の脆い薄板状のワーク(物品)を非接触状態で搬送する非接触搬送装置に関する。 The present invention relates to a non-contact conveying apparatus that conveys a fragile thin plate-like workpiece (article) such as a silicon wafer in a non-contact state.

例えば、太陽電池の製造工程において、シリコンウェハの表裏面にそれぞれ設ける集電用の電極をスクリーン印刷により形成する場合、シリコンウェハを順次スクリーン印刷機に供給して電極を印刷すると共に、電極が印刷されたシリコンウェハをスクリーン印刷機から順次取出している。
このとき、シリコンウェハのスクリーン印刷機への供給、シリコンウェハのスクリーン印刷機からの取出しを、接触式保持装置を用いて行う場合、接触式保持装置の保持部が接触するシリコンウェハの接触部に亀裂が発生し易いという問題がある。更に、シリコンウェハをスクリーン印刷機から接触式保持装置を用いて取出す場合、印刷された電極が乾燥する前に保持部が電極に接触すると電極が損傷を受けるため、電極が十分に乾燥するまで待機した後でなければスクリーン印刷機からシリコンウェハを取出すことができない。このため、シリコンウェハの印刷処理速度が電極の乾燥に要する時間に律速され、シリコンウェハの印刷処理を効率的に行うことができないという問題もある。
そこで、下方に開口した凹部の上部に設けたノズルから気流を噴出させ、凹部の壁面に沿って旋回させて凹部の下部に導きながら、水平配置されたシリコンウェハの上面に接近させて、凹部の周囲に設けた環状の平坦面とシリコンウェハの上面との間の隙間から気流を高速で通過させることにより凹部の静圧を低下させて(負圧にして)、シリコンウェハを吸引し非接触状態で保持する非接触保持装置が提案されている(例えば、特許文献1参照)。
For example, in the solar cell manufacturing process, when the current collecting electrodes provided on the front and back surfaces of a silicon wafer are formed by screen printing, the silicon wafer is sequentially supplied to a screen printer to print the electrodes and the electrodes are printed. The obtained silicon wafers are sequentially taken out from the screen printer.
At this time, when supplying the silicon wafer to the screen printer and taking out the silicon wafer from the screen printer using the contact-type holding device, the contact portion of the silicon wafer that contacts the holding portion of the contact-type holding device is used. There is a problem that cracks are likely to occur. Furthermore, when a silicon wafer is taken out from a screen printer using a contact-type holding device, the electrode is damaged if the holder contacts the electrode before the printed electrode dries. The silicon wafer can only be taken out from the screen printing machine after this is done. For this reason, the printing processing speed of the silicon wafer is limited by the time required for drying the electrodes, and there is also a problem that the printing processing of the silicon wafer cannot be performed efficiently.
Therefore, an air flow is ejected from a nozzle provided in the upper part of the recessed part opened downward, swung along the wall surface of the recessed part, and guided to the lower part of the recessed part, while approaching the upper surface of the horizontally disposed silicon wafer, The air pressure is passed through the gap between the annular flat surface provided around and the top surface of the silicon wafer at high speed to reduce the static pressure of the recess (negative pressure), and the silicon wafer is sucked and is in a non-contact state Has been proposed (see, for example, Patent Document 1).

特許開2002−64130号公報Japanese Patent Publication No. 2002-64130

しかしながら、特許文献1に記載された非接触保持装置を使用する場合、シリコンウェハと平坦面との間を旋回流が通過するため、シリコンウェハを保持する際にシリコンウェハが回転するという問題が生じる。このため、シリコンウェハの方向を常に揃えてスクリーン印刷機に供給することが困難になる。 However, when the non-contact holding device described in Patent Document 1 is used, a swirl flow passes between the silicon wafer and the flat surface, so that there is a problem that the silicon wafer rotates when holding the silicon wafer. . For this reason, it becomes difficult to always align the direction of the silicon wafer and supply it to the screen printer.

本発明はかかる事情に鑑みてなされたもので、薄板状のワークの外側上面に旋回流を発生させてワークの中央部を負圧にして、ワークを非接触状態で吸引保持する際のワークの回転を防止することが可能な非接触搬送装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to generate a swirling flow on the outer upper surface of a thin plate-like workpiece so that the central portion of the workpiece has a negative pressure, and the workpiece is sucked and held in a non-contact state. An object of the present invention is to provide a non-contact conveyance device capable of preventing rotation.

前記目的に沿う本発明に係る非接触搬送装置は、薄板状のワークの外側上面に旋回流を発生させて、該ワークの中央部を負圧にして、該ワークを非接触状態で吸引保持する保持手段と、前記保持手段の上部に固定された移動手段と、前記保持手段に取付けられ、該保持手段の上側及び周囲を覆って下方に開口したカバー手段とを備えた非接触搬送装置において、
前記ワークは矩形であって、
前記カバー手段は、前記保持手段の上側に配置され、複数本のガイド部材によって前記保持手段に対して上下動可能に設けられ、平面視して矩形の上遮蔽板と、前記各ガイド部材に装着されて前記上遮蔽板を下方に付勢するバネと、前記上遮蔽板の周囲に設けられ内側に前記ワークが嵌入可能な側壁材とを有し、前記保持手段に隙間を有して吸着された前記ワークの回転を防止している。
ここで、矩形とは、長方形及び正方形を含む。
The non-contact conveyance device according to the present invention that meets the above object generates a swirling flow on the outer upper surface of a thin plate-like workpiece, and makes the central portion of the workpiece negative pressure, and sucks and holds the workpiece in a non-contact state. In a non-contact conveying apparatus comprising: a holding unit; a moving unit fixed to an upper part of the holding unit; and a cover unit attached to the holding unit and covering the upper side and the periphery of the holding unit and opening downward.
The workpiece is rectangular,
The cover means is disposed on the upper side of the holding means, and is provided so as to be vertically movable with respect to the holding means by a plurality of guide members, and is attached to each guide member and a rectangular upper shielding plate in plan view. A spring for urging the upper shielding plate downward, and a side wall material that is provided around the upper shielding plate and into which the workpiece can be fitted, and is held by the holding means with a gap. The rotation of the workpiece is prevented.
Here, the rectangle includes a rectangle and a square.

本発明に係る非接触搬送装置において、前記保持手段は、1)前記カバー手段の内側に隙間を有して配置され、下部中央には円形の開口部を備えたハウジングと、2)該ハウジングの中央に設けられ、前記移動手段の連結部を備え、前記開口部に圧縮空気を注入する空気口を有する取付け部材と、3)前記ハウジングの内壁とで周囲に環状空気室を形成する切欠きと、下側に開口となって前記環状空気室より半径方向内側位置に形成された環状溝と、前記空気口から前記環状空気室に圧縮空気を導く空気路と、前記環状空気室の圧縮空気を前記環状溝に対して噴き出し、前記環状溝の内側に負圧を該環状溝の外側に正圧を発生させる複数のノズルとを備えて前記開口部に固定配置される吸引機構とを有する構成とすることができる。 In the non-contact conveying apparatus according to the present invention, the holding means is 1) a housing having a gap inside the cover means and having a circular opening in the center of the lower part, and 2) the housing. A mounting member provided in the center and provided with a connecting portion of the moving means and having an air port for injecting compressed air into the opening; and 3) a notch forming an annular air chamber around the inner wall of the housing. An annular groove formed on the lower side and formed radially inward from the annular air chamber, an air passage for guiding compressed air from the air port to the annular air chamber, and compressed air in the annular air chamber A suction mechanism that includes a plurality of nozzles that are ejected to the annular groove, and generates a negative pressure inside the annular groove and generates a positive pressure outside the annular groove, and is fixedly disposed in the opening. can do.

本発明に係る非接触搬送装置において、前記ノズルは前記環状溝の半径線に対して直角も含む斜めに形成されていることが好ましい。
また、前記空気路の出口は前記ノズルの傾斜側に傾き、前記環状空気室に旋回流を形成していることが好ましい。
In the non-contact conveyance device according to the present invention, it is preferable that the nozzle is formed obliquely including a right angle with respect to a radial line of the annular groove.
Moreover, it is preferable that the exit of the said air path inclines to the inclination side of the said nozzle, and forms the swirl flow in the said annular air chamber.

本発明に係る非接触搬送装置においては、カバー手段が、保持手段の上側に配置され、複数本のガイド部材によって保持手段に対して上下動可能に設けられ、平面視して矩形の上遮蔽板と、各ガイド部材に装着されて上遮蔽板を下方に付勢するバネとを有するので、カバー手段をワークに接近させて、上遮蔽板の周囲に設けられた側壁材がワークを載置している支持台の上面に当接すると、上遮蔽板を保持手段に対して相対的に上方に移動させながら、保持手段のみをワークに更に接近させることができる。これにより、側壁材の内側に矩形のワークを嵌入させた状態で、保持手段によりワークを非接触状態で吸引保持できる。その結果、吸引保持されたワークが水平面内で回転しようとしても、矩形のワークの各辺がそれぞれ対向する側壁材に接触して回転が阻止され、ワークの方向を常に揃えて吸引保持することができる。 In the non-contact conveyance device according to the present invention, the cover means is disposed on the upper side of the holding means and is provided so as to be vertically movable with respect to the holding means by a plurality of guide members. And a spring that is attached to each guide member and biases the upper shielding plate downward, so that the cover means is brought close to the workpiece and the side wall material provided around the upper shielding plate places the workpiece. When it comes into contact with the upper surface of the supporting table, only the holding means can be brought closer to the workpiece while the upper shielding plate is moved upward relative to the holding means. Accordingly, the work can be sucked and held by the holding means in a non-contact state in a state where the rectangular work is fitted inside the side wall member. As a result, even if the sucked and held work tries to rotate in the horizontal plane, each side of the rectangular work comes into contact with the opposing side wall material to prevent rotation, and the work direction is always aligned and held. it can.

本発明に係る非接触搬送装置において、保持手段が、1)カバー手段の内側に隙間を有して配置され、下部中央には円形の開口部を備えたハウジングと、2)ハウジングの中央に設けられ、移動手段の連結部を備え、開口部に圧縮空気を注入する空気口を有する取付け部材と、3)ハウジングの内壁とで周囲に環状空気室を形成する切欠きと、下側に開口となって環状空気室より半径方向内側位置に形成された環状溝と、空気口から環状空気室に圧縮空気を導く空気路と、環状空気室の圧縮空気を環状溝に対して噴き出し、環状溝の内側に負圧を環状溝の外側に正圧を発生させる複数のノズルとを備えて開口部に固定配置される吸引機構とを有する場合、吸引機構を交換することで、ワークに応じた旋回流を形成することができる。 In the non-contact transfer apparatus according to the present invention, the holding means is 1) a housing having a gap inside the cover means, a housing having a circular opening at the lower center, and 2) provided at the center of the housing. A mounting member having a connecting portion for moving means and having an air port for injecting compressed air into the opening, 3) a notch forming an annular air chamber around the inner wall of the housing, and an opening on the lower side An annular groove formed radially inward from the annular air chamber, an air passage for guiding compressed air from the air port to the annular air chamber, and the compressed air in the annular air chamber is jetted to the annular groove, A plurality of nozzles that generate negative pressure on the inner side and positive pressure on the outer side of the annular groove, and a suction mechanism that is fixedly disposed in the opening. Can be formed.

本発明に係る非接触搬送装置において、ノズルが環状溝の半径線に対して直角も含む斜めに形成されている場合、環状溝内に圧縮空気の旋回流を効率的に形成することができる。 In the non-contact conveyance device according to the present invention, when the nozzle is formed obliquely including a right angle with respect to the radial line of the annular groove, a swirl flow of compressed air can be efficiently formed in the annular groove.

本発明に係る非接触搬送装置において、空気路の出口がノズルの傾斜側に傾き、環状空気室に旋回流を形成している場合、環状空気室に形成された圧縮空気の旋回流の中から、ノズルの傾斜方向に沿った方向に旋回する圧縮空気を環状溝内に噴出させることができ、環状溝内で旋回流を容易に形成することができる。 In the non-contact conveyance device according to the present invention, when the outlet of the air passage is inclined toward the inclined side of the nozzle and forms a swirl flow in the annular air chamber, the swirl flow of the compressed air formed in the annular air chamber The compressed air swirling in the direction along the nozzle inclination direction can be ejected into the annular groove, and the swirling flow can be easily formed in the annular groove.

本発明の一実施の形態に係る非接触搬送装置の使用状態の説明図である。It is explanatory drawing of the use condition of the non-contact conveying apparatus which concerns on one embodiment of this invention. 同非接触搬送装置の一部切欠き側断面図である。It is a partially cutaway side sectional view of the non-contact conveyance device. 同非接触搬送装置の平面図である。It is a top view of the non-contact conveying apparatus. 同非接触搬送装置の底面図である。It is a bottom view of the non-contact conveying apparatus. (A)、(B)は、それぞれ嵌入部材の平面図、側面図である。(A), (B) is the top view and side view of an insertion member, respectively. 本発明の一実施の形態に係る非接触搬送装置のガイド手段の説明図である。It is explanatory drawing of the guide means of the non-contact conveying apparatus which concerns on one embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る非接触搬送装置10は、太陽電池の製造工程において、太陽電池用のシリコンウェハ11(ワークの一例)の一面に集電用の電極を印刷するスクリーン印刷機(図示せず)にシリコンウェハ11を供給するウェハ用ステージ12にシリコンウェハ11をセットする際に使用するものである。ここで、シリコンウェハ11は、例えば、1辺の長さが120〜160mmの正方形であり、厚みは0.15〜0.25mmである。そして、非接触搬送装置10は、シリコンウェハ11の外側上面に旋回流を発生させて、シリコンウェハ11の中央部を負圧にして、シリコンウェハ11を非接触状態で吸引保持する保持手段13と、保持手段13の上部に固定された移動手段16と、保持手段13に取付けられ、保持手段13の上側及び周囲を覆って下方に開口したカバー手段17とを備えている。なお、移動手段16は、シリコンウェハ11の払い出し場所14と、ウェハ用ステージ12がシリコンウェハ11を受け取るために待機する受け入れ場所15との間で往復移動する。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a non-contact transfer device 10 according to an embodiment of the present invention has a current collecting electrode on one surface of a silicon cell 11 for solar cells (an example of a workpiece) in a solar cell manufacturing process. This is used when the silicon wafer 11 is set on a wafer stage 12 for supplying the silicon wafer 11 to a screen printing machine (not shown) for printing. Here, the silicon wafer 11 is, for example, a square having a side length of 120 to 160 mm and a thickness of 0.15 to 0.25 mm. Then, the non-contact transfer device 10 generates a swirling flow on the outer upper surface of the silicon wafer 11, makes the central portion of the silicon wafer 11 have a negative pressure, and holds and holds the silicon wafer 11 in a non-contact state. The moving means 16 is fixed to the upper part of the holding means 13, and the cover means 17 is attached to the holding means 13 and covers the upper side and the periphery of the holding means 13 and opens downward. The moving means 16 reciprocates between the delivery place 14 of the silicon wafer 11 and the receiving place 15 where the wafer stage 12 waits to receive the silicon wafer 11. Details will be described below.

ウェハ用ステージ12は、シリコンウェハ11の上面側を吸引してシリコンウェハ11を保持した保持手段13が下降した際に、シリコンウェハ11の下面を吸着保持(固定)するものである。そして、ウェハ用ステージ12は、シリコンウェハ11の下面側を真空吸引してシリコンウェハ11を上面に吸着する板状の通気性部材18と、中央部に通気性部材18が嵌挿され、通気性部材18の周囲側面を覆って空気の流通を防止する側部材19と、側部材19の下部に取付けられ、嵌挿された通気性部材18を載置して通気性部材18の下面側から空気を吸引する台座部材(図示せず)と、台座部材に真空ホースを介して接続する図示しない吸引手段(例えば、真空ポンプ)とを備えている。ここで、通気性部材18は、シリコンウェハ11と相似形状であって、その断面積はシリコンウェハ11の断面積より若干小さく、ステンレス等の金属粉末を焼結して製造した多孔質金属、あるいは、アルミナ等のセラミック粉末を焼結して製造したポーラスセラミックスにより形成されている。 The wafer stage 12 sucks and holds (fixes) the lower surface of the silicon wafer 11 when the holding means 13 holding the silicon wafer 11 by sucking the upper surface side of the silicon wafer 11 is lowered. The wafer stage 12 has a plate-like air-permeable member 18 that vacuum-sucks the lower surface side of the silicon wafer 11 to adsorb the silicon wafer 11 to the upper surface, and an air-permeable member 18 that is inserted into the central portion. A side member 19 that covers the peripheral side surface of the member 18 to prevent the air from flowing, and a breathable member 18 that is attached to the lower portion of the side member 19 and that is fitted and placed thereon, is placed on the lower surface side of the breathable member 18. And a suction means (for example, a vacuum pump) (not shown) connected to the base member via a vacuum hose. Here, the air-permeable member 18 has a shape similar to that of the silicon wafer 11, and its cross-sectional area is slightly smaller than the cross-sectional area of the silicon wafer 11, or a porous metal manufactured by sintering metal powder such as stainless steel, or It is formed of porous ceramics produced by sintering ceramic powder such as alumina.

更に、ウェハ用ステージ12は、通気性部材18の上面が水平になるように台座部材を載置し、シリコンウェハ11を保持する保持手段13がウェハ用ステージ12の待機場所の上方に移動して停止した際に、保持手段13の停止位置に対して、通気性部材18の水平面内の位置及び水平面内の回転角度位置をそれぞれ調整する位置調整機構(図示せず)を有している。これによって、保持手段13を下降させて、シリコンウェハ11を保持手段13からウェハ用ステージ12に受け渡した際に、ウェハ用ステージ12上でのシリコンウェハ11の位置(水平面内の位置及び水平面内の回転角度位置)を常に一定にすることができ、スクリーン印刷機でシリコンウェハ11に形成する電極のパターンを一定にすることができる。 Further, the wafer stage 12 is mounted with a pedestal member so that the upper surface of the air permeable member 18 is horizontal, and the holding means 13 for holding the silicon wafer 11 moves above the standby position of the wafer stage 12. A position adjusting mechanism (not shown) that adjusts the position of the breathable member 18 in the horizontal plane and the rotational angle position in the horizontal plane with respect to the stop position of the holding means 13 when stopped. Thus, when the holding means 13 is lowered and the silicon wafer 11 is transferred from the holding means 13 to the wafer stage 12, the position of the silicon wafer 11 on the wafer stage 12 (the position in the horizontal plane and the position in the horizontal plane). (Rotational angle position) can always be made constant, and the pattern of electrodes formed on the silicon wafer 11 by a screen printer can be made constant.

図2に示すように、保持手段13は、カバー手段17の内側に隙間を有して配置され、下部中央には円形の開口部を備えたハウジング25と、ハウジング25の中央に設けられ、移動手段16の連結部49を備え、開口部に圧縮空気を注入する空気口35を有する取付け部材22とを有している。更に、保持手段13は、ハウジング25の内壁とで周囲に環状空気室46を形成する切欠きと、下側に開口となって環状空気室46より半径方向内側位置に形成された環状溝30と、空気口35から環状空気室46に圧縮空気を導く空気路26と、環状空気室46の圧縮空気を環状溝30に対して噴き出し、環状溝30の内側に負圧を環状溝30の外側に正圧を発生させる複数のノズル47とを備えて開口部に固定配置される吸引機構29を有している。
ここで、ノズル47は、環状溝30の半径線に対して直角も含む斜めに形成されている。これによって、環状溝30の内周面に沿った方向、又はほぼ沿った方向から環状溝30内に圧縮空気を吹込むことができ、環状溝30内に圧縮空気の旋回流を効率的に形成することができる
As shown in FIG. 2, the holding means 13 is arranged with a gap inside the cover means 17. The housing 25 is provided with a circular opening at the center of the lower part, and is provided at the center of the housing 25. The connecting member 49 is provided with a connecting portion 49 of the means 16, and the mounting member 22 has an air port 35 for injecting compressed air into the opening. Further, the holding means 13 includes a notch that forms an annular air chamber 46 around the inner wall of the housing 25, and an annular groove 30 that is open at the lower side and is formed at a radially inner position from the annular air chamber 46. The air passage 26 that guides the compressed air from the air port 35 to the annular air chamber 46, and the compressed air in the annular air chamber 46 is ejected to the annular groove 30, and a negative pressure is generated outside the annular groove 30 inside the annular groove 30. It has a suction mechanism 29 that is provided with a plurality of nozzles 47 that generate positive pressure and is fixedly arranged in the opening.
Here, the nozzle 47 is formed obliquely including a right angle with respect to the radial line of the annular groove 30. Thereby, compressed air can be blown into the annular groove 30 from the direction along or substantially along the inner peripheral surface of the annular groove 30, and a swirling flow of the compressed air is efficiently formed in the annular groove 30. can do

ハウジング25は、取付け部材22が上面中央部に立設された上部材23と、上部材23の外周部に下方に向けて設けられた側壁部材24とを備え、取付け部材22には空気口35と開口部を連通する空気流入路36が設けられている。また、取付け部材22の外側には、取付け部材22を内装する補強部材65が、締結部材の一例であるボルト66を用いて上部材23の上面に固定されている。
吸引機構29の下面で環状溝30の内側には、環状空気室46から圧縮空気を環状溝30に対して噴き出した際に負圧となる(シリコンウェハ11を非接触状態で吸引保持する)吸引面20が形成され、環状溝30の外側には、側壁部材24の下端とOリング27を介して上面が当接し、下面が吸引面20より下方に、例えば、0.2〜0.3mm突出するフランジ部28が設けられている。
The housing 25 includes an upper member 23 in which the mounting member 22 is erected at the center of the upper surface, and a side wall member 24 provided downward on the outer peripheral portion of the upper member 23, and the mounting member 22 has an air port 35. And an air inflow passage 36 communicating with the opening. Further, on the outside of the attachment member 22, a reinforcing member 65 that houses the attachment member 22 is fixed to the upper surface of the upper member 23 using a bolt 66 that is an example of a fastening member.
At the lower surface of the suction mechanism 29, inside the annular groove 30, suction is generated when compressed air is ejected from the annular air chamber 46 toward the annular groove 30 (the silicon wafer 11 is sucked and held in a non-contact state). A surface 20 is formed, and the upper surface is in contact with the lower end of the side wall member 24 via the O-ring 27 on the outer side of the annular groove 30, and the lower surface protrudes below the suction surface 20, for example, 0.2 to 0.3 mm. A flange portion 28 is provided.

図2、図4に示すように、環状溝30は、吸引面20に平行に形成された底面31と、底面31の半径方向内側及び半径方向外側にそれぞれ形成された第1、第2の傾斜面32、33を備え、環状溝30の幅は、開口側が底面31側より拡大している。
また、図2、図5(A)、(B)に示すように、吸引機構29の中央には、吸引機構29をハウジング25の開口部に固定配置した際に、取付け部材22に形成された空気流入路36と連通するように上面に開口し平面視して正方形の凹部34が形成されている。そして、凹部34の各角部からは、吸引機構29の上面に開口し、角部の一方の辺の延長線に沿って吸引機構29の外周側に向けて断面矩形の溝37が延びている。
As shown in FIGS. 2 and 4, the annular groove 30 includes a bottom surface 31 formed parallel to the suction surface 20, and first and second slopes formed on the radially inner side and the radially outer side of the bottom surface 31, respectively. The surfaces 32 and 33 are provided, and the width of the annular groove 30 is larger on the opening side than on the bottom surface 31 side.
2, 5 </ b> A, and 5 </ b> B, the suction mechanism 29 is formed at the center of the suction mechanism 29 when the suction mechanism 29 is fixedly disposed in the opening of the housing 25. A square recess 34 is formed in the upper surface so as to communicate with the air inflow path 36 in plan view. A groove 37 having a rectangular cross section extends from each corner of the recess 34 to the upper surface of the suction mechanism 29 and extends toward the outer periphery of the suction mechanism 29 along an extension line of one side of the corner. .

更に、吸引機構29の上面において、凹部34及び溝37が形成されていない領域38、39、40、41には、周方向に沿って複数(本実施の形態では2)のねじ孔42がそれぞれ形成され、各ねじ孔42の開口の外側にはOリング43を収容するOリング溝44が形成されている。一方、上部材23には、吸引機構29をハウジング25の開口部に固定配置した際に、各ねじ孔42に連通するように、上部材23の上面側の開口部が拡径した貫通孔67(図6参照)が設けられている。これによって、Oリング溝44にOリング43をセットして、吸引機構29をハウジング25の開口部に挿入し、締結部材の一例であるボルト45を貫通孔67に挿入してねじ孔42にねじ込むことにより、ハウジング25と吸引機構29を固着して一体化することができる。 Further, on the upper surface of the suction mechanism 29, in the regions 38, 39, 40, and 41 where the recess 34 and the groove 37 are not formed, a plurality of (two in the present embodiment) screw holes 42 are provided along the circumferential direction. An O-ring groove 44 for accommodating the O-ring 43 is formed outside the opening of each screw hole 42. On the other hand, in the upper member 23, when the suction mechanism 29 is fixedly disposed in the opening of the housing 25, a through hole 67 in which the opening on the upper surface side of the upper member 23 is expanded so as to communicate with each screw hole. (See FIG. 6). As a result, the O-ring 43 is set in the O-ring groove 44, the suction mechanism 29 is inserted into the opening of the housing 25, the bolt 45, which is an example of a fastening member, is inserted into the through-hole 67 and screwed into the screw hole 42. Thus, the housing 25 and the suction mechanism 29 can be fixed and integrated.

以上の構成とすることによって、吸引機構29に形成した凹部34と、ハウジング25の上部材23の下面により囲まれて、空気口35に注入した圧縮空気が流入する空気流入部68を形成することができる。また、ハウジング25の内壁(上部材23の下面及び側壁部材24の内周面)と、吸引機構29の周囲に形成された切欠きにより囲まれて、環状溝30と同心で環状溝30の半径方向外側に環状空気室46を形成することができる。更に、溝37と上部材23の下面により囲まれて、空気流入部に流入した圧縮空気ガスを環状空気室46に流入させる複数(本実施の形態では4つ)の空気路26を形成することができる。 With the above configuration, the air inflow portion 68 into which the compressed air injected into the air port 35 flows is formed by being surrounded by the recess 34 formed in the suction mechanism 29 and the lower surface of the upper member 23 of the housing 25. Can do. The radius of the annular groove 30 is concentric with the annular groove 30 surrounded by the inner wall of the housing 25 (the lower surface of the upper member 23 and the inner peripheral surface of the side wall member 24) and the notch formed around the suction mechanism 29. An annular air chamber 46 can be formed on the outer side in the direction. Further, a plurality of (four in this embodiment) air passages 26 are formed which are surrounded by the groove 37 and the lower surface of the upper member 23 and allow the compressed air gas flowing into the air inflow portion to flow into the annular air chamber 46. Can do.

ここで、図4、図5(A)、(B)に示すように、各空気路26の出口は、ノズル47の傾斜側に傾いているので、環状空気室46内に、ノズル47の傾斜方向に沿った方向から圧縮空気を噴出させることができ、環状空気室46に圧縮空気の旋回流を容易に形成することができる。そして、環状空気室46内で旋回流を形成している圧縮空気の一部を、ノズル47を介して環状溝30内に、環状溝30の半径線に対して直角も含む斜め方向から噴出させるので、環状溝30内に圧縮空気の旋回流を容易に形成することができる。
このため、保持手段13に圧縮空気を供給し、環状溝30内に圧縮空気の旋回流を形成させながら、保持手段13をシリコンウェハ11の上面に近接させると、シリコンウェハ11の外側上面と環状溝30の間に発生した旋回流を、環状溝30の第2の傾斜面33の外周部とシリコンウェハ11の外周部との間に形成される隙間から、半径方向外側へ向けて旋回させながら流出させることができる。
Here, as shown in FIGS. 4, 5 </ b> A, and 5 </ b> B, the outlet of each air passage 26 is inclined toward the inclined side of the nozzle 47, so that the inclination of the nozzle 47 is within the annular air chamber 46. The compressed air can be ejected from the direction along the direction, and a swirling flow of the compressed air can be easily formed in the annular air chamber 46. Then, a part of the compressed air forming the swirling flow in the annular air chamber 46 is ejected into the annular groove 30 via the nozzle 47 from an oblique direction including a right angle to the radial line of the annular groove 30. Therefore, a swirl flow of compressed air can be easily formed in the annular groove 30.
For this reason, when compressed air is supplied to the holding means 13 and a swirling flow of compressed air is formed in the annular groove 30 while the holding means 13 is brought close to the upper surface of the silicon wafer 11, the outer upper surface of the silicon wafer 11 is annularly formed. The swirl flow generated between the grooves 30 is swung outward in the radial direction from the gap formed between the outer peripheral portion of the second inclined surface 33 of the annular groove 30 and the outer peripheral portion of the silicon wafer 11. Can be drained.

図1〜図3に示すように、移動手段16は、ハウジング25の上部材23に立設された取付け部材22の上部に設けられた連結部49に締結部材の一例であるボルト50を介して先側が固定されるアーム部材51と、アーム部材51の基側が固定された回動軸52と、回動軸52を駆動させて、アーム部材51の先側に取付けられた保持手段13を、シリコンウェハ11の払い出し場所14の上方の受入れ位置と、払い出し場所14に対向配置されたウェハ用ステージ12の受け入れ場所15の上方の払出し位置との間で往復動する機能と、シリコンウェハ11の払い出し場所14と受入れ位置の間で、又はウェハ用ステージ12の受け入れ場所15と払出し位置の間で保持手段13を昇降する機能を備えた駆動機構53とを備えている。 As shown in FIGS. 1 to 3, the moving means 16 is connected via a bolt 50, which is an example of a fastening member, to a connecting portion 49 provided on an upper portion of a mounting member 22 erected on the upper member 23 of the housing 25. The arm member 51 to which the front side is fixed, the rotation shaft 52 to which the base side of the arm member 51 is fixed, and the holding means 13 attached to the front side of the arm member 51 by driving the rotation shaft 52 are provided with silicon. A function of reciprocating between a receiving position above the payout place 14 of the wafer 11 and a payout position above the receiving place 15 of the wafer stage 12 disposed opposite to the payout place 14, and a payout position of the silicon wafer 11 14 and a receiving mechanism, or a driving mechanism 53 having a function of raising and lowering the holding means 13 between the receiving position 15 of the wafer stage 12 and the discharging position.

図3、図6に示すように、カバー手段17は、保持手段13の上側に配置され、複数本(本実施の形態では4本)のガイド部材62によって保持手段13に対して上下動可能に設けられ、平面視して矩形の上遮蔽板55と、各ガイド部材62に装着されて上遮蔽板66を下方に付勢するバネ54と、上遮蔽板55の周囲に設けられ内側にシリコンウェハ11が嵌入可能な側壁材56とを有している。ここで、上遮蔽板55の周囲に設けられた側壁材56の内側にシリコンウェハ11が嵌入した際、側壁材56とシリコンウェハ11の端面との間には、例えば0.05〜0.15mmの隙間が形成されるように、側壁材56は、締結部材の一例であるボルト56aを用いて上遮蔽板55の周囲に固定されている。なお、上遮蔽板55の中央部には、補強部材65が貫通可能な寸法の挿通孔が設けられ、四隅側には貫通孔56bがそれそれ形成されている。 As shown in FIGS. 3 and 6, the cover means 17 is arranged on the upper side of the holding means 13 and can be moved up and down with respect to the holding means 13 by a plurality of (four in this embodiment) guide members 62. An upper shielding plate 55 that is rectangular in plan view, a spring 54 that is attached to each guide member 62 and biases the upper shielding plate 66 downward, and a silicon wafer provided around the upper shielding plate 55 inside. 11 has a side wall material 56 into which the material 11 can be fitted. Here, when the silicon wafer 11 is fitted inside the side wall member 56 provided around the upper shielding plate 55, the space between the side wall member 56 and the end surface of the silicon wafer 11 is, for example, 0.05 to 0.15 mm. The side wall member 56 is fixed around the upper shielding plate 55 by using a bolt 56a which is an example of a fastening member. In addition, an insertion hole having a dimension through which the reinforcing member 65 can be penetrated is provided in the central portion of the upper shielding plate 55, and a through hole 56b is formed at each of the four corners.

図5、図6に示すように、吸引機構29のねじ孔42が形成されている各領域38、39、40、41には、それぞれ周囲にOリング57を収容するOリング溝58を備えた円形穴59が形成されている。また、上部材23には、各円形穴59に連通し、下側(円形穴59と連通する側)が円形穴59と同径で上側が縮径した貫通孔60が形成されている。更に、円形穴59と貫通孔60の下側で構成される空間部には円筒体61がそれそれ装入され、円筒体61内にはバネ54が下部に外装されたガイド部材62が挿入され、ガイド部材62の上部側は貫通孔60を貫通して、先側の縮径部63を上部材23の上面から突出させている。そして、各縮径部63は、上遮蔽板55に形成された貫通孔60内に収容され、上遮蔽板55の上面側から挿入した締結部材の一例であるボルト64が縮径部63の上部にねじ込まれている。 As shown in FIGS. 5 and 6, each region 38, 39, 40, 41 in which the screw hole 42 of the suction mechanism 29 is formed is provided with an O-ring groove 58 that accommodates an O-ring 57 in the periphery. A circular hole 59 is formed. The upper member 23 is formed with a through hole 60 that communicates with each circular hole 59 and whose lower side (the side that communicates with the circular hole 59) has the same diameter as the circular hole 59 and whose upper diameter is reduced. Further, a cylindrical body 61 is inserted into each space formed below the circular hole 59 and the through hole 60, and a guide member 62 having a spring 54 externally mounted therein is inserted into the cylindrical body 61. The upper side of the guide member 62 passes through the through-hole 60, and the reduced diameter portion 63 on the front side protrudes from the upper surface of the upper member 23. Each reduced diameter portion 63 is accommodated in a through hole 60 formed in the upper shielding plate 55, and a bolt 64, which is an example of a fastening member inserted from the upper surface side of the upper shielding plate 55, is an upper portion of the reduced diameter portion 63. Screwed into.

このような構成とすることにより、ボルト64をガイド部材62の縮径部63に上遮蔽板55を介してねじ込むことにより、上遮蔽板55を上部材23の上面に当接させて取付けることができる。そして、上遮蔽板55に取付けられた側壁材56の下端が、シリコンウェハ11の払い出し場所14の上面又はウェハ用ステージ12に当接して側壁材56が上方に押圧されると、側壁材56が取付けられている上遮蔽板55が上方に向けて移動し、ボルト64を介して連結しているガイド部材62が円筒体61内で上方に移動する。これにより、上部材23に対して上遮蔽板55を上方に移動させることができる。なお、ガイド部材62が円筒体61内で上方に移動すると、ガイド部材62に外装されたバネ54は圧縮状態となる。このため、側壁材56の下端が払い出し場所14の上面又はウェハ用ステージ12に当接する状態が解除されると、バネ54の圧縮状態が解放されてバネ54が伸びるため、ガイド部材62が円筒体61内で下方に移動することにより、上遮蔽板55が下方に付勢される。その結果、上遮蔽板55が下方に移動し上部材23の上面に当接することができる。 With this configuration, the upper shielding plate 55 can be attached to the upper surface of the upper member 23 by screwing the bolt 64 into the reduced diameter portion 63 of the guide member 62 via the upper shielding plate 55. it can. When the side wall member 56 attached to the upper shielding plate 55 comes into contact with the upper surface of the payout place 14 of the silicon wafer 11 or the wafer stage 12 and the side wall member 56 is pressed upward, the side wall member 56 is The attached upper shielding plate 55 moves upward, and the guide member 62 connected via the bolt 64 moves upward in the cylindrical body 61. Thereby, the upper shielding plate 55 can be moved upward with respect to the upper member 23. When the guide member 62 moves upward in the cylindrical body 61, the spring 54 sheathed on the guide member 62 is in a compressed state. For this reason, when the state in which the lower end of the side wall member 56 abuts on the upper surface of the payout place 14 or the wafer stage 12 is released, the compressed state of the spring 54 is released and the spring 54 extends, so that the guide member 62 is cylindrical. By moving downward within 61, the upper shielding plate 55 is urged downward. As a result, the upper shielding plate 55 can move downward and come into contact with the upper surface of the upper member 23.

続いて、本発明の一実施の形態に係る非接触搬送装置10の作用について説明する。
非接触搬送装置10を、太陽電池の製造工程において、太陽電池用のシリコンウェハ11の一面に集電用の電極を印刷するスクリーン印刷機にシリコンウェハ11を供給するウェハ用ステージにシリコンウェハ11をセットする際に使用する場合、移動手段16を操作して、保持手段13をシリコンウェハ11の払い出し場所14の上方の受入れ位置に移動する。次いで、保持手段13を受入れ位置からシリコンウェハ11の払い出し場所14に、例えば吸着固定されているシリコンウェハ11に向けて下降させながら、保持手段13の空気口35に図示しない空気供給ホースを介して、ガスの一例である空気を供給する。
Then, the effect | action of the non-contact conveying apparatus 10 which concerns on one embodiment of this invention is demonstrated.
In the manufacturing process of the solar cell, the non-contact transfer device 10 has the silicon wafer 11 placed on a wafer stage that supplies the silicon wafer 11 to a screen printing machine that prints a collecting electrode on one surface of the silicon wafer 11 for the solar cell. When used for setting, the moving means 16 is operated to move the holding means 13 to a receiving position above the payout place 14 of the silicon wafer 11. Next, while lowering the holding means 13 from the receiving position to the delivery position 14 of the silicon wafer 11 toward the silicon wafer 11 that is sucked and fixed, for example, the air port 35 of the holding means 13 is connected to the air port 35 via an air supply hose (not shown). The air which is an example of gas is supplied.

供給した空気は、保持手段13の取り付け部材22に形成された空気流入路36を経由して空気流入部に流入し、空気流入部に連通する複数の空気路26を介して環状空気室46に流入する。ここで、各空気路26の出口は、ノズル47の傾斜側に傾いているので、環状空気室46内には、空気路26を介して流入させる圧縮空気により旋回流が形成される。そして、環状空気室46内で旋回流を形成している空気の一部は、ノズル47を介して環状溝30内に、環状溝30の半径線に対して直角も含む斜め方向から流入するので、環状溝30内に旋回流が容易に形成される。 The supplied air flows into the air inflow portion via the air inflow passage 36 formed in the mounting member 22 of the holding means 13 and enters the annular air chamber 46 through the plurality of air passages 26 communicating with the air inflow portion. Inflow. Here, since the outlet of each air passage 26 is inclined toward the inclined side of the nozzle 47, a swirl flow is formed in the annular air chamber 46 by the compressed air flowing in via the air passage 26. A part of the air forming the swirling flow in the annular air chamber 46 flows into the annular groove 30 through the nozzle 47 from an oblique direction including a right angle to the radial line of the annular groove 30. A swirling flow is easily formed in the annular groove 30.

保持手段13に圧縮空気を供給し、環状溝30内に圧縮空気の旋回流を形成させながら、保持手段13をシリコンウェハ11の上面に接近させると、保持手段13の外側を覆う側壁材56が上遮蔽板55を介して保持手段13に対して下方に付勢して設けられているので、側壁材56の下端の高さ位置がシリコンウェハ11の下面の高さ位置に一致した(側壁材56の下端がシリコンウェハ11の払い出し場所14の上面に当接した)時点で、側壁材56を上方向に移動させながら、吸引面20をシリコンウェハ11の上面に接近させることができ、上遮蔽板55の周囲に設けられた側壁材56の内側にシリコンウェハ11を嵌入させることができる。 When the compressed air is supplied to the holding means 13 and a swirling flow of the compressed air is formed in the annular groove 30, the holding means 13 is brought close to the upper surface of the silicon wafer 11, and the side wall material 56 covering the outside of the holding means 13 is formed. Since it is urged downward with respect to the holding means 13 via the upper shielding plate 55, the height position of the lower end of the side wall member 56 coincides with the height position of the lower surface of the silicon wafer 11 (side wall member). At the time when the lower end of 56 comes into contact with the upper surface of the payout place 14 of the silicon wafer 11, the suction surface 20 can be brought closer to the upper surface of the silicon wafer 11 while the side wall material 56 is moved upward, and the upper shield The silicon wafer 11 can be fitted inside the side wall member 56 provided around the plate 55.

側壁材56の内側にシリコンウェハ11が嵌入すると、環状溝30内に噴出した圧縮空気により、シリコンウェハ11の外側上面と環状溝30の間に旋回流が発生し、旋回流は環状溝30の第2の傾斜面33の外周部とシリコンウェハ11の外周部との間に形成される隙間から、半径方向外側へ向けて旋回しながら流出する。このため、第2の傾斜面33とシリコンウェハ11との間の隙間から半径方向外側へ向けて旋回しながら流出する圧縮空気の流れによって、吸引面20とシリコンウェハ11の上面との間の隙間に存在する空気が吸引されて、吸引面20とシリコンウェハ11の上面との間の隙間内の圧力が低下する(負圧になる)。なお、第2の傾斜面33とシリコンウェハ11との間の隙間から流出した圧縮空気は、上遮蔽板55の四隅側に形成された貫通孔56bを介して、外部に放出される。 When the silicon wafer 11 is fitted inside the side wall member 56, a swirling flow is generated between the outer upper surface of the silicon wafer 11 and the annular groove 30 by the compressed air ejected into the annular groove 30. The gas flows out from the gap formed between the outer peripheral portion of the second inclined surface 33 and the outer peripheral portion of the silicon wafer 11 while turning outward in the radial direction. For this reason, the gap between the suction surface 20 and the upper surface of the silicon wafer 11 is caused by the flow of compressed air that flows out from the gap between the second inclined surface 33 and the silicon wafer 11 while turning outward in the radial direction. Is sucked, and the pressure in the gap between the suction surface 20 and the upper surface of the silicon wafer 11 decreases (becomes negative pressure). The compressed air flowing out from the gap between the second inclined surface 33 and the silicon wafer 11 is discharged to the outside through the through holes 56 b formed on the four corners of the upper shielding plate 55.

その結果、吸引面20とシリコンウェハ11との間に吸引力が発生することになって、払い出し場所14に吸着固定されているシリコンウェハ11に対する吸着力を解除すると、シリコンウェハ11は吸引面20に吸引され、シリコンウェハ11は保持手段13に非接触状態で吸引保持されることになる。ここで、シリコンウェハ11の外側上面と環状溝30の間には旋回流が発生しているので、シリコンウェハ11を非接触状態で吸引面20に吸引保持させると、シリコンウェハ11には水平面内で回転しようとする力が作用する。しかし、シリコンウェハ11は側壁材56の内側に嵌入しているため、シリコンウェハ11が回転しようとすると、シリコンウェハ11の端部が側壁材56に接触し、シリコンウェハ11の回転が防止される。 As a result, a suction force is generated between the suction surface 20 and the silicon wafer 11, and when the suction force with respect to the silicon wafer 11 that is sucked and fixed to the dispensing place 14 is released, the silicon wafer 11 is sucked into the suction surface 20. The silicon wafer 11 is sucked and held by the holding means 13 in a non-contact state. Here, since a swirling flow is generated between the outer upper surface of the silicon wafer 11 and the annular groove 30, when the silicon wafer 11 is sucked and held on the suction surface 20 in a non-contact state, the silicon wafer 11 has a horizontal plane. The force which tries to rotate with acts. However, since the silicon wafer 11 is fitted inside the side wall member 56, when the silicon wafer 11 tries to rotate, the end of the silicon wafer 11 comes into contact with the side wall member 56 and the rotation of the silicon wafer 11 is prevented. .

シリコンウェハ11が保持手段13に吸引保持されると、移動手段16を操作して、保持手段13をシリコンウェハ11の払い出し場所14の上方の受入れ位置まで上昇させる。保持手段13が上昇して、カバー手段17の側壁材56の下端が払い出し場所14の上面から離脱すると、ガイド部材62に外装されたバネ54の圧縮状態が解除される。これにより、バネ54が伸びてガイド部材62が円筒体61内で下方に移動し(上遮蔽板55が下方に付勢され)、上遮蔽板55が下方に移動して上部材23の上面に当接する。その結果、保持手段13の上側及び外側がカバー手段17で覆われて、シリコンウェハ11の保持手段13による吸引保持の安定化が図られる。 When the silicon wafer 11 is sucked and held by the holding means 13, the moving means 16 is operated to raise the holding means 13 to a receiving position above the payout place 14 of the silicon wafer 11. When the holding means 13 is raised and the lower end of the side wall member 56 of the cover means 17 is detached from the upper surface of the payout place 14, the compressed state of the spring 54 sheathed on the guide member 62 is released. As a result, the spring 54 extends and the guide member 62 moves downward in the cylindrical body 61 (the upper shielding plate 55 is urged downward), and the upper shielding plate 55 moves downward to the upper surface of the upper member 23. Abut. As a result, the upper and outer sides of the holding unit 13 are covered with the cover unit 17, and the suction holding by the holding unit 13 of the silicon wafer 11 is stabilized.

保持手段13が受入れ位置まで上昇すると、移動手段16を更に操作して、保持手段13をウェハ用ステージ12が待機する受け入れ場所15の上方の払出し位置に移動する。次いで、ウェハ用ステージ12の位置調整機構を操作して、保持手段13の停止位置に対して、ウェハ用ステージ12の通気性部材18の水平面内の位置及び水平面内の回転角度位置をそれぞれ調整する。そして、保持手段13を払出し位置からウェハ用ステージ12に向けて下降しながら、ウェハ用ステージ12の通気性部材18の下面側からの空気の吸引を開始する。保持手段13に吸引保持されたシリコンウェハ11の下面とウェハ用ステージ12の上面との間の距離が徐々に減少して、側壁材56の下端の高さ位置がウェハ用ステージ12の上面の高さ位置に一致した時点で、側壁材56を上方向に移動させながら、シリコンウェハ11の下面とウェハ用ステージ12の上面との間の距離を更に縮めて、例えば、シリコンウェハ11の下面とウェハ用ステージ12の上面との間の距離を、シリコンウェハ11を吸着面20に非接触状態で保持した際に形成されている隙間と同程度の距離にすることができる。 When the holding means 13 rises to the receiving position, the moving means 16 is further operated to move the holding means 13 to a payout position above the receiving place 15 where the wafer stage 12 is waiting. Next, the position adjustment mechanism of the wafer stage 12 is operated to adjust the position of the breathable member 18 of the wafer stage 12 in the horizontal plane and the rotation angle position in the horizontal plane with respect to the stop position of the holding means 13. . Then, suction of air from the lower surface side of the air-permeable member 18 of the wafer stage 12 is started while the holding means 13 is lowered from the payout position toward the wafer stage 12. The distance between the lower surface of the silicon wafer 11 sucked and held by the holding means 13 and the upper surface of the wafer stage 12 gradually decreases, and the height position of the lower end of the side wall member 56 is higher than the upper surface of the wafer stage 12. When the side wall material 56 is moved upward at the same time, the distance between the lower surface of the silicon wafer 11 and the upper surface of the wafer stage 12 is further reduced, for example, the lower surface of the silicon wafer 11 and the wafer. The distance from the upper surface of the stage 12 for use can be set to the same distance as the gap formed when the silicon wafer 11 is held on the suction surface 20 in a non-contact state.

シリコンウェハ11の下面とウェハ用ステージ12の上面との間の距離が、シリコンウェハ11を吸着面20に非接触状態で吸引保持した際の隙間と同程度の距離に到達した時点で、空気口35への空気の供給を停止すると、保持手段13によるシリコンウェハ11の吸引保持が解除され、シリコンウェハ11はウェハ用ステージ12に吸着される。ここで、シリコンウェハ11が保持手段13からウェハ用ステージ12に受け渡される際に、シリコンウェハ11の回転が側壁材56により防止されているので、ウェハ用ステージ12上でのシリコンウェハ11の方向を常に一定にして、ウェハ用ステージ12に吸着保持することができる。 When the distance between the lower surface of the silicon wafer 11 and the upper surface of the wafer stage 12 reaches the same distance as the gap when the silicon wafer 11 is sucked and held on the suction surface 20 in a non-contact state, the air port When the supply of air to 35 is stopped, suction holding of the silicon wafer 11 by the holding means 13 is released, and the silicon wafer 11 is attracted to the wafer stage 12. Here, when the silicon wafer 11 is transferred from the holding means 13 to the wafer stage 12, the rotation of the silicon wafer 11 is prevented by the side wall material 56, and therefore the direction of the silicon wafer 11 on the wafer stage 12. Can be held by suction on the wafer stage 12 at a constant value.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、本実施の形態では、非接触搬送装置を、太陽電池用のシリコンウェハを電極を印刷するスクリーン印刷機に供給する際に使用するウェハ用ステージに、シリコンウェハを載置する場合に使用したが、電極が印刷されたシリコンウェハをウェハ用ステージから取外す場合に使用することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in this embodiment, the non-contact transfer device is used when a silicon wafer is placed on a wafer stage used when supplying a silicon wafer for solar cells to a screen printing machine that prints electrodes. However, it can also be used when the silicon wafer on which the electrodes are printed is removed from the wafer stage.

10:非接触搬送装置、11:シリコンウェハ、12:ウェハ用ステージ、13:保持手段、14:払い出し場所、15:受け入れ場所、16:移動手段、17:カバー手段、18:通気性部材、19:側部材、20:吸引面、22:取付け部材、23:上部材、24:側壁部材、25:ハウジング、26:空気路、27:Oリング、28:フランジ部、29:吸引機構、30:環状溝、31:底面、32:第1の傾斜面、33:第2の傾斜面、34:凹部、35:空気口、36:空気流入路、37:空気路、38、39、40、41:領域、42:ねじ孔、43:Oリング、44:Oリング溝、45:ボルト、46:環状空気室、47:ノズル、49:連結部、50:ボルト、51:アーム部材、52:回動軸、53:駆動機構、54:バネ、55:上遮蔽板、56:側壁材、56a:ボルト、56b:貫通孔、57:Oリング、58:Oリング溝、59:円形穴、60:貫通孔、61:円筒体、62:ガイド部材、63:縮径部、64:ボルト、65:補強部材、66:ボルト、67:貫通孔、68:空気流入部 10: Non-contact transfer device, 11: Silicon wafer, 12: Wafer stage, 13: Holding means, 14: Dispensing place, 15: Receiving place, 16: Moving means, 17: Cover means, 18: Breathable member, 19 : Side member, 20: suction surface, 22: mounting member, 23: upper member, 24: side wall member, 25: housing, 26: air passage, 27: O-ring, 28: flange portion, 29: suction mechanism, 30: Annular groove, 31: bottom surface, 32: first inclined surface, 33: second inclined surface, 34: recessed portion, 35: air inlet, 36: air inflow channel, 37: air channel, 38, 39, 40, 41 : Area, 42: Screw hole, 43: O-ring, 44: O-ring groove, 45: Bolt, 46: Annular air chamber, 47: Nozzle, 49: Connection part, 50: Bolt, 51: Arm member, 52: Time Dynamic shaft, 53: Drive mechanism, 54: Bar 55: Upper shielding plate, 56: Side wall material, 56a: Bolt, 56b: Through hole, 57: O ring, 58: O ring groove, 59: Circular hole, 60: Through hole, 61: Cylindrical body, 62: Guide Member, 63: reduced diameter portion, 64: bolt, 65: reinforcing member, 66: bolt, 67: through hole, 68: air inflow portion

Claims (4)

薄板状のワークの外側上面に旋回流を発生させて、該ワークの中央部を負圧にして、該ワークを非接触状態で吸引保持する保持手段と、前記保持手段の上部に固定された移動手段と、前記保持手段に取付けられ、該保持手段の上側及び周囲を覆って下方に開口したカバー手段とを備えた非接触搬送装置において、
前記ワークは矩形であって、
前記カバー手段は、前記保持手段の上側に配置され、複数本のガイド部材によって前記保持手段に対して上下動可能に設けられ、平面視して矩形の上遮蔽板と、前記各ガイド部材に装着されて前記上遮蔽板を下方に付勢するバネと、前記上遮蔽板の周囲に設けられ内側に前記ワークが嵌入可能な側壁材とを有し、前記保持手段に隙間を有して吸着された前記ワークの回転を防止することを特徴とする非接触搬送装置。
A holding means for generating a swirling flow on the outer upper surface of the thin plate-like work, making the central portion of the work a negative pressure, and sucking and holding the work in a non-contact state, and a movement fixed to the upper part of the holding means A non-contact conveying apparatus comprising: means and cover means attached to the holding means and covering the upper side and the periphery of the holding means and opening downward;
The workpiece is rectangular,
The cover means is disposed on the upper side of the holding means, and is provided so as to be vertically movable with respect to the holding means by a plurality of guide members, and is attached to each guide member and a rectangular upper shielding plate in plan view. A spring for urging the upper shielding plate downward, and a side wall material that is provided around the upper shielding plate and into which the workpiece can be fitted, and is held by the holding means with a gap. Further, the non-contact transfer device is characterized in that rotation of the work is prevented.
請求項1記載の非接触搬送装置において、前記保持手段は、1)前記カバー手段の内側に隙間を有して配置され、下部中央には円形の開口部を備えたハウジングと、2)該ハウジングの中央に設けられ、前記移動手段の連結部を備え、前記開口部に圧縮空気を注入する空気口を有する取付け部材と、3)前記ハウジングの内壁とで周囲に環状空気室を形成する切欠きと、下側に開口となって前記環状空気室より半径方向内側位置に形成された環状溝と、前記空気口から前記環状空気室に圧縮空気を導く空気路と、前記環状空気室の圧縮空気を前記環状溝に対して噴き出し、前記環状溝の内側に負圧を該環状溝の外側に正圧を発生させる複数のノズルとを備えて前記開口部に固定配置される吸引機構とを有することを特徴とする非接触搬送装置。 2. The non-contact transfer apparatus according to claim 1, wherein the holding means is 1) a housing having a gap inside the cover means and having a circular opening in the lower center, and 2) the housing. A mounting member having a connecting portion of the moving means and having an air port for injecting compressed air into the opening, and 3) a notch that forms an annular air chamber around the inner wall of the housing An annular groove formed at an inner side in the radial direction from the annular air chamber, an air passage that guides compressed air from the air port to the annular air chamber, and a compressed air in the annular air chamber A suction mechanism fixed to the opening, and a plurality of nozzles for generating a negative pressure inside the annular groove and generating a positive pressure outside the annular groove. Non-contact transfer device characterized by 請求項2記載の非接触搬送装置において、前記ノズルは前記環状溝の半径線に対して直角も含む斜めに形成されていることを特徴とする非接触搬送装置。 3. The non-contact conveying apparatus according to claim 2, wherein the nozzle is formed obliquely including a right angle with respect to a radial line of the annular groove. 請求項2又は3記載の非接触搬送装置において、前記空気路の出口は前記ノズルの傾斜側に傾き、前記環状空気室に旋回流を形成していることを特徴とする非接触搬送装置。
4. The non-contact transfer apparatus according to claim 2, wherein an outlet of the air passage is inclined toward the inclined side of the nozzle to form a swirl flow in the annular air chamber. 5.
JP2010172443A 2010-07-30 2010-07-30 Noncontact carrying device Pending JP2012030940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172443A JP2012030940A (en) 2010-07-30 2010-07-30 Noncontact carrying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172443A JP2012030940A (en) 2010-07-30 2010-07-30 Noncontact carrying device

Publications (1)

Publication Number Publication Date
JP2012030940A true JP2012030940A (en) 2012-02-16

Family

ID=45844848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172443A Pending JP2012030940A (en) 2010-07-30 2010-07-30 Noncontact carrying device

Country Status (1)

Country Link
JP (1) JP2012030940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277302A (en) * 2020-02-19 2021-08-20 Smc 株式会社 Non-contact conveying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277302A (en) * 2020-02-19 2021-08-20 Smc 株式会社 Non-contact conveying device

Similar Documents

Publication Publication Date Title
JP2015537385A (en) Substrate support device
WO2020013151A1 (en) Substrate-conveying device, and substrate-processing device comprising substrate-conveying device
JP2010212666A (en) Wafer surface measuring apparatus
KR102310075B1 (en) Chuck table and grinding apparatus
JP2019521519A (en) Substrate support device
CN112349622A (en) Edge trimming device
JP2014132642A (en) Wafer polishing apparatus
CN109093863B (en) Cutting device
JP2012030941A (en) Device and method for carrying workpiece
JP5452413B2 (en) Non-contact adsorption device
KR101630648B1 (en) Moving stage
JP2012030940A (en) Noncontact carrying device
TW201639019A (en) Substrate treatment device and substrate treatment method
KR20220156752A (en) Processing apparatus
JP5384305B2 (en) Work transfer device
KR20220052826A (en) Linear gauge
KR20220031508A (en) Apparatus for supplying liquid resin
KR101717680B1 (en) Transfer lifter module
JP2013234009A (en) Device for conveying plate-like object having suction pad
JP2002043400A (en) Rotation supporting device
JP7394534B2 (en) Wafer transfer device
CN110867398B (en) Chuck table and wafer processing method
US20220152787A1 (en) Processing apparatus
KR20210000267A (en) Holding apparatus
JP2018006595A (en) Processing apparatus