JP2012026803A - Method for measuring cation exchange capacity in soil and soil analyzer - Google Patents

Method for measuring cation exchange capacity in soil and soil analyzer Download PDF

Info

Publication number
JP2012026803A
JP2012026803A JP2010164258A JP2010164258A JP2012026803A JP 2012026803 A JP2012026803 A JP 2012026803A JP 2010164258 A JP2010164258 A JP 2010164258A JP 2010164258 A JP2010164258 A JP 2010164258A JP 2012026803 A JP2012026803 A JP 2012026803A
Authority
JP
Japan
Prior art keywords
soil
cation exchange
exchange capacity
absorbance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010164258A
Other languages
Japanese (ja)
Other versions
JP5734593B2 (en
Inventor
So Tajima
創 田島
Norihisa Kimura
紀久 木村
Ryoichi Yamamoto
亮一 山本
Akira Igarashi
昭 五十嵐
Akira Mugishima
昌 麦島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2010164258A priority Critical patent/JP5734593B2/en
Publication of JP2012026803A publication Critical patent/JP2012026803A/en
Application granted granted Critical
Publication of JP5734593B2 publication Critical patent/JP5734593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring cation exchange capacity in the soil capable of easily, and promptly determining cation exchange capacity in the soil and a soil analyzer suitable for measurement of cation exchange capacity in the soil.SOLUTION: The present invention provides the method for measuring the cation exchange capacity in the soil for measuring an index value corresponding to content of humus materials in the soil to convert a measured value of the index value into the cation exchange capacity, and the soil analyzer 1 which includes: data input means 3a-3d for inputting data regarding the soil to be measured; absorbance measurement means 4, 5, 6, 6a for measuring absorbance of an extract 7 containing the humus materials; storage means for showing correlation between the absorbance of a solution containing the humus materials and the content of the humus materials or the cation exchange capacity and storing a relational expression to be selected on the basis of pH of the soil to be measured; selection means for selecting a relational expression to be used on the basis of the pH of the soil to be measured; operation means for calculating the cation exchange capacity based on a measured value of the absorbance and a weighed value of the soil; and display means 2 for displaying the calculated value of the cation exchange capacity.

Description

本発明は、土壌中の陽イオン交換容量(Cation exchange capacity;以下、「CEC」と称することもある)の測定方法及び該測定方法を利用した土壌分析器に関し、より詳細には土壌中の陽イオン交換容量を従来の方法に比べて、簡単、且つ迅速に判定することが可能で、土壌の採取現場においてその土壌中の陽イオン交換容量を求めることも可能な土壌中の陽イオン交換容量の測定方法及び該測定方法を利用し、土壌の採取現場でその土壌中の陽イオン交換容量を測定するのに好適に使用することができる土壌分析器に関する。   The present invention relates to a method for measuring cation exchange capacity (hereinafter also referred to as “CEC”) in soil, and a soil analyzer using the method, and more particularly to a cation exchange capacity in soil. Compared to conventional methods, the ion exchange capacity can be determined easily and quickly, and the cation exchange capacity in the soil can be determined at the soil collection site. The present invention relates to a measurement method and a soil analyzer that can be suitably used for measuring the cation exchange capacity in soil at the site of soil collection using the measurement method.

土壌中の陽イオン交換容量は、ミネラルとして利用される土壌中の陽イオンの保持能力を示すものであり、肥料成分として土壌に添加される陽イオン成分が土壌に吸着する容量を意味する。近年、過剰施肥による農業収益率の低下を防止するために、肥料使用量の決定に際して、肥料を添加する土壌中の陽イオン交換容量を測定することが行われており、CEC測定法としては、例えば、図3の分析フローチャートに示すようにショーレンベルガー法により抽出し、インドフェノール法により分析する方法などが知られている。   The cation exchange capacity in the soil indicates the ability to retain cations in the soil used as minerals, and means the capacity that the cation component added to the soil as a fertilizer component adsorbs to the soil. In recent years, in order to prevent a decrease in agricultural profitability due to excessive fertilization, when determining the amount of fertilizer used, measuring the cation exchange capacity in the soil to which the fertilizer is added has been performed. As a CEC measurement method, For example, as shown in the analysis flowchart of FIG. 3, a method of extracting by the Schöllenberger method and analyzing by the indophenol method is known.

しかしながら、例えば、ショーレンベルガー法は、分析工程が複雑で、時間や使用する試薬の種類、使用量などが多く必要とされるため、より経済的で、簡便で簡単な土壌中の陽イオン交換容量(CEC)測定方法の開発が望まれている。このようなCEC測定方法として、例えば、特許文献1には、銅の吸着と分光光度計を利用した土壌陽イオン交換容量の速成測定方法が提案されているが、より簡便で、且つ銅イオンなどを含む物質を使用しないより安全性に優れた測定方法の開発が要望されていた。また、上述したように、ショーレンベルガー法は、分析工程が複雑で、使用する試薬の種類も多く、そのための設備や専門的技術が必要なことから、通常、野菜生産者などは、土壌中の陽イオン交換容量の測定を分析センターなどの専門機関に依頼しており、依頼するための手間、結果を得るまでの日時、経費も必要となっていた。そこで、専門機関に依頼しなくても野菜生産者などが各自で土壌中の陽イオン交換容量を求めることができ、肥料使用量の決定などの判定材料として利用することができる簡易で、且つ専門家ではなくても取扱が容易な試薬などを使用することによって実施可能な土壌中の陽イオン交換容量の測定方法の開発が要望されていた。   However, the Schöllenberger method, for example, has a complicated analysis process and requires a lot of time, the type of reagent used, the amount used, etc., so it is more economical, simple and simple cation exchange in soil. Development of a capacity (CEC) measurement method is desired. As such a CEC measurement method, for example, Patent Document 1 proposes a rapid measurement method of soil cation exchange capacity using copper adsorption and a spectrophotometer. There has been a demand for the development of a measurement method that is safer than the use of a substance that contains. In addition, as described above, the Schöllenberger method has a complicated analysis process and many types of reagents to be used, and equipment and specialized techniques are required for that purpose. The measurement of the cation exchange capacity was requested from a specialized organization such as an analysis center, and it took time and money to obtain the results, as well as expenses. Therefore, vegetable producers can calculate the cation exchange capacity in the soil by themselves without requesting a specialized institution, and it is simple and specialized that can be used as a judgment material for determining the amount of fertilizer used. There has been a demand for the development of a method for measuring the cation exchange capacity in soil that can be carried out by using reagents that are easy to handle even if not at home.

特許第3343240号公報Japanese Patent No. 3343240

本発明は、上記事情に鑑みなされたもので、ミネラルとして利用される陽イオンの保持能力の指標であるCECを測定できる分析技術を確立し、更に、これを実装した簡易分析装置を創出することにより、土壌中の陽イオン交換容量を簡単、且つ迅速に判定することができ、例えば、野菜生産現場などの土壌の採取現場においてその土壌中の陽イオン交換容量を求め、その結果に基づいて土壌成分を把握し、例えば、測定土壌への肥料の追加、肥料使用量の決定などの判断材料として利用することも可能な土壌中の陽イオン交換容量の測定方法及び該測定方法を利用し、土壌の採取現場でその土壌中の陽イオン交換容量を測定するのに好適に使用することができる土壌分析器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and establishes an analysis technique capable of measuring CEC, which is an index of the retention ability of cations used as minerals, and further creates a simple analysis apparatus equipped with the analysis technique. Thus, the cation exchange capacity in the soil can be determined easily and quickly. For example, the cation exchange capacity in the soil is obtained at the soil collection site such as the vegetable production site, and the soil is obtained based on the result. Grasping the components, for example, adding a fertilizer to the measured soil, measuring the cation exchange capacity in the soil that can also be used as a judgment material for determining the amount of fertilizer used, etc. An object of the present invention is to provide a soil analyzer that can be suitably used to measure the cation exchange capacity in the soil at the sampling site.

本発明者らは、上記目的を達成するため、鋭意検討した結果、土壌中に存在する有機化合物である腐植物質の化学構造に着目し、腐植物質は電荷の偏りをもち、腐植物質の周囲の酸・アルカリ濃度などの環境によっては、プロトン(H)を放出し、−(マイナス)の電荷を帯びる水酸基を多く持つことから、陽イオンと相互作用することが考えられ、腐植物質量とCECの値の相関が得られれば、従来法による複雑なCEC測定法を利用せず、腐植量を測定することにより、CEC値を推定することが可能となることを見出し、本発明をなすに至った。即ち、腐植は、土壌中に存在する有機化合物であり、そのモデル化合物としては、下記化学式で示される。 As a result of intensive investigations to achieve the above object, the present inventors focused on the chemical structure of humic substances, which are organic compounds present in soil, and the humic substances have a bias in charge, and the surroundings of the humic substances Depending on the environment such as acid / alkali concentration, it releases protons (H + ) and has many negatively charged hydroxyl groups, which may interact with cations. If the correlation between the values is obtained, it is found that the CEC value can be estimated by measuring the amount of humus without using the complicated CEC measurement method by the conventional method, and the present invention has been made. It was. That is, humus is an organic compound present in soil, and the model compound is represented by the following chemical formula.

Figure 2012026803
Figure 2012026803

腐植物質は、その化学構造から、土壌の化学的・物理的性質に影響を与える重要な物質であり、例えば、水の保持、pHの緩衝作用、無機養分の保持能力などの能力を持っていることが考えられ、また、野菜生産に適している団粒構造を持つ土壌に腐植物質が影響を与えていること、更に土壌への窒素供給源となることから、この物質が土壌の中にどの程度存在するかを知ることは、野菜生産者にとっても重要であり、その測定方法としては、例えば、熊田法などのように、従来のCEC測定方法に比べて工程が複雑ではなく、迅速で、且つ必要な試薬の種類、使用量、また、分析に用いられる器具が少ない測定方法が知られている。そこで、上述したように、本発明者らは、土壌中の腐植物質の含有量とCECの値の相関が得られれば従来法による複雑なCEC測定方法を利用せず、迅速で、且つ必要な試薬の種類、使用量、分析機器を低減し、且つ取扱い難い試薬を用いなくても実施することが可能な土壌中の腐植物質量の測定方法を利用して土壌中の腐植物質量の指標となる指標値を測定することにより、CEC値に換算することが可能となることを見出し、本発明をなすに至った。   Humic substances are important substances that affect the chemical and physical properties of the soil due to their chemical structure. For example, they have the ability to retain water, buffer pH, and retain mineral nutrients. It is also possible that humic substances have an impact on soils with aggregate structures suitable for vegetable production, and that this material is a source of nitrogen for the soil. It is important for vegetable producers to know whether it exists to a certain extent, and as a measurement method, for example, the process is not complicated compared to conventional CEC measurement methods, such as the Kumada method, etc. In addition, measurement methods are known in which the types and amounts of reagents required and the number of instruments used for analysis are small. Therefore, as described above, the present inventors do not use a complicated CEC measurement method according to the conventional method, and can quickly and necessaryly obtain a correlation between the content of humic substances in soil and the value of CEC. An indicator of humic mass in soil using a method for measuring humic mass in soil that can be carried out without using reagents that are difficult to handle, reducing the number of reagents, amount used, and analytical equipment It was found that the index value can be converted into a CEC value by measuring the index value, and the present invention has been made.

即ち、本発明は、(1)土壌中の陽イオン交換容量の測定方法であって、土壌中の腐植物質の含有量に対応する指標値を測定し、その測定値を陽イオン交換容量に換算することを特徴とする土壌中の陽イオン交換容量の測定方法及び(2)土壌中の陽イオン交換容量の測定に使用する土壌分析器であって、測定する土壌の秤量値、pHをデータとして入力するデータ入力手段と、腐植物質を含有するアルカリ性抽出液の腐植物質の吸収波長における吸光度を測定する吸光度測定手段と、測定する土壌のpHが7.0以下の場合に利用する上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式と、測定する土壌がアルカリ性である場合に利用する上記腐植物質の吸収波長における上記吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式とを記憶する記憶手段と、上記データ入力手段に入力された測定する土壌のpHにより利用する関係式を上記記憶手段に記憶された上記関係式の中から選定する選定手段と、上記吸光度測定手段によって測定された吸光度のデータを必要に応じて上記データ入力手段に入力された上記土壌の秤量値により所定重量当たりの吸光度に換算して上記選定手段により選定された関係式に代入して陽イオン交換容量を求める演算手段と、該演算手段により得られた陽イオン交換容量の値を表示する表示手段と、を備えたことを特徴とする土壌分析器を提供する。   That is, the present invention is (1) a method for measuring a cation exchange capacity in soil, wherein an index value corresponding to the content of humic substances in the soil is measured, and the measured value is converted into a cation exchange capacity. A method for measuring the cation exchange capacity in soil, and (2) a soil analyzer used for measuring the cation exchange capacity in soil, wherein the measured soil weight and pH are used as data A data input means for inputting, an absorbance measuring means for measuring the absorbance at the absorption wavelength of the humic substance of the alkaline extract containing the humic substance, and the humic substance used when the pH of the soil to be measured is 7.0 or less. Relational expression showing the correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength and the cation exchange capacity and / or the absorbance at the absorption wavelength of the humic substance and the humic plant In the absorption wavelength of the humic substance used when the soil to be measured is alkaline, and the relational expression showing the correlation between the humic substance content and the cation exchange capacity Relational expression showing correlation between absorbance and cation exchange capacity and / or relational expression showing correlation between absorbance and humic substance content at absorption wavelength of humic substance, humic substance content and cation A storage unit that stores a relational expression indicating a correlation with the exchange capacity, and a relational expression that is used according to the pH of the soil that is input to the data input unit is selected from the relational expressions that are stored in the storage unit. The selection means to select, and the absorbance data measured by the absorbance measurement means, if necessary, absorb the weight per predetermined weight based on the soil weighing value input to the data input means. Calculating means for calculating the cation exchange capacity by converting into degrees and substituting into the relational expression selected by the selecting means, and display means for displaying the value of the cation exchange capacity obtained by the calculating means. A soil analyzer characterized by the above is provided.

本発明の土壌中の陽イオン交換容量の測定方法によれば、土壌中の陽イオン交換容量を従来の測定方法に比べて、簡単、且つ迅速に判定することが可能となり、例えば、野菜生産現場などにおける肥料の使用量の決定に際し、土壌中の陽イオン交換容量の測定を分析センターなどに依頼しなくても、野菜生産者などが各自でその野菜生産現場などの土壌採取現場において野菜生産現場などの土壌中の陽イオン交換容量を求め、その場で肥料の使用量などを決定することも可能となる。更に、本発明の土壌分析器によれば、測定する土壌の採取現場でその土壌中の陽イオン交換容量を簡単、且つ迅速に求めることが容易となる。   According to the method for measuring cation exchange capacity in soil of the present invention, it becomes possible to determine cation exchange capacity in soil more easily and quickly than conventional measurement methods. When deciding the amount of fertilizer to be used, etc., the vegetable producers themselves do not have to ask the analysis center to measure the cation exchange capacity in the soil at the vegetable production site, such as the vegetable production site. It is also possible to determine the cation exchange capacity in the soil and determine the amount of fertilizer used on the spot. Furthermore, according to the soil analyzer of this invention, it becomes easy to obtain | require the cation exchange capacity in the soil simply and quickly at the sampling site of the soil to measure.

