JP2012026737A - Eddy current flaw detector - Google Patents

Eddy current flaw detector Download PDF

Info

Publication number
JP2012026737A
JP2012026737A JP2010162471A JP2010162471A JP2012026737A JP 2012026737 A JP2012026737 A JP 2012026737A JP 2010162471 A JP2010162471 A JP 2010162471A JP 2010162471 A JP2010162471 A JP 2010162471A JP 2012026737 A JP2012026737 A JP 2012026737A
Authority
JP
Japan
Prior art keywords
receiver
leg
exciter
iron core
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162471A
Other languages
Japanese (ja)
Inventor
Keiichi Nonogaki
慶一 野々垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUREYON CO Ltd
Original Assignee
KUREYON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUREYON CO Ltd filed Critical KUREYON CO Ltd
Priority to JP2010162471A priority Critical patent/JP2012026737A/en
Publication of JP2012026737A publication Critical patent/JP2012026737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To deepen flaw detection depth of a device which detects a flow of nonmagnetic metal, to make the device highly sensitive, and to make the device into product configuration with high reliability.SOLUTION: An exciter consists of an iron core in the portal cross-sectional shape and an exciting coil, the iron core in the portal cross-sectional shape consists of a first leg, a second leg, and a beam part for connecting both legs, the first leg is thinner than the second leg, the exciting coil is wound in the surroundings of the first leg, when a nonmetal test body is a non-magnetic stainless steel alloy material, a second current line of the exciting coil which passes through the outside of the thin first leg of the iron core is located at a position higher than a first current line which passes between the first and second legs of the iron core and so as not to exceed height of the iron core, a receiver in which a reception coil is wound around the tip side of a rod-like iron core is set to an angle so as not to interlink a magnetic flux of a primary magnetic field under a state where there is no nonmetal test body at a position where the receiver does not contact the outside of the thick second leg of the exciter.

Description

本発明は、一次磁界を被金属検体に印加することによって、渦電流を被金属検体に誘導し、渦電流から返される二次磁界を検出する技術に関する。   The present invention relates to a technique for inducing an eddy current in a metal specimen by applying a primary magnetic field to the metal specimen and detecting a secondary magnetic field returned from the eddy current.

導電性の金属検体を探傷、又は検査する場合、励磁コイルと受信コイルを被金属検体の表面に近接して配置し、励磁コイルに交流電流を流し、一次磁界を励磁コイルに発生させる。すると、被金属検体には、渦電流が誘導される。渦電流からは二次磁界が発生する。一次磁界と二次磁界の両磁場内にある受信コイルには、両磁界の鎖交磁束が合成起電力を誘起する。受信コイルの合成起電力、検出信号に基づいて傷の有無を判断する。   When testing or inspecting a conductive metal specimen, an exciting coil and a receiving coil are arranged close to the surface of the metal specimen, an alternating current is passed through the exciting coil, and a primary magnetic field is generated in the exciting coil. Then, an eddy current is induced in the metal specimen. A secondary magnetic field is generated from the eddy current. In the receiving coil in both the primary magnetic field and the secondary magnetic field, the interlinkage magnetic flux of both magnetic fields induces a combined electromotive force. The presence or absence of a flaw is determined based on the combined electromotive force and detection signal of the receiving coil.

励磁コイルと受信コイルを分離した探傷方法において、励磁コイルを導電体の被探傷面に対して配置するに当たり、励磁コイル面を導電体の被探傷面と平行させる方式と、直交させる方式がある。さらに、特許文献1には、励磁コイルを門型断面形状の鉄心に巻いた励磁器に近接して、受信コイルを棒状鉄心に巻いた受信器を検出面に対して傾斜させる方式が示されている。     In the flaw detection method in which the excitation coil and the reception coil are separated, there are a method in which the excitation coil surface is parallel to the flaw detection surface of the conductor and a method in which the excitation coil surface is orthogonal to the flaw detection surface of the conductor. Further, Patent Document 1 shows a method in which an excitation coil is wound around an iron core having a gate-shaped cross section, and a receiver in which a reception coil is wound around a rod-shaped iron core is inclined with respect to the detection surface. Yes.

特開2008−241685号公報JP 2008-241685 A

[背景技術の課題]
特許文献1の課題を列挙する。第一に、さらに高感度が求められる事。第2に、被検体金属の材質によって最適な励磁コイルの巻き線位置と受信器の傾斜角度が異なるので、材質毎に励磁コイルの巻き線位置と受信器の傾斜角度を設定したほうが高感度を得られる事。第3に、検出面は被検体金属との接触や、摩擦に対して、耐久性を要する事。第4に、使用周囲温度の変化や外部からの応力に対して、受信器の傾斜角度が変わらない事。第5に、量産製造する上で、短時間に精度よく作り上げられる事。
[Background issues]
The problems of Patent Document 1 are listed. First, a higher sensitivity is required. Secondly, since the optimal winding position of the exciting coil and the tilt angle of the receiver differ depending on the material of the subject metal, it is more sensitive to set the winding position of the exciting coil and the tilt angle of the receiver for each material. What you can get. Third, the detection surface needs to be durable against contact with the subject metal and friction. Fourth, the tilt angle of the receiver does not change with changes in ambient temperature or external stress. Fifth, it must be made accurately in a short time for mass production.

[門型断面形状の鉄心の脚幅]
図1と図2に示すように、励磁器9の第二脚部5は、第一脚部4より太い。第二脚部5を太くすることにより、磁気遮蔽効果が高まり、受信器側の空間領域での一次磁界の磁束密度が下がり、受信器15に加わる一次磁界の鎖交磁束が減少する。太い第二脚部5により、一次磁界に対して、受信器をより無感に近い状態にすることが出来る。受信器を二次磁界に対して、より敏感にさせることが出来る。
[Leg width of iron core with portal cross section]
As shown in FIGS. 1 and 2, the second leg 5 of the exciter 9 is thicker than the first leg 4. By thickening the second leg portion 5, the magnetic shielding effect is enhanced, the magnetic flux density of the primary magnetic field in the space area on the receiver side is lowered, and the linkage flux of the primary magnetic field applied to the receiver 15 is reduced. The thick second leg 5 makes the receiver more insensitive to the primary magnetic field. The receiver can be made more sensitive to secondary magnetic fields.

[非磁性ステンレス材での励磁コイル巻き線位置]
非磁性ステンレスが被金属検体の場合、図1の励磁器9の門型断面形状の鉄心2に巻かれる励磁コイル1は、第一コイル辺7が、鉄心2の第一脚部4と第二脚部5の間であり、梁部6の下に位置し、第二コイル辺8が、第一脚部4の外側であり、第一コイル辺7より高くかつ門型断面形状の鉄心2の高さを超えない箇所に位置する。第二コイル辺8が、第一コイル辺7より高い位置に配置される事によって、受信器15が据えられる一次最小RMS傾斜角28がより垂直に近づき、探傷深度が増し、受信器の探傷感度が向上する。
[Excitation coil winding position in non-magnetic stainless steel]
When the nonmagnetic stainless steel is a metal sample, the exciting coil 1 wound around the iron core 2 having the gate-shaped cross section of the exciter 9 shown in FIG. 1 has the first coil side 7 and the second leg 4 of the iron core 2 and the second. Between the leg parts 5 and located below the beam part 6, the second coil side 8 is outside the first leg part 4, is higher than the first coil side 7, and has a portal cross-sectional shape of the iron core 2. Located in a location not exceeding the height. By arranging the second coil side 8 at a position higher than the first coil side 7, the primary minimum RMS inclination angle 28 on which the receiver 15 is placed becomes closer to the vertical, the flaw detection depth is increased, and the flaw detection sensitivity of the receiver is increased. Will improve.

[非磁性ステンレス材での最適な受信器の傾斜角]
非磁性ステンレスが被金属検体の場合の受信器の傾斜角度14は図1に示され、傾斜角度14、21の特性が図3に示される。図3の太い実線24は、二次磁界が無い場合の、つまり金属検体が無い場合の、励磁コイル1によって生成される一次磁界の鎖交磁束成分を表す。受信コイル10を貫通する方向が異なる事により、鎖交磁束には極性が生じ、位相は180度異なる。一次磁界の鎖交磁束成分24がゼロになる傾斜角度を、一次最小RMS傾斜角28とする。一次最小RMS傾斜角28とは、有限の太さと巻き数を持つコイルは、完全に鎖交磁束ゼロを得られることがなく、受信コイルの起電力から変換された受信電圧のRMS値は、ゼロに近い最小値をとる。この一次最小RMS傾斜角28から左側を受信器の傾斜角14の増加22、右側を傾斜角14の減少23とした。
[Optimum receiver tilt angle with non-magnetic stainless steel]
The inclination angle 14 of the receiver when the nonmagnetic stainless steel is a metal sample is shown in FIG. 1, and the characteristics of the inclination angles 14 and 21 are shown in FIG. A thick solid line 24 in FIG. 3 represents the interlinkage magnetic flux component of the primary magnetic field generated by the exciting coil 1 when there is no secondary magnetic field, that is, when there is no metal specimen. Due to the difference in the direction penetrating the receiving coil 10, the flux linkage has a polarity and the phase is 180 degrees different. The inclination angle at which the interlinkage magnetic flux component 24 of the primary magnetic field becomes zero is defined as a primary minimum RMS inclination angle 28. The primary minimum RMS inclination angle 28 means that a coil having a finite thickness and the number of turns cannot obtain a complete linkage flux zero, and the RMS value of the reception voltage converted from the electromotive force of the reception coil is zero. Take the minimum value close to. The left side of the primary minimum RMS inclination angle 28 is the increase 22 of the inclination angle 14 of the receiver, and the right side is the decrease 23 of the inclination angle 14.

非磁性ステンレスの金属検体が、励磁器9と受信器15に近接すると、金属検体に渦電流が誘起され、渦電流から二次磁界が返される。細い実線25は、厚みのある非磁性ステンレス材から返される二次磁界の鎖交磁束成分を表す。細い破線27は、薄い非磁性ステンレス材から返される二次磁界の鎖交磁束成分を表す。非磁性ステンレス材が厚い場合、薄い場合、それぞれ、一次最小RMS傾斜角の右側で、つまり傾斜角が減少する側で、一次磁界と二次磁界が相殺し合い、受信電圧のRMS値が最小となる角度が得られる。これを二次最小RMS傾斜角29としている。二次最小RMS傾斜角29は、二次磁界と一次磁界が完全な180度逆位相ではないので、完全なゼロとはならない。非磁性ステンレス材が被金属検体の場合、受信器の傾斜角14は、一次最小RMS傾斜角28に設定される。非磁性ステンレス材の導電率は低く、よって渦電流密度が低く、結果、二次磁界が弱い。一次磁界を無感とする傾斜角に受信器を据えることによって、より二次磁界に敏感になり、探傷深度が深くなり、傷や欠陥に対して感度が向上する。 When a non-magnetic stainless metal specimen approaches the exciter 9 and the receiver 15, an eddy current is induced in the metal specimen, and a secondary magnetic field is returned from the eddy current. A thin solid line 25 represents the interlinkage magnetic flux component of the secondary magnetic field returned from the thick nonmagnetic stainless steel material. The thin broken line 27 represents the interlinkage magnetic flux component of the secondary magnetic field returned from the thin nonmagnetic stainless steel material. When the nonmagnetic stainless steel material is thick or thin, the primary magnetic field and the secondary magnetic field cancel each other on the right side of the primary minimum RMS inclination angle, that is, on the side where the inclination angle decreases, and the RMS value of the reception voltage becomes minimum. An angle is obtained. This is the secondary minimum RMS tilt angle 29. The secondary minimum RMS tilt angle 29 is not completely zero because the secondary and primary magnetic fields are not perfectly 180 degrees out of phase. When the non-magnetic stainless steel material is a metal sample, the inclination angle 14 of the receiver is set to the primary minimum RMS inclination angle 28. Non-magnetic stainless steel has a low electrical conductivity, and therefore a low eddy current density, resulting in a weak secondary magnetic field. By placing the receiver at an inclination angle that makes the primary magnetic field insensitive, it becomes more sensitive to the secondary magnetic field, deepens the flaw detection depth, and improves the sensitivity to scratches and defects.

[アルミ材での励磁コイルの巻き線位置]
アルミニュウムが被金属検体の場合、図2の励磁器9の門型断面形状の鉄心2に巻かれる励磁コイル1は、第一コイル辺7が、鉄心2の第一脚部4と第二脚部5の間であり、梁部6の下に位置し、第二コイル辺8が、第一脚部4の外側であり、第一コイル辺7と平行に同じ高さに位置する。第二コイル辺8と、第一コイル辺7が平行で同じ高さに位置される事によって、受信器15が据えられる二次最小RMS傾斜角29がより垂直に近づき、探傷深度が増し、受信器の探傷感度が向上する。
[Winding position of exciting coil in aluminum material]
When aluminum is a metal specimen, the exciting coil 1 wound around the iron core 2 having the gate-shaped cross section of the exciter 9 in FIG. 2 has the first coil side 7 having the first leg 4 and the second leg of the iron core 2. 5, located below the beam portion 6, and the second coil side 8 is outside the first leg portion 4 and is located at the same height parallel to the first coil side 7. Since the second coil side 8 and the first coil side 7 are parallel and positioned at the same height, the secondary minimum RMS inclination angle 29 on which the receiver 15 is placed approaches more vertically, the depth of flaw detection increases, and reception Improves the flaw detection sensitivity

[アルミ材での最適な受信器の傾斜角]
アルミニュウムが被金属検体の場合の受信器の傾斜角度14は図2に示され、傾斜角度14、21の特性が図4に示される。図4の太い実線24は、二次磁界が無い場合の、つまり金属検体が無い場合の、励磁コイル1によって生成される一次磁界の鎖交磁束成分を表す。受信コイル10を貫通する方向が異なる事により、鎖交磁束には極性が生じ、位相は180度異なる。一次磁界の鎖交磁束成分24がゼロになる傾斜角度を、一次最小RMS傾斜角28とする。一次最小RMS傾斜角28とは、有限の太さと巻き数を持つコイルは、完全に鎖交磁束ゼロを得られることがなく、受信コイルの起電力から変換された受信電圧のRMS値は、ゼロに近い最小値をとる。この一次最小RMS傾斜角28から左側を受信器の傾斜角14の増加22、右側を傾斜角14の減少23とした。
[Optimum receiver tilt angle with aluminum]
FIG. 2 shows the inclination angle 14 of the receiver when aluminum is a metal sample, and FIG. 4 shows the characteristics of the inclination angles 14 and 21. A thick solid line 24 in FIG. 4 represents the interlinkage magnetic flux component of the primary magnetic field generated by the exciting coil 1 when there is no secondary magnetic field, that is, when there is no metal specimen. Due to the difference in the direction penetrating the receiving coil 10, the flux linkage has a polarity and the phase is 180 degrees different. The inclination angle at which the interlinkage magnetic flux component 24 of the primary magnetic field becomes zero is defined as a primary minimum RMS inclination angle 28. The primary minimum RMS inclination angle 28 means that a coil having a finite thickness and the number of turns cannot obtain a complete linkage flux zero, and the RMS value of the reception voltage converted from the electromotive force of the reception coil is zero. Take the minimum value close to. The left side of the primary minimum RMS inclination angle 28 is the increase 22 of the inclination angle 14 of the receiver, and the right side is the decrease 23 of the inclination angle 14.

アルミニュウムの金属検体が、励磁器9と受信器15に近接すると、金属検体に渦電流が誘起され、渦電流から二次磁界が返される。細い実線25は、厚みのあるアルミニュウム材から返される二次磁界の鎖交磁束成分を表す。細い破線26は、中間の厚みのアルミニュウム材から返される二次磁界の鎖交磁束成分を表す。細い一点鎖線27は、薄いアルミニュウム材から返される二次磁界の鎖交磁束成分を表す。アルミニュウム材が厚い場合、中ぐらいの場合、薄い場合とそれぞれ、一次最小RMS傾斜角の右側で、つまり傾斜角が減少する側で、一次磁界と二次磁界が相殺し合い、受信電圧のRMS値が最小となる角度が得られる。これを二次最小RMS傾斜角29としている。二次最小RMS傾斜角は、二次磁界と一次磁界が完全な180度逆位相ではないので、完全なゼロとはならない。 When an aluminum metal specimen approaches the exciter 9 and the receiver 15, an eddy current is induced in the metal specimen, and a secondary magnetic field is returned from the eddy current. A thin solid line 25 represents the interlinkage magnetic flux component of the secondary magnetic field returned from the thick aluminum material. The thin broken line 26 represents the interlinkage magnetic flux component of the secondary magnetic field returned from the intermediate thickness aluminum material. The thin alternate long and short dash line 27 represents the interlinkage magnetic flux component of the secondary magnetic field returned from the thin aluminum material. When the aluminum material is thick, medium, thin, and on the right side of the primary minimum RMS tilt angle, that is, on the side where the tilt angle decreases, the primary magnetic field and the secondary magnetic field cancel each other, and the RMS value of the received voltage is The smallest angle is obtained. This is the secondary minimum RMS tilt angle 29. The secondary minimum RMS tilt angle is not completely zero because the secondary and primary magnetic fields are not perfectly 180 degrees out of phase.

