JP2012028600A - Adhesive for electronic component adhesion and electronic component adhesion method - Google Patents

Adhesive for electronic component adhesion and electronic component adhesion method Download PDF

Info

Publication number
JP2012028600A
JP2012028600A JP2010166747A JP2010166747A JP2012028600A JP 2012028600 A JP2012028600 A JP 2012028600A JP 2010166747 A JP2010166747 A JP 2010166747A JP 2010166747 A JP2010166747 A JP 2010166747A JP 2012028600 A JP2012028600 A JP 2012028600A
Authority
JP
Japan
Prior art keywords
electronic component
adhesive
thermosetting resin
bonding
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166747A
Other languages
Japanese (ja)
Other versions
JP5533393B2 (en
Inventor
Koji Motomura
耕治 本村
Hiroki Maruo
弘樹 圓尾
Hideki Eifuku
秀喜 永福
Tadahiko Sakai
忠彦 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010166747A priority Critical patent/JP5533393B2/en
Publication of JP2012028600A publication Critical patent/JP2012028600A/en
Application granted granted Critical
Publication of JP5533393B2 publication Critical patent/JP5533393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive for electronic component adhesion, capable of shortening production tact time and extending pot life of the adhesive, and an electronic component adhesion method.SOLUTION: The adhesive 3 for electronic component adhesion is used for the electronic component adhesion subjecting a flexible substrate 6 to thermocompression bonding to a rigid substrate 1, comprises a thermosetting resin including a main agent and a hardening agent, and includes hardened material particles 3b for which a hardened material of the thermosetting resin having the same functional group as the main agent is ground to particulates and solder particles 4 whose average particle diameter is larger than that of the hardened material particles 3b. Thus, a resin amount to be the object of thermosetting reaction in thermocompression bonding is reduced to allow the thermosetting resin 3a to be sufficiently hardened in a short time without the need of a highly reactive hardening agent, thereby shortening the production tact time and extending the pot life of the adhesive.

Description

本発明は、電子部品を接着するために用いられ熱硬化性樹脂よりなる電子部品接着用の接着剤およびこの接着剤を用いた電子部品接着方法に関するものである。   The present invention relates to an adhesive for adhering electronic components made of a thermosetting resin used for adhering electronic components, and an electronic component adhering method using the adhesive.

回路基板に電子部品を実装する方法として、回路基板の端子に電子部品の電極を接続して導通させるとともに、電子部品を回路基板に接着剤により固着する方法が知られている。接着剤としては、主剤に硬化剤を配合した熱硬化性樹脂が主に用いられ、電子部品と回路基板との間に接着剤を介在させた状態で加熱することにより、熱硬化性樹脂が熱硬化して電子部品を回路基板に固着する(例えば特許文献1参照)。このように、熱硬化性樹脂を接着剤として用いる方法において実装信頼性を高めるには、熱硬化性樹脂の硬化反応が十分に進行して所望の強度が確保されていることが必要となる。   As a method for mounting an electronic component on a circuit board, a method is known in which an electrode of the electronic component is connected to a terminal of the circuit board for conduction, and the electronic component is fixed to the circuit board with an adhesive. As the adhesive, a thermosetting resin in which a curing agent is blended with the main agent is mainly used, and the thermosetting resin is heated by heating with an adhesive interposed between the electronic component and the circuit board. The electronic component is fixed to the circuit board by curing (see, for example, Patent Document 1). As described above, in order to improve the mounting reliability in the method using the thermosetting resin as an adhesive, it is necessary that the curing reaction of the thermosetting resin proceeds sufficiently to ensure a desired strength.

特開2004−10810号公報JP 2004-10810 A

しかしながら、上述の特許文献例を含めた先行技術においては、熱硬化性樹脂の硬化反応を十分に進行させる上で、以下のような不都合があった。すなわち、硬化反応を進行させるには、加熱温度をより高温に設定するか、あるいは加熱時間を充分長く設定することが考えられる。しかしながら、耐熱性に乏しい部品を対象とする場合には加熱温度が制限され、また加熱時間については許容される生産タクトタイムにより同様に制限されるため、十分な熱硬化の条件が常に満たされるとは限らない。そして、低温・短時間の条件で硬化度を向上させようとすれば、熱硬化性樹脂の組成において硬化剤の量を多くするか、あるいは高い反応性を有する硬化剤を選定することが考えられる。しかしながらこの場合には、使用中や保存中に他の成分と反応して増粘や変色などの変質・劣化が進行し、ポットライフが短くなって使用性の面で難点が生じる。このように、従来の熱硬化性樹脂よりなる電子部品接着用の接着剤およびこの接着剤を用いた電子部品接着方法においては、熱硬化性樹脂を十分に硬化させるための熱硬化条件に起因して、生産タクトタイムの短縮とポットライフの延長を両立させることが困難であるという問題があった。   However, in the prior art including the above-mentioned patent document examples, there are the following disadvantages in sufficiently proceeding the curing reaction of the thermosetting resin. That is, in order to advance the curing reaction, it is conceivable to set the heating temperature to a higher temperature or to set the heating time sufficiently long. However, when targeting parts with poor heat resistance, the heating temperature is limited, and the heating time is similarly limited by the allowable production tact time, so that sufficient thermosetting conditions are always satisfied. Is not limited. If the degree of curing is to be improved under conditions of low temperature and short time, it is conceivable to increase the amount of the curing agent in the composition of the thermosetting resin or to select a curing agent having high reactivity. . However, in this case, during use and storage, it reacts with other components to cause deterioration and deterioration such as thickening and discoloration, and the pot life is shortened, resulting in difficulty in terms of usability. As described above, in the adhesive for electronic component adhesion made of conventional thermosetting resin and the electronic component adhesion method using this adhesive, it is caused by the thermosetting condition for sufficiently curing the thermosetting resin. Therefore, there is a problem that it is difficult to achieve both reduction in production tact time and extension of pot life.

そこで本発明は、生産タクトタイムを短縮するとともに接着剤のポットライフを延長することができる電子部品接着用の接着剤および電子部品接着方法を提供することを目的とする。   Then, an object of this invention is to provide the adhesive for electronic component adhesion | attachment which can shorten production tact time, and can extend the pot life of an adhesive, and the electronic component adhesion | attachment method.

本発明の電子部品接着用の接着剤は、電子部品を接着するために用いられ、主剤および硬化剤を含んだ熱硬化性樹脂を主成分とする電子部品接着用の接着剤であって、前記主剤および硬化剤を含む液状成分に、前記主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有させた。   The adhesive for electronic component bonding according to the present invention is an adhesive for bonding an electronic component, which is used for bonding an electronic component and mainly contains a thermosetting resin containing a main agent and a curing agent. The liquid component containing the main agent and the curing agent was made to contain a particle component in which a cured product of a thermosetting resin having the same functional group as the main agent was made into particles.

本発明の電子部品接着方法は、第1電子部品と第2電子部品の間に熱硬化性接着剤を介在させた状態で熱圧着することにより、前記第1電子部品と第2電子部品とを電気的に接続した状態で接着する電子部品接着方法であって、前記熱硬化性樹脂は、主剤および硬化剤を含む液状成分に前記主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有する。   In the electronic component bonding method of the present invention, the first electronic component and the second electronic component are bonded by thermocompression bonding with a thermosetting adhesive interposed between the first electronic component and the second electronic component. An electronic component adhering method for adhering in an electrically connected state, wherein the thermosetting resin is a liquid component containing a main agent and a curing agent, and a cured product of a thermosetting resin having the same functional group as the main agent. Contains particulate particle components.

本発明によれば、主剤および硬化剤を含んだ熱硬化性樹脂を主成分とする電子部品接着用の接着剤を、主剤および硬化剤を含んだ液状成分に主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有させた構成とすることにより、高い反応性を有する硬化剤を必要とせずに短い時間で熱硬化性樹脂を十分に硬化させることができ、生産タクトタイムを短縮するとともに接着剤のポットライフを延長することができる。   According to the present invention, an adhesive for bonding an electronic component mainly composed of a thermosetting resin containing a main agent and a curing agent is used as a heat component having the same functional group as the main agent in a liquid component containing the main agent and the curing agent. By adopting a composition containing a particle component obtained by forming a cured product of a curable resin into particles, the thermosetting resin can be sufficiently cured in a short time without the need for a highly reactive curing agent. The production tact time can be shortened and the pot life of the adhesive can be extended.

本発明の一実施の形態の電子部品接着方法の工程説明図Process explanatory drawing of the electronic component adhesion method of one embodiment of this invention 本発明の一実施の形態の電子部品接着方法の工程説明図Process explanatory drawing of the electronic component adhesion method of one embodiment of this invention 本発明の一実施の形態の電子部品接着方法の工程説明図Process explanatory drawing of the electronic component adhesion method of one embodiment of this invention 本発明の一実施の形態の電子部品接着方法による部品接着例の条件および試験結果を対比して示した説明図Explanatory drawing which contrasted the conditions and test result of the example of component adhesion | attachment by the electronic component adhesion | attachment method of one embodiment of this invention 本発明の一実施の形態の電子部品接着方法における部品接着の良否判定の判定基準の説明図Explanatory drawing of the determination criteria of the quality determination of component adhesion in the electronic component adhesion method of one embodiment of the present invention

次に本発明の実施の形態を図面を参照して説明する。図1〜図3は本実施の形態の電子部品接着方法を工程順に示すものである。本実施の形態においては、第1電子部品としてのリジッド基板1(図1参照)と第2電子部品としてのフレキシブル基板6(図2参照)の間に熱硬化性の接着剤3を介在させた状態で熱圧着することにより、リジッド基板1とフレキシブル基板6とを電気的に接続した状態で接着する例を示している。   Next, embodiments of the present invention will be described with reference to the drawings. 1 to 3 show the electronic component bonding method of this embodiment in the order of steps. In the present embodiment, a thermosetting adhesive 3 is interposed between a rigid substrate 1 (see FIG. 1) as a first electronic component and a flexible substrate 6 (see FIG. 2) as a second electronic component. An example is shown in which the rigid substrate 1 and the flexible substrate 6 are bonded in an electrically connected state by thermocompression bonding.

図1(a)に示すように、リジッド基板1の接続面1a(表面)には、銅(Cu)または銅系の合金などの金属より成る端子2が形成されている。電子部品接着に際しては、リジッド基板1において端子2を含む接続面1a側に、図1(b)に示すように、主剤および硬化剤を含んだ熱硬化性樹脂を主成分とする電子部品接着用の接着剤3が、ディスペンサなどの塗布手段によって端子2を覆って供給される。なお、接着剤3の供給方法として、ディスペンサによる塗布に替えて、接着剤3を予めフィルム状に成形した接着フィルムを接続面1aに貼り付けるようにしてもよい。   As shown in FIG. 1A, a terminal 2 made of a metal such as copper (Cu) or a copper-based alloy is formed on a connection surface 1a (surface) of a rigid substrate 1. When bonding an electronic component, as shown in FIG. 1B, on the rigid substrate 1 on the side of the connection surface 1a including the terminal 2, as shown in FIG. The adhesive 3 is supplied so as to cover the terminal 2 by application means such as a dispenser. Note that, as a method of supplying the adhesive 3, instead of applying with a dispenser, an adhesive film in which the adhesive 3 is previously formed into a film may be attached to the connection surface 1a.

接着剤3の組成について説明する。図1(c)に示すように、接着剤3は、液状成分、すなわち主剤および硬化剤を含む組成の熱硬化性樹脂3aに、粒子成分、すなわちはんだ粒子4および熱硬化性樹脂の硬化物を粒子状にした硬化物粒子3bを含有させた組成となっている。ここで硬化物粒子3bは、接着用に用いられる熱硬化性樹脂3aと同一種類の熱硬化性樹脂を予め所定条件で熱硬化させたものを、粉砕器によって所定の粒度に微粉化したものであり、接着剤3中に所定の含有比率(例えば10〜40wt%)で配合される。   The composition of the adhesive 3 will be described. As shown in FIG. 1C, the adhesive 3 is obtained by adding a particle component, that is, a cured product of the solder particles 4 and the thermosetting resin, to the thermosetting resin 3a having a composition including a liquid component, that is, a main agent and a curing agent. It has a composition containing the cured product particles 3b in the form of particles. Here, the cured product particle 3b is obtained by finely pulverizing a thermosetting resin of the same type as the thermosetting resin 3a used for bonding under a predetermined condition into a predetermined particle size by a pulverizer. Yes, it is blended in the adhesive 3 at a predetermined content ratio (for example, 10 to 40 wt%).

硬化物粒子3bは、熱圧着による電子部品接着工程において、熱硬化性樹脂3aを十分に熱硬化させるのに要する加熱時間を短縮することを目的として配合されるものである。したがって、硬化物粒子3bには熱硬化性樹脂3aの熱硬化反応において熱硬化性樹脂3aと一体となって樹脂補強部を形成することが求められる。このため、本実施の形態においては、硬化物粒子3bとして熱硬化性樹脂3aと同一の種類の熱硬化性樹脂または同一種類でなくとも、少なくとも熱硬化性樹脂3aと同一の官能基を有する熱硬化性樹脂を用いるようにしている。これにより、熱硬化性樹脂3aの熱硬化過程において硬化物粒子3bは熱硬化性樹脂3aと一体となって樹脂補強部として機能する。   The cured product particles 3b are blended for the purpose of shortening the heating time required for sufficiently thermosetting the thermosetting resin 3a in the electronic component bonding step by thermocompression bonding. Accordingly, the cured product particles 3b are required to form a resin reinforcing portion integrally with the thermosetting resin 3a in the thermosetting reaction of the thermosetting resin 3a. For this reason, in this Embodiment, even if it is not the same kind of thermosetting resin as the thermosetting resin 3a as the hardened | cured material particle 3b or the same kind, it is the heat | fever which has the same functional group as the thermosetting resin 3a at least. A curable resin is used. Thereby, in the thermosetting process of the thermosetting resin 3a, the hardened | cured material particle 3b functions as a resin reinforcement part integrally with the thermosetting resin 3a.

また本実施の形態においては、硬化物粒子3bに加えて、接着剤3に導電性粒子としてのはんだ粒子4を含有させるようにしている。ここでは、リジッド基板1の端子2の上面2aと、電極7の下面7aとの間にはんだ粒子4を介在させた状態で熱圧着を行うことにより、端子2と電極7とをはんだ接合により固着するとともに、これらを相互に電気的に接続するようにしている。   In the present embodiment, in addition to the cured product particles 3b, the adhesive 3 contains solder particles 4 as conductive particles. Here, the terminal 2 and the electrode 7 are fixed by solder bonding by performing thermocompression bonding with the solder particles 4 interposed between the upper surface 2a of the terminal 2 of the rigid substrate 1 and the lower surface 7a of the electrode 7. At the same time, they are electrically connected to each other.

なお、導電性粒子としては、はんだ粒子以外にも、金(Au)、銀(Ag)などの導電性に優れた金属や、外周面にこれらの金属をコーティングした金属皮膜を有する樹脂球などを用いるようにしてもよい。この場合には、導電性粒子が端子2の上面2aと電極7の下面7aとの間に挟み込まれて押圧された状態で熱硬化性樹脂3aが熱硬化することにより端子2と電極7との電気的導通とリジッド基板1とフレキシブル基板6との固着が行われる。   In addition to the solder particles, the conductive particles include metals having excellent conductivity such as gold (Au) and silver (Ag), and resin balls having a metal film coated with these metals on the outer peripheral surface. You may make it use. In this case, the thermosetting resin 3a is thermoset while the conductive particles are sandwiched and pressed between the upper surface 2a of the terminal 2 and the lower surface 7a of the electrode 7, whereby the terminal 2 and the electrode 7 are heated. Electrical conduction and fixation of the rigid substrate 1 and the flexible substrate 6 are performed.

ここで、粒子成分としてはんだ粒子4を含む場合における、はんだ粒子4の粒径と硬化物粒子3bの粒径との関係について説明する。本実施の形態においては、はんだ粒子4および硬化物粒子3bの粒径設定において、図1(c)に示すように、はんだ粒子4の平均粒径D1が硬化物粒子3bの平均粒径D2よりも大きくなるようにしている。すなわち本実施の形態に示す接着剤3においては、粒子成分である硬化物粒子3bに加えて、これらの硬化物粒子3bの平均粒径D2よりも平均粒径D1の大きい導電性粒子を含む形態となっている。これにより、フレキシブル基板6のリジッド基板1への接着において、硬化物粒子3bの存在によってはんだ粒子4の端子2と電極7への接触が妨げられることがない。   Here, the relationship between the particle size of the solder particle 4 and the particle size of the cured product particle 3b when the solder particle 4 is included as a particle component will be described. In the present embodiment, in setting the particle size of the solder particles 4 and the cured product particles 3b, the average particle size D1 of the solder particles 4 is larger than the average particle size D2 of the cured product particles 3b as shown in FIG. Also try to get bigger. That is, in the adhesive 3 shown in the present embodiment, in addition to the cured product particles 3b which are particle components, the conductive particles having an average particle size D1 larger than the average particle size D2 of these cured product particles 3b are included. It has become. Thereby, in the adhesion | attachment to the rigid board | substrate 1 of the flexible substrate 6, the contact to the terminal 2 and the electrode 7 of the solder particle 4 is not prevented by presence of the hardened | cured material particle 3b.

接着剤3ははんだ粒子4を所定の含有比率(例えば15〜35wt%)で含有しており、熱硬化性樹脂3aを熱硬化させるための硬化剤として、潜在性硬化剤または酸無水物を含んでいる。ここで使用可能な潜在性硬化剤の種類としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、アミンイミド、ポリアミンの塩、アミンアダクト、ジシアンジアミド等が上げられる。また使用可能な酸無水物の種類としては、メチルヘキサヒドロ無水フタル酸、更には無水ナジック酸、メチルヘキサハイドロ無水フタル酸、メチルテトラハイドロ無水フタル酸などの液状酸無水物、無水フタル酸、テトラハイドロフタル酸などの固形酸無水物が挙げられる。前述のように、本実施の形態に示す接着剤3には、予め硬化させた硬化物粒子3bを所定比率で配合するようにしていることから、熱圧着における熱硬化性樹脂3aの熱硬化反応に必要とされる硬化剤は、従来組成の熱硬化接着剤と比較して、より反応性の低いものを選定することができ、あるいは配合比率を低く設定することが可能となる。   The adhesive 3 contains solder particles 4 in a predetermined content ratio (for example, 15 to 35 wt%), and includes a latent curing agent or an acid anhydride as a curing agent for thermosetting the thermosetting resin 3a. It is out. Examples of the latent curing agent that can be used here include imidazole series, hydrazide series, boron trifluoride-amine complex, amine imide, polyamine salt, amine adduct, and dicyandiamide. The types of acid anhydrides that can be used include methylhexahydrophthalic anhydride, liquid acid anhydrides such as nadic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride, phthalic anhydride, tetra Examples thereof include solid acid anhydrides such as hydrophthalic acid. As described above, since the cured product particles 3b that have been cured in advance are mixed in the adhesive 3 shown in the present embodiment at a predetermined ratio, the thermosetting reaction of the thermosetting resin 3a in thermocompression bonding. As the curing agent required for the above, a less reactive one can be selected as compared with the thermosetting adhesive having the conventional composition, or the blending ratio can be set low.

また熱硬化性樹脂の種類としてはエポキシ樹脂が最適であるが、アクリル樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂なども使用できる。本発明に用いられるエポキシ樹脂としては、特に限定されることなく公知のものが使用可能である。例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリンジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ハロゲン化エポキシ樹脂等から選択して用いられる。   Epoxy resin is the most suitable type of thermosetting resin, but acrylic resin, phenol resin, urethane resin, silicone resin, etc. can also be used. As an epoxy resin used for this invention, a well-known thing can be used without being specifically limited. For example, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a grindylamine type epoxy resin, an alicyclic epoxy resin, a halogenated epoxy resin or the like is used. .

はんだ粒子4は錫(Sn)を主成分とするはんだを所定粒径の粒状にしたものであり、はんだの種類としては、Sn−Bi系、Sn−Bi−Ag系、Sn−Bi−In系、Sn−Cu系、Sn−Ag−Cu系、Sn−Ag−Cu系以外にも、Sn、Sn−Ag系、Sn−Pb系、Sn−Pb−Ag系、Sn−Ag−Cu−Sb系、Sn−Ag−In−Bi系、Sn−Zn系、Sn−Zn−Bi系、Sn−inなどを用いることが可能である。なお、硬化剤としては、はんだ粒子4に用いられるはんだの融点温度(例えば220℃)よりも高い硬化温度(例えば230℃)で熱硬化性樹脂3aを熱硬化させるものが望ましい。   The solder particles 4 are made of solder containing tin (Sn) as a main component in the form of particles having a predetermined particle size. The types of solder are Sn-Bi, Sn-Bi-Ag, and Sn-Bi-In. Sn-Cu system, Sn-Ag-Cu system, Sn-Ag-Cu system, Sn, Sn-Ag system, Sn-Pb system, Sn-Pb-Ag system, Sn-Ag-Cu-Sb system Sn-Ag-In-Bi system, Sn-Zn system, Sn-Zn-Bi system, Sn-in, and the like can be used. In addition, as a hardening | curing agent, what hardens the thermosetting resin 3a with the hardening temperature (for example, 230 degreeC) higher than melting | fusing point temperature (for example, 220 degreeC) of the solder used for the solder particle 4 is desirable.

次に、フレキシブル基板6のリジッド基板1への熱圧着が行われる。すなわち、図2(a)に示すように、まず一方側の面に電極7が形成されたフレキシブル基板6を、電極7が下面側の姿勢で熱圧着ツール5によって保持し、次いで上面2a上に端子2を覆って接着剤3が供給されたリジッド基板1上に位置合わせする。   Next, thermocompression bonding of the flexible substrate 6 to the rigid substrate 1 is performed. That is, as shown in FIG. 2 (a), first, the flexible substrate 6 having the electrode 7 formed on one surface is held by the thermocompression bonding tool 5 with the electrode 7 positioned on the lower surface, and then on the upper surface 2a. The terminal 2 is covered and aligned on the rigid substrate 1 supplied with the adhesive 3.

この後、図2(b)に示すように、熱圧着ツール5を下降させて(矢印a)、電極7を端子2に対向させた状態で、フレキシブル基板6を接着剤3を介してリジッド基板1に対して着地させる。そしてフレキシブル基板6をリジッド基板1に対して所定の押圧荷重で押圧しながら、熱圧着ツール5およびフレキシブル基板6を介して接着剤3を加熱する。このときの、接着剤3における硬化物粒子3bおよびはんだ粒子4の挙動について、図3を参照して説明する。   After that, as shown in FIG. 2B, the thermocompression bonding tool 5 is lowered (arrow a), and the flexible substrate 6 is attached to the rigid substrate through the adhesive 3 with the electrode 7 facing the terminal 2. Land against one. Then, the adhesive 3 is heated via the thermocompression bonding tool 5 and the flexible substrate 6 while pressing the flexible substrate 6 against the rigid substrate 1 with a predetermined pressing load. The behavior of the cured product particles 3b and the solder particles 4 in the adhesive 3 at this time will be described with reference to FIG.

図3(a)は、熱圧着ツール5に保持されたフレキシブル基板6を徐々に下降させる(矢印b)過程において、端子2と電極7との間に複数の硬化物粒子3bやはんだ粒子4が存在している状態を示している。この段階では端子2と電極7との間にはんだ粒子4の平均粒径D1よりも大きい間隔が保たれているため、これらの硬化物粒子3bやはんだ粒子4は、端子2と電極7とによって挟み込まれるには至らない。   FIG. 3A shows a case where a plurality of cured particles 3b and solder particles 4 are present between the terminal 2 and the electrode 7 in the process of gradually lowering the flexible substrate 6 held by the thermocompression bonding tool 5 (arrow b). It shows the existing state. At this stage, since the gap larger than the average particle diameter D1 of the solder particles 4 is maintained between the terminal 2 and the electrode 7, the cured product particles 3b and the solder particles 4 are separated by the terminal 2 and the electrode 7. It won't get caught.

この後、フレキシブル基板6をさらに下降させると(矢印c)、電極7の下面7aと端子2の上面2aとの間隔がはんだ粒子4のうち最も大きい粒径に一致した時点で、当該はんだ粒子4は下面7aと上面2aとの間に挟み込まれる。そしてこの後、予め設定された押圧荷重で熱圧着ツール5を下降させることにより、粒径がばらついているはんだ粒子4のうち大きいものから順次押しつぶされ、下面7aと上面2aとの間に存在するはんだ粒子4の大半が下面7aと上面2aに接触した状態となる。このとき、硬化物粒子3bは平均粒径においてはんだ粒子4より小さくなるようにサイズが設定されているため、硬化物粒子3bの存在によってはんだ粒子4の下面7aと上面2aへの接触が妨げられることがない。   Thereafter, when the flexible substrate 6 is further lowered (arrow c), when the distance between the lower surface 7a of the electrode 7 and the upper surface 2a of the terminal 2 coincides with the largest particle size of the solder particles 4, the solder particle 4 Is sandwiched between the lower surface 7a and the upper surface 2a. After that, by lowering the thermocompression bonding tool 5 with a preset pressing load, the larger one of the solder particles 4 having a varying particle diameter is crushed sequentially, and exists between the lower surface 7a and the upper surface 2a. Most of the solder particles 4 are in contact with the lower surface 7a and the upper surface 2a. At this time, the cured product particles 3b are sized so as to be smaller than the solder particles 4 in the average particle size, and therefore, the presence of the cured product particles 3b prevents the solder particles 4 from contacting the lower surface 7a and the upper surface 2a. There is nothing.

そしてこの状態で、フレキシブル基板6を介して接着剤3の加熱を継続することにより、はんだ粒子4に用いられるはんだの融点温度以上に昇温してはんだ粒子4が溶融する。そしてこの後加熱を停止することにより、下面7aと上面2aの間を半田接合するはんだ接合部4*が形成されるとともに、硬化物粒子3bを含んだ熱硬化性樹脂3aが熱硬化してフレキシブル基板6をリジッド基板1に固着する樹脂補強部3a*が形成される。このとき、硬化物粒子3bは既に熱硬化が完了していることから、この熱硬化過程において硬化反応を進行させる対象となる熱硬化性樹脂3aの樹脂量は従来と比較して硬化物粒子3bの配合比率分に応じて減少している。したがって、熱硬化反応に要する時間を短縮して、熱圧着作業の生産タクトタイムを短縮することが可能となっている。   In this state, by continuing to heat the adhesive 3 through the flexible substrate 6, the temperature rises to the melting point temperature of the solder used for the solder particles 4, and the solder particles 4 are melted. After that, by stopping heating, a solder joint portion 4 * for soldering the lower surface 7a and the upper surface 2a is formed, and the thermosetting resin 3a including the cured product particles 3b is thermoset and flexible. A resin reinforcing portion 3a * for fixing the substrate 6 to the rigid substrate 1 is formed. At this time, since the cured product particles 3b have already been thermally cured, the resin amount of the thermosetting resin 3a to be subjected to the curing reaction in this thermal curing process is larger than that of the conventional cured product particles 3b. It is reduced according to the blending ratio. Therefore, it is possible to shorten the time required for the thermosetting reaction and shorten the production tact time of the thermocompression bonding operation.

次に図4を参照して、本実施の形態に示す電子部品接着方法の適用例について、図4を参照して説明する。図4は、本実施の形態に示す接着剤、すなわち熱硬化性樹脂3a中に硬化物粒子3bを含有する接着剤を用いてリジッド基板1、フレキシブル基板6を熱圧着した2つの実施例(実施例1,2)についての試験結果を、硬化物粒子3bを含有しない従来の接着剤を用いて同様の対象につき熱圧着を行った4つの比較例(比較例1〜4)についての試験結果と対比して示したものである。なお試験の対象とした評価サンプル数Nは、各実施例、比較例ともに、N=10である。   Next, an application example of the electronic component bonding method shown in the present embodiment will be described with reference to FIG. FIG. 4 shows two examples in which the rigid substrate 1 and the flexible substrate 6 are thermocompression bonded using the adhesive shown in the present embodiment, that is, the adhesive containing the cured particles 3b in the thermosetting resin 3a. The test results for Examples 1 and 2 are the same as the test results for four comparative examples (Comparative Examples 1 to 4) in which thermocompression bonding was performed on the same target using a conventional adhesive not containing the cured particles 3b. It is shown in contrast. Note that the number of evaluation samples N to be tested is N = 10 in both the examples and the comparative examples.

接着剤の構成10に示すように、使用する接着剤3はいずれも主剤10a、硬化剤10b、無機充填剤10cを含んでいる。主剤10aはエポキシ樹脂であり、配合比率は比較例1,2では84wt%、比較例3,4では68wt%、実施例1では63wt%、実施例2では51wt%となっている。硬化剤10bとしてはイミダゾールを用いており、配合比率は比較例1,2では6wt%、比較例3,4では4wt%、実施例1では4.5wt%、実施例2で3wt%となっている。また無機充填剤10cとしてはシリカフィラーの微粉タイプを用いており、配合比率は比較例1,2では10wt%、比較例3,4では2wt%、実施例1では7.5wt%、実施例2では1.5wt%となっている。なお比較例3,4,および実施例2においては、はんだ粒子10dを含んだ接着剤を用いて、熱圧着の過程において半田接合によって端子2と電極7とを導通させるようにしている。   As shown in the configuration 10 of the adhesive, each of the adhesives 3 to be used includes a main agent 10a, a curing agent 10b, and an inorganic filler 10c. The main agent 10a is an epoxy resin, and the blending ratio is 84 wt% in Comparative Examples 1 and 2, 68 wt% in Comparative Examples 3 and 4, 63 wt% in Example 1, and 51 wt% in Example 2. Imidazole is used as the curing agent 10b, and the blending ratio is 6 wt% in Comparative Examples 1 and 2, 4 wt% in Comparative Examples 3 and 4, 4.5 wt% in Example 1, and 3 wt% in Example 2. Yes. Further, a fine powder type of silica filler is used as the inorganic filler 10c, and the blending ratio is 10 wt% in Comparative Examples 1 and 2, 2 wt% in Comparative Examples 3 and 4, 7.5 wt% in Example 1, and Example 2 Then, it is 1.5 wt%. In Comparative Examples 3, 4, and Example 2, an adhesive containing solder particles 10d is used to make the terminal 2 and the electrode 7 conductive by solder bonding in the process of thermocompression bonding.

そして実施例1,2においては、それぞれ硬化物粒子3bとして、硬化物フィラー10e、10fを配合している。なお、硬化物フィラー10e、10fとしては、それぞれ比較例1,2に示す構成のエポキシ樹脂をオーブン中で150℃で2時間加熱して硬化させた後、粉砕機で微粉化したものを用いている。比較例1〜4については、これら硬化物フィラーは配合されていない。   In Examples 1 and 2, cured product fillers 10e and 10f are blended as cured product particles 3b, respectively. In addition, as the cured product fillers 10e and 10f, epoxy resins having the configurations shown in Comparative Examples 1 and 2 were cured by heating in an oven at 150 ° C. for 2 hours, and then pulverized with a pulverizer. Yes. About Comparative Examples 1-4, these hardened | cured material fillers are not mix | blended.

熱圧着条件11は加熱温度と加熱時間とを組み合わせて設定されている。ここで加熱温度は、いずれの例についても一律に180℃に設定されている。これに対し、加熱時間については、熱圧着品質を確保するために必要な接着強度と加熱時間との相関を判断するため異なる時間設定としており、比較例1、3については20sec.に、また比較例2,4および実施例1,2についてはいずれも5sec.に設定している。   The thermocompression bonding condition 11 is set by combining the heating temperature and the heating time. Here, the heating temperature is uniformly set to 180 ° C. in all examples. On the other hand, the heating time is set to a different time in order to determine the correlation between the adhesive strength necessary to ensure the thermocompression bonding quality and the heating time. In addition, for Comparative Examples 2 and 4 and Examples 1 and 2, both were 5 sec. Is set.

上述構成の接着剤を用い、熱圧着条件11に基づいてリジッド基板1とフレキシブル基板6とを熱圧着したサンプルに対して、試験項目12、すなわち接続抵抗値12a、接着強度12b、信頼性試験12cについて熱圧着品質判定のための試験を行っている。接続抵抗値12aは、リジッド基板1とフレキシブル基板6とをディジーチェーン接続して計測した抵抗値であり、接着強度12bは、リジッド基板1とフレキシブル基板6との90°ピール強度によって接着強度を評価している。また信頼性試験12cは、温度振幅(−40℃⇔85℃)によるヒートサイクル試験および高温高湿条件(130℃85%Rh)でのPCT試験によって接続状態の信頼性を評価する。   A test item 12, that is, a connection resistance value 12a, an adhesive strength 12b, and a reliability test 12c is applied to a sample obtained by thermocompression bonding of the rigid substrate 1 and the flexible substrate 6 based on the thermocompression bonding condition 11 using the adhesive having the above-described configuration. We are conducting a test to determine the quality of thermocompression bonding. The connection resistance value 12 a is a resistance value measured by daisy chain connecting the rigid substrate 1 and the flexible substrate 6, and the adhesion strength 12 b is an evaluation of the adhesion strength based on the 90 ° peel strength between the rigid substrate 1 and the flexible substrate 6. is doing. The reliability test 12c evaluates the reliability of the connection state by a heat cycle test using a temperature amplitude (−40 ° C. to 85 ° C.) and a PCT test under a high temperature and high humidity condition (130 ° C. and 85% Rh).

ここで、上述の試験結果に基づく良否判定に適用される判定基準の具体例について、図5を参照して説明する。図5は、図4にて説明した接続抵抗値12a、接着強度12b、信頼性試験12cの各試験項目毎に良否の評価を示す基準15を規定し、さらにこれら個別項目についての評価結果を組み合わせて、各実施例、比較例についての総合的な良否判定を行うための判定基準を示している。ここでは良否の評価は、望ましくない順から,F(不可に相当),B(可に相当)およびA(良に相当)に区分されており、各試験項目毎に以下の基準が規定されている。   Here, a specific example of the determination criteria applied to the quality determination based on the above-described test results will be described with reference to FIG. FIG. 5 defines the standard 15 indicating the pass / fail evaluation for each test item of the connection resistance value 12a, the adhesive strength 12b, and the reliability test 12c described in FIG. 4, and further combines the evaluation results for these individual items. The criteria for making a comprehensive pass / fail judgment for each example and comparative example are shown. Here, the evaluation of pass / fail is divided into F (corresponding to bad), B (corresponding to good) and A (corresponding to good) from the undesired order, and the following criteria are defined for each test item. Yes.

すなわち、接続抵抗値12aは評価サンプルでの最大値を評価の対象としており、最大値が10Ω以上の場合(全く導通がないopen含む)にはF、最大値が8Ω以上の場合にはB、最大値が8Ω未満の場合にはAに区分される。また接着強度12bは、評価サンプルでの最小値を評価の対象としており、最小値が5N/16mm以下の場合にはF、最小値が6.5N未満の場合にはB、最小値が6.5N以上の場合にはAに区分される。そして信頼性試験12cについては、ヒートサイクル試験、PCT試験のそれぞれについて、以下の評価基準が適用される。   That is, the connection resistance value 12a is evaluated by the maximum value in the evaluation sample. When the maximum value is 10Ω or more (including open which is not conducting at all), F, and when the maximum value is 8Ω or more, B, When the maximum value is less than 8Ω, it is classified as A. The adhesive strength 12b is evaluated by the minimum value in the evaluation sample. When the minimum value is 5N / 16 mm or less, F, when the minimum value is less than 6.5N, B, and the minimum value is 6. If it is 5N or more, it is classified as A. For the reliability test 12c, the following evaluation criteria are applied to each of the heat cycle test and the PCT test.

まずヒートサイクル試験については、接続抵抗値が初期接続抵抗値から10%増加するまでに要したサイクル回数を評価の対象としており、このサイクル回数が250回未満の場合はF、サイクル回数が250回以上1000回未満の場合にはB,サイクル回数が1000回以上の場合にはAに区分される。そしてPCT試験については、接続抵抗値が初期接続抵抗値から10%増加するまでに要した時間(h)を評価の対象としており、この時間(h)が24h未満の場合にはF、時間(h)が24h以上72h未満の場合にはB、時間(h)が72h以上の場合にはAに区分される。   First, for the heat cycle test, the number of cycles required until the connection resistance value increased by 10% from the initial connection resistance value is the object of evaluation. If the number of cycles is less than 250, F and the number of cycles is 250. If it is less than 1000 times, it is classified as B, and if the number of cycles is 1000 times or more, it is classified as A. For the PCT test, the time (h) required for the connection resistance value to increase by 10% from the initial connection resistance value is the object of evaluation. When this time (h) is less than 24h, F, time ( When h) is 24h or more and less than 72h, it is classified as B, and when time (h) is 72h or more, it is classified as A.

そして判定16は、これら接続抵抗値12a、接着強度12b、信頼性試験12cのそれぞれについての評価を組み合わせた総合判定結果を示している。すなわち、各実施例、比較例について実行された試験項目のうち、少なくとも1つの試験項目がFに該当する場合には、実用に不適であることを意味するNG判定がなされる。また全ての試験項目がB以上であり、且つ1つでもBに該当する場合には、実用的に採用可能であることを意味する○判定がなされる。そして全ての試験項目がAの場合には、全く問題なく採用可能なことを意味する◎判定がなされる。   And the determination 16 has shown the comprehensive determination result which combined evaluation about each of these connection resistance value 12a, the adhesive strength 12b, and the reliability test 12c. That is, if at least one test item among the test items executed for each of the examples and comparative examples corresponds to F, an NG determination is made, which means that the test item is unsuitable for practical use. In addition, when all the test items are B or more and even one of them corresponds to B, “good” judgment is made, which means that it can be practically adopted. If all the test items are A, a judgment is made that means that they can be employed without any problem.

試験結果およびその試験結果を上述の判定基準に基づいて評価することにより取得された判定結果13について、各試験例毎に説明する。まず比較例1では、接続抵抗値12aは7.6〜8.0ΩでBに該当し、接着強度12bは6.7〜7.3N/16mmでAに該当し、さらに信頼性試験12cについては、ヒートサイクル試験では250回、PCT試験では、時間(h)が24hでいずれもBに該当している。そしてこれらの評価結果から、実用的に採用可能な○判定が得られている。これに対し比較例2では、接続抵抗値12aは全く導通が得られないopenとなってFに該当し、接着強度12bは0.9〜3.2N/16mmであってFに該当する。ここでは信頼性試験12cについては全く導通がないことから試験対象とならず、したがって接続抵抗値、接着強度のいずれもFであることから、NG判定となっている。   Test results and determination results 13 obtained by evaluating the test results based on the above-described determination criteria will be described for each test example. First, in Comparative Example 1, the connection resistance value 12a corresponds to B at 7.6 to 8.0Ω, the adhesive strength 12b corresponds to A at 6.7 to 7.3 N / 16 mm, and the reliability test 12c. In the heat cycle test, 250 times, and in the PCT test, the time (h) is 24h and both correspond to B. From these evaluation results, a “good” judgment that can be practically used is obtained. On the other hand, in Comparative Example 2, the connection resistance value 12a is open at which no continuity is obtained and corresponds to F, and the adhesive strength 12b is 0.9 to 3.2 N / 16 mm and corresponds to F. Here, the reliability test 12c is not tested because there is no conduction at all, and therefore, both the connection resistance value and the adhesive strength are F, and therefore the judgment is NG.

次に実施例1では、接続抵抗値12aは7.8〜8.4ΩであってBに該当し、接着強度12bは6.5〜7.4N/16mmであってAに該当する。また信頼性試験12cについては、ヒートサイクル試験では250回であってBに該当し、PCT試験では、24hであって同様にBに該当する。そしてこれらの評価結果から、比較例1と同様に○判定が得られている。また比較例3では、接続抵抗値12aは7.2〜7.5ΩであってAに該当し、接着強度12bは6.8〜7.4N/16mmであってAに該当する。また信頼性試験12cについては、ヒートサイクル試験では1000回であってAに該当し、PCT試験では72hであって同様にAに該当する。そしてこれらの評価結果から、全く問題なく実用的に採用可能な◎判定が得られている。   Next, in Example 1, the connection resistance value 12a is 7.8 to 8.4Ω and corresponds to B, and the adhesive strength 12b is 6.5 to 7.4 N / 16 mm and corresponds to A. The reliability test 12c is 250 times in the heat cycle test and corresponds to B, and 24h in the PCT test and similarly corresponds to B. From these evaluation results, a “good” determination is obtained as in Comparative Example 1. In Comparative Example 3, the connection resistance value 12a is 7.2 to 7.5Ω and corresponds to A, and the adhesive strength 12b is 6.8 to 7.4 N / 16 mm and corresponds to A. The reliability test 12c is 1000 times in the heat cycle test and corresponds to A, and 72h in the PCT test and similarly corresponds to A. From these evaluation results, ◎ judgment that can be practically used without any problem is obtained.

さらに比較例4では、接続抵抗値12aは7.5〜7.7ΩでAに該当するものの、接着強度12bは0.8〜2.9N/16mmでFに該当する。そして信頼性試験12cについては、ヒートサイクル試験では15回でFに該当し、PCT試験では12h以下であって同様にFに該当する。そしてこれらの評価結果から、初期の接続抵抗値は良好な値を示すものの、加熱時間が短いことに起因して接着強度の値が低く、したがって信頼性試験で良い結果が得られておらず、採用不可のNG判定となる。これに対し、実施例2では、接続抵抗値12aは7.3〜7.5ΩでAに該当し、接着強度12bは6.6〜7.3N/16mmであって同様にAに該当する。そして信頼性試験12cについては、ヒートサイクル試験では1000回でAに該当し、PCT試験では72hで同様にAに該当する。そしてこれらの評価結果から、比較例3と同様に、全く問題なく実用的に採用可能な◎判定が得られている。   Further, in Comparative Example 4, the connection resistance value 12a is 7.5 to 7.7Ω corresponding to A, but the adhesive strength 12b is 0.8 to 2.9 N / 16 mm and corresponds to F. The reliability test 12c corresponds to F in the heat cycle test 15 times, and corresponds to F in the PCT test 12 hours or less. And, from these evaluation results, although the initial connection resistance value shows a good value, the value of the adhesive strength is low due to the short heating time, and therefore a good result has not been obtained in the reliability test, NG determination that cannot be adopted. On the other hand, in Example 2, the connection resistance value 12a is 7.3 to 7.5Ω corresponding to A, the adhesive strength 12b is 6.6 to 7.3 N / 16 mm, and similarly corresponds to A. As for the reliability test 12c, the heat cycle test corresponds to A at 1000 times, and the PCT test corresponds to A at 72h. Then, from these evaluation results, as in Comparative Example 3, a ◎ judgment that can be used practically without any problem is obtained.

上述の試験結果から、以下の知見が導き出される。すなわち、比較例1,2のように、硬化物粒子3bを含まない従来の接着剤を用いた場合には、加熱時間が20sec.の条件では許容可能であるが、加熱時間を5sec.に短縮すると全く実用とならないことを示している。そして実施例1の結果から、本実施の形態に示す硬化物粒子3bを配合した接着剤を用いる場合には、はんだ粒子を加えない条件であっても、加熱時間を5sec.に短縮して実用可能な結果が得られることを示している。   The following findings are derived from the above test results. That is, as in Comparative Examples 1 and 2, when the conventional adhesive not containing the cured product particles 3b was used, the heating time was 20 sec. However, the heating time is 5 sec. It shows that it is not practical at all if shortened to. And from the result of Example 1, when using the adhesive agent which mix | blended the hardened | cured material particle 3b shown to this Embodiment, even if it is the conditions which do not add a solder particle, heating time is 5 sec. It is shown that a practical result can be obtained by shortening.

また比較例3、4の結果からは、従来構成の接着剤にはんだ粒子を含有させた場合には、加熱時間が20sec.の場合は良好な結果が得られるが、加熱時間を5sec.に短縮すると全く実用とならないことを示している。そして実施例2の結果から、本実施の形態に示す硬化物粒子3bを配合し且つはんだ粒子を加えた接着剤を用いた場合には、加熱時間を5sec.に短縮しても、満足すべき良好な結果が得られることを示している。   Further, from the results of Comparative Examples 3 and 4, when the solder particles are contained in the adhesive of the conventional configuration, the heating time is 20 sec. In this case, good results can be obtained, but the heating time is 5 sec. It shows that it is not practical at all if shortened to. And from the result of Example 2, when the adhesive which mix | blended the hardened | cured material particle 3b shown to this Embodiment and added the solder particle was used, heating time was 5 sec. It is shown that satisfactory results can be obtained even if shortened to.

上記説明したように、本実施の形態に示す電子部品接着方法においては、主剤および硬化剤を含んだ熱硬化性樹脂より成る電子部品接着用の接着剤3に、主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有させた構成としている。これにより、高い反応性を有する硬化剤を必要とせずに短い時間で熱硬化性樹脂3aを十分に硬化させることができ、生産タクトタイムを短縮するとともに接着剤のポットライフを延長することができる。   As described above, in the electronic component bonding method shown in the present embodiment, the adhesive 3 for bonding electronic components made of a thermosetting resin containing a main agent and a curing agent has the same functional group as the main agent. It is set as the structure which contained the particle | grain component which made the hardened | cured material of the thermosetting resin the particle form. Thereby, the thermosetting resin 3a can be sufficiently cured in a short time without requiring a highly reactive curing agent, and the production tact time can be shortened and the pot life of the adhesive can be extended. .

なお本実施の形態においては、第1電子部品および第2電子部品の組み合わせとして、リジッド基板1にフレキシブル基板6を実装する例を示したが、本発明はこれに限定されるものではない。例えば、第1電子部品としてのフレキシブル基板に、第2電子部品としてのベアチップを前述構成の接着剤3によって接合する場合などについても、本発明の適用対象となる。   In the present embodiment, an example in which the flexible substrate 6 is mounted on the rigid substrate 1 as a combination of the first electronic component and the second electronic component has been described, but the present invention is not limited to this. For example, the present invention is also applicable to a case where a bare chip as a second electronic component is joined to a flexible substrate as a first electronic component by the adhesive 3 having the above-described configuration.

本発明の電子部品接着方法は、生産タクトタイムを短縮するとともに接着剤のポットライフを延長することができるという効果を有し、リジッド基板などの第1電子部品にフレキシブル基板などの第2電子部品を実装する電子部品実装分野などにおいて有用である。   The electronic component bonding method of the present invention has an effect that the production tact time can be shortened and the pot life of the adhesive can be extended, and the second electronic component such as a flexible substrate is added to the first electronic component such as a rigid substrate. This is useful in the field of mounting electronic components.

1 リジッド基板
1a 接続面
2 端子
3 接着剤
3a 熱硬化性樹脂
3b 硬化物粒子
3a* 樹脂補強部
4 はんだ粒子
4* はんだ接合部
6 フレキシブル基板
7 電極
DESCRIPTION OF SYMBOLS 1 Rigid board | substrate 1a Connection surface 2 Terminal 3 Adhesive 3a Thermosetting resin 3b Hardened | cured material particle 3a * Resin reinforcement part 4 Solder particle 4 * Solder junction part 6 Flexible board 7 Electrode

Claims (4)

電子部品を接着するために用いられ、主剤および硬化剤を含んだ熱硬化性樹脂を主成分とする電子部品接着用の接着剤であって、
前記主剤および硬化剤を含む液状成分に、前記主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有させたことを特徴とする電子部品接着用の接着剤。
An adhesive for electronic component bonding, which is used for bonding electronic components and mainly comprises a thermosetting resin containing a main agent and a curing agent,
An adhesive for electronic component bonding, characterized in that a liquid component containing the main agent and a curing agent contains a particle component in which a cured product of a thermosetting resin having the same functional group as that of the main agent is formed into particles. .
前記粒子成分に加えて、これらの粒子成分の平均粒径よりも平均粒径の大きい導電性粒子を含むことを特徴とする請求項1記載の電子部品接着用の接着剤。   2. The adhesive for bonding electronic parts according to claim 1, comprising conductive particles having an average particle size larger than the average particle size of these particle components in addition to the particle components. 第1電子部品と第2電子部品の間に熱硬化性接着剤を介在させた状態で熱圧着することにより、前記第1電子部品と第2電子部品とを電気的に接続した状態で接着する電子部品接着方法であって、
前記熱硬化性樹脂は、主剤および硬化剤を含む液状成分に前記主剤と同一の官能基を有する熱硬化性樹脂の硬化物を粒子状にした粒子成分を含有することを特徴とする電子部品接着方法。
Bonding the first electronic component and the second electronic component in an electrically connected state by thermocompression bonding with a thermosetting adhesive interposed between the first electronic component and the second electronic component An electronic component bonding method,
The thermosetting resin contains a particle component obtained by forming a cured product of a thermosetting resin having the same functional group as the main agent into a liquid component containing the main agent and a curing agent. Method.
前記熱硬化性樹脂は、前記粒子成分に加えてこれらの粒子成分の平均粒径よりも平均粒径の大きい導電性粒子を含むことを特徴とする請求項3記載の電子部品接着方法。   4. The electronic component bonding method according to claim 3, wherein the thermosetting resin contains conductive particles having an average particle size larger than the average particle size of these particle components in addition to the particle components.
JP2010166747A 2010-07-26 2010-07-26 Adhesive for electronic component adhesion and electronic component adhesion method. Active JP5533393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166747A JP5533393B2 (en) 2010-07-26 2010-07-26 Adhesive for electronic component adhesion and electronic component adhesion method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166747A JP5533393B2 (en) 2010-07-26 2010-07-26 Adhesive for electronic component adhesion and electronic component adhesion method.

Publications (2)

Publication Number Publication Date
JP2012028600A true JP2012028600A (en) 2012-02-09
JP5533393B2 JP5533393B2 (en) 2014-06-25

Family

ID=45781171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166747A Active JP5533393B2 (en) 2010-07-26 2010-07-26 Adhesive for electronic component adhesion and electronic component adhesion method.

Country Status (1)

Country Link
JP (1) JP5533393B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128246A1 (en) * 2017-01-09 2018-07-12 서울대학교산학협력단 Method for forming flexible substrate including via, and flexible substrate having via
US11083084B2 (en) 2017-01-10 2021-08-03 Seoul National University R&Db Foundation Stretchable platform formation method and stretchable platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018539A (en) * 2002-06-12 2004-01-22 Yaskawa Electric Corp High thermal conductive powder, resin composition using the same and molding product
JP2004140200A (en) * 2002-10-18 2004-05-13 Dainippon Printing Co Ltd Non-contact data carrier and its manufacturing method
JP2008046910A (en) * 2006-08-17 2008-02-28 Toppan Forms Co Ltd Method for manufacturing semiconductor device
JP2008305887A (en) * 2007-06-06 2008-12-18 Sony Chemical & Information Device Corp Connecting method
JP2009032657A (en) * 2007-06-26 2009-02-12 Sony Chemical & Information Device Corp Anisotropic conductive material, connection structure, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018539A (en) * 2002-06-12 2004-01-22 Yaskawa Electric Corp High thermal conductive powder, resin composition using the same and molding product
JP2004140200A (en) * 2002-10-18 2004-05-13 Dainippon Printing Co Ltd Non-contact data carrier and its manufacturing method
JP2008046910A (en) * 2006-08-17 2008-02-28 Toppan Forms Co Ltd Method for manufacturing semiconductor device
JP2008305887A (en) * 2007-06-06 2008-12-18 Sony Chemical & Information Device Corp Connecting method
JP2009032657A (en) * 2007-06-26 2009-02-12 Sony Chemical & Information Device Corp Anisotropic conductive material, connection structure, and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128246A1 (en) * 2017-01-09 2018-07-12 서울대학교산학협력단 Method for forming flexible substrate including via, and flexible substrate having via
US10905002B2 (en) 2017-01-09 2021-01-26 Seoul National University R&Db Foundation Method for forming flexible substrate including via, and flexible substrate having via
US11284509B2 (en) 2017-01-09 2022-03-22 Seoul National University R&Db Foundation Method for forming flexible substrate including via, and flexible substrate having via
US11083084B2 (en) 2017-01-10 2021-08-03 Seoul National University R&Db Foundation Stretchable platform formation method and stretchable platform

Also Published As

Publication number Publication date
JP5533393B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5170685B2 (en) Conductive bonding material and electronic device
JP4591399B2 (en) Part joining method and part joining structure
KR102159992B1 (en) Anisotropic conductive adhesive
KR100229581B1 (en) Electrically conductive paste materials and applications
KR101221148B1 (en) Anisotropic electroconductive material
KR101982034B1 (en) Anisotropic conductive paste and electronic component connecting method using the same
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
JPH1145618A (en) Conductive paste structure and manufacture thereof
JP5802081B2 (en) Anisotropic conductive paste
JP2022186787A (en) Anisotropic conductive film, manufacturing method thereof, connecting structure, and manufacturing method thereof
Liu an Overview of advances in conductive adhesive joining technology for electronics applications
KR101842855B1 (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
Tong et al. Conductive adhesives with stable contact resistance and superior impact performance
JP5533393B2 (en) Adhesive for electronic component adhesion and electronic component adhesion method.
KR102368748B1 (en) Adhesive agent and connection structure
JP2015010214A (en) Solder composition and thermosetting resin composition
JP4677968B2 (en) Solder paste and joined parts
JP2006265484A (en) Adhesive resin composition and electronic apparatus
JP6335588B2 (en) Method for producing anisotropic conductive adhesive
JP5503830B2 (en) Epoxy adhesive composition and bonding method
JP5827522B2 (en) Wiring board connection method
JP5157038B2 (en) Conductive adhesive and electronic device using the same
Melton Alternatives of lead bearing solder alloys
JPH07252460A (en) Adhesive
JP2013051353A (en) Wiring board connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414