本発明の土壌分析器を説明する土壌分析器の一部断面概略平面図である。It is a partial cross section schematic plan view of the soil analyzer explaining the soil analyzer of this invention. 上記土壌分析器の一部断面概略側面図である。It is a partial cross section schematic side view of the said soil analyzer. 従来の土壌中のCEC測定方法であるショーレンベルガー法を示す分析フローチャートである。It is an analysis flowchart which shows the Scholeenberger method which is the conventional CEC measuring method in soil. 本発明の実施例において実施した土壌中の腐植物質の含有量及びCEC測定方法を示す分析フローチャートである。It is an analysis flowchart which shows content of the humic substance in the soil implemented in the Example of this invention, and a CEC measuring method. 本発明の実施例で測定した全土壌サンプルの腐植物質の含有量とショーレンベルガー法により抽出した陽イオン交換容量との関係を示すグラフである。It is a graph which shows the relationship between humic substance content of the whole soil sample measured in the Example of this invention, and the cation exchange capacity | capacitance extracted by the Scholeenberger method. 本発明の実施例で測定した酸性及び中性土壌サンプル中の腐植物質の含有量とショーレンベルガー法により抽出した陽イオン交換容量との関係を示すグラフである。It is a graph which shows the relationship between the content of the humic substance in the acidic and neutral soil sample measured in the Example of this invention, and the cation exchange capacity extracted by the Scholeenberger method. 本発明の実施例で測定したpH7.0以下の土壌サンプルのアルカリ性抽出液の吸光度と腐植物質の含有量との関係を示すグラフである。It is a graph which shows the relationship between the light absorbency of the alkaline extract of the soil sample of pH 7.0 or less measured in the Example of this invention, and humic substance content. 本発明の実施例で測定した全土壌サンプルのアルカリ性抽出液の吸光度とショーレンベルガー法により抽出した陽イオン交換容量との関係を示すグラフである。It is a graph which shows the relationship between the light absorbency of the alkaline extract of the whole soil sample measured in the Example of this invention, and the cation exchange capacity extracted by the Schollenberger method. 本発明の実施例で測定した酸性及び中性土壌サンプルのアルカリ性抽出液の吸光度とショーレンベルガー法により抽出した陽イオン交換容量との関係を示すグラフである。It is a graph which shows the relationship between the light absorbency of the alkaline extract of the acidic and neutral soil sample measured in the Example of this invention, and the cation exchange capacity extracted by the Scholeenberger method.

以下、本発明の土壌中の陽イオン交換容量の測定方法をより詳細に説明する。本発明の測定方法は、土壌中の腐植物質の含有量に対応する指標値を測定し、その測定値を陽イオン交換容量に換算することによって、土壌中の陽イオン交換容量を測定するものである。ここで、土壌中の腐植物質の含有量に対応する指標値としては、適宜溶液を利用して土壌中の腐植物質を抽出して抽出液を得た場合であれば、例えば、その抽出液の所定波長における吸光度、抽出液を発色させて予め準備しておいた比色表などを利用した目視観察による簡易定量値又は発色させた抽出液の所定波長における吸光度、抽出液のガスクロマトグラフィ、液体クロマトグラフィによる定量分析値、その抽出液の所定波長での励起により得られる蛍光スペクトルもしくは蛍光強度などを挙げることができ、1つの分析法ではなく、複数を組み合わせることも可能である。また、後述する実施例に挙げるように、腐植物質の含有量を測定するために使用されている土壌分析器を利用して抽出液の腐植物質の含有量を測定値として得、この測定値を指標値とすることもできる。   Hereinafter, the method for measuring the cation exchange capacity in soil of the present invention will be described in more detail. The measurement method of the present invention measures an index value corresponding to the content of humic substances in the soil, and measures the cation exchange capacity in the soil by converting the measured value into a cation exchange capacity. is there. Here, as an index value corresponding to the content of humic substances in the soil, if the extract is obtained by extracting the humic substances in the soil as appropriate using a solution, for example, Absorbance at a predetermined wavelength, simple quantitative value by visual observation using a colorimetric table prepared in advance by coloring the extract, or absorbance at a predetermined wavelength of the colored extract, gas chromatography of the extract, liquid chromatography And the fluorescence spectrum or fluorescence intensity obtained by excitation of the extract at a predetermined wavelength. It is possible to combine a plurality of analysis methods instead of one analysis method. In addition, as mentioned in the examples described later, the humic substance content of the extract is obtained as a measured value by using a soil analyzer used for measuring the humic substance content, and this measured value is obtained. It can also be an index value.

本発明の土壌中の陽イオン交換容量の測定方法としては、土壌中の腐植物質を抽出して抽出液を得、その抽出液の所定波長における吸光度を腐植物質の含有量に対応する指標値として測定する方法がより好適である。より具体的には、測定試料となる土壌(以下、「測定する土壌」、「測定に供する土壌」、「測定土壌」と称することもある)を秤量し、これにアルカリ性水溶液を添加して、アルカリ性水溶液中に腐植物質を含む抽出成分を抽出してアルカリ性抽出液を得た後、腐植物質の吸収波長におけるアルカリ性抽出液の吸光度を測定し、その測定値を陽イオン交換容量に換算する土壌中の陽イオン交換容量の測定方法が好適である。ここで、抽出方法としては、例えば、測定試料となる土壌を秤量し、適宜容器に入れ、これにアルカリ性水溶液を添加した後、適宜器材により手動で撹拌したり、攪拌機を利用して攪拌したり、容器に蓋をして振とう機又は手動で振とうすることによって、アルカリ性水溶液中に腐植物質を含む抽出成分を抽出してもよいが、抽出効率の精度、再現性などを考慮すると、攪拌機、振とう機などの機器を利用して1〜5分間程度、特に2〜4分間程度攪拌又は振とうすることが望ましい。また、アルカリ性抽出液は、ろ過をした後、ろ液を必要に応じて適宜濃度に希釈して、吸光度を測定すると好適である。より具体的には、後述する実施例において実施した抽出方法(図4の分析フローチャート参照)がより好適である。   As a method for measuring the cation exchange capacity in the soil of the present invention, humic substances in the soil are extracted to obtain an extract, and the absorbance at a predetermined wavelength of the extract is used as an index value corresponding to the content of humic substances. A measuring method is more preferable. More specifically, the soil to be a measurement sample (hereinafter, also referred to as “soil to be measured”, “soil to be used for measurement”, “measurement soil”) is weighed, and an alkaline aqueous solution is added thereto, After extracting the extract component containing humic substance in alkaline aqueous solution to obtain an alkaline extract, the absorbance of the alkaline extract at the absorption wavelength of humic substance is measured, and the measured value is converted into cation exchange capacity in soil The method for measuring the cation exchange capacity is preferred. Here, as the extraction method, for example, the soil to be a measurement sample is weighed, put into a container as appropriate, and after adding an alkaline aqueous solution thereto, it is manually stirred with equipment or stirred using a stirrer. An extraction component containing humic substances may be extracted in an alkaline aqueous solution by shaking the container with a lid or manually shaking, but considering the accuracy and reproducibility of the extraction efficiency, a stirrer It is desirable to stir or shake for about 1 to 5 minutes, particularly about 2 to 4 minutes using an apparatus such as a shaker. In addition, it is preferable that the alkaline extract is filtered, and then the filtrate is diluted to an appropriate concentration as necessary and the absorbance is measured. More specifically, the extraction method (see the analysis flowchart of FIG. 4) implemented in the examples described later is more preferable.

また、上記アルカリ性水溶液としては、その種類が特に制限されるものではないが、アルカリ性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウムなどが挙げられ、上記アルカリ性水溶液がこれらのアルカリ性化合物を1種単独で又は2種以上を適宜組み合わせて含有する水溶液であるとより好適である。なお、アルカリ性水溶液におけるアルカリ性化合物の濃度は、特に制限されるものではなく、水溶液を所望のpHに調整できるように適宜選定することができる。そして、上記アルカリ性水溶液のpHは、7.0を超え、且つ14.0未満であるが、抽出効率、再現性などを考慮すれば、好ましくは8.0を超え、且つ13.9未満、より好ましくは8.0を超え、且つ13.5未満、更に好ましくは8.5を超え、且つ13.2未満であり、エタノールなどのアルコール類を添加してもよい。本発明におけるアルカリ性水溶液は、更に具体的には、腐植物質の測定方法である熊田法の抽出液として使用される0.1M水酸化ナトリウム/ピロリン酸ナトリウム混液、適宜濃度に調製した水酸化ナトリウムなどの上記アルカリ性化合物によって、精製水をpH調整した水溶液などが挙げられる。   Further, the type of the alkaline aqueous solution is not particularly limited, but examples of the alkaline compound include sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, and the like. It is more preferable that the aqueous solution contains an alkaline compound alone or in combination of two or more. In addition, the density | concentration of the alkaline compound in alkaline aqueous solution is not restrict | limited in particular, It can select suitably so that aqueous solution can be adjusted to desired pH. The pH of the alkaline aqueous solution is more than 7.0 and less than 14.0. However, in consideration of extraction efficiency, reproducibility, etc., preferably more than 8.0 and less than 13.9. Preferably it is more than 8.0 and less than 13.5, more preferably more than 8.5 and less than 13.2, and alcohols such as ethanol may be added. More specifically, the alkaline aqueous solution in the present invention includes a 0.1 M sodium hydroxide / sodium pyrophosphate mixed solution used as an extract of the Kumada method, which is a method for measuring humic substances, sodium hydroxide prepared to an appropriate concentration, etc. An aqueous solution obtained by adjusting the pH of purified water with the above alkaline compound.

そして、アルカリ性抽出液の測定波長は、腐植物質の吸収波長であれば、適宜波長を選択して吸光度測定をすることができるが、測定精度、再現性などを考慮すれば、中でも400〜650nmから選ばれる少なくとも一つの波長において測定すると好適であり、より好ましくは500〜550nmから選ばれる少なくとも一つの波長である。なお、測定に供する土壌は、特に制限されるものではないが、再現性、測定精度などを考慮すると、測定に供する土壌としては中性〜酸性土壌がより好適である。また、測定に供する土壌の量、抽出工程に使用するアルカリ性水溶液の量、吸光度測定時における希釈倍率などは、特に制限されるものではなく、例えば、後述する実施例に準じて適宜選定することができる。   And if the measurement wavelength of an alkaline extract is the absorption wavelength of humic substances, it can select a wavelength suitably and can measure an absorbance, but if measurement accuracy, reproducibility, etc. are considered, especially from 400-650 nm It is preferable to measure at at least one selected wavelength, and more preferably at least one wavelength selected from 500 to 550 nm. In addition, the soil used for the measurement is not particularly limited, but considering reproducibility, measurement accuracy, and the like, neutral to acidic soil is more preferable as the soil used for the measurement. Further, the amount of soil used for the measurement, the amount of the alkaline aqueous solution used in the extraction process, the dilution rate at the time of absorbance measurement, etc. are not particularly limited, and may be appropriately selected according to, for example, the examples described later. it can.

吸光度の測定値を陽イオン交換容量に換算する方法として、より具体的には、腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と土壌中の陽イオン交換容量との相関関係を示す標準曲線又は関係式を求め、標準曲線又は関係式により上記吸光度の測定値を土壌中の陽イオン交換容量に換算する方法などが挙げられる。更に具体的には、予め定めておいた測定波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と陽イオン交換容量との関係を予め求めておき、これらの関係を示す標準曲線として検量線を作成しておき、吸光度の測定値を測定に供した測定土壌の秤量値から必要に応じて土壌の所定重量当たりの吸光度に換算した値を検量線に当てはめることによって、吸光度の測定値を陽イオン交換容量に換算するか、検量線から吸光度と陽イオン交換容量との関係を示す関係式を求めておき、その関係式の吸光度として吸光度の測定値を測定に供した測定土壌の秤量値から必要に応じて土壌の所定重量当たりの吸光度に換算した値を代入することによって、吸光度の測定値を陽イオン交換容量に換算する方法などが挙げられる。   More specifically, as a method of converting the measured absorbance value into the cation exchange capacity, the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance and the cation exchange capacity in the soil. A method of obtaining a standard curve or a relational expression showing a correlation and converting the measured value of the absorbance to a cation exchange capacity in soil by the standard curve or the relational expression is exemplified. More specifically, a relationship between the absorbance of the alkaline extract from the soil per predetermined weight at a predetermined measurement wavelength and the cation exchange capacity is obtained in advance, and a calibration curve is used as a standard curve indicating these relationships. The measured absorbance value is positively converted by applying a value obtained by converting the measured absorbance value of the measured soil to the absorbance per predetermined weight of the soil, if necessary, to the calibration curve. Convert to ion exchange capacity or obtain a relational expression showing the relationship between absorbance and cation exchange capacity from a calibration curve, and use the measured soil measurement value as the absorbance of the relational expression. A method of converting the measured value of the absorbance to the cation exchange capacity by substituting the value converted into the absorbance per a predetermined weight of the soil as necessary may be mentioned.

より更に具体的には、少なくとも3点、好ましくは少なくとも4点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点、好ましくは少なくとも2点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、腐植物質の一の吸収波長を測定波長として所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける吸光度の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する上記測定波長における上記吸光度と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(吸光度)+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける吸光度の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する上記測定波長における上記吸光度と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(吸光度)+BにおけるA及びBの値を求める方法を挙げることができる。なお、pHが7.0以下の土壌サンプル、アルカリ性土壌サンプルのサンプル数の上限は特に制限されるものではないが、測定効率などを考慮すれば、pHが7.0以下の土壌サンプルのサンプル数の上限としては20点程度、アルカリ性土壌サンプルのサンプル数の上限としては10点程度が好適である。また、pHが7.0以下の土壌サンプルのサンプル数とアルカリ性土壌サンプルのサンプル数の比率も特に制限されるものではないが、pHが7.0以下の土壌サンプルのサンプル数がアルカリ性土壌サンプルのサンプル数の1.5〜3倍程度とすると、より好適である。pHが7.0以下の土壌サンプル、アルカリ性土壌サンプルのサンプル数の好適な上限、サンプル数の好適な比率については、以下に説明する他の換算方法におけるサンプル数についても同様である。ここで、本発明において、「土壌サンプル」とは、陽イオン交換容量、腐植物質の含有量が知られ、上記アルカリ性抽出液の所定波長における上記吸光度、腐植物質の含有量、陽イオン交換容量の相関関係を示す検量線、関係式を求めるための分析値、測定値の標準とする標準試料として使用する土壌の意味であり、「全土壌サンプル」は、pHが7.0以下の土壌サンプルとアルカリ性土壌サンプルを合わせたものである。そして、腐植物質の含有量が既知のpHが7.0以下の土壌サンプル、アルカリ性土壌サンプルのサンプル数は、換言すれば上記のような関係式、後述するような関係式を導き出すのに十分に多い母集団となるような数である。また、測定に供する物質が土壌である場合、測定値のバラツキが大きいことから、後述する実施例で得られる式のように、上記各式を例えば(陽イオン交換容量(me/100g土壌))=(A±a)×(吸光度)+(B±b)、(陽イオン交換容量(me/100g土壌))=(A±a)×(吸光度)+(B±b)とし、同様にしてA,A、B,B、a,a、b,bの値を求めても好適である。なお、これらの式としてより具体的には、例えば後述する実施例により得られた式を挙げることができる。 Even more specifically, a soil sample with a known pH value of 7.0 or less and at least 1, preferably at least 2 cation exchange capacities at least 3 points, preferably at least 4 points. For an alkaline soil sample with a known value, the absorbance of the alkaline extract from the soil per predetermined weight was measured using one absorption wavelength of the humic substance as the measurement wavelength, and the absorbance in the soil sample having a pH of 7.0 or less From the measured value and the value of the cation exchange capacity corresponding to each measured value, for example, by the appropriate method such as the least square method, at the above measurement wavelength used when the pH of the soil to be measured is 7.0 or less it is a relational expression between the absorbance and cation exchange capacity (cation exchange capacity (me / 100 g soil)) = Contact to a 7 × (absorbance) + B 7 Together determine the value of A 7 and B 7 that, from the value of the cation exchange capacity corresponding to the respective measurement values and the measured values of absorbance at all soil samples, for example by a suitable method such as a least squares method, to measure soil is a relational expression between the absorbance and the cation exchange capacity in the measurement wavelength utilized in the case of alkaline (cation exchange capacity (me / 100 g soil)) = a in a 8 × (absorbance) + B 8 8 and methods for determining the value of B 8 can be mentioned. In addition, although the upper limit of the number of samples of soil samples having a pH of 7.0 or less and alkaline soil samples is not particularly limited, the number of samples of soil samples having a pH of 7.0 or less is considered in consideration of measurement efficiency and the like. The upper limit of about 20 points is preferable, and the upper limit of the number of alkaline soil samples is preferably about 10 points. Further, the ratio of the number of soil samples having a pH of 7.0 or less and the number of samples of the alkaline soil sample is not particularly limited, but the number of samples of the soil sample having a pH of 7.0 or less is less than that of the alkaline soil sample. It is more preferable to set the number of samples to about 1.5 to 3 times. About the suitable upper limit of the sample number of the soil sample whose pH is 7.0 or less and an alkaline soil sample, and the suitable ratio of the sample number, it is the same also about the sample number in the other conversion method demonstrated below. Here, in the present invention, the term “soil sample” refers to the cation exchange capacity, the content of humic substances, and the absorbance, the content of humic substances, the cation exchange capacity of the alkaline extract at a predetermined wavelength. The calibration curve indicating the correlation, the analytical value for obtaining the relational expression, and the meaning of the soil used as the standard sample for the measurement value. “Total soil sample” refers to the soil sample having a pH of 7.0 or less. Combined with alkaline soil sample. And the number of samples of soil samples with a known humic substance content and a pH of 7.0 or less, or alkaline soil samples, in other words, sufficient to derive the relational expression as described above, as will be described later. It is a number that makes a large population. Further, when the substance to be used for the measurement is soil, since the variation in the measured value is large, each of the above formulas is expressed by, for example, (cation exchange capacity (me / 100 g soil)) as in the formulas obtained in Examples described later. = (A 7 ± a 7 ) × (absorbance) + (B 7 ± b 7 ), (cation exchange capacity (me / 100 g soil)) = (A 8 ± a 8 ) × (absorbance) + (B 7 ± Similarly, it is also possible to obtain the values of A 7 , A 8 , B 7 , B 8 , a 7 , a 8 , b 7 , b 8 in the same manner as b 7 ). More specific examples of these formulas include formulas obtained by examples described later.

また、他の換算方法としては、上記吸光度から土壌中の腐植物質の含有量を算出し、その算出値を陽イオン交換容量に換算する方法なども挙げられる。更に具体的には、予め定めておいた測定波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と腐植物質の含有量との関係を予め求めておき、これらの関係を示す標準曲線として検量線を作成しておき、吸光度の測定値を測定に供した土壌の秤量値から必要に応じて土壌の所定重量当たりの吸光度に換算した値を検量線に当てはめることによって、吸光度の測定値から腐植物質の含有量を求めるか、検量線から吸光度と腐植物質の含有量との関係を示す関係式を求めておき、その関係式の吸光度として吸光度の測定値を測定に供した土壌の秤量値から必要に応じて土壌の所定重量当たりの吸光度に換算した値を代入することによって、吸光度の測定値から腐植物質の含有量を算出し、更に、腐植物質の含有量と陽イオン交換容量との関係を予め求めておき、これらの関係を示す標準曲線として検量線を作成しておき、吸光度の測定値から求めた腐植物質の含有量の算出値を検量線に当てはめることによって、腐植物質の算出値を陽イオン交換容量に換算するか、検量線から腐植物質の含有量と陽イオン交換容量との関係を示す関係式を求めておき、その関係式の腐植物質の含有量として吸光度の測定値から算出した腐植物質の含有量の算出値を代入することによって、吸光度の測定値を腐植物質の含有量に換算した後、更に、陽イオン交換容量に換算する方法などが挙げられる。このように、吸光度から土壌中の腐植物質の含有量を算出すると、その算出値は上述したように例えば野菜生産者にとって重要な土壌情報とすることができる。   Other conversion methods include a method of calculating the content of humic substances in the soil from the absorbance and converting the calculated value into a cation exchange capacity. More specifically, a relationship between the absorbance of the alkaline extract from the soil per predetermined weight at a predetermined measurement wavelength and the content of humic substances is obtained in advance, and calibration is performed as a standard curve indicating these relationships. Create a line and apply the value obtained by converting the measured value of the absorbance from the measured value of the soil subjected to the measurement to the absorbance per predetermined weight of the soil, if necessary, to the calibration curve. Calculate the content of the substance, or obtain a relational expression indicating the relationship between the absorbance and the content of humic substance from the calibration curve, and use the measured value of the absorbance as the absorbance of the relational expression from the measured weight of the soil. By substituting the value converted into the absorbance per predetermined weight of the soil as necessary, the humic substance content is calculated from the measured absorbance value, and further, the humic substance content and the cation exchange capacity are calculated. By preparing a calibration curve as a standard curve indicating these relationships, and applying the calculated value of the humic substance content obtained from the measured absorbance value to the calibration curve. Convert the calculated value into a cation exchange capacity, or obtain a relational expression showing the relationship between the humic substance content and the cation exchange capacity from the calibration curve, and calculate the absorbance as the humic substance content in the relational expression. By substituting the calculated value of the humic substance content calculated from the measured value, the method of converting the measured value of absorbance to the humic substance content and then converting it to the cation exchange capacity can be mentioned. Thus, when content of humic substance in soil is calculated from light absorbency, the calculated value can be used as soil information important for vegetable producers as mentioned above.

より具体的には、少なくとも3点、好ましくは少なくとも4点の腐植物質の含有量が既知のpHが7.0以下の土壌サンプル及び少なくとも1点、好ましくは少なくとも2点の腐植物質の含有量が既知のアルカリ性土壌サンプルについて、腐植物質の一の吸収波長を測定波長として所定重量当たりの土壌からのアルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A×(吸光度)+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A×(吸光度)+BにおけるA及びBの値を求め、更に、少なくとも3点、好ましくは少なくとも4点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点、好ましくは少なくとも2点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記測定波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A×(吸光度)+Bにより算出した腐植物質の含有量の各算出値と各算出値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A×(吸光度)+Bにより算出した腐植物質の含有量の各算出値と各算出値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求める方法が挙げられる。また、上述したような測定値のバラツキの観点から上記各式を例えば(腐植物質の含有量(重量%))=(A±a)×(吸光度)+(B±b)、(腐植物質の含有量(重量%))=(A±a)×(吸光度)+(B±b)、(陽イオン交換容量(me/100g土壌))=(A±a)×腐植物質の含有量(重量%)+(B±b)、(陽イオン交換容量(me/100g土壌))=(A±a)×腐植物質の含有量(重量%)+(B±b)とし、同様にしてA〜A、B〜B、a〜a、b〜bの値を求めても好適である。これらの式としてより具体的には、例えば後述する実施例により得られた式を挙げることができる。 More specifically, a soil sample having a known pH of 7.0 or lower and a humic substance content of at least 2 points, preferably at least 2 points, preferably at least 3 points, preferably at least 4 points. For a known alkaline soil sample, the absorbance of the alkaline extract from the soil per unit weight is measured using one absorption wavelength of the humic substance as a measurement wavelength, and each measured value of absorbance in a soil sample having a pH of 7.0 or less From the humic substance content corresponding to each measured value, the absorbance and humic substance at the measurement wavelength used when the pH of the soil to be measured is 7.0 or less by an appropriate method such as the least square method, for example. is a relational expression between the content of (the content of humic substances (wt%)) = a 1 × (absorbance) + B determines the value of a 1 and B 1 in 1 when co In addition, from the measured values of absorbance in all soil samples and the content of humic substances corresponding to the measured values, the above measurement used when the soil to be measured is alkaline by an appropriate method such as the least square method, for example obtains the value of a 2 and B 2 in the (content (wt%) of the humic substances) = a 2 × (absorbance) + B 2 is a relational expression between the amount of the absorbance and humic substances at a wavelength, further, at least A soil sample with a known cation exchange capacity value of 3 points, preferably at least 4 and a pH of 7.0 or less, and an alkaline soil sample with a known cation exchange capacity value of at least 1 point, preferably at least 2 points For each of the above, the absorbance of the alkaline extract from the soil per predetermined weight at the measurement wavelength is measured, and the pH of the soil sample is 7.0 or less. Each calculated value of the humic substance calculated from the above measured values of absorbance by the above (humic substance content (% by weight)) = A 1 × (absorbance) + B 1 and a cation corresponding to each calculated value From the value of the exchange capacity, a relational expression between the humic substance content and the cation exchange capacity to be used when the pH of the soil to be measured is 7.0 or less by an appropriate method such as the least square method (positive ion exchange capacity (me / 100 g soil)) = a 3 × (content of humic substances (wt%)) + with determining the value of a 3 and B 3 in B 3, from each measurement of the absorbance at all soil samples From each calculated value of humic substance content calculated by the above (humic substance content (% by weight)) = A 2 × (absorbance) + B 2 and the value of the cation exchange capacity corresponding to each calculated value, Such as least squares The Yichun method, soil to be measured is a relational expression between the content and the cation exchange capacity of the humic substances utilized in the case of alkaline (cation exchange capacity (me / 100 g soil)) = A 4 × (humic substances content (wt%)) + and a method for determining the values of a 4 and B 4 in B 4. Further, from the viewpoint of variation in the measured values as described above, the above formulas are expressed as, for example, (humic substance content (% by weight)) = (A 1 ± a 1 ) × (absorbance) + (B 1 ± b 1 ), (Humic substance content (% by weight)) = (A 2 ± a 2 ) × (absorbance) + (B 2 ± b 2 ), (cation exchange capacity (me / 100 g soil)) = (A 3 ± a 3 ) × humic substance content (% by weight) + (B 3 ± b 3 ), (cation exchange capacity (me / 100 g soil)) = (A 4 ± a 4 ) × humic substance content (% by weight) ) + (B 4 ± b 4 ), and similarly, values of A 1 to A 4 , B 1 to B 4 , a 1 to a 4 , and b 1 to b 4 may be obtained. More specific examples of these formulas include formulas obtained by examples described later.

又は、少なくとも3点、好ましくは少なくとも4点の腐植物質の含有量及び陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点、好ましくは少なくとも2点の腐植物質の含有量及び陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記腐植物質の一の吸収波長を測定波長として所定重量当たりの土壌からのアルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A’×(吸光度)+B’におけるA’及びB’の値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A’×(吸光度)+B’におけるA’及びB’の値を求め、上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A’×(吸光度)+B’により算出した腐植物質の含有量の各算出値と上記吸光度の各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A’×(腐植物質の含有量(重量%))+B’におけるA’及びB’の値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A’×(吸光度)+B’により算出した腐植物質の含有量の各算出値と上記吸光度の各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A’×(腐植物質の含有量(重量%))+B’におけるA’及びB’の値を求めることもできる。なお、この場合も上記各式をバラツキを含めた式としてもよい点については上記同様である。 Or a soil sample with a known pH value of 7.0 or less and at least 1 point, preferably at least 2 points of humic substance, with a humic substance content and cation exchange capacity value of at least 3 points, preferably at least 4 points. About the alkaline soil sample whose content and the value of cation exchange capacity are known, the absorbance of the alkaline extract from the soil per predetermined weight is measured using one absorption wavelength of the humic substance as a measurement wavelength, and the pH is 7. When the pH of the soil to be measured is 7.0 or less by an appropriate method such as the least square method from the measured values of the absorbance in the soil sample of 0 or less and the humic substance contents corresponding to the measured values, respectively. is a relational expression between the amount of the absorbance and humic substances in the measurement wavelength to be used for (the content of humic substances (wt%)) = a 1 '× ( absorbance ) + B 1 together determine the value of and B 1 '' A 1 'in, and a content of humic substances respectively corresponding to each measurement value and the measurement value of the absorbance at all soil samples, such as for example the least square method It is a relational expression between the absorbance and the humic substance content at the measurement wavelength used when the soil to be measured is alkaline by an appropriate method (humic substance content (% by weight)) = A 2 ′ × ( 'obtains the value of the (content of humic substances (wt%) absorbance of the from the measured value) = a 1' and B 2 'a 2' in absorbance) + B 2 calculated by × (absorbance) + B 1 ' From the calculated value of the humic substance content and the value of the cation exchange capacity respectively corresponding to the measured value of the absorbance, the pH of the soil to be measured is 7.0 or less by an appropriate method such as the least square method. Use when Is a relational expression between the content and the cation exchange capacity of the vegetable matter (cation exchange capacity (me / 100 g soil)) = A 3 '× (content of humic substances (wt%)) + B 3' A 3 in Humic substances calculated by the above (humic substance content (% by weight)) = A 2 ′ × (absorbance) + B 2 ′ from the measured values of the absorbance in all soil samples while obtaining the values of “and B 3 ” Humic substances to be used when the soil to be measured is alkaline by an appropriate method such as the least squares method, from the calculated value of the content of cation and the value of the cation exchange capacity corresponding to each measured value of the absorbance. a content and relationship between the cation exchange capacity of (cation exchange capacity (me / 100 g soil)) = a 4 '× (content of humic substances (wt%)) + B 4' a 4 'in and The value of B 4 'can also be obtained . Note that in this case as well, the above-described formulas may be formulas including variations.

次に、上述した腐植物質の含有量の測定値を指標値として提供する土壌分析器の場合、土壌分析器内の機能によって、土壌のアルカリ性抽出液の吸光度から腐植物質の含有量を算出し、測定値として表示するものである。従って、更に他の換算方法としては、土壌中の腐植物質の含有量を測定する土壌分析器を使用して、上記土壌中の腐植物質の含有量の測定値を得、その測定値を陽イオン交換容量に換算する方法なども挙げられる。更に具体的には、予め腐植物質の含有量と陽イオン交換容量との関係を予め求めておき、これらの関係を示す標準曲線として検量線を作成しておき、土壌分析器により得られた試料土壌の腐植物質の含有量の測定値を検量線に当てはめることによって、腐植物質の含有量の測定値を陽イオン交換容量に換算するか、検量線から腐植物質の含有量と陽イオン交換容量との関係を示す関係式を求めておき、その関係式の腐植物質の含有量として腐植物質の含有量の測定値を代入することによって、腐植物質の含有量の測定値を陽イオン交換容量に換算する方法などが挙げられる。   Next, in the case of a soil analyzer that provides the measured value of the humic substance content as an index value, the function in the soil analyzer calculates the humic substance content from the absorbance of the alkaline extract of the soil, It is displayed as a measured value. Therefore, as another conversion method, using a soil analyzer that measures the content of humic substances in the soil, a measured value of the content of humic substances in the soil is obtained, and the measured value is converted to a cation. The method of converting into exchange capacity is also mentioned. More specifically, the relationship between the content of humic substances and the cation exchange capacity is obtained in advance, a calibration curve is prepared as a standard curve showing these relationships, and the sample obtained by the soil analyzer By applying the measured value of the humic substance content of the soil to the calibration curve, the measured value of the humic substance content is converted into the cation exchange capacity, or the humic substance content and the cation exchange capacity are calculated from the calibration curve. By converting the measured value of the humic substance content into the cation exchange capacity by substituting the measured value of the humic substance content as the humic substance content of the relational expression. The method of doing is mentioned.

より具体的には、上記土壌分析器に少なくとも3点、好ましくは少なくとも4点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点、好ましくは少なくとも2点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記腐植物質の吸収波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度をそれぞれ測定して上記土壌中の腐植物質の含有量の各測定値を得、pHが7.0以下の土壌サンプルにおける上記腐植物質の含有量の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記腐植物質の含有量の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、例えば最小二乗法などの適宜方法により、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求める方法などが挙げられる。なお、この場合も上記各式をバラツキを含めた(陽イオン交換容量(me/100g土壌))=(A±a)×(腐植物質の含有量(重量%))+(B±b)、(陽イオン交換容量(me/100g土壌))=(A±a)×(腐植物質の含有量(重量%))+(B±b)とし、同様にしてA,A、B,B、a,a、b,bの値を求めても好適である。 More specifically, the soil analyzer has a cation exchange capacity value of at least 3 points, preferably at least 4 points, a soil sample having a known pH of 7.0 or less, and at least 1 point, preferably at least 2 points. For an alkaline soil sample with a known cation exchange capacity value, the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance is measured to measure each content of the humic substance in the soil. From the measured value of the humic substance content in a soil sample having a pH of 7.0 or less and the value of the cation exchange capacity corresponding to each measured value, for example, by an appropriate method such as a least square method , Is a relational expression between humic substance content and cation exchange capacity used when the pH of the soil to be measured is 7.0 or less (cation exchange capacity (me / 1 0g soil)) = A 5 × (content of humic substances (wt%)) + with determining the value of A 5 and B 5 in B 5, each measured value and the measurement of the content of the humic substances in all soil samples From the value of the cation exchange capacity corresponding to each value, the relational expression between the humic substance content and the cation exchange capacity used when the soil to be measured is alkaline by an appropriate method such as the least square method. there (cation exchange capacity (me / 100 g soil)) = a 6 × (content of humic substances (wt%)) + a method for determining the values of a 6 and B 6 are mentioned in B 6. In this case as well, each of the above formulas including variations (cation exchange capacity (me / 100 g soil)) = (A 5 ± a 5 ) × (humic substance content (% by weight)) + (B 5 ± b 5 ), (cation exchange capacity (me / 100 g soil)) = (A 6 ± a 6 ) × (humic substance content (% by weight)) + (B 6 ± b 6 ). 5, a 6, B 5, B 6, a 5, a 6, b 5, be calculated the value of b 6 are preferred.

上記のようにして腐植物質の含有量の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、最小二乗法によりpHが7.0以下の土壌に利用する腐植物質の含有量と陽イオン交換容量の関係式である(陽イオン交換容量(me/100g土壌))=(A±a)×(腐植物質の含有量(重量%))+(B±b)としては、例えば、下記式(1)が挙げられ、予め測定しておいた測定土壌のpHが7.0以下、即ち測定土壌が酸性土壌又は中性土壌であれば、この下記式(1)に測定土壌中の腐植物質の含有量の測定値を代入すれば、測定土壌中の陽イオン交換容量を計算することができる。 The content of humic substances used in the soil having a pH of 7.0 or less by the least square method from the measured values of the humic substance content and the cation exchange capacity values corresponding to the measured values as described above. (Cation exchange capacity (me / 100 g soil)) = (A 5 ± a 5 ) × (humic substance content (% by weight)) + (B 5 ± b 5 ) Includes, for example, the following formula (1). If the pH of the measured soil measured in advance is 7.0 or less, that is, if the measured soil is acidic soil or neutral soil, the following formula (1) If the measured value of the content of humic substances in the measured soil is substituted into), the cation exchange capacity in the measured soil can be calculated.

Figure 2012026803
Figure 2012026803

上記(1)式によって算出される値は、幅を有するため、測定する土壌が酸性土壌又は中性土壌である場合に、1の値(中心値)を求めるには、(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+Bとして、例えば下記(3)式に測定土壌中の腐植物質の含有量の測定値を代入すれば、測定土壌中の陽イオン交換容量を計算することができる。 Since the value calculated by the above equation (1) has a width, when the soil to be measured is acidic soil or neutral soil, in order to obtain the value 1 (central value), (cation exchange capacity ( me / 100 g soil)) = A 5 × (humic substance content (% by weight)) + B 5 , for example, by substituting the measured value of the humic substance content in the measured soil into the following formula (3) The cation exchange capacity in the soil can be calculated.

Figure 2012026803
Figure 2012026803

なお、上記式(3)によって算出される土壌中の陽イオン交換容量の測定値によって、試料土壌中の陽イオン交換容量を評価、判断する場合、上記式(3)により算出された試料土壌中の陽イオン交換容量の測定値は、±20%の振れ幅を有するものとして評価、判断することが望ましい。   When evaluating and judging the cation exchange capacity in the sample soil based on the measured value of the cation exchange capacity in the soil calculated by the above formula (3), in the sample soil calculated by the above formula (3) The measured value of the cation exchange capacity is preferably evaluated and judged as having a fluctuation range of ± 20%.

一方、アルカリ性土壌に利用する上記測定波長における腐植物質の含有量と陽イオン交換容量の関係式である(陽イオン交換容量(me/100g土壌))=(A±a)×(腐植物質の含有量(重量%))+(B±b)としては、下記式(2)が挙げられ、予め測定しておいた測定土壌のpHがアルカリ性土壌、即ち、測定土壌pH>7.0であれば、測定土壌中の腐植物質の含有量の測定値を下記式(2)に代入すれば、測定土壌中の陽イオン交換容量を計算することができる。 On the other hand, it is a relational expression between the content of humic substances and the cation exchange capacity at the measurement wavelength used in alkaline soil (cation exchange capacity (me / 100 g soil)) = (A 6 ± a 6 ) × (humic substance The content (weight%)) + (B 6 ± b 6 ) includes the following formula (2), and the measured soil pH measured in advance is alkaline soil, that is, measured soil pH> 7. If it is 0, the cation exchange capacity in the measurement soil can be calculated by substituting the measured value of the content of the humic substance in the measurement soil into the following formula (2).

Figure 2012026803
Figure 2012026803

上記(2)式によって算出される値も、上記(1)式の場合と同様に幅を有するため、測定土壌がアルカリ性土壌である場合に1の値(中心値)を求めるには、(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+Bとして下記(4)式に測定土壌中の腐植物質の含有量の測定値を代入すれば、測定土壌中の陽イオン交換容量を計算することができる。 Since the value calculated by the above equation (2) also has a width as in the case of the above equation (1), when the measured soil is an alkaline soil, a value of 1 (center value) is obtained by (positive If the measured value of the humic substance content in the measured soil is substituted into the following formula (4) as ion exchange capacity (me / 100 g soil)) = A 6 × (humic substance content (% by weight)) + B 6 The cation exchange capacity in the measured soil can be calculated.

Figure 2012026803
Figure 2012026803

上記式(4)によって算出される土壌中の陽イオン交換容量の測定値によって、測定土壌中の陽イオン交換容量を評価、判断する場合、上記式(4)により算出された試料土壌中の陽イオン交換容量の測定値は、±30%の振れ幅を有するものとして評価、判断することが望ましい。   When the cation exchange capacity in the measured soil is evaluated and judged by the measured value of the cation exchange capacity in the soil calculated by the above formula (4), the cation exchange capacity in the sample soil calculated by the above formula (4) is used. It is desirable to evaluate and judge the measured value of the ion exchange capacity as having a fluctuation width of ± 30%.

本発明の土壌中の陽イオン交換容量の測定方法は、例えば、コンピュータや電卓などを利用して、数値を算出することもできるが、本発明の土壌分析器を利用すると、例えば、土壌の採取現場でその土壌中の陽イオン交換容量を簡単、且つ迅速に求めることができる。本発明の土壌分析器は、上述したように、土壌中の陽イオン交換容量の測定に使用する土壌分析器であって、測定する土壌の秤量値、pHをデータとして入力するデータ入力手段と、腐植物質を含有するアルカリ性抽出液の腐植物質の吸収波長における吸光度を測定する吸光度測定手段と、測定する土壌のpHが7.0以下の場合に利用する上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式と、測定する土壌がアルカリ性である場合に利用する上記腐植物質の吸収波長における上記吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式とを記憶する記憶手段と、上記データ入力手段に入力された測定する土壌のpHにより利用する関係式を上記記憶手段に記憶された上記関係式の中から選定する選定手段と、上記吸光度測定手段によって測定された吸光度のデータを必要に応じて上記データ入力手段に入力された上記土壌の秤量値により所定重量当たりの吸光度に換算して上記選定手段により選定された関係式に代入して陽イオン交換容量を求める演算手段と、該演算手段により得られた陽イオン交換容量の値を表示する表示手段と、を備えたものである。なお、本発明の土壌分析器における上記各関係式は、本発明の測定方法の上記各関係式と同様にして求めることができる。   The method for measuring the cation exchange capacity in the soil of the present invention can calculate a numerical value by using, for example, a computer or a calculator, but if the soil analyzer of the present invention is used, for example, sampling of soil The cation exchange capacity in the soil can be determined easily and quickly on site. As described above, the soil analyzer of the present invention is a soil analyzer used for measuring the cation exchange capacity in the soil, and is a data input means for inputting the measured weight value of the soil and pH as data, Absorbance measuring means for measuring the absorbance at the absorption wavelength of the humic substance of the alkaline extract containing the humic substance, and the per unit weight at the absorption wavelength of the humic substance used when the pH of the soil to be measured is 7.0 or less Relational expression showing the correlation between the absorbance of the alkaline extract from the soil and the cation exchange capacity and / or relational expression showing the correlation between the absorbance and the humic substance content at the absorption wavelength of the humic substance and humus The relational expression showing the correlation between the content of the substance and the cation exchange capacity, and the absorption wavelength of the humic substance used when the soil to be measured is alkaline Relational expression showing correlation between luminous intensity and cation exchange capacity and / or relational expression showing correlation between absorbance and humic substance content at absorption wavelength of humic substance, humic substance content and cation exchange A storage means for storing a relational expression indicating a correlation with the capacity, and a relational expression used by the pH of the soil to be measured input to the data input means is selected from the relational expressions stored in the storage means. The selection means, and the absorbance data measured by the absorbance measurement means is selected by the selection means by converting the absorbance data of the soil input to the data input means to the absorbance per predetermined weight as necessary. And calculating means for obtaining the cation exchange capacity by substituting into the relational expression, and display means for displaying the value of the cation exchange capacity obtained by the calculating means. . In addition, each said relational expression in the soil analyzer of this invention can be calculated | required similarly to each said relational expression of the measuring method of this invention.

以下、本発明の土壌分析器の一構成例を図1及び図2を用いて、より詳細に説明する。図1は、本発明の一構成例である土壌分析器1の正面(一部断面)図であり、図2は、土壌分析器1の右側面(一部断面)図である。この土壌分析器1は、分析器本体ケース1aの表面に、表示手段として表示部2、データ入力手段として入力用ボタン3a,3b,3c,3dを備えている。そして、吸光度測定手段として、光照射部4、受光部5、セル6、セル固定部6aを備えている。なお、図中7は、吸光度を測定するアルカリ性抽出液である。この土壌分析器1は、分析器本体ケース1a内に図示しないCPU(中央処理装置)を内蔵しており、このCPUに記憶手段と選定手段と演算手段が備えられている。また、分析器本体ケース1a内には、図示しない電気供給手段(乾電池、電源コードなど)が備えられ、図示しない電源スイッチによりON、OFF操作が行えるように構成されている。   Hereinafter, a configuration example of the soil analyzer of the present invention will be described in more detail with reference to FIGS. 1 and 2. FIG. 1 is a front (partial cross-sectional) view of a soil analyzer 1 which is an example of the present invention, and FIG. 2 is a right side (partial cross-sectional) view of the soil analyzer 1. The soil analyzer 1 includes a display unit 2 as display means and input buttons 3a, 3b, 3c, and 3d as data input means on the surface of the analyzer body case 1a. And as a light absorbency measuring means, the light irradiation part 4, the light-receiving part 5, the cell 6, and the cell fixing | fixed part 6a are provided. In the figure, 7 is an alkaline extract for measuring absorbance. The soil analyzer 1 incorporates a CPU (central processing unit) (not shown) in the analyzer body case 1a, and the CPU is provided with storage means, selection means, and calculation means. Further, the analyzer main body case 1a is provided with electric supply means (dry battery, power cord, etc.) (not shown), and can be turned on and off by a power switch (not shown).

分析器本体ケース1aは、その材質が特に制限されるものではなく、公知の土壌分析器のケース材料として使用されている材料を適宜選定して形成することができる。表示部2は、演算手段により得られた陽イオン交換容量の値と共に、後述するように吸光度から算出される腐植物質の含有量も表示されるように構成されている。また、分析を行う前には、入力用ボタン3a,3b,3c,3dによる入力データが表示され、データの確認ができるように構成されている。入力用ボタン3a,3b,3c,3dは、夫々、条件決定ボタン3a、入力開始ボタン3b、条件・数値選択ボタン3c、条件・数値選択ボタン3dのように構成されており、分析を行う前には入力開始ボタン3bを押して入力する条件である測定土壌の秤量値と測定土壌のpH値のどちらか一方を条件・数値選択ボタン3c,3dにより選択し、入力する条件を条件決定ボタン3aにより決定し、例えば条件として測定土壌の秤量値を選択した場合には、測定土壌の秤量値を条件・数値選択ボタン3c,3dにより選択することが出来るようになり、同様に条件として測定土壌のpHを選択した場合には、測定土壌のpHを条件・数値選択ボタン3c,3dにより選択することが出来るようになり、夫々の数値を選択した後に条件決定ボタン3aを押すことにより選択された数値を決定してCPUの記憶手段に条件と数値を記憶することが出来る。   The material of the analyzer main body case 1a is not particularly limited, and can be formed by appropriately selecting a material used as a case material of a known soil analyzer. The display unit 2 is configured to display the humic substance content calculated from the absorbance as described later, together with the value of the cation exchange capacity obtained by the calculation means. Further, before the analysis is performed, the input data by the input buttons 3a, 3b, 3c, 3d is displayed and the data can be confirmed. The input buttons 3a, 3b, 3c, 3d are configured as a condition determination button 3a, an input start button 3b, a condition / numerical value selection button 3c, and a condition / numerical value selection button 3d, respectively. Select either the measured soil measured value or the measured soil pH value by the condition / numerical value selection buttons 3c and 3d, and the input condition is determined by the condition determination button 3a. For example, when the measurement soil weighing value is selected as the condition, the measurement soil weighing value can be selected by the condition / numerical value selection buttons 3c and 3d. Similarly, the measurement soil pH is set as the condition. When selected, the pH of the soil to be measured can be selected by the condition / numerical value selection buttons 3c and 3d. 3a to determine the selected numeric can store conditions and number in storage means of the CPU by pressing.

光照射部4はLEDで構成されており、図示しない電気供給手段及びCPUに接続されており、測定を行う際には条件決定ボタン3aを押すことにより分析に必要な時間セル6を通し受光部5に光を照射することができる。受光部5は光照射部4からセル6を通し照射された光を受け、この光の量に相当する電気信号に変換することができる。セル6は形状は特に限定されるものではないが、光照射部4から照射された光を80%以上透過し、且つ、照射された光を乱反射させたり散乱させたりしないものが望ましく、受光部5に透過した光がセル6を設置しない場合の光照射部4からの光量を電気信号に変換したときの数値を255としたとすると、セル6を設置した時の光照射部4からの光量を電気信号に変換した時の数値が100以上と成ることが望ましい。また、セル6の材質についても特に限定されるものではないが、アルコールや水に溶解し少なくとも1時間以内に形状が変化したり、アルコールや水の測定波長における吸光度を変化させないものが望ましい。また、光照射部4から照射された光を80%以上透過し、且つ、照射された光を乱反射させたり散乱させたりしないものが望ましく、受光部5に透過した光がセル6を設置しない場合の光照射部4からの光量を電気信号に変換したときの数値を255としたとすると、セル6を設置した時の光照射部4からの光量を電気信号に変換した時の数値が100以上と成ることが望ましい。セル固定部6aは、セル6を固定、狭持可能で、且つセル6の光透過部分を光が透過するように光路を有するように構成されている。   The light irradiation unit 4 is composed of an LED and is connected to an electric supply means (not shown) and a CPU. When performing measurement, the light receiving unit 4 is passed through a time cell 6 required for analysis by pressing a condition determination button 3a. 5 can be irradiated with light. The light receiving unit 5 can receive the light irradiated from the light irradiation unit 4 through the cell 6 and convert it into an electrical signal corresponding to the amount of this light. The shape of the cell 6 is not particularly limited, but it is preferable that the cell 6 transmits 80% or more of the light irradiated from the light irradiation unit 4 and does not diffuse or scatter the irradiated light. If the numerical value when the amount of light transmitted from 5 to the light irradiation unit 4 when the cell 6 is not installed is converted to an electrical signal is 255, the amount of light from the light irradiation unit 4 when the cell 6 is installed It is desirable that the numerical value when the signal is converted into an electric signal is 100 or more. The material of the cell 6 is not particularly limited, but it is desirable that the cell 6 does not change its shape within at least one hour after dissolving in alcohol or water, or does not change the absorbance at the measurement wavelength of alcohol or water. Further, it is desirable that the light irradiated from the light irradiation unit 4 transmits 80% or more and does not diffuse or scatter the irradiated light, and the light transmitted through the light receiving unit 5 does not install the cell 6. If the numerical value when the light amount from the light irradiation unit 4 is converted into an electrical signal is 255, the numerical value when the light amount from the light irradiation unit 4 when the cell 6 is installed is converted into an electrical signal is 100 or more. It is desirable that The cell fixing portion 6a is configured to fix and hold the cell 6 and to have an optical path so that light can pass through the light transmitting portion of the cell 6.