アルミニュウム材が被金属検体の場合、受信器の傾斜角14は、探傷深度限界を超える厚みのアルミニュウム金属検体との二次最小RMS傾斜角29に設定される。アルミニュウム材の導電率は高く、よって渦電流密度が高く、結果、二次磁界が強い。受信器15を、一次最小RMS傾斜角28に設定しては、二次磁界の受信強度が強すぎて、僅かの厚みでダイナミックレンジを超えてしまい、増幅率を上げらない、よって、探傷深度が浅く、傷に対する感度の鋭敏さが得られない。受信器15を、探傷深度限界を超える厚みのアルミニュウム材を用いて一次磁界と二次磁界が互いに相殺する二次最小RMS傾斜角29に設定する。この傾斜角に受信器15を設定後、アルミニュウム検体が無い状態で、RMS−DC変換される出力電圧がダイナミックレンジを越えないレベルまで、増幅器の増幅率又は励磁電流を上げる。出力電圧は、アルミニュウム最厚手材で最小電圧を得、薄くなる又は傷があることによって出力電圧は上昇し、被検体が無い状態で電圧最大を得る。この出力電圧特性は、非磁性ステンレス材用探傷装置の出力特性と反転している。 受信器15の二次最小RMS傾斜角29への設定は、アルミニュウム材から返される二次磁界により敏感になり、探傷深度が深くなり、傷や欠陥に対して感度が向上する。探傷深度限界は、当該アルミニュウム材用探傷装置が感応できる最大厚さであり、また、電磁波が浸透できる深さとして、表皮効果の計算式からおおよそ算出される。 When the aluminum material is a metal specimen, the inclination angle 14 of the receiver is set to the secondary minimum RMS inclination angle 29 with the aluminum metal specimen having a thickness exceeding the flaw detection depth limit. Aluminum material has a high conductivity, and thus a high eddy current density, resulting in a strong secondary magnetic field. If the receiver 15 is set to the primary minimum RMS tilt angle 28, the reception intensity of the secondary magnetic field is too strong, and the dynamic range is exceeded with a small thickness, so that the amplification factor is not increased. However, the sensitivity to scratches cannot be obtained. The receiver 15 is set to the secondary minimum RMS inclination angle 29 in which the primary magnetic field and the secondary magnetic field cancel each other using an aluminum material having a thickness exceeding the flaw detection depth limit. After setting the receiver 15 at this inclination angle, the amplification factor or excitation current of the amplifier is increased to a level where the output voltage subjected to RMS-DC conversion does not exceed the dynamic range in the absence of an aluminum sample. As for the output voltage, the minimum voltage is obtained with the thickest material of aluminum, and the output voltage rises due to thinning or scratches, and the maximum voltage is obtained in the state where there is no subject. This output voltage characteristic is reversed with the output characteristic of the nonmagnetic stainless steel flaw detector. The setting of the receiver 15 to the secondary minimum RMS inclination angle 29 becomes more sensitive to the secondary magnetic field returned from the aluminum material, the depth of flaw detection becomes deeper, and the sensitivity to flaws and defects improves. The flaw detection depth limit is the maximum thickness that the aluminum flaw detection apparatus can respond to, and is roughly calculated from the skin effect calculation formula as the depth at which electromagnetic waves can penetrate.

[受信器の構造とケーブル接続]
図5のように、受信器は、先端楔部33を有する棒型形状の鉄心31に受信コイル30が、検出面に近い側の先端部に偏って巻かれている。鉄心は、初透磁率が高く、体積抵抗率が高いソフトフェライト材が用いられる。先端楔部33は、受信器を傾斜させる回転中心となる。受信器とケーブルとの接続は、両面PCB基板32を用いる。基板上での鎖交磁束が生じないように、両面PCB基板32の表面銅箔パターン34と裏面銅箔パターン35は、同一形状で同一位置をとる。コイル巻き線の端部は、それぞれコイル線用半田付けランド36に半田付けされる。受信用ケーブルは、シールド付ツイストペア線とし、ツイストペア線の芯線は、それぞれケーブル芯線用半田付けランド37に半田付けされる。受信コイル30を巻いた棒型形状の鉄心31は、受信コイル30が巻かれていない部分で、両面PCB基板32上に接着される。
[Receiver structure and cable connection]
As shown in FIG. 5, in the receiver, a receiving coil 30 is wound around a rod-shaped iron core 31 having a tip wedge portion 33 so as to be biased to a tip portion near the detection surface. For the iron core, a soft ferrite material having a high initial permeability and a high volume resistivity is used. The tip wedge portion 33 serves as a rotation center for tilting the receiver. A double-sided PCB substrate 32 is used for connection between the receiver and the cable. The front surface copper foil pattern 34 and the back surface copper foil pattern 35 of the double-sided PCB substrate 32 have the same shape and the same position so that no interlinkage magnetic flux is generated on the substrate. The ends of the coil windings are soldered to the coil wire soldering lands 36, respectively. The receiving cable is a shielded twisted pair wire, and the core wire of the twisted pair wire is soldered to the cable core wire soldering land 37. The rod-shaped iron core 31 around which the receiving coil 30 is wound is bonded onto the double-sided PCB substrate 32 at a portion where the receiving coil 30 is not wound.

[励磁器のケーブル接続]
図6のように、励磁器は、門型断面形状の鉄心42に励磁コイル41が片側の脚に巻かれている。鉄心は、初透磁率が高く、体積抵抗率が高いソフトフェライト材が用いられる。励磁器とケーブルとの接続は、片面PCB基板43を用いる。基板表面にのみ二つの表面銅箔パターン44を設け、基板上からの磁界の発生を抑えるべく、二つのパターン間の距離を出来るだけ狭くする。コイル巻き線の端部は、それぞれコイル線用半田付けランド45に半田付けされる。励磁用ケーブルは、シールド付ツイストペア線とし、ツイストペア線の芯線は、それぞれケーブル芯線用半田付けランド46に半田付けされる。片面PCB基板43は、門型断面形状の鉄心42上に接着される。
[Exciter cable connection]
As shown in FIG. 6, in the exciter, an exciting coil 41 is wound around a leg on one side around an iron core 42 having a gate-shaped cross section. For the iron core, a soft ferrite material having a high initial permeability and a high volume resistivity is used. A single-sided PCB substrate 43 is used for connection between the exciter and the cable. Two surface copper foil patterns 44 are provided only on the substrate surface, and the distance between the two patterns is made as narrow as possible in order to suppress the generation of a magnetic field from the substrate. Each end of the coil winding is soldered to a coil wire soldering land 45. The exciting cable is a shielded twisted pair wire, and the core wire of the twisted pair wire is soldered to the cable core wire soldering land 46, respectively. The single-sided PCB substrate 43 is bonded onto the iron core 42 having a gate-shaped cross section.

[検出面板]
図7のように、受信器56と励磁器59は、検出面板51の上面に据え置かれる。検出面板51の下面は検出面52であり、被金属検体と接触又は擦れ合う。検出面板51の上面には、受信器傾斜用三角溝53が切られている。ここに受信器の先端楔部55が嵌合する。受信器傾斜用三角溝53の開口角は、受信器の先端楔部55の楔角より十分広い。受信器56は、先端楔部55の刃先、すなわち受信機用傾斜用三角溝53の谷を回転中心として傾斜する。検出面板51の上面には、励磁器用位置決め段差54がある。この段差の厚みが薄くなる側に励磁器59の先端エッジが嵌合する。受信器傾斜用三角溝53と励磁器用位置決め段差54は、受信器56と励磁器59が接触しない距離をあけている。周囲温度の変化、外部応力が印加されても、受信器56と励磁器59の相対位置と角度が変わらないことが求められる。よって、検出面板51は、受信器56と励磁器58に使用されているフェライト材とほぼ同等で低い熱膨張率、高い硬度、高いヤング率をもつセラミック材が使用される。また、セラッミク材は、被金属検体と接触し、表面をトレースしても耐摩耗性に優れる。セラミック材の検出面板51によって受信器56と励磁器58の相対的な位置と角度を保障する。
[Detection face plate]
As shown in FIG. 7, the receiver 56 and the exciter 59 are installed on the upper surface of the detection face plate 51. The lower surface of the detection surface plate 51 is a detection surface 52 that contacts or rubs against the metal sample. On the upper surface of the detection face plate 51, a receiver inclined triangular groove 53 is cut. The front end wedge portion 55 of the receiver is fitted here. The opening angle of the receiver inclined triangular groove 53 is sufficiently wider than the wedge angle of the tip wedge portion 55 of the receiver. The receiver 56 is inclined with the cutting edge of the tip wedge portion 55, that is, the valley of the receiver inclined triangular groove 53 as the rotation center. There is an exciter positioning step 54 on the upper surface of the detection face plate 51. The tip edge of the exciter 59 is fitted to the side where the thickness of the step becomes thinner. The receiver tilting triangular groove 53 and the exciter positioning step 54 are spaced apart from each other so that the receiver 56 and the exciter 59 do not contact each other. It is required that the relative position and angle of the receiver 56 and the exciter 59 do not change even when an ambient temperature change or external stress is applied. Therefore, a ceramic material having a low thermal expansion coefficient, a high hardness, and a high Young's modulus is used for the detection face plate 51, which is almost the same as the ferrite material used for the receiver 56 and the exciter 58. Further, the ceramic material is excellent in wear resistance even if it contacts the metal specimen and traces the surface. The relative position and angle of the receiver 56 and the exciter 58 are ensured by the ceramic detection face plate 51.

[セメント固着]
受信器の傾斜角21は、非磁性ステンレス材では、一次最小RMS傾斜角28に、アルミニュウム材では、二次最小RMS傾斜角29に設定される。図8のように、角度設定された受信器62は、検出面板64及び励磁器63とセメント材61によって固着される。セメント材61は、歯科用グラスアイオノマーセメントを使用する。歯科用グラスアイオノマーセメントは、熱膨張率がセラミック材やフェライト材とほぼ同等で低く、硬化後の硬度が高いので、周囲温度の変化や外部応力の印加に対して、受信器と励磁器の相対的位置と角度を保存することが出来る。また、凝固時の体積変化が少ないので、固着前と後での受信器の傾斜角度を一定に保つことが出来、品質が安定する。さらに、硬化時間が短いので、製作時間の短縮につながる。歯科用グラスアイオノマーセメントの一般的な配合は、アルミシリケートガラスの粉末とポリアクリル酸水溶液を主成分としている。
[Cement fixation]
The inclination angle 21 of the receiver is set to the primary minimum RMS inclination angle 28 for the non-magnetic stainless steel material, and the secondary minimum RMS inclination angle 29 for the aluminum material. As shown in FIG. 8, the angle-set receiver 62 is fixed by the detection face plate 64, the exciter 63 and the cement material 61. As the cement material 61, dental glass ionomer cement is used. Dental glass ionomer cement has a thermal expansion coefficient that is almost the same as that of ceramic materials and ferrite materials, and has a high hardness after curing. Therefore, the relative relationship between the receiver and the exciter against changes in ambient temperature and application of external stress. The target position and angle can be saved. In addition, since the volume change during solidification is small, the inclination angle of the receiver before and after fixing can be kept constant, and the quality is stabilized. Furthermore, since the curing time is short, the production time is shortened. A general composition of dental glass ionomer cement is mainly composed of powder of aluminum silicate glass and an aqueous polyacrylic acid solution.

[ケーシング]
図9のように、検出面板77の上面にセメント材74で固着された受信器75と励磁器76は、真空成型によって樹脂封止される。受信器75に接続される受信用ケーブルと励磁器76に接続される励磁用ケーブルは、共通のケーブル用シース71を通る。ケーブル用シース71は、ケーブルコンジット72でケース73と繋がり、耐屈曲性を得ている。セラミック材で出来た薄い検出面板77は、曲げ応力に対して割れやすい。検出面板77の上面に厚く樹脂を盛ることによって、曲げ応力が検出面板17にかからないようにしている。
[casing]
As shown in FIG. 9, the receiver 75 and the exciter 76 fixed to the upper surface of the detection face plate 77 with a cement material 74 are resin-sealed by vacuum molding. The receiving cable connected to the receiver 75 and the exciting cable connected to the exciter 76 pass through a common cable sheath 71. The cable sheath 71 is connected to the case 73 by a cable conduit 72 to obtain bending resistance. The thin detection face plate 77 made of a ceramic material is easily cracked against bending stress. By thickening the resin on the upper surface of the detection face plate 77, bending stress is not applied to the detection face plate 17.

1) 励磁器と受信器を被金属検体に近接又は接触させて、励磁器から発生する一次磁界により被金属検体に渦電流を誘導し、渦電流から発生する二次磁界による磁場の変化を受信器で検出し、受信器から得られる検出信号で探傷する装置において、
励磁器は、門型断面形状の鉄心と励磁コイルからなり、門型断面形状の鉄心は、第一脚部、第二脚部、及び両脚部を繋ぐ梁部からなり、第一脚部は、第二脚部より細く、励磁コイルは第一脚部の周りに巻かれ、
被金属検体が非磁性ステンレス合金材の場合は、鉄心の細い第一脚部の外側を通る励磁コイルの第2電流線路は、鉄心の第一脚部と第二脚部の間を通る第1電流線路より高い位置で且つ鉄心の高さを超えない高さに位置し、
棒状の鉄心の先端側に受信コイルが巻かれた受信器は、励磁器の太い第二脚部の外側で接触しない位置において、被金属検体が無い状態下で一次磁界の磁束を鎖交しない角度に設定されることを特徴とする渦電流探傷装置。
1) An exciter and a receiver are brought close to or in contact with a metal specimen, an eddy current is induced in the metal specimen by a primary magnetic field generated from the exciter, and a magnetic field change due to a secondary magnetic field generated from the eddy current is received. In a device that detects with a detector and detects flaws with a detection signal obtained from a receiver,
The exciter consists of an iron core with a portal cross-sectional shape and an exciting coil, and the iron core with a gate-shaped cross-sectional shape consists of a first leg, a second leg, and a beam part connecting both legs, and the first leg is Thinner than the second leg, the excitation coil is wound around the first leg,
When the metal sample is a non-magnetic stainless alloy material, the second current line of the exciting coil passing through the outside of the thin first leg of the iron core is the first that passes between the first leg and the second leg of the iron core. Located at a height higher than the current line and not exceeding the height of the iron core,
The receiver in which the receiving coil is wound on the tip side of the rod-shaped iron core is an angle at which the magnetic flux of the primary magnetic field is not linked in a state where there is no metal sample in a position where it does not contact outside the thick second leg of the exciter. An eddy current flaw detector characterized by being set to.

2) 励磁器と受信器を被金属検体に近接又は接触させて、励磁器から発生する一次磁界により被金属検体に渦電流を誘導し、渦電流から発生する二次磁界による磁場の変化を受信器で検出し、受信器から得られる検出信号で探傷する装置において、
励磁器は、門型断面形状の鉄心と励磁コイルからなり、門型断面形状の鉄心は、第一脚部、第二脚部、及び両脚部を繋ぐ梁部からなり、第一脚部は第二脚部より細く、励磁コイルは第一脚部の周りに巻かれ、
被金属検体がアルミニュウム合金材の場合は、鉄心の細い第一脚部の外側を通る励磁コイルの第2電流線路は、鉄心の第一脚部と第二脚部の間を通る第1電流線路と平行に同じ高さに位置し、
棒状の鉄心の先端側に受信コイルが巻かれた受信器は、励磁器の太い第二脚部の外側で接触しない位置において、探傷深度限界を超える厚みのアルミニュウム被金属検体を検出面に接触させた状態下で一次磁界と二次磁界の合成鎖交磁束が最も少なくなる角度に設定されることを特徴とする渦電流探傷装置。
2) Bring the exciter and receiver close to or in contact with the metal specimen, induce a eddy current in the metal specimen by the primary magnetic field generated from the exciter, and receive the magnetic field change due to the secondary magnetic field generated from the eddy current In a device that detects with a detector and detects flaws with a detection signal obtained from a receiver,
The exciter is composed of an iron core having a portal cross section and an exciting coil, and the iron core having a gate cross section is composed of a first leg, a second leg, and a beam connecting the both legs. Thinner than the two legs, the excitation coil is wound around the first leg,
When the object to be metallized is an aluminum alloy material, the second current line of the exciting coil that passes outside the thin first leg of the iron core is the first current line that passes between the first leg and the second leg of the iron core. Located at the same height parallel to
A receiver with a receiving coil wound around the tip of a rod-shaped iron core makes an aluminum metal specimen with a thickness exceeding the flaw detection depth limit contact the detection surface at a position where it does not contact outside the thick second leg of the exciter. An eddy current flaw detector characterized by being set at an angle at which the combined flux linkage of the primary magnetic field and the secondary magnetic field is the smallest under the above condition.

上記1)または2)の渦電流探傷装置において、
受信コイルが片側の先端部に巻かれた受信器の棒状の鉄心のうちコイルが巻かれていない部分が、両面PCB基板に接着固定され、
両面PCB基板は、同一形状で同一位置にそれぞれ表面銅箔パターンと裏面銅箔パターンを持ち、各パターンには、コイル線用半田付けランドとケーブル芯線用半田付けランドがあり、
受信コイルのコイル線の両端は、それぞれコイル線用半田付けランドに半田付けされ、
受信用ケーブルには、シールドされたツイストペア線を使用し、ツイストペア線の芯線は、それぞれのパターンのケーブル芯線用半田付けランドに半田付けされることを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
Of the bar-shaped iron core of the receiver in which the receiving coil is wound around one end, the portion where the coil is not wound is adhered and fixed to the double-sided PCB substrate,
The double-sided PCB substrate has the same shape and the same position with a front surface copper foil pattern and a back surface copper foil pattern, and each pattern has a coil wire soldering land and a cable core wire soldering land,
Both ends of the coil wire of the receiving coil are soldered to the soldering land for coil wire,
A shielded twisted pair wire is used for the receiving cable, and the twisted pair wire is soldered to the soldering land for the cable core wire of each pattern.

上記1)または2)の渦電流探傷装置において、
励磁器の門型断面形状の鉄心の上部に片面PCB基板が接着固定され、
片面PCB基板は、表面上にパターン間距離を狭くした二つの銅箔パターンが形成され、各パターンには、コイル線用半田付けランドとケーブル芯線用半田付けランドがあり、
励磁コイルのコイル線の両端は、それぞれコイル線用半田付けランドに半田付けされ、
励磁用ケーブルには、シールドされたツイストペア線を使用し、ツイストペア線の芯線は、それぞれのパターンのケーブル芯線用半田付けランドに半田付けされることを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
A single-sided PCB board is bonded and fixed to the top of the exciter's gate-shaped cross-section iron core,
The single-sided PCB substrate has two copper foil patterns with a reduced pattern distance formed on the surface, and each pattern has a solder land for coil wire and a solder land for cable core wire,
Both ends of the coil wire of the exciting coil are soldered to the soldering land for coil wire,
A shielded twisted pair wire is used for the excitation cable, and the twisted pair wire core is soldered to the cable core wire soldering land of each pattern.

上記1)または2)の渦電流探傷装置において、
受信器の棒状の鉄心の下側先端は、先端楔部をもつ形状とし、受信器が据えられる検出面板の上面に三角溝が掘られ、三角溝の開口角は、受信器の鉄心の先端楔部の楔角よりも広く、
検出面上の三角溝と受信器の鉄心の先端楔部が嵌合し、三角溝の谷部と受信器の鉄心の先端楔部の刃先が定まった位置での支点となり、受信器の傾斜を欲する角度に設定できることを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
The lower end of the bar-shaped iron core of the receiver has a shape having a tip wedge portion, a triangular groove is dug on the upper surface of the detection face plate on which the receiver is installed, and the opening angle of the triangular groove is the wedge of the front end of the core of the receiver Wider than the wedge angle of the part,
The triangular groove on the detection surface and the leading edge of the core of the receiver are fitted together, and the trough of the triangular groove and the cutting edge of the leading edge of the core of the receiver serve as a fulcrum to determine the inclination of the receiver. It can be set to the desired angle.

上記1)または2)の渦電流探傷装置において、
励磁器が据えられる検出面板の上面に段差が設けられ、段差の厚みが薄くなる側に励磁器の鉄心が嵌合し、
三角溝から段差まで距離は、受信器と励磁器が接触しない距離開けられることを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
A step is provided on the upper surface of the detection face plate on which the exciter is installed, and the iron core of the exciter is fitted to the side where the thickness of the step is reduced,
The distance from the triangular groove to the step is such that the receiver and the exciter do not contact each other.

上記1)または2)の渦電流探傷装置において、
上面には受信器と励磁器が据えられ、下面は接触面として利用される検出面板は、セラミック材とすることを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
A receiver and an exciter are installed on the upper surface, and a detection face plate used as a contact surface on the lower surface is made of a ceramic material.

上記1)または2)の渦電流探傷装置において、
検出面板と受信器と励磁器は、歯科用グラスアイオノマーセメント材によって合着することを特徴とする。
In the eddy current flaw detector of 1) or 2) above,
The detection face plate, the receiver, and the exciter are bonded together by a dental glass ionomer cement material.

探傷深度を深くし、探傷感度を向上させる。周囲温度変化や外部応力が加わっても性能が変化しない。被金属検体と擦れても磨耗しにくい。製造上での品質の安定と製作時間の短縮。 Increase the flaw detection depth and improve flaw detection sensitivity. Performance does not change even when ambient temperature changes or external stress is applied. Hard to wear even when rubbed against a metal specimen. Stable production quality and shortened production time.

[非磁性ステンレス用の構成]
図1は、非磁性ステンレス材との励磁器のコイル巻き線の配置と内部構造を表す。門型断面形状の鉄心2の第一脚部4の周りに励磁コイル1は巻かれ、第二脚部5の幅は、第一脚部4の幅よりも太い。励磁コイル1の第一コイル辺7は、第一脚部4と第二脚部5の間で梁部6の下を通り、第二コイル辺8は、第一脚部4の外側で、第一コイル辺7より高く、門型断面形状の鉄心2の高さよりも低い箇所を通る。門型断面形状の鉄心2の上に、励磁器のケーブル接続用基板3が固定される。受信器15は、励磁器9の前方に、つまり第二コイル辺8の反対側に位置する。第二脚部5と梁部6の磁気シールド効果によって、受信器15が置かれる空間では、一次磁界強度が小さい。
[Configuration for non-magnetic stainless steel]
FIG. 1 shows the coil winding arrangement and internal structure of an exciter with a non-magnetic stainless steel material. The exciting coil 1 is wound around the first leg 4 of the iron core 2 having a gate-shaped cross section, and the width of the second leg 5 is larger than the width of the first leg 4. The first coil side 7 of the exciting coil 1 passes under the beam part 6 between the first leg part 4 and the second leg part 5, and the second coil side 8 is outside the first leg part 4. It passes through a portion that is higher than one coil side 7 and lower than the height of the iron core 2 having a gate-shaped cross section. An exciter cable connection board 3 is fixed on an iron core 2 having a gate-shaped cross section. The receiver 15 is located in front of the exciter 9, that is, on the opposite side of the second coil side 8. Due to the magnetic shield effect of the second leg portion 5 and the beam portion 6, the primary magnetic field strength is small in the space where the receiver 15 is placed.

受信コイル10は、棒型形状の鉄心11の下側端部に巻かれる。棒型形状の鉄心11の下先端には、先端楔部13があり、傾斜の支点として受信器15の傾斜設定を可能にする。棒型形状の鉄心11は、受信コイル10が巻かれていない部分で、受信器のケーブル接続用基板12に接着される。 The receiving coil 10 is wound around the lower end portion of the rod-shaped iron core 11. At the lower end of the rod-shaped iron core 11, there is a tip wedge portion 13, which allows the receiver 15 to be set as an inclination as an inclination fulcrum. The rod-shaped iron core 11 is bonded to the cable connection board 12 of the receiver at a portion where the receiving coil 10 is not wound.

セラミック材で出来た検出面板16の上面には、受信器傾斜用三角溝18が掘られており、受信器15の先端楔部13と嵌合し、受信器15の傾斜を許容しながらも、傾斜支点を三角溝18の谷部に位置決めする。非磁性ステンレス材が被金属検体の場合、受信器の傾斜角14は、一次最小RMS傾斜角28となる。一次最小RMS傾斜角28は、受信コイル10の一次磁界の鎖交磁束がほぼゼロとなる角度である。セラミック材で出来た検出面板16の上面には、励磁器用位置決め段差19があり、励磁器9は段差19の薄い側に置かれ、門型断面形状の鉄心2の先端が嵌合する。励磁器9の位置を固定する。検出面板の裏面は、検出面17として、被金属検体と接触又は擦れる。 On the upper surface of the detection face plate 16 made of a ceramic material, a receiver-inclined triangular groove 18 is dug and fitted with the tip wedge portion 13 of the receiver 15, while allowing the receiver 15 to tilt, The tilt fulcrum is positioned in the valley of the triangular groove 18. When the nonmagnetic stainless steel material is a metal specimen, the inclination angle 14 of the receiver is the primary minimum RMS inclination angle 28. The primary minimum RMS tilt angle 28 is an angle at which the interlinkage magnetic flux of the primary magnetic field of the receiving coil 10 becomes substantially zero. There is an exciter positioning step 19 on the upper surface of the detection face plate 16 made of ceramic material. The exciter 9 is placed on the thin side of the step 19 and the tip of the iron core 2 having a gate-shaped cross section is fitted. The position of the exciter 9 is fixed. The back surface of the detection surface plate is in contact with or rubbed with the metal sample as the detection surface 17.

受信器のケーブル接続用基板12は、図5の両面PCB基板32が使われる。基板上での鎖交磁束が生じないように、基板の両面それぞれに、表面銅箔パターン34と裏面銅箔パターン35が、同一形状、同一位置に形成されている。受信コイル30のコイル線の両端は、それぞれコイル線用半田付けランドに半田付けされる。受信用ケーブルは、シールド付ツイストペア線とし、ツイストペア線の芯線が、それぞれケーブル芯線用半田付けランド37に半田付けされる。 As the cable connecting board 12 of the receiver, the double-sided PCB board 32 of FIG. 5 is used. The front surface copper foil pattern 34 and the back surface copper foil pattern 35 are formed in the same shape and the same position on both surfaces of the substrate so that the interlinkage magnetic flux on the substrate does not occur. Both ends of the coil wire of the receiving coil 30 are respectively soldered to the coil wire soldering lands. The receiving cable is a shielded twisted pair wire, and the core wire of the twisted pair wire is soldered to the cable core wire soldering land 37, respectively.

励磁器のケーブル接続用基板3は、図6の片面PCB基板43が使われる。基板上から磁界の発生が抑えられるように、基板の表面に二つの表面銅箔パターン44が、パターン間の距離を出来るだけ狭くして形成されている。励磁コイル41のコイル線の両端は、それぞれコイル線用半田付けランド45に半田付けされる。励磁用ケーブルは、シールド付ツイストペア線とし、ツイストペア線の芯線が、それぞれケーブル芯線用半田付けランド46に半田付けされる。図6の励磁コイルの位置は、アルミニュウム向け構成であり、非磁性ステンレス用の構成と異なる。 The exciter cable connection board 3 is the single-sided PCB board 43 shown in FIG. Two surface copper foil patterns 44 are formed on the surface of the substrate with the distance between the patterns as narrow as possible so that generation of a magnetic field from the substrate is suppressed. Both ends of the coil wire of the exciting coil 41 are soldered to the coil wire soldering land 45, respectively. The exciting cable is a shielded twisted pair wire, and the core wire of the twisted pair wire is soldered to the cable core wire soldering land 46, respectively. The position of the exciting coil in FIG. 6 is a configuration for aluminum and is different from the configuration for nonmagnetic stainless steel.

図8のように、セラミック材の検出面板64上で傾斜設定された受信器62、及び位置決めされた励磁器63は、歯科用グラスアイオノマーセメントなるセメント材61で固着される。さらに、図9のように、検出面板77上にセメント材74で固着された受信器75と励磁器76は、真空成型によって、樹脂封止される。図8と図9の励磁コイルの位置は、アルミニュウム向け構成であり、非磁性ステンレス用の構成と異なる。   As shown in FIG. 8, the receiver 62 tilted on the ceramic detection face plate 64 and the positioned exciter 63 are fixed by a cement material 61 made of dental glass ionomer cement. Furthermore, as shown in FIG. 9, the receiver 75 and the exciter 76 fixed on the detection face plate 77 with the cement material 74 are resin-sealed by vacuum molding. The positions of the exciting coils in FIGS. 8 and 9 are for aluminum, and are different from those for non-magnetic stainless steel.

[アルミニュウム用の構成]
前述の[非磁性ステンレス用の構成]と異なる点のみを述べる。
図2は、アルミニュウム材との励磁器のコイル巻き線の配置と内部構造を表す。門型断面形状の鉄心2の第一脚部4の周りに励磁コイル1は巻かれ、第二脚部5の幅は、第一脚部4の幅よりも太い。励磁コイル1の第一コイル辺7は、第一脚部4と第二脚部5の間で梁部6の下を通り、第二コイル辺8は、第一脚部4の外側で、第一コイル辺7と平行で同じ高さを通る。門型断面形状の鉄心2の上に、励磁器のケーブル接続用基板3が固定される。受信器15は、励磁器9の前方に、つまり第二コイル辺8の反対側に位置する。第二脚部5と梁部6の磁気シールド効果によって、受信器15が置かれる空間では、一次磁界強度が小さい。
[Configuration for aluminum]
Only the differences from the above-mentioned [Configuration for non-magnetic stainless steel] will be described.
FIG. 2 shows the coil winding arrangement and internal structure of an exciter with an aluminum material. The exciting coil 1 is wound around the first leg 4 of the iron core 2 having a gate-shaped cross section, and the width of the second leg 5 is larger than the width of the first leg 4. The first coil side 7 of the exciting coil 1 passes under the beam part 6 between the first leg part 4 and the second leg part 5, and the second coil side 8 is outside the first leg part 4. It passes through the same height in parallel with one coil side 7. An exciter cable connection board 3 is fixed on an iron core 2 having a gate-shaped cross section. The receiver 15 is located in front of the exciter 9, that is, on the opposite side of the second coil side 8. Due to the magnetic shield effect of the second leg portion 5 and the beam portion 6, the primary magnetic field strength is small in the space where the receiver 15 is placed.

受信コイル10は、棒型形状の鉄心11の下側端部に巻かれる。棒型形状の鉄心11の下先端には、先端楔部13があり、傾斜の支点として受信器15の傾斜設定を可能にする。棒型形状の鉄心11は、受信コイル10が巻かれていない部分で、受信器のケーブル接続用基板12に接着される。 The receiving coil 10 is wound around the lower end portion of the rod-shaped iron core 11. At the lower end of the rod-shaped iron core 11, there is a tip wedge portion 13, which allows the receiver 15 to be set as an inclination as an inclination fulcrum. The rod-shaped iron core 11 is bonded to the cable connection board 12 of the receiver at a portion where the receiving coil 10 is not wound.

セラミック材で出来た検出面板16の上面には、受信器傾斜用三角溝18が掘られており、受信器15の先端楔部13と嵌合し、受信器15の傾斜を許容しながらも、傾斜支点を三角溝18の谷部に位置固定する。アルミニュウム材が被金属検体の場合、受信器の傾斜角14は、二次最小RMS傾斜角29となる。二次最小RMS傾斜角29は、検出面17に探傷深度限界を超える厚みのアルミニュウム材を接触させて、受信コイル10の鎖交磁束が最小となる角度である。つまり、一次磁界と二次磁界が最も相殺し合い、グロスの鎖交磁束が最小となる角度である。その他、[非磁性ステンレス用の構成]と同じ。 On the upper surface of the detection face plate 16 made of a ceramic material, a receiver-inclined triangular groove 18 is dug and fitted with the tip wedge portion 13 of the receiver 15, while allowing the receiver 15 to tilt, The tilt fulcrum is fixed to the valley of the triangular groove 18. When the aluminum material is a metal sample, the inclination angle 14 of the receiver is the secondary minimum RMS inclination angle 29. The secondary minimum RMS inclination angle 29 is an angle at which the interlinkage magnetic flux of the receiving coil 10 is minimized when an aluminum material having a thickness exceeding the flaw detection depth limit is brought into contact with the detection surface 17. That is, the angle at which the primary magnetic field and the secondary magnetic field cancel each other most and the gross flux linkage is minimized. Others are the same as [Configuration for non-magnetic stainless steel].

本発明は、金属材料加工工程での製品の金属欠陥や不良を発見し品質向上をはかる、又は長年使用され耐用年数が迫る金属構造物の探傷と検査に利用される。 INDUSTRIAL APPLICABILITY The present invention is used for flaw detection and inspection of a metal structure that has been used for many years and has a long service life due to the discovery of metal defects and defects in products in the metal material processing process.

非磁性ステンレス材との励磁コイル巻き線配置と内部構造Excitation coil winding arrangement and internal structure with non-magnetic stainless steel アルミニュウム材との励磁コイルの巻き線配置と内部構造Winding arrangement and internal structure of exciting coil with aluminum material 非磁性ステンレス材との受信器の角度特性Angular characteristics of receiver with non-magnetic stainless steel アルミニュウム材との受信器の角度特性Angular characteristics of receiver with aluminum material 受信器のケーブル接続Receiver cabling 励磁器のケーブル接続Exciter cable connection 検出面板の構造Detection faceplate structure 検出面板上での受信器と励磁器の合着Attachment of receiver and exciter on the detection faceplate ケース、樹脂封止Case, resin sealed

1 励磁コイル、励磁器のコイル
2 門型断面形状の鉄心、強磁性の鉄心
3 励磁器のケーブル接続用基板
4 第一脚部
5 第二脚部
6 梁部
7 第一コイル辺、第一電流線路
8 第二コイル辺、第二電流線路
9 励磁器
10 受信コイル
11 棒型形状の鉄心、強磁性体の鉄心
12 受信器のケーブル接続用基板
13 先端楔部、受信器を傾斜させる回転中心
14 受信器の傾斜角 θ
15 受信器
16 検出面板
17 検出面
18 受信器傾斜用三角溝、受信器の先端楔部と嵌合し、受信器を傾斜させる回転中心
19 励磁器用位置決め段差
21 受信器の傾斜角 θ
22 一次最小RMS傾斜角28より角度増加、検出面と受信器コイル軸がより平行に
23 一次最小RMS傾斜角28より角度の減少、検出面と受信器コイル軸がより垂直に
24 一次磁界の鎖交磁束成分
25 金属検体の厚みが厚い場合の二次磁界鎖交成分
26 金属検体の厚みが中程の場合の二次磁界の鎖交成分
27 金属検体の厚みが薄い場合の二次磁界の鎖交成分
28 一次最小RMS傾斜角、二次磁界が無いときの受信器の最小起電力、一次磁界の鎖交磁束ゼロとなる傾斜角
29 二次最小RMS傾斜角、二次磁界を検出している時の受信器の最小起電力、鎖交一次磁界と鎖交二次磁界が相殺し合う傾斜角
30 受信コイル
31 棒型形状の鉄心、強磁性体の鉄心
32 両面PCB基板、受信器のケーブル接続用基板
33 先端楔部、受信器を傾斜させる回転中心
34 表面銅箔パターン
35 裏面銅箔パターン
36 コイル線用半田付けランド
37 ケーブル芯線用半田付けランド
41 励磁コイル、励磁器のコイル
42 門型断面形状の鉄心、強磁性の鉄心
43 片面PCB基板、励磁器のケーブル接続用基板
44 表面銅箔パターン
45 コイル線用半田付けランド
46 ケーブル芯線用半田付けランド
51 検出面板
52 検出面
53 受信器傾斜用三角溝、受信器の先端楔部と嵌合し、受信器を傾斜させる回転中心
54 励磁器用位置決め段差
55 受信器の先端楔部、受信器を傾斜させる回転中
56 受信器
57 励磁コイル、励磁器のコイル
58 門型断面形状の鉄心、強磁性の鉄心
59 励磁器
61 セメント材
62 受信器
63 励磁器
64 検出面板
71 ケーブル用シース
72 ケーブルコンジット
73 ケース、樹脂封止
74 セメント材
75 受信器
76 励磁器
77 検出面板
DESCRIPTION OF SYMBOLS 1 Excitation coil, coil of exciter 2 Iron core of portal cross section, ferromagnetic iron core 3 Exciter cable connection board 4 First leg part 5 Second leg part 6 Beam part 7 First coil side, first current Line 8 Second coil side, second current line 9 Exciter 10 Receiving coil 11 Bar-shaped iron core, ferromagnetic iron core 12 Receiver cable connection board 13 Tip wedge, rotation center for tilting receiver 14 Receiver tilt angle θ
DESCRIPTION OF SYMBOLS 15 Receiver 16 Detection surface plate 17 Detection surface 18 Rotation center which inclines with the receiver's inclination triangular groove and the front-end wedge part of a receiver, and inclines a receiver 19 Exciter positioning step 21 Receiver inclination angle (theta)
22 Angle increase from primary minimum RMS tilt angle 28, detection plane and receiver coil axis more parallel 23 Decrease angle from primary minimum RMS tilt angle 28, detection plane and receiver coil axis more perpendicular 24 Primary magnetic field chain Magnetic flux component 25 Secondary magnetic field interlinkage component when metal specimen is thick 26 Secondary magnetic field interlinkage component when metal specimen is medium thickness 27 Secondary magnetic field chain when metal specimen is thin AC component 28 Primary minimum RMS tilt angle, minimum receiver electromotive force when no secondary magnetic field is present, tilt angle at which primary magnetic flux linkage is zero 29 secondary minimum RMS tilt angle, secondary magnetic field is detected Receiver's minimum electromotive force, inclination angle where the interlinkage primary magnetic field and the interlinkage secondary magnetic field cancel each other 30 Receiver coil 31 Rod-shaped iron core, ferromagnetic iron core 32 Double-sided PCB board, cable connection of receiver Substrate 33 Rotating center for tilting the device 34 Surface copper foil pattern 35 Back surface copper foil pattern 36 Soldering land for coil wire 37 Soldering land for cable core wire 41 Exciting coil, coil of exciter 42 Iron core of gate-shaped cross section, ferromagnetic iron core 43 Single-sided PCB board, board for exciter cable connection 44 Surface copper foil pattern 45 Soldering land for coil wire 46 Soldering land for cable core wire 51 Detection face plate 52 Detection face 53 Triangular groove for receiver tilting, Wedge of receiver Rotation center that fits the part and tilts the receiver 54 Exciter positioning step 55 Wedge tip of the receiver, rotating that tilts the receiver 56 Receiver 57 Excitation coil, exciter coil 58 Portal cross-sectional shape Iron core, ferromagnetic iron core 59 Exciter 61 Cement material 62 Receiver 63 Exciter 64 Detection face plate 71 Cable sheath 72 Cable conduit 73 Case, resin sealing 74 Cement material 75 Receiver 76 Exciter 77 Detection face plate

Claims (8)

励磁器と受信器を被金属検体に近接又は接触させて、励磁器から発生する一次磁界により被金属検体に渦電流を誘導し、渦電流から発生する二次磁界による磁場の変化を受信器で検出し、受信器から得られる検出信号で探傷する装置において、
励磁器は、門型断面形状の鉄心と励磁コイルからなり、門型断面形状の鉄心は、第一脚部、第二脚部、及び両脚部を繋ぐ梁部からなり、第一脚部は第二脚部より細く、励磁コイルは第一脚部の周りに巻かれ、
被金属検体が非磁性ステンレス合金材の場合は、鉄心の細い第一脚部の外側を通る励磁コイルの第2電流線路は、鉄心の第一脚部と第二脚部の間を通る第1電流線路より高い位置で且つ鉄心の高さを超えない高さに位置し、
棒状の鉄心の先端側に受信コイルが巻かれた受信器は、励磁器の太い第二脚部の外側で励磁器と接触しない位置において、被金属検体が無い状態下で一次磁界の磁束を鎖交しない角度に設定されることを特徴とする渦電流探傷装置。
An exciter and a receiver are brought close to or in contact with the metal specimen, an eddy current is induced in the metal specimen by the primary magnetic field generated from the exciter, and the change in the magnetic field due to the secondary magnetic field generated from the eddy current is detected by the receiver. In a device for detecting and flaw detection with a detection signal obtained from a receiver,
The exciter is composed of an iron core having a portal cross section and an exciting coil, and the iron core having a gate cross section is composed of a first leg, a second leg, and a beam connecting the both legs. Thinner than the two legs, the excitation coil is wound around the first leg,
When the metal sample is a non-magnetic stainless alloy material, the second current line of the exciting coil passing through the outside of the thin first leg of the iron core is the first that passes between the first leg and the second leg of the iron core. Located at a height higher than the current line and not exceeding the height of the iron core,
A receiver in which a receiving coil is wound around the tip end of a rod-shaped iron core links the magnetic flux of the primary magnetic field in the position where it does not contact the exciter outside the thick second leg of the exciter and there is no metal sample. An eddy current flaw detector set at an angle that does not intersect.
励磁器と受信器を被金属検体に近接又は接触させて、励磁器から発生する一次磁界により被金属検体に渦電流を誘導し、渦電流から発生する二次磁界による磁場の変化を受信器で検出し、受信器から得られる検出信号で探傷する装置において、
励磁器は、門型断面形状の鉄心と励磁コイルからなり、門型断面形状の鉄心は、第一脚部、第二脚部、及び両脚部を繋ぐ梁部からなり、第一脚部は第二脚部より細く、励磁コイルは第一脚部の周りに巻かれ、
被金属検体がアルミニュウム合金材の場合は、鉄心の細い第一脚部の外側を通る励磁コイルの第2電流線路は、鉄心の第一脚部と第二脚部の間を通る第1電流線路と平行に同じ高さに位置し、
棒状の鉄心の先端側に受信コイルが巻かれた受信器は、励磁器の太い第二脚部の外側で励磁器と接触しない位置において、探傷深度限界を超える厚みのアルミニュウム被金属検体を検出面に接触させた状態下で一次磁界と二次磁界の合成鎖交磁束が最も少なくなる角度に設定されることを特徴とする渦電流探傷装置。
An exciter and a receiver are brought close to or in contact with the metal specimen, an eddy current is induced in the metal specimen by the primary magnetic field generated from the exciter, and the change in the magnetic field due to the secondary magnetic field generated from the eddy current is detected by the receiver. In a device for detecting and flaw detection with a detection signal obtained from a receiver,
The exciter is composed of an iron core having a portal cross section and an exciting coil, and the iron core having a gate cross section is composed of a first leg, a second leg, and a beam connecting the both legs. Thinner than the two legs, the excitation coil is wound around the first leg,
When the object to be metallized is an aluminum alloy material, the second current line of the exciting coil that passes outside the thin first leg of the iron core is the first current line that passes between the first leg and the second leg of the iron core. Located at the same height parallel to
A receiver with a receiving coil wound around the tip of a rod-shaped iron core detects an aluminum metal specimen with a thickness exceeding the flaw detection depth limit at a position outside the thick second leg of the exciter and in contact with the exciter. An eddy current flaw detector characterized in that it is set at an angle at which the combined flux linkage of the primary magnetic field and the secondary magnetic field is the smallest when it is in contact with the magnetic field.
受信コイルが検出面に近い側の先端部に巻かれた受信器の棒状の鉄心は、コイルが巻かれていない部分が、両面PCB基板に接着固定され、
両面PCB基板は、同一形状で同一位置にそれぞれ表面銅箔パターンと裏面銅箔パターンを持ち、各パターンには、コイル線用半田付けランドとケーブル芯線用半田付けランドがあり、
受信コイルのコイル線の両端は、それぞれコイル線用半田付けランドに半田付けされ、
受信用ケーブルには、シールドされたツイストペア線を使用し、ツイストペア線の芯線は、それぞれのパターンのケーブル芯線用半田付けランドに半田付けされることを特徴とする請求項1又は2に記載の渦電流探傷装置。
The receiver's rod-shaped iron core wound around the tip on the side close to the detection surface is bonded and fixed to the double-sided PCB substrate at the portion where the coil is not wound.
The double-sided PCB substrate has the same shape and the same position with a front surface copper foil pattern and a back surface copper foil pattern, and each pattern has a coil wire soldering land and a cable core wire soldering land,
Both ends of the coil wire of the receiving coil are soldered to the soldering land for coil wire,
3. The vortex according to claim 1, wherein a shielded twisted pair wire is used for the receiving cable, and the core wire of the twisted pair wire is soldered to a soldering land for the cable core wire of each pattern. Current flaw detector.
励磁器の門型断面形状の鉄心の上部に片面PCB基板が接着固定され、
片面PCB基板は、表面上にパターン間距離を狭くした二つの銅箔パターンが形成され、各パターンには、コイル線用半田付けランドとケーブル芯線用半田付けランドがあり、
励磁コイルのコイル線の両端は、それぞれコイル線用半田付けランドに半田付けされ、
励磁用ケーブルには、シールドされたツイストペア線を使用し、ツイストペア線の芯線は、それぞれのパターンのケーブル芯線用半田付けランドに半田付けされることを特徴とする請求項1又は2に記載の渦電流探傷装置。
A single-sided PCB board is bonded and fixed to the top of the exciter's gate-shaped cross-section iron core,
The single-sided PCB substrate has two copper foil patterns with a reduced pattern distance formed on the surface, and each pattern has a solder land for coil wire and a solder land for cable core wire,
Both ends of the coil wire of the exciting coil are soldered to the soldering land for coil wire,
The vortex according to claim 1 or 2, wherein a shielded twisted pair wire is used as the excitation cable, and the core wire of the twisted pair wire is soldered to the cable core wire soldering land of each pattern. Current flaw detector.
受信器の棒状の鉄心の下側先端は、先端楔部をもつ形状とし、受信器が据えられる検出面板の上面に三角溝が掘られ、三角溝の開口角は、受信器の鉄心の先端楔部の楔角よりも広く、
検出面上の三角溝と受信器の鉄心の先端楔部が嵌合し、三角溝の谷部と受信器の鉄心の先端楔部の刃先が定まった位置での支点となり、受信器の傾斜を欲する角度に設定できることを特徴とする請求項1又は2に記載の渦電流探傷装置。
The lower end of the bar-shaped iron core of the receiver has a shape having a tip wedge portion, a triangular groove is dug on the upper surface of the detection face plate on which the receiver is installed, and the opening angle of the triangular groove is the wedge of the front end of the core of the receiver Wider than the wedge angle of the part,
The triangular groove on the detection surface and the leading edge of the core of the receiver are fitted together, and the trough of the triangular groove and the cutting edge of the leading edge of the core of the receiver serve as a fulcrum to determine the inclination of the receiver. The eddy current flaw detector according to claim 1, wherein the eddy current flaw detector can be set to a desired angle.
励磁器が据えられる検出面板の上面に段差が設けられ、段差の厚みが薄くなる側で励磁器の鉄心が嵌合し、
三角溝から段差まで距離は、受信器と励磁器が接触しない距離開けられることを特徴とする請求項1又は2に記載の渦電流探傷装置。
A step is provided on the upper surface of the detection face plate on which the exciter is installed, and the iron core of the exciter is fitted on the side where the thickness of the step is reduced,
3. The eddy current flaw detector according to claim 1, wherein the distance from the triangular groove to the step is a distance that does not contact the receiver and the exciter.
上面には受信器と励磁器が据えられ、下面は接触面として利用される検出面板は、セラミック材とすることを特徴とする請求項1又は2に記載の渦電流探傷装置。 3. The eddy current flaw detector according to claim 1, wherein a receiver and an exciter are installed on the upper surface, and a detection face plate used as a contact surface on the lower surface is made of a ceramic material. 検出面板と受信器と励磁器は、検出面板と歯科用グラスアイオノマーセメント材によって合着することを特徴とする請求項1又は2に記載の渦電流探傷装置。   The eddy current flaw detector according to claim 1 or 2, wherein the detection face plate, the receiver, and the exciter are bonded together by a detection face plate and a dental glass ionomer cement material.
JP2010162471A 2010-07-20 2010-07-20 Eddy current flaw detector Pending JP2012026737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162471A JP2012026737A (en) 2010-07-20 2010-07-20 Eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162471A JP2012026737A (en) 2010-07-20 2010-07-20 Eddy current flaw detector

Publications (1)

Publication Number Publication Date
JP2012026737A true JP2012026737A (en) 2012-02-09

Family

ID=45779868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162471A Pending JP2012026737A (en) 2010-07-20 2010-07-20 Eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP2012026737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020670A1 (en) * 2012-07-30 2014-02-06 クーレヨン株式会社 Magnetic reflection sensor, device for detecting presence of accompanying document within packaging box, and device for measuring thickness of electroconductive film
CN114080544A (en) * 2019-08-16 2022-02-22 株式会社Lg新能源 Eddy current sensor with improved crack detection capability and eddy current inspection apparatus including the same
US12000795B2 (en) 2019-08-16 2024-06-04 Lg Energy Solution, Ltd. Eddy current sensor having improved crack detection capability, and eddy current inspection device including same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020670A1 (en) * 2012-07-30 2014-02-06 クーレヨン株式会社 Magnetic reflection sensor, device for detecting presence of accompanying document within packaging box, and device for measuring thickness of electroconductive film
CN114080544A (en) * 2019-08-16 2022-02-22 株式会社Lg新能源 Eddy current sensor with improved crack detection capability and eddy current inspection apparatus including the same
CN114080544B (en) * 2019-08-16 2024-05-03 株式会社Lg新能源 Eddy current sensor and eddy current inspection apparatus including the same
US12000795B2 (en) 2019-08-16 2024-06-04 Lg Energy Solution, Ltd. Eddy current sensor having improved crack detection capability, and eddy current inspection device including same

Similar Documents

Publication Publication Date Title
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
US6424145B1 (en) Inductive proximity sensor for detecting ferromagnetic, non-permeable or magnet targets
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
US20120268114A1 (en) Current sensor with a magnetic core
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP2017161454A (en) Electromagnetic ultrasonic sensor
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
CN101311714A (en) High-sensitivity vortex flow dot type probe
Tsukada et al. Integrated magnetic sensor probe and excitation wire for nondestructive detection of submillimeter defects
Fukuoka et al. Consideration of multi-coil type magnetizer for detection of omnidirectional crack in magnetic particle testing
JP2012026737A (en) Eddy current flaw detector
CN103207239B (en) A kind of integrated adjustable magnetostriction longitudinal wave guide probe
JP2001318080A (en) Detection coil and inspecting device using the same
CN110794030A (en) Non-directional welding seam eddy current detection probe and detection device
WO2014005431A1 (en) Chip-type magnetic sensor
KR102067196B1 (en) Magnetostrictive transducer
JP2013160579A (en) Eddy current flaw detection probe
CN113777154B (en) Method for enhancing coil sensitivity of eddy current sensor
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
CN217521078U (en) Vortex detection device capable of detecting cracks in different directions
Kogan et al. Eddy-current quality control of soldering of current-carrying joints in electrical machines. II. Experiment
RU2063025C1 (en) Electromagnetic converter for flaw detection
CN113777150B (en) Defect detection method based on ferromagnetic plate
Itaya et al. Analysis of a fork-shaped rectangular coil facing moving sheet conductors
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires