JP2012027427A - Stereoscopic display - Google Patents

Stereoscopic display Download PDF

Info

Publication number
JP2012027427A
JP2012027427A JP2010176757A JP2010176757A JP2012027427A JP 2012027427 A JP2012027427 A JP 2012027427A JP 2010176757 A JP2010176757 A JP 2010176757A JP 2010176757 A JP2010176757 A JP 2010176757A JP 2012027427 A JP2012027427 A JP 2012027427A
Authority
JP
Japan
Prior art keywords
liquid crystal
image
picture
images
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176757A
Other languages
Japanese (ja)
Inventor
Susumu Nishikawa
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010176757A priority Critical patent/JP2012027427A/en
Publication of JP2012027427A publication Critical patent/JP2012027427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a direct-view stereoscopic display requiring polarizing spectacles, which is free from vertical resolution degradation in stereoscopic viewing in comparison with non-stereoscopic viewing.SOLUTION: Two kinds of an R first picture composed by taking odd lines out of scanning lines of a left picture and a right picture being a stereoscopic pair, as a right picture and taking even lines as a left picture and an L first picture composed by taking odd lines as a left picture and taking even lines as a right picture are created and are alternately displayed on a liquid crystal display having an Xpol mounted thereon and driven at a double speed. A polarization axis variable liquid crystal plate which is transparent and changes only a polarization direction by 90° is placed over the liquid crystal having the Xpol mounted thereon, and the polarization direction is changed synchronously with rewriting positions of the L first picture and the R first picture. A backlight is provided with an extinction region and is extinguished in the picture rewriting positions. Polarizing spectacles are used, and a 1/4-wave plate is mounted in the front of the polarization axis variable liquid crystal plate if circularly polarizing spectacles are used. Thus, stereoscopic viewing with high resolution and simultaneous display of left and right pictures is realized.

Description

本発明は、テレビジョン受像機およびコンピュータ・ディスプレイとして用いられ、特殊めがねによって左右画像を分離する直視式立体視ディスプレイに関する。  The present invention relates to a direct-viewing stereoscopic display that is used as a television receiver and a computer display and separates left and right images using special glasses.

薄型の直視式ディスプレイに両眼視差動画像を表示する手段として、従来より空間分割表示方式と時分割表示方式が存在する。それぞれ専用のめがねを使用して左右画像を分離し立体視を可能にしている。  Conventionally, there are a space division display method and a time division display method as means for displaying a binocular differential image on a thin direct view display. Each pair of dedicated glasses is used to separate the left and right images, enabling stereoscopic viewing.

空間分割表示方式とは1枚の画面に左右2つの画像を合成し、特殊めがねで分離するものである。現在主流となっているものはエックスポール(以後Xpolと表記する)方式と呼ばれるものである。これは奇数ラインと偶数ラインにそれぞれ右および左の画像を割り当て、偏光板と特殊位相板によってライン毎の偏光の向きを変え、偏光めがねで分離するものである。偏光方式として直線偏光を用いるものと円偏光を用いるものがある。  The space division display method is a method in which two left and right images are combined on a single screen and separated with special glasses. The mainstream at present is the so-called X-pole (hereinafter referred to as Xpol) system. This assigns right and left images to odd lines and even lines, respectively, changes the direction of polarization for each line by a polarizing plate and a special phase plate, and separates them with polarized glasses. There are two types of polarization, one using linearly polarized light and the other using circularly polarized light.

Xpolはラインごとに偏光方向を異にする直線偏光型と電場ベクトルの回転の向きを逆にする円偏光型がある。それぞれXpol(1/2波長板)、Xpol(1/4波長板)と表記して区別する。  Xpol includes a linear polarization type in which the polarization direction is different for each line and a circular polarization type in which the direction of rotation of the electric field vector is reversed. These are distinguished by being expressed as Xpol (1/2 wavelength plate) and Xpol (1/4 wavelength plate), respectively.

時分割表示方式とは画面上に左右画像を交互に表示し、かつリフレッシュ・レート(refresh rate=1秒間に書き換える回数)を速くして、シャッタめがねで左右画像を分離する方式である。ディスプレイとして液晶方式とプラズマ方式の2通りある。シャッタめがねとしては一般に液晶シャッタが用いられ、画面と同期をとるため赤外線を利用した同期信号の送受信が行われる。  The time-division display method is a method in which left and right images are alternately displayed on the screen and the refresh rate (refresh rate = number of times of rewriting per second) is increased to separate the left and right images with shutter glasses. There are two types of displays: liquid crystal and plasma. In general, a liquid crystal shutter is used as shutter glasses, and synchronization signals using infrared rays are transmitted and received in order to synchronize with the screen.

空間分割方式を代表するXpol方式の欠点は立体視時に垂直解像度が半分に落ちてしまうことである。  The drawback of the Xpol method, which represents the space division method, is that the vertical resolution drops to half during stereoscopic viewing.

時分割方式は120Hz駆動または240Hz駆動にして画面自体のフリッカ(flicker=ちらつき)を解決したが、動画像表示の場合に原理的な欠点をかかえる。即ち同時に撮影またはCG(computer graphics)で作成した左右の画像を再生の時は左右交互に時間をずらして表示するので、被写体が動くとステレオ・ペア(stereo pair=立体視目的の一対の左右画像)の画像として認識できない時があり立体視が崩れるという問題がある。  The time division method is 120 Hz driving or 240 Hz driving to solve the flicker (flicker) of the screen itself, but it has a fundamental drawback in the case of moving image display. That is, when playing back or right and left images created by CG (computer graphics) at the same time, the left and right images are displayed alternately with time shifted, so when the subject moves, a stereo pair (stereo pair = a pair of left and right images for stereoscopic purposes) ) May not be recognized as an image, and there is a problem that stereoscopic vision is lost.

またシャッタめがねを必要とする。このめがねは左右交互に光学的に開閉し、かつ交互に表示される画像に同期させる必要がある。このため液晶シャッタ、駆動回路、同期信号受信回路、電源を必要とするので重く価格も高くなる。また左右画像の分離を良くするため開時間を少なくするなどの方法が取られるが、画面が暗くなるなどの欠点を生じる。  It also requires shutter glasses. These glasses must be optically opened and closed alternately left and right, and synchronized with the alternately displayed images. For this reason, a liquid crystal shutter, a driving circuit, a synchronization signal receiving circuit, and a power source are required, which is heavy and expensive. Moreover, in order to improve the separation of the left and right images, a method such as reducing the opening time is taken, but there are disadvantages such as a dark screen.

最大の欠点は蛍光灯との干渉である。蛍光灯下でのパソコン・ゲームなどはちらつきのため集中できない。液晶方式の立体視ディスプレイでは直線偏光方式にし、偏光めがねの表面偏光板を外して画面上の偏光板とめがねの液晶板および偏光板でシャッタを形成し、対応している所もある。  The biggest drawback is interference with fluorescent lamps. Computers and games under fluorescent lights cannot be concentrated due to flicker. In some liquid crystal stereoscopic displays, a linearly polarizing system is used, and a polarizing plate is removed from the surface polarizing plate, and a shutter is formed by a polarizing plate on the screen, a liquid crystal plate and a polarizing plate on the screen.

プラズマ方式の立体視ディスプレイでは、画面に偏光板を貼ると2D(2次元)の画像をめがねなしで見る時暗くなるので、同じ手は使えない。蛍光灯の光がなるべく眼に入らないような工夫をしているのが現状である。  In a plasma-type stereoscopic display, if a polarizing plate is attached to the screen, it becomes dark when viewing a 2D (two-dimensional) image without glasses, so the same hand cannot be used. The current situation is that the fluorescent light is kept from entering the eye as much as possible.

本発明は、上述した空間分割表示方式の持つ垂直解像度劣化と時分割表示方式の持つ動画像表示時の問題およびシャッタめがねのかかえる問題を同時に解決し、より良い直視方式の立体視ディスプレイを実現することを目的とする。  The present invention simultaneously solves the above-described vertical resolution degradation of the space division display method, the moving image display problem of the time division display method and the problem of shutter glasses, and realizes a better direct-viewing stereoscopic display. For the purpose.

液晶ディスプレイの前面にライン毎に遅相軸の方向を変えた1/2波長板を設ける。この光学素子をXpol(1/2波長板)と呼ぶ。これによってライン毎の偏光方向を90°変えることが出来る。Xpolは透明であり、2D・3D(2次元・3次元)画像両用の液晶ディスプレイとして用いることが出来る。  A half-wave plate in which the direction of the slow axis is changed for each line is provided on the front surface of the liquid crystal display. This optical element is called Xpol (1/2 wavelength plate). As a result, the polarization direction for each line can be changed by 90 °. Xpol is transparent and can be used as a liquid crystal display for both 2D / 3D (2D / 3D) images.

立体画像を表示するときは、ステレオ・ペアの右画像を奇数ラインに、左画像を偶数ラインに割り当てて合成した画像と、左画像を奇数ラインに、右画像を偶数ラインに割り当てて合成した画像の2種類を用意し、これらを高速かつ交互に表示する。前者をRファースト(走査画面のfirst lineを右画像とする意)画像と呼び、Rfと表記する。また後者をLファースト(走査画面のfirst lineを左画像とする意)画像と呼び、Lfと表記する。  When displaying a stereo image, the right image of the stereo pair is assigned to the odd lines, the left image is assigned to the even lines, and the combined image, and the left image is assigned to the odd lines and the right image is assigned to the even lines. These two types are prepared and displayed at high speed and alternately. The former is called an R first image (meaning that the first line of the scanning screen is the right image) and is denoted as Rf. The latter is referred to as an L first image (meaning that the first line of the scanning screen is the left image) and is denoted as Lf.

上記2D・3D両用の液晶ディスプレイの前面に、画面の横幅長の多数の横長パターンからなる偏光方向を90°変化させるだけの機能を持つ液晶板(これを偏光軸可変液晶板と呼ぶ)を置き、上記RファーストとLファーストの画像の書き換え位置に一致させて、画面の上から下へ順次偏光方向を90°変化させる。このことにより偏光めがねを介してRファースト画像およびLファースト画像に分割された左右の元画像を得ることが出来る。  A liquid crystal plate (this is called a polarization axis variable liquid crystal plate) having a function of changing the polarization direction composed of a large number of horizontally long screen patterns by 90 ° is placed on the front surface of the above-mentioned 2D / 3D liquid crystal display. The polarization direction is sequentially changed by 90 ° from the top to the bottom of the screen in accordance with the rewriting positions of the R-first and L-first images. Thus, left and right original images divided into an R first image and an L first image can be obtained through polarized glasses.

本立体視ディスプレイではバックライトとして高速点滅可能な白色LED(light emitting diode=発光ダイオード)を用い、複数ラインから成る横長の消灯領域を設け、上記Rf画像・Lf画像の書き換え位置と偏光軸可変液晶板の偏光軸切り替え位置を含み、かつこれらに同調して消灯領域の位置を画面の上から下へ順次移動させることによって、液晶の遅い応答速度に起因する左右画像の分離不良を回避する。また同時に動画像のぼけの改善をはかる。  In this stereoscopic display, a white LED (light emitting diode) that can blink at high speed is used as a backlight, a horizontally long extinguishing area composed of a plurality of lines is provided, and the Rf image / Lf image rewriting position and the polarization axis variable liquid crystal are provided. Including the polarization axis switching position of the plate, and in synchronization with these, the position of the extinguishing region is sequentially moved from the top to the bottom of the screen, thereby avoiding poor separation of the left and right images due to the slow response speed of the liquid crystal. At the same time, the motion blur is improved.

直線偏光のめがねを使用する方式は顔を傾けたときにゴースト(ghost=分離除去した他方の画像の洩れ)が発生するので、円偏光めがねを使用する方式の方が優れている。この場合は上記偏光軸可変液晶板前面に1/4波長板を置き、偏光軸と遅相軸のなす角を45°にする。これにより左および右に回転する円偏光に変換することが出来る。左右互いに逆旋光の円偏光めがねを介して左右画像を分離し立体視出来る。  The method using linearly polarized glasses is superior to the method using circularly polarized glasses because a ghost (ghost = leakage of the other image separated and removed) occurs when the face is tilted. In this case, a ¼ wavelength plate is placed in front of the polarization axis variable liquid crystal plate, and the angle between the polarization axis and the slow axis is set to 45 °. As a result, it can be converted into circularly polarized light that rotates to the left and right. The left and right images can be separated and viewed stereoscopically through circularly polarized glasses that are reversely rotated from each other.

Xpolと偏光軸可変液晶板及び1/4波長板はいずれも無色透明であり、2D・3D共用のディスプレイとして十分使用に耐える。  Xpol, the polarization axis variable liquid crystal plate, and the quarter wavelength plate are all colorless and transparent, and can sufficiently withstand use as a 2D / 3D shared display.

使用するめがねは直線偏光または円偏光のフィルタを使用する。シャッタめがねのように複雑でも高価でもない。軽く人間への負担が少ない。  The glasses used are linearly polarized or circularly polarized filters. It is neither complicated nor expensive like shutter glasses. Light and less burden on humans.

時分割方式ではステレオ・ペアの左右画像を時間をずらして交互に表示するため被写体に動きがある場合不自然さが目立つ場合がある。本方式はXpol方式を踏襲しており、ステレオ・ペアの左右画像は常に同時表示され立体視が崩れることはない。  In the time division method, the left and right images of the stereo pair are alternately displayed at different times, so that the unnaturalness may be noticeable when the subject moves. This method follows the Xpol method, and the left and right images of the stereo pair are always displayed at the same time, and stereoscopic vision is not lost.

LファーストとRファーストの画像を倍速表示のディスプレイに時分割表示するためフリッカがなく、かつ走査線の欠落がない。そのため高解像度の立体視が可能になる。  Since L-first and R-first images are displayed in a time-sharing manner on a double-speed display, there is no flicker and no scan line is lost. Therefore, high-resolution stereoscopic viewing is possible.

立体視時における垂直解像度の改善を示す概念図Conceptual diagram showing improvement in vertical resolution during stereoscopic viewing Lファースト画像とRファースト画像のライン毎の偏光方向を示す図The figure which shows the polarization direction for every line of L first image and R first image LCDの書き換えに連動する偏光軸可変液晶板とバックライトの関係図Diagram of the relationship between the polarization axis variable liquid crystal plate and the backlight linked with LCD rewriting LCDの偏光透過軸とXpol(1/2波長板)の遅相軸を示す図The figure which shows the polarization transmission axis of LCD and the slow axis of Xpol (1/2 wavelength plate) Xpol(1/2波長板)の入射偏光軸、遅相軸、出射偏光軸の関係図Xpol (1/2 wavelength plate) incident polarization axis, slow axis, outgoing polarization axis relationship diagram LCDと偏光軸可変液晶板の書き換え、バックライトの点滅の時間関係図Time relationship diagram of LCD and polarization axis variable liquid crystal plate rewriting and backlight blinking 本発明の構成図Configuration diagram of the present invention

図1は従来の方式で立体視時に垂直解像度が半分になる欠点が新方式によって改良されることを示す概念図である。即ち左右の元画像1L、1Rをインターレース合成する時、Lファースト画像2LRとRファースト画像2RLを作りこれらを高速かつ交互に表示し、立体視時に眼の残像によって垂直解像度を落とさないようにしたものである。  FIG. 1 is a conceptual diagram showing that the disadvantage that the vertical resolution is halved during stereoscopic viewing in the conventional method is improved by the new method. In other words, when the left and right original images 1L and 1R are interlaced, the L first image 2LR and the R first image 2RL are created and displayed alternately at high speed so that the vertical resolution is not reduced by the afterimage of the eye during stereoscopic viewing. It is.

即ち従来方式ではRファースト画像2RLから奇数ラインを分離した画像3Rと偶数ラインを分離した画像3Lをそれぞれ右および左画像としていた。  That is, in the conventional method, the image 3R from which the odd lines are separated from the R first image 2RL and the image 3L from which the even lines are separated are used as the right and left images, respectively.

新方式では従来方式で使用しなかったLファーストの画像2LRを時分割多重で利用することにより垂直解像度の劣化を解決し、左画像4Lと右画像4Rを得る。  In the new method, the L-first image 2LR, which was not used in the conventional method, is used by time division multiplexing to solve the deterioration of the vertical resolution, and the left image 4L and the right image 4R are obtained.

図2は合成した左右画像の分離を可能にするXpol方式の模式図である。偏光方式は顔を傾けた時ゴーストの出ない円偏光を用いた場合で説明する。従来は右側のRファースト画像2RL(奇数ラインに右画像、偶数ラインに左画像)のみをディスプレイに表示し、それを左右が互いに逆向きの円偏光めがねを使用して左右画像を分離し、立体視を可能にしていた。立体視時には左画像Lおよび右画像Rの情報は1ラインおきにしか得られないから当然垂直解像度は元の画像の半分になってしまう。  FIG. 2 is a schematic diagram of the Xpol method that enables separation of the synthesized left and right images. The polarization method will be described in the case of using circularly polarized light that does not generate ghost when the face is tilted. Conventionally, only the right R-first image 2RL (the right image on the odd lines and the left image on the even lines) is displayed on the display, and the left and right images are separated by using circularly polarized glasses whose left and right are opposite to each other. It was possible to see. Since the information of the left image L and the right image R can only be obtained every other line during stereoscopic viewing, the vertical resolution is naturally half that of the original image.

図2の左側に示した図はLファースト画像2LR(奇数ラインに左画像、偶数ラインに右画像)である。Lファースト画像2LRではライン毎の円偏光の向きをRファースト画像2RLと逆にする必要がある。LファーストとRファーストの画像を交互に表示することにより円偏光めがねを通して垂直解像度劣化のない立体視画像を得ることが出来る。  The figure shown on the left side of FIG. 2 is an L first image 2LR (a left image on odd lines and a right image on even lines). In the L first image 2LR, it is necessary to reverse the direction of the circularly polarized light for each line with respect to the R first image 2RL. By displaying L-first and R-first images alternately, a stereoscopic image without deterioration in vertical resolution can be obtained through circularly polarized glasses.

液晶表示画像は次の画像で書き換えられるまで保持される。今120Hz駆動のディスプレイを想定すると画面の上から下まで1/120secかけて書き換える。図3に従って説明するとLCD(liquid crystal display=液晶ディスプレイ)6上に設けたXpol7のライン毎の偏光方向の変更は液晶画像の書き換えと同調して行う必要がある。  The liquid crystal display image is held until it is rewritten with the next image. Assuming that a 120 Hz drive display is assumed, rewriting takes place from the top to the bottom of the screen over 1/120 sec. If it demonstrates according to FIG. 3, the change of the polarization direction for every line of Xpol7 provided on LCD (liquid crystal display = liquid crystal display) 6 needs to be performed in synchronization with rewriting of a liquid crystal image.

この目的のため偏光軸可変液晶板8と称する画面の上から下まで順次偏光方向を90°変える素子を用意し、液晶ディスプレイの書き換えのタイミングと同調させる。即ちRf(Rファースト)の画像とLf(Lファースト)の画像の境界9で直線偏光の方向を90°回転させる。即ち偏光軸可変液晶板の偏光方向の境界10と画像の境界9を完全一致させ、2枚の液晶板を1/120secかけて書き換えるわけである。  For this purpose, an element called a polarization axis variable liquid crystal plate 8 is prepared which sequentially changes the polarization direction by 90 ° from the top to the bottom of the screen, and is synchronized with the rewrite timing of the liquid crystal display. That is, the direction of linearly polarized light is rotated by 90 ° at the boundary 9 between the Rf (R first) image and the Lf (L first) image. That is, the boundary 10 of the polarization direction of the polarization axis variable liquid crystal plate and the boundary 9 of the image are completely matched, and the two liquid crystal plates are rewritten in 1/120 sec.

図3ではバックライトとしてLEDを用い、かつ液晶ディスプレイの書き換えに同調させて点灯および消灯領域を移動させている。これは眼の残像を少なくして動画表示時のぼけを軽減する手段であるが、画像および偏光方向の境界近傍を消灯することにより、液晶の応答速度の遅れに起因する左右画像の分離不良を回避出来、又偏光軸可変液晶板の分割パターン数を少なくできる。また蛍光管ではなくLEDを使用する理由は応答速度を問題にするからである。また消灯時間と点灯時間の割合は明るさや動画のぼけを考慮して実験的に決められる。  In FIG. 3, an LED is used as the backlight, and the lighting and extinguishing areas are moved in synchronization with rewriting of the liquid crystal display. This is a means to reduce blurring when displaying moving images by reducing the afterimage of the eye, but by turning off the vicinity of the boundary between the image and the polarization direction, the separation of the left and right images due to the delay in the response speed of the liquid crystal is eliminated. This can be avoided and the number of division patterns of the polarization axis variable liquid crystal plate can be reduced. The reason for using LEDs instead of fluorescent tubes is that the response speed is a problem. The ratio between the turn-off time and the turn-on time is determined experimentally in consideration of brightness and blurring of moving images.

偏光軸可変液晶板としてTN(twisted nematic=ねじれネマティック)型液晶を用いるのは好ましくない。理由はノーマリーホワイト(normally white=電界をかけない時白を表示)とノーマリーブラック(normally black=電界をかけない時黒を表示)の2つのモードを切り替えて用いるからである。ノーマリーブラック・モードでは強い着色現象があり、2つのモードを使うため対応策がない。  It is not preferable to use a TN (twisted nematic) type liquid crystal as the polarization axis variable liquid crystal plate. The reason is that two modes of normally white (normally white = display white when no electric field is applied) and normally black (normally black = display black when no electric field is applied) are switched and used. In the normally black mode, there is a strong coloring phenomenon, and there is no workaround because two modes are used.

このような偏光方向を高速で変える液晶素子としてパイセル(π cell)液晶板が公知である。これは横電界方式を採用しており、液晶分子は同一平面で回転する。その結果、高速応答、広視野角、高コントラスト比などの特長があり、TN液晶の持つ着色の問題がない。従って本発明の構成部品としてパイセル液晶板を用いるのは選択肢の1つである。  A pi-cell liquid crystal plate is known as a liquid crystal element that changes the polarization direction at a high speed. This employs a horizontal electric field method, and the liquid crystal molecules rotate in the same plane. As a result, there are features such as a high-speed response, a wide viewing angle, and a high contrast ratio, and there are no coloring problems of the TN liquid crystal. Therefore, using a pi-cell liquid crystal plate as a component of the present invention is one option.

偏光軸可変液晶板8を使って偏光方向を変えるためにはXpol7を出射する光は直線偏光である必要がある。従って図3で使用するXpol7は1/2波長板である。図4にXpolのライン毎の1/2波長板の遅相軸12を示す。  In order to change the polarization direction using the polarization axis variable liquid crystal plate 8, the light emitted from Xpol 7 needs to be linearly polarized light. Therefore, Xpol 7 used in FIG. 3 is a half-wave plate. FIG. 4 shows the slow axis 12 of the half-wave plate for each line of Xpol.

図5はLCDの偏光透過軸11がXpolによってライン毎に+45°、−45°に振る分けられる様子を示す。出射偏光軸(+45°)13aの場合は、入射偏光軸11と1/2波長板の遅相軸12aのなす角θaを0°にする。出射偏光軸(−45°)13bの場合は、入射偏光軸11と1/2波長板の遅相軸12bのなす角θbを45°にする。
目的はライン毎の出射偏向角を互いに直交させることなので、θa・θbの値はいろいろな組み合わせがある。製造を考慮すると単純な方が良いであろう。
FIG. 5 shows a state where the polarization transmission axis 11 of the LCD is divided into + 45 ° and −45 ° for each line by Xpol. In the case of the outgoing polarization axis (+ 45 °) 13a, the angle θa formed by the incident polarization axis 11 and the slow axis 12a of the half-wave plate is set to 0 °. In the case of the outgoing polarization axis (−45 °) 13b, the angle θb formed by the incident polarization axis 11 and the slow axis 12b of the half-wave plate is set to 45 °.
Since the purpose is to make the outgoing deflection angles for each line orthogonal to each other, there are various combinations of the values of θa and θb. The simpler would be better when considering manufacturing.

図6はLCDの表示14、偏光軸可変液晶板の動作15、LEDバックライトの消灯位置の移動16について画面の上下位置と時間の関係を示したものである。縦軸は画像の上から下までを表し、横軸は時間軸である。画像表示時間は現行システムで一般化している数字を表記した。即ちLf、Rfを1/120secで表示し、1フレーム1/60secとする。即ち60Hz表示なのでフリッカの問題はない。偏光軸可変液晶板は画像のライン数と同じだけのパターンを持つ必要はないが、図では画像の書き換えに同調して動作することを示すため直線で表現した。  FIG. 6 shows the relationship between the vertical position of the screen and the time for the LCD display 14, the operation 15 of the polarization axis variable liquid crystal plate 15, and the movement 16 of the LED backlight turn-off position. The vertical axis represents from the top to the bottom of the image, and the horizontal axis is the time axis. The image display time is a number that is generalized in the current system. That is, Lf and Rf are displayed at 1/120 sec, and 1 frame is 1/60 sec. That is, since there is 60 Hz display, there is no problem of flicker. The polarization axis variable liquid crystal plate does not need to have the same number of patterns as the number of lines of the image.

LCDの表示14の図の右に示したライン数はデジタル・ハイビジョンの規格である。すなわち総ライン数1115本、有効本数1080本である。1081から1115ラインは垂直ブランキング(blanking)期間であり、画像は黒である。
本立体視LCDはテレビジョン受像機としての用途だけでなく、パソコンのディスプレイ端末を強く意識しているので、ここに書いた数字はあくまで参考値である。
The number of lines shown on the right side of the display 14 on the LCD is a standard for digital high vision. That is, the total number of lines is 1115 and the effective number is 1080. Lines 1081 to 1115 are vertical blanking periods, and the image is black.
Since the stereoscopic LCD is not only used as a television receiver but also strongly conscious of the display terminal of a personal computer, the numbers written here are just reference values.

図7は本発明の立体視ディスプレイの構成図である。即ちLEDバックライト5、LCD6、Xpol(1/2波長板)7、偏光軸可変液晶板8、1/4波長板17でディスプレイを構成する。偏光軸可変液晶板8を出た偏光軸±45°の直線偏光は、1/4波長板17の水平の遅相軸18によって右旋、左旋の円偏光に変えられる。これを円偏光めがね19で左右画像を分離し立体視する。  FIG. 7 is a configuration diagram of the stereoscopic display of the present invention. That is, the LED backlight 5, LCD 6, Xpol (1/2 wavelength plate) 7, polarization axis variable liquid crystal plate 8, and ¼ wavelength plate 17 constitute a display. The linearly polarized light having a polarization axis of ± 45 ° exiting the polarization axis variable liquid crystal plate 8 is changed into right-handed and left-handed circularly polarized light by the horizontal slow axis 18 of the quarter-wave plate 17. The left and right images are separated and viewed stereoscopically with circularly polarized glasses 19.

本ディスプレイは2D・3D両用に用いることができる。一般には2Dの時は、円偏光めがねは不要であるが、パソコンを使った作画作業などの場合、円偏光めがねをかけたままで2D・3D両作業をこなすことが出来る。従来のように垂直解像度が変化することはないからである。  This display can be used for both 2D and 3D. In general, circularly polarized glasses are not required for 2D, but in the case of drawing work using a personal computer, both 2D and 3D work can be performed with circularly polarized glasses applied. This is because the vertical resolution does not change as in the prior art.

1L 元画像(左)
1R 元画像(右)
2LR Lファースト画像
2RL Rファースト画像
3L 従来方式再生画像(左)
3R 従来方式再生画像(右)
4L 新方式再生画像(左)
4R 新方式再生画像(右)
5 LEDバックライト
6 LCD(液晶表示装置)
7 Xpol(1/2波長板)
8 偏光軸可変液晶板
9 RfとLfの境界
10 偏光方向の境界
11 LCDの偏光透過軸=Xpolへの入射偏光軸
12 Xpol(1/2波長板)のライン毎の遅相軸
12a 遅相軸(θ=0°)
12b 遅相軸(θ=45°)
13a 出射偏光軸(+45°)
13b 出射偏光軸(−45°)
14 LCDの表示
15 偏光軸可変液晶板の動作
16 LEDバックライト消灯領域の移動
17 1/4波長板
18 遅相軸
19 円偏光めがね
1L original image (left)
1R Original image (right)
2LR L first image 2RL R first image 3L Conventional playback image (left)
3R Conventional playback image (right)
4L New system playback image (left)
4R New system playback image (right)
5 LED backlight 6 LCD (Liquid Crystal Display)
7 Xpol (1/2 wavelength plate)
8 Polarization axis variable liquid crystal plate 9 Rf and Lf boundary 10 Polarization direction boundary 11 Polarization transmission axis of LCD = incident polarization axis 12 to Xpol Sol axis 12a for each line of Xpol (1/2 wavelength plate) Slow axis (Θ = 0 °)
12b Slow axis (θ = 45 °)
13a Output polarization axis (+ 45 °)
13b Output polarization axis (-45 °)
14 LCD display 15 Operation of polarization axis variable liquid crystal plate 16 Movement of LED backlight extinguishing area 17 1/4 wavelength plate 18 Slow axis 19 Circular polarized glasses

Claims (4)

液晶画面の前面に1/2波長板を設け、ライン毎に遅相軸の方向を変えた2D・3D両用液晶ディスプレイにおいて、ステレオ・ペアの右画像を奇数ラインに、左画像を偶数ラインに割り当てた画像(これをRファースト画像と呼ぶ)と、左画像を奇数ラインに、右画像を遇数ラインに割り当てた画像(これをLファースト画像と呼ぶ)の2種類を用意し、これらを高速のフレーム・レートで交互に表示する立体視ディスプレイ。  In a 2D / 3D liquid crystal display with a half-wave plate on the front of the LCD screen and the direction of the slow axis changed for each line, the right image of the stereo pair is assigned to odd lines and the left image is assigned to even lines Two types of images (referred to as R-first images) and left-hand images as odd lines and right-images as allocated to the arithmetic lines (referred to as L-first images). Stereoscopic display that displays alternately at frame rate. 上記立体視ディスプレイの前面に、画面の横幅長の多数の横長パターンからなる偏光方向を90°変化させる液晶板(これを偏光軸可変液晶板と呼ぶ)を置き、上記Rファースト画像とLファースト画像の書き換え位置に一致させて、画面の上から下へ順次偏光方向を90°変化させる立体視ディスプレイ。  On the front surface of the stereoscopic display, a liquid crystal plate (which is called a polarization axis variable liquid crystal plate) that changes the polarization direction consisting of a large number of horizontally long screen patterns is placed, and the R first image and the L first image are arranged. A stereoscopic display in which the polarization direction is changed by 90 ° sequentially from the top to the bottom of the screen in accordance with the rewriting position. 上記Rファースト画像とLファースト画像の書き換え位置および偏光軸可変液晶板の偏光方向の切り替え位置を含み、複数ラインからなる横長の消灯領域を設け、これを前2者の動きに同調して画面の上から下へ順次移動させるバックライトを有した立体視ディスプレイ。  The rewrite position of the R-first image and L-first image and the switching position of the polarization direction of the polarization axis variable liquid crystal plate are provided, and a horizontally long extinguishing area consisting of a plurality of lines is provided. A stereoscopic display with a backlight that moves sequentially from top to bottom. 上記偏光軸可変液晶板前面に1/4波長板を置き、右旋、左旋の円偏光に変換して左右互いに逆旋光の円偏光めがねで左右画像を分離する立体視ディスプレイ。  A stereoscopic display in which a quarter-wave plate is placed in front of the polarization axis variable liquid crystal plate and converted into right-handed and left-handed circularly polarized light, and left and right images are separated from each other by circularly polarized glasses that are reversely rotated.
JP2010176757A 2010-07-20 2010-07-20 Stereoscopic display Pending JP2012027427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176757A JP2012027427A (en) 2010-07-20 2010-07-20 Stereoscopic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176757A JP2012027427A (en) 2010-07-20 2010-07-20 Stereoscopic display

Publications (1)

Publication Number Publication Date
JP2012027427A true JP2012027427A (en) 2012-02-09

Family

ID=45780368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176757A Pending JP2012027427A (en) 2010-07-20 2010-07-20 Stereoscopic display

Country Status (1)

Country Link
JP (1) JP2012027427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048197A (en) * 2010-08-09 2012-03-08 Rwal D Inc Stereoscopic flat panel display device with synchronized backlight, polarization control panel and liquid crystal display
JP2013546011A (en) * 2010-10-06 2013-12-26 サムスン エレクトロニクス カンパニー リミテッド 3D display panel, 3D display device using the same, and driving method thereof
ITRM20130546A1 (en) * 2013-10-07 2015-04-08 Caramelli Antonio C O Istituto Naz Ionale Di Geofi THREE-DIMENSIONAL VISUALIZATION SYSTEM WITH MULTIPLE STEREOSCOPIC EFFECT BY CIRCULAR POLARIZERS
CN107390435A (en) * 2017-08-24 2017-11-24 江苏金坛长荡湖新能源科技有限公司 Vehicle-mounted touching display screen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048197A (en) * 2010-08-09 2012-03-08 Rwal D Inc Stereoscopic flat panel display device with synchronized backlight, polarization control panel and liquid crystal display
JP2013546011A (en) * 2010-10-06 2013-12-26 サムスン エレクトロニクス カンパニー リミテッド 3D display panel, 3D display device using the same, and driving method thereof
ITRM20130546A1 (en) * 2013-10-07 2015-04-08 Caramelli Antonio C O Istituto Naz Ionale Di Geofi THREE-DIMENSIONAL VISUALIZATION SYSTEM WITH MULTIPLE STEREOSCOPIC EFFECT BY CIRCULAR POLARIZERS
CN107390435A (en) * 2017-08-24 2017-11-24 江苏金坛长荡湖新能源科技有限公司 Vehicle-mounted touching display screen

Similar Documents

Publication Publication Date Title
US7646537B2 (en) High-resolution field sequential autostereoscopic display
US8049710B2 (en) Multi-view autostereoscopic display with improved resolution
US8711060B2 (en) Time sharing type autostereoscopic display apparatus and method for driving the same
KR101299728B1 (en) High efficient 2D-3D switchable display apparatus
JP5603042B2 (en) Stereoscopic image display device
JP2010243705A (en) Stereoscopic display
US9001198B2 (en) Image display viewing system, optical modulator and image display device
JPH08248355A (en) Three-dimensional display
JP5737444B2 (en) Image display system, image control apparatus, image control method, and optical shutter
JP2003202519A (en) Stereoscopic image display device
KR20120042688A (en) Stereoscopic display system, eye glass for viewing an stereoscopic image, and method thereof
CN114460758A (en) Polarized light type directional backlight naked eye 3D display system
JP5297996B2 (en) Stereoscopic image display apparatus and stereoscopic image display method
JP2012027427A (en) Stereoscopic display
TWI471607B (en) Hybrid multiplexed 3d display and displaying method of hybrid multiplexed 3d image
JPH10206794A (en) Stereoscopic display device
CN102595177A (en) Method for achieving 3D (three-dimensional) image display and liquid crystal display television
US9618762B2 (en) Autostereoscopic display system
US20120235991A1 (en) Three dimensional display and driving method thereof
JP2011150274A (en) Video display system
JP5539746B2 (en) Stereoscopic image display device
JP2012203111A (en) Stereoscopic image display device
KR101992161B1 (en) Stereoscopic image display and polarity control method thereof
TWI420150B (en) Stereoscopic image display
CN112327504A (en) 3D laser projection television and laser television system