この土壌分析器1の記憶手段には、上述した本発明の土壌分析器の記憶手段が記憶する関係式として、(a)測定する土壌のpHが7.0以下の場合に利用する腐植物質の吸収波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と腐植物質の含有量との相関関係を示す関係式、例えば上記(腐植物質の含有量(重量%))=A×(吸光度)+B、より具体的には、例えば後述する実施例の式(5)、(b)測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式、例えば上記(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+B、より具体的には、例えば後述する実施例の式(8)、(c)測定する土壌がアルカリ性である場合に利用する腐植物質の吸収波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と腐植物質の含有量との相関関係を示す関係式、例えば上記(腐植物質の含有量(重量%))=A×(吸光度)+B、より具体的には、例えば後述する実施例の式(6)、(d)測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式、例えば上記(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+B、より具体的には、例えば後述する実施例の式(7)が記憶されている。このような(a)〜(d)の関係式は、例えば後述する実施例2のようにして求めることができる。また、本発明の土壌分析器の記憶手段に記憶される関係式としては、(e)測定する土壌のpHが7.0以下の場合に利用する腐植物質の吸収波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と陽イオン交換容量との相関関係を示す関係式、例えば上記(陽イオン交換容量(me/100g土壌))=A×(吸光度)+B、より具体的には、例えば後述する実施例の式(10)又は実施例の式(12)、(f)測定する土壌がアルカリ性である場合に利用する腐植物質の吸収波長における所定重量当たりの土壌からのアルカリ性抽出液の吸光度と陽イオン交換容量との相関関係を示す関係式、例えば上記(陽イオン交換容量(me/100g土壌))=A×(吸光度)+B、より具体的には、例えば後述する実施例の式(9)又は実施例の式(11)であってもよく、(a)〜(d)の関係式に代えて、(e)、(f)の関係式を記憶させてもよく、又は、(a)、(b)、(e)、(f)の関係式を記憶させてもよく、又は、(a)〜(f)の関係式を記憶させてもよい。なお、(e)、(f)の関係式は、例えば後述する実施例2、3のようにして求めることができる。また、土壌分析器1の記憶手段には、これらの関係式の他、後述するように、入力データ、測定された吸光度のデータ(測定データ)なども記憶されるように構成されている。 In the storage means of the soil analyzer 1, as a relational expression stored by the storage means of the soil analyzer of the present invention described above, (a) the humic substance used when the pH of the soil to be measured is 7.0 or less. Relational expression showing the correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength and the content of humic substances, for example, (humic substance content (% by weight)) = A 1 × (absorbance) + B 1 , more specifically, for example, formulas (5) and (b) of the examples described later, and the humic substance content and cation exchange capacity used when the pH of the soil to be measured is 7.0 or less Relational expression showing a correlation, for example, (cation exchange capacity (me / 100 g soil)) = A 3 × (humic substance content (% by weight)) + B 3 , more specifically, for example, examples described later (8), (c) the soil to be measured is The relational expression showing the correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance and the humic substance content, for example, the above (the humic substance content (weight %)) = A 2 × (absorbance) + B 2 , more specifically, for example, the formula (6) and (d) of the examples described later, and the content of humic substances used when the soil to be measured is alkaline Relational expression showing correlation with cation exchange capacity, for example, (cation exchange capacity (me / 100 g soil)) = A 4 × (humic substance content (% by weight)) + B 4 , more specifically For example, Formula (7) of the Example mentioned later is memorize | stored. Such relational expressions (a) to (d) can be obtained, for example, as in Example 2 described later. Moreover, as a relational expression memorize | stored in the memory | storage means of the soil analyzer of this invention, (e) From the soil per predetermined weight in the absorption wavelength of humic substance utilized when pH of the soil to measure is 7.0 or less The relational expression showing the correlation between the absorbance of the alkaline extract and the cation exchange capacity, for example, the above (cation exchange capacity (me / 100 g soil)) = A 7 × (absorbance) + B 7 , more specifically, For example, the formula (10) of the example described later or the formula (12) of the example, (f) of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance used when the soil to be measured is alkaline. absorbance and relational expression indicating a correlation between the cation exchange capacity, for example, the (cation exchange capacity (me / 100 g soil)) = a 8 × (absorbance) + B 8, more specifically, for example, described below The formula (9) of the embodiment or the formula (11) of the embodiment may be used, and the relational expressions (e) and (f) may be stored instead of the relational expressions (a) to (d). Alternatively, the relational expressions (a), (b), (e), and (f) may be stored, or the relational expressions (a) to (f) may be stored. The relational expressions (e) and (f) can be obtained, for example, as in Examples 2 and 3 described later. In addition to these relational expressions, the storage unit of the soil analyzer 1 is also configured to store input data, measured absorbance data (measurement data), and the like, as will be described later.

更に、図示しないCPUは、データ入力手段に入力された測定する土壌のpHにより利用する関係式を記憶手段に記憶された関係式の中から選定する選定手段と、吸光度測定手段によって測定された吸光度のデータを必要に応じてデータ入力手段に入力された測定土壌の秤量値により所定重量当たりの吸光度に換算して選定手段により選定された関係式に代入して陽イオン交換容量を求める演算手段とが備えられている。なお、この土壌分析器1の場合、演算手段によって、上述した演算の他、後述するように純水(ブランク)の吸光度の測定値とアルカリ性抽出液の吸光度の測定値とからアルカリ性抽出液の吸光度も演算される。なお、測定波長の選択は、装置側で行ってもよく、選択された波長を照射できるLEDのみ発光させたり、選択されたLEDと選択されないLEDを発光させる時間をずらし、受光部において光を計測する時間を前記選択された波長を照射できるLEDの発光している時間のみと同期させることにより、装置側で選択できる。又は、CPUに、入力用ボタン3a,3b,3c,3dによって入力された波長に従って、光照射部4の波長を制御する制御手段を備えることによって行ってもよい。   Further, the CPU (not shown) has a selection means for selecting a relational expression used by the pH of the soil to be measured input from the data input means from the relational expressions stored in the storage means, and the absorbance measured by the absorbance measurement means. Calculating means for calculating the cation exchange capacity by converting the data of the above into the relational expression selected by the selecting means by converting the absorbance per predetermined weight by the measured soil weight value input to the data input means Is provided. In addition, in the case of this soil analyzer 1, in addition to the above-mentioned calculation, the absorbance of the alkaline extract is calculated from the measured value of the absorbance of pure water (blank) and the measured value of the absorbance of the alkaline extract as described later. Is also computed. The measurement wavelength may be selected on the device side, and only the LED that can irradiate the selected wavelength emits light, or the time for emitting the selected LED and the unselected LED is shifted, and the light is measured at the light receiving unit. By synchronizing the time to be performed with only the light emission time of the LED capable of irradiating the selected wavelength, it can be selected on the device side. Or you may carry out by providing the control means which controls the wavelength of the light irradiation part 4 according to the wavelength input by button 3a, 3b, 3c, 3d for input in CPU.

この土壌分析器1によれば、測定土壌からのアルカリ性抽出液7を入れたセル6を土壌分析器1に設置し、入力ボタン3a,3b,3c,3dにより測定を開始すれば、光照射部4から照射された光を受光部5により測定することができる。具体的には、予めセル6に純水を入れ、光源4から照射された光を受光部5により測定された数値(ブランク値)を測定しておき、そのブランク値を図示しない記憶手段に記憶させておき、次いでセル6に測定土壌からのアルカリ性抽出液7を入れ、アルカリ性抽出液7の照射された光の波長の透過光強度を測定し、図示しない演算手段により上記ブランク値とアルカリ性抽出液7の透過光強度の測定値とからアルカリ性抽出液7の吸光度のデータを得、図示しない記憶手段にその吸光度のデータを記憶することができる。そして、記憶手段が例えば上記(a)〜(d)の関係式、又は(a)、(b)、(e)、(f)、又は(a)〜(f)の関係式を記憶しているのであれば、このアルカリ性抽出液7の吸光度のデータ及び必要に応じて上記秤量値を基に、腐植物質の含有量と陽イオン交換容量を演算し、表示部2に演算された腐植物質の含有量と陽イオン交換容量を表示する。即ち、図示しない演算手段が吸光度測定手段によって測定された吸光度のデータ及び必要に応じて上記秤量値から腐植物質の含有量を算出し、更に、腐植物質の含有量の算出値又は吸光度のデータ及び必要に応じて上記秤量値から陽イオン交換容量を算出し、表示部2が演算手段により得られた陽イオン交換容量の値と、上記腐植物質の含有量の算出値を表示するように構成されている。なお、分析を行う前には、上述したように入力用ボタン3a,3b,3c,3dにより、測定土壌の秤量値、pHをそれぞれ入力することができる。   According to this soil analyzer 1, if the cell 6 containing the alkaline extract 7 from the measured soil is installed in the soil analyzer 1 and measurement is started by the input buttons 3a, 3b, 3c, 3d, the light irradiation unit The light irradiated from 4 can be measured by the light receiving unit 5. Specifically, pure water is put in the cell 6 in advance, the numerical value (blank value) measured by the light receiving unit 5 is measured for the light emitted from the light source 4, and the blank value is stored in a storage means (not shown). Then, the alkaline extract 7 from the measurement soil is put in the cell 6, the transmitted light intensity of the wavelength of the light irradiated by the alkaline extract 7 is measured, and the blank value and the alkaline extract are calculated by a calculation means (not shown). The absorbance data of the alkaline extract 7 can be obtained from the measured value of the transmitted light intensity 7 and the absorbance data can be stored in a storage means (not shown). For example, the storage means stores the relational expressions (a) to (d) or the relational expressions (a), (b), (e), (f), or (a) to (f). If so, the humic substance content and the cation exchange capacity are calculated based on the absorbance data of the alkaline extract 7 and, if necessary, the above measured value, and the calculated humic substance is calculated on the display unit 2. Display content and cation exchange capacity. That is, the calculating means (not shown) calculates the humic substance content from the absorbance data measured by the absorbance measuring means and, if necessary, the measured weight value, and further calculates the humic substance content value or absorbance data, and The cation exchange capacity is calculated from the measured value as necessary, and the display unit 2 is configured to display the value of the cation exchange capacity obtained by the calculation means and the calculated value of the humic substance content. ing. Prior to the analysis, the measured soil weight and pH can be input using the input buttons 3a, 3b, 3c, and 3d as described above.

なお、本発明の土壌分析器は、上記構成に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することができる。   In addition, the soil analyzer of this invention is not limited to the said structure, It can change variously in the range which does not deviate from the summary of this invention.

以下、実施例を示して本発明をより具体的に説明するが、本発明は、下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to the following Example.

実施例に用いた土壌(土壌サンプル)の名称、土質、土壌が用いられている栽培方法を下記表1に示す。これらの土壌約10gを秤量し、これに純水25mlを加え、30分間、振とう器(全農型振とう機)により振とうした。振とう後の液を3分ほど静置した後、pHメーター(HANNA Instruments社;pH211 Microprocessor pH Meter)によりpHを測定した。結果を表1に併記する。   Table 1 below shows the names of soil (soil samples) used in the examples, soil quality, and cultivation methods in which the soil is used. About 10 g of these soils were weighed, 25 ml of pure water was added thereto, and the mixture was shaken with a shaker (all-agricultural shaker) for 30 minutes. The liquid after shaking was allowed to stand for about 3 minutes, and then the pH was measured with a pH meter (HANNA Instruments; pH 211 Microprocessor pH Meter). The results are also shown in Table 1.

Figure 2012026803
Figure 2012026803

[実施例1]
各土壌中の腐植物質を、熊田法に準じて、以下の手順により測定した。図4に測定方法のフローチャートを示す。
1)土壌0.50gを量り採り、アルカリ性抽出液として0.1M水酸化ナトリウム/ピロリン酸ナトリウム混液(pH13)5ミリリットル中に加えた。
2)この混合液を、振とう器(全農型振とう機)により3分間振とうした。
3)ろ紙(No.2)によりろ過し、このろ液0.5ミリリットルを採取し、これに純水を加え12倍に希釈した。
4)希釈液を土壌分析器(全農型土壌分析器ZA−II)により分析し、各土壌中の腐植物質の含有量(重量%、以下wt%とする)の測定値を得た。
[Example 1]
The humic substance in each soil was measured according to the following procedure according to the Kumada method. FIG. 4 shows a flowchart of the measurement method.
1) 0.50 g of soil was weighed and added as an alkaline extract into 5 ml of a 0.1 M sodium hydroxide / sodium pyrophosphate mixture (pH 13).
2) This mixed liquid was shaken for 3 minutes with a shaker (Zenno-type shaker).
3) The mixture was filtered through a filter paper (No. 2), 0.5 ml of this filtrate was collected, and pure water was added to the filtrate to dilute it 12 times.
4) The diluted solution was analyzed with a soil analyzer (All-Agricultural Soil Analyzer ZA-II) to obtain a measured value of the content of humic substances (% by weight, hereinafter referred to as wt%) in each soil.

上記土壌の陽イオン交換容量(CEC)(me/100g土壌、以下me/100gsoilとする)は、ショーレンベルガー法により抽出し、インドフェノール法により分析した。即ち、土壌約1gを秤量した。これを交換試薬10ミリリットルに分散するように加え、15分間静置した。15分間静置後、漏斗とろ紙によりろ過した。前記漏斗に洗浄液5ミリリットルを加え、洗浄液をろ過した。洗浄液がろ過された後、更に洗浄液5ミリリットルを加え、この洗浄液をろ過した。洗浄液がろ過され、ろ紙上に残った土壌表面がひび割れるまでろ過を続けた。20分経過してもろ紙上に残った土壌表面がひび割れない場合には、加圧器を用い、前記洗浄液のろ過を行った。前記漏斗の先を塞ぎ、液が漏れないようにした後、抽出試薬10ミリリットルを加えて15分間の抽出を行った。15分間の抽出を行った後、漏斗の先を開き抽出液を20ミリリットル容のビーカーにろ過した。このろ液を抽出ろ液とした。抽出ろ液2ミリリットルを試験管に採取し、これに純水23ミリリットルを加えよく撹拌し、これを希釈ろ液とした。希釈ろ液0.2ミリリットルを別の試験管に採取し、これに純水2.8ミリリットルを加え、約3ミリリットルの測定試薬を作成した。前記測定試薬とは別に、純水3ミリリットルを試験管に採取し、標準試薬とした。標準試薬、測定試薬にそれぞれ発色試薬を加えよく撹拌した。撹拌後20分間静置し、発色液を加えた標準試薬を標準として、土壌分析器(全農型土壌分析器ZA−II)により分析した。土壌のCEC測定について、図3に測定のフローチャートを示す。   The cation exchange capacity (CEC) of the soil (me / 100 g soil, hereinafter referred to as me / 100 gsoil) was extracted by the Scholeenberger method and analyzed by the indophenol method. That is, about 1 g of soil was weighed. This was added so that it might disperse | distribute to 10 ml of replacement | exchange reagents, and it left still for 15 minutes. After leaving still for 15 minutes, it filtered with the funnel and the filter paper. To the funnel was added 5 ml of washing solution, and the washing solution was filtered. After the washing solution was filtered, 5 ml of washing solution was further added, and this washing solution was filtered. Filtration was continued until the washing liquid was filtered and the soil surface remaining on the filter paper was cracked. When the soil surface remaining on the filter paper did not crack even after 20 minutes had passed, the washing solution was filtered using a pressurizer. The funnel tip was closed to prevent the liquid from leaking, and then 10 ml of an extraction reagent was added to perform extraction for 15 minutes. After extraction for 15 minutes, the funnel tip was opened and the extract was filtered into a 20 ml beaker. This filtrate was used as an extraction filtrate. Two milliliters of the extracted filtrate was collected in a test tube, 23 ml of pure water was added thereto and stirred well, and this was used as a diluted filtrate. 0.2 ml of the diluted filtrate was collected in another test tube, and 2.8 ml of pure water was added thereto to prepare about 3 ml of a measuring reagent. Separately from the measurement reagent, 3 ml of pure water was collected in a test tube and used as a standard reagent. A coloring reagent was added to each of the standard reagent and the measurement reagent and stirred well. After stirring, the mixture was allowed to stand for 20 minutes, and analyzed with a soil analyzer (Zenno Soil Analyzer ZA-II) using a standard reagent to which a coloring solution was added as a standard. About the CEC measurement of soil, the flowchart of a measurement is shown in FIG.

[実施例2]
上記実施例1の希釈液を光路長10mmのセルに入れ、ブランクとして純水を利用し、分光光度計(Shimadzu;UV−2400PC)により、脱気処理は行わず、温度22〜25℃の室温において524nm、632nmの波長において吸光度(OD)を測定した。
[Example 2]
The diluted solution of Example 1 was put into a cell having an optical path length of 10 mm, pure water was used as a blank, and a deaeration process was not performed by a spectrophotometer (Shimadzu; UV-2400PC), and a room temperature of 22 to 25 ° C. The absorbance (OD) was measured at wavelengths of 524 nm and 632 nm.

[実施例3]
上記実施例1の希釈液を注射器に吸い込み、合同会社土づくり推進機構製の土壌分析器MO−01用光学セル(セル長さ8mm)に規定量注入し、土壌分析器MO−01により、温度22〜25℃の室温において524nm、632nmの波長において吸光度(OD)を測定した。
[Example 3]
The diluted solution of Example 1 is sucked into a syringe, and a prescribed amount is injected into the soil analyzer MO-01 optical cell (cell length: 8 mm) manufactured by the soil making promotion organization of the limited company. Absorbance (OD) was measured at a wavelength of 524 nm and 632 nm at room temperature of 22-25 ° C.

上記実施例1、実施例2、実施例3及びショーレンベルガー法によるCEC測定の結果を下記表2に示す。   Table 2 below shows the results of CEC measurement according to the above-mentioned Example 1, Example 2, Example 3, and the Scholeenberger method.

Figure 2012026803
Figure 2012026803

上記実施例1で測定した土壌中の腐植物質の含有量とショーレンベルガー法により抽出した陽イオン交換容量との関係をグラフにプロットしたところ図5の結果を得た。このグラフによれば、両者間に一次の相関関係が認められ、相関係数R=0.72となり、腐植物質の含有量とCEC値との間に相関があることが示された。また、最小二乗法により下記(4)式の関係式が得られた。なお、バラツキを考慮すると下記(2)式の関係式が得られた。 When the relationship between the content of humic substances in the soil measured in Example 1 and the cation exchange capacity extracted by the Shohlenberger method was plotted on a graph, the result of FIG. 5 was obtained. According to this graph, a first-order correlation was observed between the two, and the correlation coefficient R 2 = 0.72, indicating that there was a correlation between the humic substance content and the CEC value. Further, the following relational expression (4) was obtained by the method of least squares. In consideration of variation, the following relational expression (2) was obtained.

Figure 2012026803
Figure 2012026803

更に、測定土壌(土壌サンプル)として土壌pHが7.0以下の土壌(酸性〜中性土壌)のみを選定して同様にグラフを作成したところ図6の結果を得、相関係数R=0.89となり、アルカリ性土壌の結果を加えたときより高い相関があることが示された。また、最小二乗法により下記(3)式の関係式が得られた。なお、バラツキを考慮すると下記(1)式の関係式が得られた。 Furthermore, when only a soil (acid to neutral soil) having a soil pH of 7.0 or less was selected as a measurement soil (soil sample), a graph was similarly created, and the result of FIG. 6 was obtained, and the correlation coefficient R 2 = 0.89, indicating a higher correlation when adding alkaline soil results. Further, the following relational expression (3) was obtained by the method of least squares. In consideration of variation, the following relational expression (1) was obtained.

Figure 2012026803
Figure 2012026803

これらの結果から、測定土壌中の腐植物質の含有量を測定し、その含有量からその土壌の持つ陽イオン交換容量(CEC)を簡易的に算出できることが示され、特に酸性土壌〜中性土壌(pH7.0以下の土壌)において有効であることが認められた。即ち、上記実施例1の結果によれば、例えば、野菜生産現場などの土壌採取現場において採取した測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、上記(1)式又は上記(3)式に上記土壌分析器による測定土壌中の腐植物質含有量の測定値を代入することによって、野菜生産現場などで採取した土壌のpHが7.0以下である場合の土壌中の陽イオン交換容量(CEC)を求めることができ、一方、測定土壌がアルカリ性土壌(pH>7.0)であれば、上記(2)式又は上記(4)式に上記土壌分析器による測定土壌中の腐植物質含有量の測定値を代入することによって、野菜生産現場などなどで採取した土壌がアルカリ性土壌である場合の土壌中の陽イオン交換容量(CEC)を求められることが認められた。   From these results, it was shown that the content of humic substances in the measured soil can be measured, and the cation exchange capacity (CEC) of the soil can be easily calculated from the content, especially acidic soil to neutral soil. It was confirmed to be effective in (soil having a pH of 7.0 or less). That is, according to the result of Example 1 above, for example, if the measurement soil collected at a soil collection site such as a vegetable production site is acidic soil to neutral soil (soil having a pH of 7.0 or less), the above (1) The soil when the pH of the soil collected at the vegetable production site or the like is 7.0 or less by substituting the measured value of the humic substance content in the soil measured by the above soil analyzer into the formula or the above formula (3) The cation exchange capacity (CEC) in the medium can be determined. On the other hand, if the measured soil is alkaline soil (pH> 7.0), the above-mentioned formula (2) or (4) By substituting the measured value of the humic substance content in the measured soil, it is recognized that the cation exchange capacity (CEC) in the soil when the soil collected at the vegetable production site etc. is alkaline soil can be obtained. It was.

次に、上記実施例2において波長524nmで測定したpHが7.0以下の各土壌のアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)と上記実施例1においてそれぞれ対応するpHが7.0以下の各土壌中の腐植物質の含有量の測定値との関係をグラフにプロットしたところ図7の結果を得た。このグラフによれば、pHが7.0以下の土壌のアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)と土壌中の腐植物質の含有量の測定値との相関関係は、相関係数R=0.89となり、吸光度と腐植物質の含有量との関係式を最小二乗法により求めたところ下記(5)式が得られた。また、上記実施例2において波長524nmで測定した全土壌のアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)と上記実施例1においてそれぞれ対応する全土壌の各土壌の腐植物質の含有量の測定値との関係を求めたところ、相関係数R=0.99となり、吸光度と腐植物質の含有量との関係式を最小二乗法により求めたところ下記(6)式が得られた。そこで、上記実施例2において波長524nmで測定したアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)を、pH7.0以下の土壌については下記式(5)、アルカリ性土壌については下記式(6)に代入して、腐植物質の含有量を算出した。結果を上記表2に併記する。
腐植物質の含有量(重量%)=14.9×(OD524nm)+0.97・・・(5)
腐植物質の含有量(重量%)=9.8×(OD524nm)+0.96・・・(6)
Next, the absorbance (OD 524 nm ) per 0.50 g of the alkaline extract of each soil having a pH of 7.0 or less measured in the above Example 2 at a wavelength of 524 nm and the corresponding pH in the above Example 1 are 7 When the relationship with the measured value of the content of humic substances in each soil of 0.0 or less was plotted on a graph, the result of FIG. 7 was obtained. According to this graph, the correlation between the absorbance (OD 524 nm ) per 0.50 g of the alkaline extract of the soil having a pH of 7.0 or less and the measured value of the content of humic substances in the soil is a correlation. The number R 2 = 0.89. When the relational expression between the absorbance and the content of humic substance was determined by the least square method, the following expression (5) was obtained. Moreover, the light absorbency ( OD524nm ) per 0.50g soil of the alkaline extract of the whole soil measured in wavelength of 524nm in the said Example 2, and the content of humic substances of each soil of each corresponding soil in the said Example 1 respectively. When the relationship with the measured value was obtained, the correlation coefficient R 2 = 0.99, and when the relational expression between the absorbance and the humic substance content was obtained by the least square method, the following equation (6) was obtained. . Therefore, the absorbance (OD 524 nm ) per 0.50 g of soil of the alkaline extract measured at a wavelength of 524 nm in Example 2 above, the following formula (5) for soil of pH 7.0 or less, and the following formula ( Substituting in 6), the humic substance content was calculated. The results are also shown in Table 2 above.
Humic substance content (% by weight) = 14.9 × (OD 524 nm ) +0.97 (5)
Humic substance content (% by weight) = 9.8 × (OD 524 nm ) +0.96 (6)

更に、実施例2の吸光度の測定値から得られた腐植物質の含有量とショーレンベルガー法により抽出した陽イオン交換容量との関係をグラフにプロットしたところ、両者間に一次の相関関係が認められ、相関係数R=0.67となり、吸光度(OD524nm)から算出された腐植物質の含有量とCEC値との間に相関があることが示された。また、最小二乗法により下記関係式(7)が得られた。更に、中性〜酸性土壌では、相関係数R=0.80となり、吸光度(OD524nm)から算出された腐植物質の含有量とCEC値との間に相関があることが示された。また、最小二乗法により下記関係式(8)が得られた。従って、測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、下記関係式(8)に吸光度(OD524nm)から算出された腐植物質の含有量を代入することによって、測定土壌中の陽イオン交換容量(CEC)を求めることができ、測定土壌がアルカリ性土壌(pH>7.0)であれば、下記関係式(7)に吸光度(OD524nm)から算出された腐植物質の含有量を代入することによって、測定土壌中の陽イオン交換容量(CEC)を求めることができる。 Further, when the relationship between the humic substance content obtained from the absorbance measurement value of Example 2 and the cation exchange capacity extracted by the Shohlenberger method was plotted on a graph, a first-order correlation was observed between the two. The correlation coefficient R 2 was 0.67, indicating that there was a correlation between the humic substance content calculated from the absorbance (OD 524 nm ) and the CEC value. Further, the following relational expression (7) was obtained by the method of least squares. Further, in neutral to acidic soil, the correlation coefficient R 2 was 0.80, indicating that there was a correlation between the humic substance content calculated from the absorbance (OD 524 nm ) and the CEC value. Further, the following relational expression (8) was obtained by the method of least squares. Therefore, if the measurement soil is acidic soil to neutral soil (soil having a pH of 7.0 or less), by substituting the humic substance content calculated from the absorbance (OD 524 nm) into the following relational expression (8), The cation exchange capacity (CEC) in the measured soil can be determined. If the measured soil is alkaline soil (pH> 7.0), the humus calculated from the absorbance (OD 524 nm) in the following relational expression (7) By substituting the content of the substance, the cation exchange capacity (CEC) in the measurement soil can be obtained.

Figure 2012026803
Figure 2012026803

即ち、上記実施例2の結果によれば、例えば、野菜生産現場などの土壌採取現場において採取した測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、上記(5)式に測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の分光光度計による測定値(OD524nm)を代入することによって、測定土壌の腐植物質の含有量を算出することができ、その腐植物質の含有量の算出値を上記式(8)に代入することによって、野菜生産現場などで採取した土壌のpHが7.0以下である場合の土壌中の陽イオン交換容量(CEC)を求めることができ、一方、測定土壌がアルカリ性土壌(pH>7.0)であれば、測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の分光光度計による測定値(OD524nm)を上記式(6)に代入することによって、測定土壌の腐植物質の含有量を算出することができ、その腐植物質の含有量の算出値を上記(7)式に代入することによって、野菜生産現場などで採取した土壌がアルカリ性である場合の土壌中の陽イオン交換容量(CEC)を求められることが認められた。 That is, according to the result of Example 2 above, for example, if the measurement soil collected at a soil collection site such as a vegetable production site is acidic soil to neutral soil (soil having a pH of 7.0 or less), the above (5) By substituting the measured value (OD 524 nm ) of the absorbance at a wavelength of 524 nm per 0.50 g of soil of the alkaline extract of the measured soil into the formula, the humic substance content of the measured soil can be calculated. By substituting the calculated value of the humic substance content into the above formula (8), the cation exchange capacity (CEC) in the soil when the pH of the soil collected at the vegetable production site or the like is 7.0 or less. On the other hand, if the measured soil is alkaline soil (pH> 7.0), the alkaline extract of the measured soil at a wavelength of 524 nm per 0.50 g of soil By substituting the value measured by spectrophotometer intensity of (OD 524 nm) in the equation (6), it is possible to calculate the content of humic substances measured soil, the calculated value of the content of the humic substances It was recognized that by substituting into the equation (7), the cation exchange capacity (CEC) in the soil when the soil collected at the vegetable production site or the like is alkaline can be obtained.

更に、上記実施例2において波長524nmで測定したアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)とショーレンベルガー法により抽出した陽イオン交換容量との関係をグラフにプロットしたところ、両者間に一次の相関関係が認められ、相関係数R=0.70となり、最小二乗法により下記関係式(9)が得られた。また更に、測定土壌(土壌サンプル)として中性〜酸性土壌のみを選定して同様にグラフを作成したところ、相関係数R=0.80となり、最小二乗法により下記関係式(10)が得られた。従って、測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、下記関係式(10)に吸光度の測定値を代入することによって、測定土壌中の陽イオン交換容量(CEC)を求めることができ、測定土壌がアルカリ性土壌(pH>7.0)であれば、下記関係式(9)に吸光度の測定値を代入することによって、試料土壌中の陽イオン交換容量(CEC)を求めることができる。即ち、この実施例2の結果によれば、例えば、野菜生産現場などの土壌採取現場において採取した測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、下記(10)式に測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の分光光度計による測定値(OD524nm)を代入することによって、野菜生産現場などで採取した土壌のpHが7.0以下である場合の土壌中の陽イオン交換容量(CEC)を求めることができ、一方、測定土壌がアルカリ性土壌(pH>7.0)であれば、測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の分光光度計による測定値(OD524nm)を下記式(9)に代入することによって、野菜生産現場などで採取した土壌がアルカリ性である場合の土壌中の陽イオン交換容量(CEC)を求められることが認められた。
CEC(me/100g土壌)=86×OD524nm+11.9・・・(9)
CEC(me/100g土壌)=88.5×OD524nm+11.0・・・(10)
Furthermore, when the relationship between the absorbance (OD 524 nm ) per 0.50 g of soil of the alkaline extract measured in the above Example 2 at a wavelength of 524 nm and the cation exchange capacity extracted by the Shoreenberger method was plotted in a graph, both A first-order correlation was observed between them, and the correlation coefficient R 2 was 0.70. The following relational expression (9) was obtained by the least square method. Furthermore, when only neutral to acidic soil was selected as the measurement soil (soil sample) and the graph was similarly created, the correlation coefficient R 2 was 0.80, and the following relational expression (10) was obtained by the least square method. Obtained. Therefore, if the measurement soil is acidic soil to neutral soil (soil having a pH of 7.0 or less), the cation exchange capacity (CEC) in the measurement soil is substituted by substituting the measured value of absorbance into the following relational expression (10). If the measured soil is alkaline soil (pH> 7.0), the cation exchange capacity (CEC) in the sample soil is substituted by substituting the measured value of absorbance into the following relational expression (9). ). That is, according to the results of Example 2, for example, if the measurement soil collected at a soil collection site such as a vegetable production site is acidic soil to neutral soil (soil having a pH of 7.0 or less), the following (10) By substituting the measured value (OD 524 nm ) of the absorbance at a wavelength of 524 nm per 0.50 g of soil of the alkaline extract of the measured soil into the formula, the pH of the soil collected at the vegetable production site or the like is 7.0. The cation exchange capacity (CEC) in the soil in the following cases can be determined. On the other hand, if the measured soil is an alkaline soil (pH> 7.0), 0.50 g of the alkaline extract of the measured soil It was collected at the vegetable production site etc. by substituting the measured value (OD 524 nm ) with the spectrophotometer of the absorbance at a wavelength of 524 nm per unit into the following formula (9) It was found that the cation exchange capacity (CEC) in the soil can be determined when the soil is alkaline.
CEC (me / 100 g soil) = 86 × OD 524 nm + 11.9 (9)
CEC (me / 100 g soil) = 88.5 × OD 524 nm + 11.0 (10)

次に、上記実施例3において波長524nmで測定したアルカリ性抽出液の土壌0.50g当たりの吸光度(OD524nm)とショーレンベルガー法により抽出した陽イオン交換容量との関係をグラフにプロットしたところ図8の結果を得た。このグラフによれば、両者間に一次の相関関係が認められ、相関係数R=0.62となり、最小二乗法により下記関係式(11)が得られた。また更に、試料土壌として中性〜酸性土壌のみを選定して同様にグラフを作成したところ図9の結果を得、相関係数R=0.78となり、最小二乗法により下記関係式(12)が得られた。従って、測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、下記関係式(12)に吸光度の測定値を代入することによって、測定土壌中の陽イオン交換容量(CEC)を求めることができ、測定土壌がアルカリ性土壌(pH>7.0)であれば、下記関係式(11)に吸光度の測定値を代入することによって、測定土壌中の陽イオン交換容量(CEC)を求めることができる。
CEC(me/100g土壌)=103×OD524nm+12.1・・・(11)
CEC(me/100g土壌)=109×OD524nm+11.0・・・(12)
Next, a graph plotting the relationship between the absorbance (OD 524 nm ) per 0.50 g of soil of the alkaline extract measured at a wavelength of 524 nm in Example 3 above and the cation exchange capacity extracted by the Shohlenberger method is shown in the graph. A result of 8 was obtained. According to this graph, a first-order correlation was observed between the two, and the correlation coefficient R 2 = 0.62, and the following relational expression (11) was obtained by the least square method. Furthermore, when only neutral to acidic soil was selected as the sample soil and the graph was similarly prepared, the result of FIG. 9 was obtained, and the correlation coefficient R 2 = 0.78 was obtained, and the following relational expression (12 )was gotten. Therefore, if the measured soil is acidic soil to neutral soil (soil having pH 7.0 or lower), the cation exchange capacity (CEC) in the measured soil is substituted by substituting the measured value of absorbance into the following relational expression (12). ), And if the measured soil is alkaline soil (pH> 7.0), the cation exchange capacity (CEC) in the measured soil is substituted by substituting the measured absorbance value into the following relational expression (11). ).
CEC (me / 100 g soil) = 103 × OD 524 nm + 12.1 (11)
CEC (me / 100 g soil) = 109 × OD 524 nm + 11.0 (12)

即ち、実施例3の結果によれば、例えば、野菜生産現場などの土壌採取現場において採取した測定土壌が酸性土壌〜中性土壌(pH7.0以下の土壌)であれば、上記(12)式に測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の上記土壌分析器による測定値(OD524nm)を代入することによって、野菜生産現場などで採取した土壌のpHが7.0以下である場合の土壌中の陽イオン交換容量(CEC)を求めることができ、一方、測定土壌がアルカリ性土壌(pH>7.0)であれば、測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度の上記土壌分析器による測定値(OD524nm)を上記式(11)に代入することによって、野菜生産現場などで採取した土壌がアルカリ性である場合の土壌中の陽イオン交換容量(CEC)を求められることが認められた。 That is, according to the result of Example 3, for example, if the measurement soil collected at a soil collection site such as a vegetable production site is acidic soil to neutral soil (soil having a pH of 7.0 or less), the above formula (12) By substituting the measured value (OD 524 nm ) by the soil analyzer for the absorbance at a wavelength of 524 nm per 0.50 g of soil of the alkaline extract of the measured soil, the pH of the soil collected at the vegetable production site or the like is 7.0. The cation exchange capacity (CEC) in the soil in the following cases can be determined. On the other hand, if the measured soil is an alkaline soil (pH> 7.0), 0.50 g of the alkaline extract of the measured soil By substituting the measured value (OD 524 nm ) of the absorbance at a wavelength of 524 nm by the above soil analyzer into the above formula (11), it is collected at a vegetable production site or the like. It was found that the cation exchange capacity (CEC) in the soil can be determined when the soil taken is alkaline.

以上の結果から、土壌に含まれる腐植物質の含有量に対応する指標値からその土壌の持つ陽イオン交換容量(CEC)を簡易的に算出できることが示された。なお、本発明の土壌中の陽イオン交換容量の測定方法は、上述したように、例えば、野菜生産現場などにおける肥料の使用量の決定に際し、土壌中の陽イオン交換容量の測定を分析センターなどに依頼しなくても、野菜生産者などが各自でその土壌採取現場において土壌中の陽イオン交換容量を求め、その場で肥料の使用量を決定することも可能とするものであり、そのような簡易判定に利用するには、上記実施例における腐植物質の含有量に対応する指標値の測定値と陽イオン交換容量の測定値とは、十分な相関関係を有するものである。上記実施例1〜3のCEC測定方法によれば、従来法で2時間〜数日程度かかっていたCECの測定時間が、5分程度に短縮できた。更に工程がかなり少なくなることから、野菜生産現場においても十分実施が可能であるといえる。   From the above results, it was shown that the cation exchange capacity (CEC) of the soil can be easily calculated from the index value corresponding to the content of humic substances contained in the soil. The method for measuring the cation exchange capacity in the soil of the present invention is, as described above, for example, in determining the amount of fertilizer used in a vegetable production site, the measurement of the cation exchange capacity in the soil is performed at an analysis center or the like. It is also possible for vegetable producers, etc. to determine the cation exchange capacity in the soil at the soil collection site and determine the amount of fertilizer used on the spot, without requesting In order to use it for simple determination, the measured value of the index value corresponding to the humic substance content in the above example and the measured value of the cation exchange capacity have a sufficient correlation. According to the CEC measurement methods of Examples 1 to 3, the CEC measurement time, which took about 2 hours to several days in the conventional method, could be shortened to about 5 minutes. Furthermore, since the number of processes is considerably reduced, it can be said that it can be sufficiently carried out at the vegetable production site.

そして、本発明の土壌分析器の一構成例として上述した土壌分析器1(図1,2参照)の吸光度の測定波長を524nmとし、セル長さが10mm、測定土壌のpHが7.0以下の場合に測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度(OD524nm)と腐植物質の含有量との相関関係を示す下記関係式(5)、算出された腐植物質の含有量と陽イオン交換容量との相関関係を示す下記関係式(8)、測定土壌がアルカリ性土壌の場合に測定土壌のアルカリ性抽出液の土壌0.50g当たりの波長524nmにおける吸光度(OD524nm)と腐植物質の含有量との相関関係を示す下記関係式(6)、算出された腐植物質の含有量と陽イオン交換容量との相関関係を示す下記関係式(7)を記憶手段に記憶させ、表示部2(図1,2参照)に演算手段によって得られた腐植物質の含有量とCEC値が表示されるように構成することによって、この簡易的なCECの測定方法を実施することが可能であることが確認された。なお、土壌分析器に搭載する関係式は、測定波長、セル長さ、土壌分析器の仕様などにより、適宜変更することできる。 And as a structural example of the soil analyzer of the present invention, the absorbance measurement wavelength of the soil analyzer 1 described above (see FIGS. 1 and 2) is 524 nm, the cell length is 10 mm, and the pH of the measured soil is 7.0 or less. The following relational expression (5) showing the correlation between the absorbance (OD 524 nm ) at a wavelength of 524 nm per 0.50 g of soil of the alkaline extract of the measured soil and the content of humic substance, the calculated humic substance content The following relational expression (8) showing the correlation between the amount and the cation exchange capacity, when the measurement soil is alkaline soil, the absorbance (OD 524 nm ) at a wavelength of 524 nm per 0.50 g of the alkaline extract of the measurement soil and humus The following relational expression (6) indicating the correlation with the substance content is stored, and the following relational expression (7) indicating the correlation between the calculated humic substance content and the cation exchange capacity is stored. This simple CEC measurement method is configured so that the content and CEC value of the humic substance obtained by the calculation means are displayed on the display unit 2 (see FIGS. 1 and 2). It was confirmed that it could be implemented. Note that the relational expression mounted on the soil analyzer can be appropriately changed according to the measurement wavelength, the cell length, the specifications of the soil analyzer, and the like.

Figure 2012026803
Figure 2012026803

1 土壌分析器
1a 分析器本体ケース
2 表示部(表示手段)
3a,3b,3c,3d 入力用ボタン(入力手段)
4 光照射部(吸光度測定手段)
5 受光部(吸光度測定手段)
6 セル(吸光度測定手段)
6a セル固定部(吸光度測定手段)
7 アルカリ性抽出液
DESCRIPTION OF SYMBOLS 1 Soil analyzer 1a Analyzer main body case 2 Display part (display means)
3a, 3b, 3c, 3d Input buttons (input means)
4 Light irradiation part (absorbance measurement means)
5 Light receiving part (absorbance measuring means)
6 cells (absorbance measurement means)
6a Cell fixing part (absorbance measuring means)
7 Alkaline extract

Claims (16)

土壌中の陽イオン交換容量の測定方法であって、土壌中の腐植物質の含有量に対応する指標値を測定し、その測定値を陽イオン交換容量に換算することを特徴とする土壌中の陽イオン交換容量の測定方法。 A method for measuring cation exchange capacity in soil, characterized by measuring an index value corresponding to the content of humic substances in soil and converting the measured value to cation exchange capacity. Method for measuring cation exchange capacity. 上記土壌にアルカリ性水溶液を添加し、該アルカリ性水溶液中に上記腐植物質を含む抽出成分を抽出してアルカリ性抽出液を得た後、上記腐植物質の吸収波長における上記アルカリ性抽出液の吸光度を測定し、その測定値を陽イオン交換容量に換算する請求項1に記載の土壌中の陽イオン交換容量の測定方法。 After adding an alkaline aqueous solution to the soil and extracting an extract component containing the humic substance in the alkaline aqueous solution to obtain an alkaline extract, the absorbance of the alkaline extract at the absorption wavelength of the humic substance is measured, The method for measuring a cation exchange capacity in soil according to claim 1, wherein the measured value is converted into a cation exchange capacity. 上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と上記土壌中の腐植物質の含有量との相関関係を示す標準曲線又は関係式を求め、該標準曲線又は該関係式により上記吸光度の測定値を上記土壌中の腐植物質の含有量に換算し、該腐植物質の含有量の換算値と土壌中の陽イオン交換容量との相関関係を示す標準曲線又は関係式を求め、該標準曲線又は該関係式により上記腐植物質の含有量の換算値を土壌中の陽イオン交換容量に換算する請求項2に記載の土壌中の陽イオン交換容量の測定方法。 A standard curve or relational expression showing a correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance and the content of the humic substance in the soil is obtained, and the standard curve or the relation is obtained. A standard curve or a relational expression showing the correlation between the measured value of the absorbance according to the formula to the content of the humic substance in the soil and the converted value of the content of the humic substance and the cation exchange capacity in the soil, The method for measuring a cation exchange capacity in soil according to claim 2, wherein the converted value of the humic substance content is converted into a cation exchange capacity in the soil by the standard curve or the relational expression. 少なくとも3点の腐植物質の含有量が既知のpHが7.0以下の土壌サンプル及び少なくとも1点の腐植物質の含有量が既知のアルカリ性土壌サンプルについて、上記腐植物質の一の吸収波長を測定波長として所定重量当たりの土壌サンプルからの上記アルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、測定する土壌のpHが7.0以下である場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A×(吸光度)+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する腐植物質の含有量とから、測定する土壌がアルカリ性である場合に利用する上記測定波長における上記吸光度と腐植物質の含有量との関係式である(腐植物質の含有量(重量%))=A×(吸光度)+BにおけるA及びBの値を求め、少なくとも3点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記測定波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A×(吸光度)+Bにより算出した腐植物質の含有量の各算出値と各算出値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値から上記(腐植物質の含有量(重量%))=A×(吸光度)+Bにより算出した腐植物質の含有量の各算出値と各算出値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求める請求項3に記載の土壌中の陽イオン交換容量の測定方法。 Measurement wavelength of one absorption wavelength of the above humic substance for a soil sample with a known pH of 7.0 or less and an alkaline soil sample with a known humic substance content of at least one point. And measuring the absorbance of the alkaline extract from the soil sample per predetermined weight, and measuring the absorbance in a soil sample having a pH of 7.0 or less and the content of humic substances corresponding to each measured value. From the relationship between the absorbance and the humic substance content at the measurement wavelength used when the pH of the soil to be measured is 7.0 or less (humic substance content (% by weight)) = A 1 × (absorbance) + humic substances with determining the value of a 1 and B 1 in B 1, corresponding to each measured value of the absorbance and the measured values in all soil samples Is a relational expression between the absorbance and the humic substance content at the measurement wavelength used when the soil to be measured is alkaline (humic substance content (% by weight)) = A 2 × (absorbance) + calculated values of a 2 and B 2 in B 2, the value of the cation exchange capacity of at least three points the value of the cation exchange capacity of known pH is 7.0 or less of soil samples and the at least one point With respect to a known alkaline soil sample, the absorbance of the alkaline extract from the soil per predetermined weight at the measurement wavelength is measured, and the absorbance (humic substance) is measured from the measured values of the absorbance in a soil sample having a pH of 7.0 or less. content (wt%)) = a 1 × (absorbance) + B 1 of cation-exchange capacity corresponding to each calculated value and the calculated value of the content of the calculated humic substances by the From, pH of the soil to be measured is a relational expression between the content and the cation exchange capacity of the humic substances utilized in the case of 7.0 or less (cation exchange capacity (me / 100 g soil)) = A 3 × (content of humic substances (wt%)) + B together determine the value of a 3 and B 3 in 3, the from the measurement of the absorbance at all soil samples (the content of humic substances (wt%)) = a From each calculated value of humic substance content calculated by 2 × (absorbance) + B 2 and the value of the cation exchange capacity corresponding to each calculated value, the humic substance used when the soil to be measured is alkaline content and a relational expression between the cation exchange capacity (cation exchange capacity (me / 100 g soil)) = a 4 × (content of humic substances (wt%)) + value of a 4 and B 4 in B 4 The claim of claim 3 Method of measuring the cation exchange capacity of 壌中. 上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度により上記土壌中の腐植物質の含有量を算出し、測定値として表示する土壌分析器により上記土壌中の腐植物質の含有量の測定値を得、該腐植物質の含有量の測定値と土壌中の陽イオン交換容量との相関関係を示す標準曲線又は関係式を求め、該標準曲線又は該関係式により上記腐植物質の含有量の測定値を陽イオン交換容量に換算する請求項2に記載の土壌中の陽イオン交換容量の測定方法。 The content of the humic substance in the soil is calculated from the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance, and the humic substance in the soil is displayed by a soil analyzer that displays the measured value. Obtaining a measurement value of the content, obtaining a standard curve or a relational expression showing a correlation between the measurement value of the content of the humic substance and the cation exchange capacity in the soil, and obtaining the above humic substance from the standard curve or the relational expression The method for measuring the cation exchange capacity in soil according to claim 2, wherein the measured value of the content of cation is converted into a cation exchange capacity. 上記土壌分析器により少なくとも3点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度をそれぞれ測定して上記土壌中の腐植物質の含有量の各測定値を得、pHが7.0以下の土壌サンプルにおける上記腐植物質の含有量の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記腐植物質の含有量の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(腐植物質の含有量(重量%))+BにおけるA及びBの値を求める請求項5に記載の土壌中の陽イオン交換容量の測定方法。 For the soil sample having a known pH value of 7.0 or less and the alkaline soil sample having a known cation exchange capacity value of at least three points by the soil analyzer, The absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength is measured to obtain each measured value of the content of the humic substance in the soil, and the humic substance in the soil sample having a pH of 7.0 or less The humic substance content and the cation exchange capacity used when the pH of the soil to be measured is 7.0 or less, based on the measured value of the content of each cation and the value of the cation exchange capacity corresponding to each measured value. is a relational expression (cation exchange capacity (me / 100 g soil)) = a 5 × (content of humic substances (wt%)) + with determining the value of a 5 and B 5 in B 5 From the measured values of the above humic substances in all soil samples and the cation exchange capacity values corresponding to the respective measured values, the humic substance contents and the positive values used when the soil to be measured is alkaline. Claim of determining the values of A 6 and B 6 in the relational expression with ion exchange capacity (cation exchange capacity (me / 100 g soil)) = A 6 × (content of humic substance (% by weight)) + B 6 5. A method for measuring a cation exchange capacity in soil according to 5. 測定する土壌のpHが7.0以下の場合、該土壌中の腐植物質の含有量の測定値を下記式(1)に代入して陽イオン交換容量を計算する請求項5に記載の土壌中の陽イオン交換容量の測定方法。
Figure 2012026803
In the soil of Claim 5 which calculates the cation exchange capacity by substituting the measured value of the content of humic substances in the soil into the following formula (1) when the pH of the soil to be measured is 7.0 or less Method for measuring the cation exchange capacity of
Figure 2012026803
測定する土壌がアルカリ性の場合、該土壌中の腐植物質の含有量の測定値を下記式(2)に代入して陽イオン交換容量を計算する請求項5に記載の土壌中の陽イオン交換容量の測定方法。
Figure 2012026803
6. The cation exchange capacity in soil according to claim 5, wherein, when the soil to be measured is alkaline, the cation exchange capacity is calculated by substituting the measured value of the humic substance content in the soil into the following formula (2). Measuring method.
Figure 2012026803
上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と土壌中の陽イオン交換容量との相関関係を示す標準曲線又は関係式を求め、該標準曲線又は該関係式により上記吸光度の測定値を土壌中の陽イオン交換容量に換算する請求項2に記載の土壌中の陽イオン交換容量の測定方法。 A standard curve or a relational expression indicating a correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance and the cation exchange capacity in the soil is obtained, and the standard curve or the relational expression is obtained. The method for measuring a cation exchange capacity in soil according to claim 2, wherein the measured value of absorbance is converted into a cation exchange capacity in soil. 少なくとも3点の陽イオン交換容量の値が既知のpHが7.0以下の土壌サンプル及び少なくとも1点の陽イオン交換容量の値が既知のアルカリ性土壌サンプルについて、上記腐植物質の一の吸収波長を測定波長として所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度をそれぞれ測定し、pHが7.0以下の土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌のpHが7.0以下の場合に利用する上記測定波長における上記吸光度と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(吸光度)+BにおけるA及びBの値を求めると共に、全土壌サンプルにおける上記吸光度の各測定値と各測定値にそれぞれ対応する陽イオン交換容量の値とから、測定する土壌がアルカリ性である場合に利用する上記測定波長における上記吸光度と陽イオン交換容量との関係式である(陽イオン交換容量(me/100g土壌))=A×(吸光度)+BにおけるA及びBの値を求める請求項9に記載の土壌中の陽イオン交換容量の測定方法。 The absorption wavelength of one of the above humic substances is determined for at least three soil samples with known cation exchange capacity values of pH 7.0 or less and at least one alkaline soil sample with known cation exchange capacity values. As the measurement wavelength, the absorbance of the alkaline extract from the soil per predetermined weight is measured, and the measured value of the absorbance in a soil sample having a pH of 7.0 or less and the cation exchange capacity corresponding to each measured value. Value is a relational expression between the absorbance and the cation exchange capacity at the measurement wavelength used when the pH of the soil to be measured is 7.0 or less (cation exchange capacity (me / 100 g soil)) = A 7 × (absorbance) + with determining the value of a 7 and B 7 in B 7, respectively corresponding to the measurement values and the measurement value of the absorbance at all soil samples It is a relational expression between the absorbance and the cation exchange capacity at the measurement wavelength used when the soil to be measured is alkaline from the value of the cation exchange capacity to be measured (cation exchange capacity (me / 100 g soil)). = a 8 × (absorbance) + measuring method of the cation exchange capacity of the soil according to claim 9 for determining the values of a 8 and B 8 at B 8. 上記関係式を最小二乗法により求める請求項4、6又は10に記載の土壌中の陽イオン交換容量の測定方法。 The method for measuring a cation exchange capacity in soil according to claim 4, 6 or 10, wherein the relational expression is obtained by a method of least squares. 上記アルカリ性水溶液が、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウムから選ばれるアルカリ性化合物を含有する水溶液である請求項2乃至11のいずれか1項に記載の土壌中の陽イオン交換容量の測定方法。 The cation exchange capacity in soil according to any one of claims 2 to 11, wherein the alkaline aqueous solution is an aqueous solution containing an alkaline compound selected from sodium hydroxide, potassium hydroxide, sodium bicarbonate, and sodium carbonate. Measuring method. 上記アルカリ性水溶液のpHが、8.0を超え、且つ13.9未満である請求項2乃至12のいずれか1項に記載の土壌中の陽イオン交換容量の測定方法。 The method for measuring a cation exchange capacity in soil according to any one of claims 2 to 12, wherein the pH of the alkaline aqueous solution is more than 8.0 and less than 13.9. 上記アルカリ性抽出液の吸光度を400〜650nmから選ばれる少なくとも一つの波長において測定する請求項2乃至13のいずれか1項に記載の土壌中の陽イオン交換容量の測定方法。 The method for measuring a cation exchange capacity in soil according to any one of claims 2 to 13, wherein the absorbance of the alkaline extract is measured at at least one wavelength selected from 400 to 650 nm. 土壌中の陽イオン交換容量の測定に使用する土壌分析器であって、測定する土壌の秤量値、pHをデータとして入力するデータ入力手段と、腐植物質を含有するアルカリ性抽出液の腐植物質の吸収波長における吸光度を測定する吸光度測定手段と、測定する土壌のpHが7.0以下の場合に利用する上記腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式と、測定する土壌がアルカリ性である場合に利用する上記腐植物質の吸収波長における上記吸光度と陽イオン交換容量との相関関係を示す関係式及び/又は上記腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式と腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式とを記憶する記憶手段と、上記データ入力手段に入力された測定する土壌のpHにより利用する関係式を上記記憶手段に記憶された上記関係式の中から選定する選定手段と、上記吸光度測定手段によって測定された吸光度のデータを必要に応じて上記データ入力手段に入力された上記土壌の秤量値により所定重量当たりの吸光度に換算して上記選定手段により選定された関係式に代入して陽イオン交換容量を求める演算手段と、該演算手段により得られた陽イオン交換容量の値を表示する表示手段と、を備えたことを特徴とする土壌分析器。 A soil analyzer used for measuring the cation exchange capacity in soil, and a data input means for inputting the measured value and pH of the soil to be measured as data, and absorption of humic substances in an alkaline extract containing humic substances Absorbance measuring means for measuring absorbance at a wavelength, and absorbance and cation exchange of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance used when the pH of the soil to be measured is 7.0 or less Relational expression showing correlation with capacity and / or relational expression showing correlation between absorbance and humic substance content at absorption wavelength of humic substance and correlation between humic substance content and cation exchange capacity And the correlation between the absorbance and the cation exchange capacity at the absorption wavelength of the humic substance used when the soil to be measured is alkaline. A relational expression showing the correlation between the absorbance and the humic substance content at the absorption wavelength of the humic substance, and a relational expression showing a correlation between the humic substance content and the cation exchange capacity. The storage means for storing, the selection means for selecting the relational expression used by the pH of the soil to be measured input to the data input means from the relational expression stored in the storage means, and the measurement by the absorbance measurement means Cation exchange capacity by substituting the absorbance data thus converted into absorbance per a predetermined weight based on the measured value of the soil input to the data input means and substituting it into the relational expression selected by the selection means. And a display means for displaying the value of the cation exchange capacity obtained by the computing means. 上記記憶手段が、測定する土壌のpHが7.0以下の場合に利用する腐植物質の吸収波長における所定重量当たりの土壌からの上記アルカリ性抽出液の吸光度と腐植物質の含有量との相関関係を示す関係式、測定する土壌のpHが7.0以下の場合に利用する腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式及び/又は測定する土壌のpHが7.0以下の場合に利用する腐植物質の吸収波長における上記吸光度と陽イオン交換容量との相関関係を示す関係式、測定する土壌がアルカリ性である場合に利用する腐植物質の吸収波長における上記吸光度と腐植物質の含有量との相関関係を示す関係式、測定する土壌がアルカリ性である場合に利用する腐植物質の含有量と陽イオン交換容量との相関関係を示す関係式及び/又は測定する土壌がアルカリ性である場合に利用する腐植物質の吸収波長における上記吸光度と陽イオン交換容量との相関関係を示す関係式を記憶し、上記演算手段が上記吸光度測定手段によって測定された吸光度のデータ及び必要に応じて上記秤量値から腐植物質の含有量を算出し、更に、該腐植物質の含有量の算出値又は腐植物質の吸収波長における上記吸光度から陽イオン交換容量を算出し、上記表示部が上記演算手段により得られた陽イオン交換容量の値と、上記腐植物質の含有量の算出値を表示するように構成された請求項15に記載の土壌分析器。 The storage means calculates the correlation between the absorbance of the alkaline extract from the soil per predetermined weight at the absorption wavelength of the humic substance used when the pH of the soil to be measured is 7.0 or less and the content of the humic substance. The relational expression shown, the relational expression showing the correlation between the humic substance content and the cation exchange capacity used when the pH of the soil to be measured is 7.0 or less and / or the pH of the soil to be measured is 7.0 or less The relational expression showing the correlation between the absorbance and the cation exchange capacity at the absorption wavelength of the humic substance used in the case of the above, the absorbance and the humic substance at the absorption wavelength of the humic substance used when the soil to be measured is alkaline Relational expression showing correlation with content, relational expression showing correlation between humic substance content and cation exchange capacity used when soil to be measured is alkaline and / or measurement Storing the relational expression showing the correlation between the absorbance and the cation exchange capacity at the absorption wavelength of the humic substance to be used when the soil to be used is alkaline, the absorbance data measured by the absorbance measuring means by the calculating means And, if necessary, calculating the humic substance content from the measured value, further calculating the cation exchange capacity from the calculated value of the humic substance content or the absorbance at the absorption wavelength of the humic substance, and the display unit The soil analyzer according to claim 15, wherein the soil analyzer is configured to display a value of a cation exchange capacity obtained by the computing means and a calculated value of the content of the humic substance.
JP2010164258A 2010-07-21 2010-07-21 Method for measuring cation exchange capacity in soil and soil analyzer Expired - Fee Related JP5734593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164258A JP5734593B2 (en) 2010-07-21 2010-07-21 Method for measuring cation exchange capacity in soil and soil analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164258A JP5734593B2 (en) 2010-07-21 2010-07-21 Method for measuring cation exchange capacity in soil and soil analyzer

Publications (2)

Publication Number Publication Date
JP2012026803A true JP2012026803A (en) 2012-02-09
JP5734593B2 JP5734593B2 (en) 2015-06-17

Family

ID=45779921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164258A Expired - Fee Related JP5734593B2 (en) 2010-07-21 2010-07-21 Method for measuring cation exchange capacity in soil and soil analyzer

Country Status (1)

Country Link
JP (1) JP5734593B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207164A (en) * 2013-04-09 2013-07-17 青岛农业大学 Method for measuring ith potassium of moisture soil and clay coil mineral crystal lattice
CN104569286A (en) * 2014-12-31 2015-04-29 青岛谱尼测试有限公司 Detection method for cation exchange capacity in culture medium
CN105223309A (en) * 2015-09-25 2016-01-06 青岛京诚检测科技有限公司 A kind of rapid verification method of cation exchange capacity (CEC)
CN104458624B (en) * 2014-12-19 2017-02-22 中国环境科学研究院 Method for analyzing electron transfer capability of in-situ humus of soil
JP2019210385A (en) * 2018-06-05 2019-12-12 東亞合成株式会社 Ground improver composition and use thereof
JP2021099281A (en) * 2019-12-23 2021-07-01 株式会社みらい蔵 Cation exchange capacity calculation method, cation exchange capacity calculation program, and cation exchange capacity calculation system
CN113959977A (en) * 2021-10-08 2022-01-21 云南省烟草公司昆明市公司 Soil exchangeable magnesium content calculation method, prediction method and prediction system based on near infrared spectrum
CN116296732A (en) * 2023-04-12 2023-06-23 中国科学院生态环境研究中心 Method and system for measuring cation exchange capacity of soil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127003A (en) * 1995-09-01 1997-05-16 Nkk Corp Method for judging degree of humification of compost-treated object
US5651831A (en) * 1992-09-04 1997-07-29 Kruse; Kai Process for immobilizing organic and inorganic pollutants in a contaminated soil material on a remediation site
JPH10204906A (en) * 1997-01-21 1998-08-04 Fujita Corp Alkali absorbing sheet and alkali elusion preventing method
JPH10317362A (en) * 1997-05-23 1998-12-02 Pub Works Res Inst Ministry Of Constr Method for preventing elution of alkali in construction of improved soil banking
JP2001324499A (en) * 2000-03-30 2001-11-22 Hyun Haenam Rapid measuring method of soil cation exchange capacity using copper adsorption and spectrophotometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651831A (en) * 1992-09-04 1997-07-29 Kruse; Kai Process for immobilizing organic and inorganic pollutants in a contaminated soil material on a remediation site
JPH09127003A (en) * 1995-09-01 1997-05-16 Nkk Corp Method for judging degree of humification of compost-treated object
JPH10204906A (en) * 1997-01-21 1998-08-04 Fujita Corp Alkali absorbing sheet and alkali elusion preventing method
JPH10317362A (en) * 1997-05-23 1998-12-02 Pub Works Res Inst Ministry Of Constr Method for preventing elution of alkali in construction of improved soil banking
JP2001324499A (en) * 2000-03-30 2001-11-22 Hyun Haenam Rapid measuring method of soil cation exchange capacity using copper adsorption and spectrophotometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIM SIONG FONG 他5名: "Characterization of the Coal Derived Humic Acids from Mukah, Sarawak as Soil Conditioner", J. BRAZ. CHEM. SOC., vol. 17, no. 3, JPN6013046752, 24 February 2006 (2006-02-24), pages 582 - 587, ISSN: 0002903142 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207164A (en) * 2013-04-09 2013-07-17 青岛农业大学 Method for measuring ith potassium of moisture soil and clay coil mineral crystal lattice
CN104458624B (en) * 2014-12-19 2017-02-22 中国环境科学研究院 Method for analyzing electron transfer capability of in-situ humus of soil
CN104569286A (en) * 2014-12-31 2015-04-29 青岛谱尼测试有限公司 Detection method for cation exchange capacity in culture medium
CN105223309A (en) * 2015-09-25 2016-01-06 青岛京诚检测科技有限公司 A kind of rapid verification method of cation exchange capacity (CEC)
JP2019210385A (en) * 2018-06-05 2019-12-12 東亞合成株式会社 Ground improver composition and use thereof
JP7172148B2 (en) 2018-06-05 2022-11-16 東亞合成株式会社 SOIL IMPROVEMENT COMPOSITION AND USE THEREOF
JP2021099281A (en) * 2019-12-23 2021-07-01 株式会社みらい蔵 Cation exchange capacity calculation method, cation exchange capacity calculation program, and cation exchange capacity calculation system
CN113959977A (en) * 2021-10-08 2022-01-21 云南省烟草公司昆明市公司 Soil exchangeable magnesium content calculation method, prediction method and prediction system based on near infrared spectrum
CN116296732A (en) * 2023-04-12 2023-06-23 中国科学院生态环境研究中心 Method and system for measuring cation exchange capacity of soil

Also Published As

Publication number Publication date
JP5734593B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5734593B2 (en) Method for measuring cation exchange capacity in soil and soil analyzer
US8472024B2 (en) Automated soil measurement device
Markert Multi-element analysis in plant materials—analytical tools and biological questions
Shamrikova et al. Transferability between soil organic matter measurement methods for database harmonization
Okalebo et al. Laboratory methods of soil and plant analysis: a working manual second edition
CN101819148B (en) Three-dimensional fluorescence spectrum method for measuring chlorine disinfection by-product precursor in water
CN102507483A (en) Method for determining content of calcium carbonate in cigarette paper
CN102788791A (en) Fast determination method for soil acidity and alkalinity and determination device thereof
CN105973879A (en) Paper chip colorimetric analysis system for mercury ion detection and construction method and application thereof
CN103529009A (en) Method for detecting hydrogen sulfide in serum through near-infrared fluorescent probe Cy-Cl
Amadasi et al. Determination of the post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: Are they reliable as an alternative to 14C?
CN102116767B (en) Method for simultaneously measuring K, Ca and Mg in tobacco
CN101539524B (en) Fluorescence detection card and fluorescence detection method for organic contaminants in food and environment
CN109520983A (en) A kind of quality evaluation method and device based on DOM
JP5885168B2 (en) Method and apparatus for analyzing soil geological traits
CN103115881B (en) Evaluate and reduce the method for the uncertainty numerical value of potassium in iron ore
CN111912840A (en) Method for rapidly detecting whether total acid of brewed vinegar is qualified
KR102326182B1 (en) Rapid measurement method of soil organic matter content
Qualls Dissolved organic matter
Rayment et al. 4 Soil pH
Chen et al. Coherent tracer correlations in deep-sea corals and implications for biomineralization mechanisms underlying vital effects
CN102854164B (en) A kind of method measuring Ca content in carbon materials
JP2013061184A (en) Origin discrimination method for japanese wheat using trace element
CN110308144A (en) The detection method of calcium ions and magnesium ions in a kind of straw ash
CN102564984A (en) Method for measuring and analyzing Ni (nickel) content in carbon material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5734593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees