JP2012026811A - Ac-to-dc conversion element - Google Patents
Ac-to-dc conversion element Download PDFInfo
- Publication number
- JP2012026811A JP2012026811A JP2010164408A JP2010164408A JP2012026811A JP 2012026811 A JP2012026811 A JP 2012026811A JP 2010164408 A JP2010164408 A JP 2010164408A JP 2010164408 A JP2010164408 A JP 2010164408A JP 2012026811 A JP2012026811 A JP 2012026811A
- Authority
- JP
- Japan
- Prior art keywords
- conversion element
- bulb
- converter
- thermal conductivity
- thermocouple
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本発明は、交直変換素子に関するものである。 The present invention relates to an AC / DC conversion element.
交直変換素子とは、ヒータ線と熱電対からなる熱電素子である。現在、交流電圧は、交直変換素子を介して発熱量を直流と交流とで比較測定する方法によって決められている。具体的には、交直変換素子に、校正されて値が決定された直流電圧と、未知の交流電圧を入力すると、電圧はヒータ線でのジュール効果により熱エネルギーに変換される。このときのヒータでの温度上昇を熱電対で測定し、直流電圧と交流電圧の発熱量を比較することで、交流電圧の値を決定する。 The AC / DC conversion element is a thermoelectric element composed of a heater wire and a thermocouple. At present, the AC voltage is determined by a method in which the calorific value is measured by comparison between DC and AC via an AC / DC converter. Specifically, when a DC voltage whose value has been calibrated and an unknown AC voltage are input to the AC / DC conversion element, the voltage is converted into thermal energy by the Joule effect on the heater wire. The temperature rise at the heater at this time is measured with a thermocouple, and the value of the AC voltage is determined by comparing the amount of heat generated by the DC voltage and the AC voltage.
直流電圧または交流電圧を交直変換素子に印加した場合、素子の熱電対からの出力電圧にはドリフトがあることが知られている。このドリフトは次のような変化をする。すなわち、交直変換素子の熱電対から発生する起電力は約1秒で指数関数的に上昇し、電圧印加後約数秒後からは逆に指数関数的に減少し、約数分後に最大値から約0.1%程度減少した値に落ち着く。 It is known that when a DC voltage or an AC voltage is applied to an AC / DC conversion element, there is a drift in the output voltage from the thermocouple of the element. This drift changes as follows. That is, the electromotive force generated from the thermocouple of the AC / DC conversion element increases exponentially in about 1 second, decreases exponentially after about several seconds after voltage application, and decreases from the maximum value after about several minutes. It settles to a value reduced by about 0.1%.
測定において、交流電圧と直流電圧を切り替える必要があるが、このとき必ず有限のオフタイムが生じる。この間、交直変換素子への入力電圧が途切れ、ヒータ線の発熱もゼロとなる。再び入力電圧が印加されると、熱電対の発生する起電力は、前述した二種類の時定数で定常値に回復する。第二の時定数による電圧の減少は最大値に対し、0.1%程度であるが、発熱量の比較測定には、最大で10ppm程度の不確かさを与えるため問題であった。
そこで、オフタイムを極力短くするために、バックアップ電源の開発と交流/直流の切り替えが高速なスイッチが考案され、それぞれ、現在の測定システムに採用されている。(非特許文献1参照)
In the measurement, it is necessary to switch between the AC voltage and the DC voltage, but at this time, a finite off-time always occurs. During this time, the input voltage to the AC / DC conversion element is interrupted, and the heating of the heater wire becomes zero. When the input voltage is applied again, the electromotive force generated by the thermocouple is restored to a steady value with the two types of time constants described above. The voltage decrease due to the second time constant is about 0.1% of the maximum value, but this is a problem in the comparative measurement of the calorific value because it gives an uncertainty of about 10 ppm at the maximum.
Therefore, in order to shorten the off-time as much as possible, switches with high-speed development of backup power supply and AC / DC switching have been devised, and each is adopted in the current measurement system. (See Non-Patent Document 1)
これまでは、バックアップ電源、高速スイッチを用いて、オフタイムを短くし、ドリフトが測定に与える影響を軽減させた。しかしながら、従来の方法では、バックアップ電源やスイッチ等の電子機器をシステムに組み込むため、システムが煩雑になるばかりでなく、電源やスイッチによる測定値の不確かさも加味しなくてはならない。
また、ドリフト中に測定を行っているため、交流電圧ACから直流電圧DCに切り替える際に、AC/+DC/-DC/ACなる特殊なシーケンス制御を行う必要がある。
そこで本発明は、上記のような不都合を除去して、熱電対からの出力電圧のドリフトを根本的に改善した交直変換素子を提供することを課題とする。
So far, backup power supplies and high-speed switches have been used to shorten the off-time and reduce the effect of drift on measurement. However, in the conventional method, since an electronic device such as a backup power source and a switch is incorporated in the system, not only the system becomes complicated, but also the uncertainty of the measured value by the power source and the switch must be taken into account.
Also, since measurement is performed during drift, special sequence control of AC / + DC / -DC / AC must be performed when switching from AC voltage AC to DC voltage DC.
Accordingly, an object of the present invention is to provide an AC / DC conversion element that eliminates the above-described inconvenience and fundamentally improves the drift of the output voltage from the thermocouple.
上記の課題は、以下の交直変換素子によって解決される。
(1)交直変換素子を構成する熱電対の基準接点が、熱伝導率が高く、熱容量の大きな物質に接していることを特徴とする交直変換素子。
(2)上記熱伝導率が高く、熱容量の大きな物質は、金属のブロックであることを特徴とする(1)に記載の交直変換素子。
(3)上記熱伝導率が高く、熱容量の大きな物質は、金属の膜であることを特徴とする(1)に記載の交直変換素子。
(4)上記熱伝導率が高く、熱容量の大きな物質は、高熱伝導性のセラミックスのブロックであることを特徴とする(1)に記載の交直変換素子。
(5)上記熱伝導率が高く、熱容量の大きな物質は、高熱伝導性のセラミックスの膜であることを特徴とする(1)に記載の交直変換素子。
(6)上記熱伝導率が高く、熱容量の大きな物質は、熱伝導性樹脂であることを特徴とする(1)に記載の交直変換素子。
(7)上記交直変換素子は、電球型の単一熱電対型交直変換素子であることを特徴とする(1)に記載の交直変換素子。
(8)上記電球型の単一熱電対型交直変換素子のガラスバルブの周囲に、該ガラスバルブに熱的に接触した金属のブロックが設けられていることを特徴とする(7)に記載の交直変換素子。
(9)上記電球型の単一熱電対型交直変換素子のガラスバルブの周囲に、該ガラスバルブに熱的に接触した金属の膜が設けられていることを特徴とする(7)に記載の交直変換素子。
(10)上記電球型の単一熱電対型交直変換素子のガラスバルブの表面に、金属の膜が蒸着されていることを特徴とする(7)に記載の交直変換素子。
(11)上記電球型の単一熱電対型交直変換素子のガラスバルブの周囲に、高熱伝導性のセラミックスの膜が設けられていることを特徴とする(7)に記載の交直変換素子。
(12)上記電球型の単一熱電対型交直変換素子のガラスバルブの表面に、高熱伝導性のセラミックスの膜が蒸着されていることを特徴とする(7)に記載の交直変換素子。
(13)上記電球型の単一熱電対型交直変換素子のガラスバルブの周囲に、熱伝導性樹脂の膜が設けられていることを特徴とする(7)に記載の交直変換素子。
Said subject is solved by the following AC / DC conversion elements.
(1) An AC / DC conversion element characterized in that a reference contact of a thermocouple constituting the AC / DC conversion element is in contact with a material having high thermal conductivity and a large heat capacity.
(2) The AC / DC converter according to (1), wherein the substance having a high thermal conductivity and a large heat capacity is a metal block.
(3) The AC / DC converter according to (1), wherein the substance having a high thermal conductivity and a large heat capacity is a metal film.
(4) The AC / DC converter according to (1), wherein the substance having a high thermal conductivity and a large heat capacity is a ceramic block having high thermal conductivity.
(5) The AC / DC converter according to (1), wherein the substance having a high thermal conductivity and a large heat capacity is a ceramic film having a high thermal conductivity.
(6) The AC / DC converter according to (1), wherein the substance having a high heat conductivity and a large heat capacity is a heat conductive resin.
(7) The AC / DC converter according to (1), wherein the AC / DC converter is a bulb-type single thermocouple AC / DC converter.
(8) A metal block in thermal contact with the glass bulb is provided around the glass bulb of the bulb-type single thermocouple AC / DC converter. AC / DC converter.
(9) The metal film in thermal contact with the glass bulb is provided around the glass bulb of the bulb-type single thermocouple AC / DC converter. AC / DC converter.
(10) The AC / DC converter according to (7), wherein a metal film is deposited on the surface of the glass bulb of the bulb-type single thermocouple AC / DC converter.
(11) The AC / DC converter according to (7), wherein a ceramic film having high thermal conductivity is provided around a glass bulb of the bulb-type single thermocouple AC / DC converter.
(12) The AC / DC converter according to (7), wherein a high thermal conductive ceramic film is deposited on a surface of a glass bulb of the bulb-type single thermocouple AC / DC converter.
(13) The AC / DC converter according to (7), wherein a film of heat conductive resin is provided around a glass bulb of the bulb-type single thermocouple AC / DC converter.
本発明によれば、交直変換素子の熱電対の基準接点を、熱伝導率が高く、熱容量の大きな物質に接した構造としたため、ドリフトの根本的な改善が可能である。
このため電源や機械式スイッチなどの電子機器をシステムに組み込む必要がなくなり、ドリフトそのものが改善されているので、測定精度が向上する。また、第二の時定数による数十分にわたって生じるドリフトが改善されたため、安定になるまでの待ち時間が短くなる。特殊なシーケンス制御を行う必要はない。そのため、従来に比べ、測定時間の短縮が可能である。
According to the present invention, since the reference contact of the thermocouple of the AC / DC converter is in contact with a substance having high thermal conductivity and a large heat capacity, drastic improvement in drift is possible.
For this reason, it is not necessary to incorporate electronic devices such as a power source and a mechanical switch into the system, and the drift itself is improved, so that the measurement accuracy is improved. In addition, since the drift generated over several tens of minutes due to the second time constant has been improved, the waiting time until stabilization is shortened. There is no need for special sequence control. Therefore, the measurement time can be shortened compared to the conventional case.
(ドリフトのメカニズム)
交直変換素子として電球型の単一熱電対型交直変換素子を例示して、ドリフトのメカニズムを解明する。
電球型の単一熱電対型交直変換素子の熱電対の基準接点の温度は、図1に示したガラスバルブの温度である。ヒータの温度が上昇すると、輻射等によって、熱がガラスバルブに伝わり、ガラスバルブの温度が上昇する。ガラスバルブはヒータと比べ、熱容量が大きく、熱伝導率が低いため、ヒータの温度上昇速度に比べると、ゆっくりとした速度でガラスバルブの温度が上昇する。このガラスバルブの温度上昇は、熱電対の基準点の温度が上昇することに相当するから、熱電対からの、みかけの出力電圧が低下することを意味する。このように、ガラスバルブの温度上昇がドリフトの原因であると考えることができる。
したがって交直変換素子の熱電対の基準接点を構成するガラスバルブの温度上昇を防止することがドリフト防止に効果的であると推測できる。
(Drift mechanism)
A drift-type single thermocouple AC / DC converter is exemplified as the AC / DC converter, and the drift mechanism is elucidated.
The temperature of the reference junction of the thermocouple of the bulb-type single thermocouple type AC / DC converter is the temperature of the glass bulb shown in FIG. When the temperature of the heater rises, heat is transferred to the glass bulb by radiation or the like, and the temperature of the glass bulb rises. Since the glass bulb has a larger heat capacity and lower thermal conductivity than the heater, the temperature of the glass bulb rises at a slower rate than the rate of temperature rise of the heater. This increase in the temperature of the glass bulb corresponds to an increase in the temperature of the reference point of the thermocouple, which means that the apparent output voltage from the thermocouple decreases. Thus, it can be considered that the temperature rise of the glass bulb is the cause of the drift.
Therefore, it can be presumed that preventing the temperature rise of the glass bulb constituting the reference contact of the thermocouple of the AC / DC converter is effective in preventing drift.
(実施例)
図2に本発明によるドリフトが改善可能な電球型の単一熱電対型交直変換素子を示す。図1に示す電球型の単一熱電対型交直変換素子は、ガラスバルブと熱電対がガラスバルブの中に真空封入された構造になっている。ガラスバルブと熱電対は熱的に接触しており、ガラスバルブの温度が熱電対の基準接点の温度となっている。測定においては、電気的ノイズの影響を防ぐために、アルミ製のシャーシの中に組み込まれる。
本発明に係る電球型の単一熱電対型交直変換素子は、ヒータと熱電対を取り囲むガラスバルブに銅ブロックが熱的に接触した構造になっている。この構造では、銅ブロックの大きな熱容量、高い熱伝導率により、ガラスバルブの温度上昇が抑制されるため、ドリフトの改善が可能である。
(Example)
FIG. 2 shows a light bulb type single thermocouple type AC / DC conversion element capable of improving drift according to the present invention. The bulb-type single thermocouple AC / DC conversion element shown in FIG. 1 has a structure in which a glass bulb and a thermocouple are vacuum-sealed in a glass bulb. The glass bulb and the thermocouple are in thermal contact, and the temperature of the glass bulb is the temperature of the reference junction of the thermocouple. In the measurement, it is built in an aluminum chassis to prevent the influence of electrical noise.
The bulb-type single thermocouple AC / DC converter according to the present invention has a structure in which a copper block is in thermal contact with a glass bulb surrounding a heater and a thermocouple. In this structure, since the temperature rise of the glass bulb is suppressed due to the large heat capacity and high thermal conductivity of the copper block, drift can be improved.
実施例では一辺が50mm以上の銅ブロックを使用したが、本発明に係る銅ブロックの大きさはこの範囲に限定されない。また、材質は熱伝導率の高い銅が好ましいが、他の金属、例えばアルミ、金、銀あるいは真鍮等の合金であってもよい。
さらに、窒化アルミ等の高熱伝導性のセラミックス、あるいは樹脂に金属やセラミックスなどのフィラ―が添加された熱伝導性樹脂のような複合材料でも効果が認められる。
In the examples, a copper block having a side of 50 mm or more was used, but the size of the copper block according to the present invention is not limited to this range. The material is preferably copper having a high thermal conductivity, but other metals such as aluminum, gold, silver, or an alloy such as brass may be used.
Furthermore, the effect is recognized even in a composite material such as a highly thermally conductive ceramic such as aluminum nitride, or a thermally conductive resin in which a filler such as a metal or ceramic is added to a resin.
(実験結果)
図3には、本発明に係る図2の電球型の単一熱電対型交直変換素子の直流電圧の過渡特性曲線を改良型素子として示した。比較のため、従来の交直変換素子に相当する図1の電球型の単一熱電対型交直変換素子の過渡特性曲線を従来型素子として示した。
従来型素子では、最大出力電圧に対して、数分後に約0.1%の低下が観測される。それに対し、本発明の改良型素子の出力電圧の低下は、無視できるほど小さかった。この結果から、銅ブロックを熱浴として用いることで、第二の時定数によるドリフトが改善できることが明らかになった。
(Experimental result)
FIG. 3 shows a DC voltage transient characteristic curve of the bulb-type single thermocouple AC / DC converter of FIG. 2 according to the present invention as an improved element. For comparison, the transient characteristic curve of the bulb-type single thermocouple AC / DC converter of FIG. 1 corresponding to the conventional AC / DC converter is shown as a conventional element.
In the conventional device, a decrease of about 0.1% is observed after several minutes with respect to the maximum output voltage. On the other hand, the decrease in the output voltage of the improved device of the present invention was negligibly small. From this result, it became clear that the drift due to the second time constant can be improved by using the copper block as a heat bath.
実施例では銅等の金属ブロックを例示したが、本発明は金属ブロックに限らず、熱伝導率が高く、熱容量の大きな物質からなる膜であってもよい。
材質は熱伝導率の高い銅が好ましいが、他の金属、例えばアルミ、金、銀、真鍮等の合金又は窒化アルミ等の高熱伝導性のセラミックス、あるいは樹脂に金属やセラミックスなどのフィラ―が添加された熱伝導性樹脂のような複合材料でも効果が認められる。
さらに、熱伝導率が高く、熱容量の大きな物質として、ガラスバルブの表面に銅等の金属や窒化アルミ等の高熱伝導性のセラミックスを、真空蒸着法、スパッタ法、PLD法、CVD法、PVD法、ゾルゲル法、DIPコーティング法等で形成させた膜、あるいは銅等の金属からなるフォイルであってもよい。また、熱伝導性樹脂の場合には、その機械的性質により形状を問わず本発明の効果を得ることができる。
In the embodiment, a metal block such as copper is exemplified, but the present invention is not limited to a metal block, and may be a film made of a material having a high thermal conductivity and a large heat capacity.
The material is preferably copper with high thermal conductivity, but other metals, such as alloys such as aluminum, gold, silver and brass, ceramics with high thermal conductivity such as aluminum nitride, or fillers such as metals and ceramics are added to the resin. The effect is recognized even in a composite material such as a thermally conductive resin.
In addition, as a material with high thermal conductivity and high heat capacity, high thermal conductivity ceramics such as copper and metals such as aluminum nitride are used on the surface of glass bulbs, vacuum deposition, sputtering, PLD, CVD, PVD. Alternatively, a film formed by a sol-gel method or a DIP coating method, or a foil made of a metal such as copper may be used. Moreover, in the case of a heat conductive resin, the effect of this invention can be acquired regardless of a shape by the mechanical property.
また、本発明は、図2に示した電球型の単一熱電対型交直変換素子に限らず、薄膜型交直変換素子であっても、本発明の構造を採ることにより同様の効果が得られる。
すなわち温度検出に熱電対を用いる交直変換素子であれば、例えば基準接点に十分大きな熱容量と熱伝導率を持つ金属膜のような物質を設けることで、ドリフトの改善が可能である。
Further, the present invention is not limited to the light bulb type single thermocouple type AC / DC converter shown in FIG. 2, and the same effect can be obtained by adopting the structure of the present invention even if it is a thin film type AC / DC converter. .
That is, in the case of an AC / DC conversion element using a thermocouple for temperature detection, drift can be improved by providing a material such as a metal film having a sufficiently large heat capacity and thermal conductivity at the reference contact, for example.
Claims (13)
8. The AC / DC conversion element according to claim 7, wherein a heat conductive resin is provided around a glass bulb of the bulb-type single thermocouple AC / DC conversion element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010164408A JP2012026811A (en) | 2010-07-22 | 2010-07-22 | Ac-to-dc conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010164408A JP2012026811A (en) | 2010-07-22 | 2010-07-22 | Ac-to-dc conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012026811A true JP2012026811A (en) | 2012-02-09 |
Family
ID=45779928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010164408A Pending JP2012026811A (en) | 2010-07-22 | 2010-07-22 | Ac-to-dc conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012026811A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63231271A (en) * | 1987-03-19 | 1988-09-27 | Agency Of Ind Science & Technol | Multiple thermocouple type electrothermic alternating and direct current commutator |
JPH04335164A (en) * | 1991-05-10 | 1992-11-24 | Agency Of Ind Science & Technol | Method for measuring difference of ac-to-dc in ac-to-dc converter of multiple thermo-couple thermoelectric type |
JPH05113455A (en) * | 1991-10-22 | 1993-05-07 | Agency Of Ind Science & Technol | Apparatus and method for comparing and measuring difference between ac and dc |
JPH05333061A (en) * | 1992-05-29 | 1993-12-17 | Agency Of Ind Science & Technol | Highly sensitive ac-dc converter |
-
2010
- 2010-07-22 JP JP2010164408A patent/JP2012026811A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63231271A (en) * | 1987-03-19 | 1988-09-27 | Agency Of Ind Science & Technol | Multiple thermocouple type electrothermic alternating and direct current commutator |
JPH04335164A (en) * | 1991-05-10 | 1992-11-24 | Agency Of Ind Science & Technol | Method for measuring difference of ac-to-dc in ac-to-dc converter of multiple thermo-couple thermoelectric type |
JPH05113455A (en) * | 1991-10-22 | 1993-05-07 | Agency Of Ind Science & Technol | Apparatus and method for comparing and measuring difference between ac and dc |
JPH05333061A (en) * | 1992-05-29 | 1993-12-17 | Agency Of Ind Science & Technol | Highly sensitive ac-dc converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zabek et al. | Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation | |
Yin et al. | Thermal design and analysis of multi-chip LED module with ceramic substrate | |
Pereira da Silva et al. | Temperature distributions during flash sintering of 8% yttria‐stabilized zirconia | |
JP6945642B2 (en) | Heater and heater system | |
US20160112050A1 (en) | Thermal oscillator | |
FR3085202A1 (en) | Temperature probe of a thermal control system for use in energy distribution systems | |
KR101636764B1 (en) | Electrostatic chuck and apparatus for processing a substrate including the same | |
JP2013229496A (en) | Inspection device | |
CN104655306A (en) | Micro temperature sensor chip provided with tungsten-rhenium film thermocouple and manufacturing method of chip | |
TWI392882B (en) | Apparatus and method for measuring diode chip | |
Oriani et al. | Heats of formation of liquid alloys at 1100 by a simple reaction calorimeter | |
US6924468B2 (en) | System and method for heating materials | |
US3337309A (en) | Thermoelectric unit comprising intimate layers of gallium-indium alloy and alumina | |
JP2012026811A (en) | Ac-to-dc conversion element | |
KR20220050888A (en) | current feedthrough | |
KR101337225B1 (en) | Apparatus and method for assessing heat dissipation performance by using peltier thermoelectric device | |
JP2019102795A (en) | Paste for forming resistive layer of chip resistor and chip resistor | |
CN107037076B (en) | Measuring chip and method for determining the thermal conductivity of a thin layer | |
JP2017157395A (en) | Thermal-radiation light source | |
JP2011214927A (en) | Infrared temperature sensor | |
RU131238U1 (en) | COOLING MULTI-LAYER STRUCTURE | |
CN112098797B (en) | SiC power module thermal resistance measurement method | |
US1364080A (en) | Ballasting device | |
Shanmugan et al. | Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink | |
Andreev et al. | Investigation of the efficiency of the heat dissipation for the heat-conducting circuit boards made of aluminum with the nanoporous alumina layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131217 |