JP2012026242A - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP2012026242A
JP2012026242A JP2010168935A JP2010168935A JP2012026242A JP 2012026242 A JP2012026242 A JP 2012026242A JP 2010168935 A JP2010168935 A JP 2010168935A JP 2010168935 A JP2010168935 A JP 2010168935A JP 2012026242 A JP2012026242 A JP 2012026242A
Authority
JP
Japan
Prior art keywords
pipe
underground
construction
steel
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168935A
Other languages
Japanese (ja)
Other versions
JP5688244B2 (en
Inventor
Noboru Hayashi
Zenichiro Iwashita
Seijiro Matsumoto
Keiji Mimuro
Masayoshi Nakagawa
Yutaka Sasaki
Kumiko Suda
恵史 三室
雅由 中川
豊 佐々木
善一郎 岩下
清治郎 松本
昇 林
久美子 須田
Original Assignee
Kajima Corp
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, 鹿島建設株式会社 filed Critical Kajima Corp
Priority to JP2010168935A priority Critical patent/JP5688244B2/en
Publication of JP2012026242A publication Critical patent/JP2012026242A/en
Application granted granted Critical
Publication of JP5688244B2 publication Critical patent/JP5688244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of an underground structure capable of constructing a high-quality underground structure with excellent workability.SOLUTION: Steel pipes 13 are roughly straight in an axial direction and are installed in an arch shape so as to cross over the upper part of tunnels 5. On the outer part of the steel pipe 13, plate members 15 are provided. The plate members 15 are bonded to the steel pipe 13 beforehand by welding or the like, and are formed along the longitudinal direction of the steel pipe 13. Openings 17 are provided on a side face (the side facing to an adjacent steel pipe 13) of the steel pipe 13 from the inside of the steel pipe 13. The opening 17 is formed at a prescribed interval in the axial direction of the steel pipe 13. A dowel 24 is provided on a side face of the adjacent steel pipe 13 from the opening 17. Then, a mold 25 is installed so as to close the opening 17 inside the steel pipe 13, and mortar 27 is placed in an area below the plate members 15 between the steel pipes 13.

Description

本発明は、トンネルの間に構築される構造体などの地下構造物の施工方法に関するものである。   The present invention relates to a construction method for an underground structure such as a structure constructed between tunnels.

従来、一対のトンネルの間に構造体を構築する場合などの地下構造物の施工方法の一つとしては、構造体施工位置の上方にパイプルーフを構築し、パイプルーフ下方を掘削し、掘削した空間に構造物を構築する方法がある。   Conventionally, as one of the construction methods of underground structures such as when constructing a structure between a pair of tunnels, a pipe roof was constructed above the structure construction position, and the pipe roof was excavated and excavated. There is a method of constructing a structure in space.

このようなパイプルーフを用いた地下構造物の構築方法としては、例えば、複数の素管を掘削形状に応じて例えば矩形等に配置し、素管同士を継手で連結してパイプルーフを構築する方法がある(特許文献1)。   As a method of constructing an underground structure using such a pipe roof, for example, a plurality of elementary pipes are arranged in a rectangular shape or the like according to the excavation shape, and the pipes are constructed by connecting the elementary pipes with joints. There is a method (Patent Document 1).

また、同様に、鋼管同士の継手内部に注入パイプを挿入し、継手内部に注入材を注入するパイプルーフ工法がある(特許文献2)。 Similarly, there is a pipe roof construction method in which an injection pipe is inserted into a joint between steel pipes and an injection material is injected into the joint (Patent Document 2).

特開平10−169361号公報JP-A-10-169361 特開平10−37656号公報Japanese Patent Laid-Open No. 10-37656

しかし、特許文献1、特許文献2のいずれに記載のパイプルーフの構築方法においても、継手が必要であるため、継手を互いに連結した状態で鋼管を打設する必要があり、継手の精度の確保や、鋼管の打設精度確保、鋼管の構造の複雑化などの問題がある。   However, in the pipe roof construction method described in either Patent Document 1 or Patent Document 2, since a joint is required, it is necessary to drive the steel pipe in a state where the joints are connected to each other, and ensuring the precision of the joint. In addition, there are problems such as securing the accuracy of placing the steel pipe and complication of the structure of the steel pipe.

特に、上述のパイプルーフでは、継手同士を確実に連結しないと、上方からの土砂の崩壊を防止するパイプルーフの機能が発揮できず、例えば、パイプルーフ下方に仮支保工の設置をしながらパイプルーフ下方を掘削し、地下構造物設置予定部の掘削が終了する際には、本受け支保工によって上方からの荷重を受け、本受け支保工が設置された状態で地下構造物を構築する必要があるため作業が煩雑である。また、本受け支保工は地下構造物に埋め戻されるため、躯体品質上の問題もある。   In particular, in the above-described pipe roof, unless the joints are securely connected to each other, the function of the pipe roof that prevents the collapse of the earth and sand from above cannot be exerted. For example, the pipe roof is installed while a temporary support is installed below the pipe roof. When excavating the lower part of the roof and excavating the part where the underground structure is planned to be installed, it is necessary to construct the underground structure with the receiving support installed, receiving the load from above by the receiving support. Work is complicated. In addition, since the receiving support work is buried in the underground structure, there is also a problem in the frame quality.

本発明は、このような問題に鑑みてなされたもので、作業性に優れ、品質の高い地下構造物を構築することが可能な地下構造物の施工方法を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the construction method of an underground structure which is excellent in workability | operativity and can construct | assemble a high quality underground structure.

前述した目的を達成するため、本発明は、地下構造物の施工方法であって、地下構造物の施工予定部上方に複数の鋼管を打設し、前記鋼管の長手方向とは略垂直な方向にアーチ状のパイプルーフを形成する工程(a)と、前記鋼管の内部から、隣り合う鋼管側に開口部を形成する工程(b)と、前記開口部から、前記鋼管同士の間の土砂を除去する工程(c)と、前記開口部から、前記鋼管同士の間に圧縮力伝達部材を打設して前記鋼管同士を一体化する工程(d)と、前記パイプルーフの下方を順次掘削し、前記パイプルーフ下部に地下構造物を構築する工程(e)と、を具備することを特徴とする地下構造物の施工方法である。   In order to achieve the above-described object, the present invention is a method for constructing an underground structure, in which a plurality of steel pipes are placed above a planned construction portion of the underground structure, and a direction substantially perpendicular to the longitudinal direction of the steel pipe The step (a) of forming an arch-shaped pipe roof, the step (b) of forming an opening on the side of the adjacent steel pipe from the inside of the steel pipe, and the sand between the steel pipes from the opening Step (c) for removing, Step (d) for integrating the steel pipes by placing a compression force transmitting member between the steel pipes from the opening, and excavating the lower part of the pipe roof sequentially. And a step (e) of constructing an underground structure below the pipe roof, and a construction method for the underground structure.

前記工程(c)の後、前記開口部から、隣り合う前記鋼管の側面に圧縮力伝達部材保持部材を設ける工程(f)を具備してもよい。 You may comprise the process (f) which provides a compressive force transmission member holding member in the side surface of the said adjacent steel pipe from the said opening part after the said process (c).

前記開口部が形成される位置は、隣り合う鋼管同士の長手方向に対して互いに千鳥状に配置されてもよい。 The positions where the openings are formed may be staggered with respect to the longitudinal direction of adjacent steel pipes.

前記工程(b)の後、前記パイプルーフから、少なくとも前記パイプルーフの上方の地盤を改良する工程(g)をさらに具備してもよい。この場合、前記工程(g)は、凍結管によって地盤を凍結止水する工程であり、前記工程(d)の際、凍結地盤内面に断熱材を設置後に圧縮力伝達部材を打設してもよい。   You may further comprise the process (g) which improves the ground above the said pipe roof at least from the said pipe roof after the said process (b). In this case, the step (g) is a step of freezing and water-stopping the ground with a freezing pipe. In the step (d), a heat transmission member is installed on the inner surface of the frozen ground and a compressive force transmission member is placed. Good.

また、前記工程(g)は、凍結管によって地盤を凍結止水する工程であり、前記工程(d)の際、防凍材が混ぜられた圧縮力伝達部材を打設してもよい。   Further, the step (g) is a step of freezing and water-stopping the ground with a freezing pipe, and a compressive force transmission member mixed with an anti-freezing material may be placed during the step (d).

打設される前記鋼管には、隣り合う鋼管方向に張り出した土砂除去部区画部材が前記鋼管の長手方向に沿って接合されており、前記工程(c)は、前記土砂除去部区画部材の下部の土砂を除去してもよい。   The steel pipe to be cast is joined with a sand removal part partition member extending in the direction of the adjacent steel pipe along the longitudinal direction of the steel pipe, and the step (c) includes a lower part of the soil removal part partition member. The earth and sand may be removed.

前記地下構造物はトンネルの合流部であり、前記パイプルーフは、一対のトンネルの上方にまたがるように形成され、前記工程(e)は、前記一対のトンネル間を掘削し、トンネル合流部を構築する工程であってもよい。   The underground structure is a junction of tunnels, and the pipe roof is formed so as to straddle a pair of tunnels, and the step (e) constructs a tunnel junction by excavating between the pair of tunnels. It may be a process to do.

本発明によれば、鋼管の長手方向とは垂直な方向にアーチ状にパイプルーフが形成されるため、アーチ効果によって効率良くパイプルーフが上方からの荷重を受けることができる。また、鋼管同士は鋼管同士の間に打設される圧縮力伝達部材で一体化されるため、継手等が不要である。なお、圧縮力伝達部材とは、モルタル、コンクリート、流動化処理土、マンメイドロック、マンメイドソイルなど、固結することで鋼管同士の間に作用する圧縮力を伝達可能な部材である。   According to the present invention, since the pipe roof is formed in an arch shape in a direction perpendicular to the longitudinal direction of the steel pipe, the pipe roof can efficiently receive a load from above by the arch effect. Further, since the steel pipes are integrated by a compressive force transmitting member that is driven between the steel pipes, a joint or the like is unnecessary. The compressive force transmitting member is a member capable of transmitting a compressive force acting between steel pipes by solidifying, such as mortar, concrete, fluidized soil, manmade rock, manmade soil, and the like.

また、鋼管内部から開口部が形成され、開口部から鋼管同士の間の土砂を除去するため、長いパイプルーフであっても確実に土砂を除去することができる。したがって、鋼管内部からパイプルーフを一体化することが可能である。   Moreover, since an opening part is formed from the inside of a steel pipe and the earth and sand between steel pipes are removed from an opening part, even if it is a long pipe roof, earth and sand can be removed reliably. Therefore, it is possible to integrate the pipe roof from the inside of the steel pipe.

また、圧縮力伝達部材打設前に開口部から隣り合う鋼管の側面にジベルを設けることで、より確実に圧縮力伝達部材と鋼管とを一体化することができる。また、圧縮伝達部材保持部材が鋼管設置後に設けられるため、鋼管打設時には、圧縮伝達部材保持部材が邪魔になることがない。なお、圧縮伝達部材保持部材は、スタッドジベル、プレートジベル、形鋼ジベル等の部材であり、圧縮力伝達部材と鋼管とのずれを防止できれば良い。   Moreover, a compressive force transmission member and a steel pipe can be integrated more reliably by providing a gibber on the side surface of the steel pipe adjacent from the opening before placing the compressive force transmission member. Moreover, since the compression transmission member holding member is provided after installing the steel pipe, the compression transmission member holding member does not get in the way when the steel pipe is installed. In addition, the compression transmission member holding member is a member such as a stud gibber, a plate diver, or a shape steel diver, and it is only necessary to prevent the displacement between the compression force transmission member and the steel pipe.

また、開口部が、隣り合う鋼管同士の長手方向に対して、千鳥状に配置されれば、開口部の設置ピッチを大きくすることができ、開口部の施工が容易である。また、ジベルを設ける場合には、ジベルが鋼管の長手方向に対して千鳥状に配置されるため、より確実に鋼管同士を一体化することができる。   Moreover, if an opening part is arrange | positioned in zigzag form with respect to the longitudinal direction of adjacent steel pipes, the installation pitch of an opening part can be enlarged and construction of an opening part will be easy. Moreover, when providing a dive, since a dive is arrange | positioned with respect to the longitudinal direction of a steel pipe, steel pipes can be integrated more reliably.

また、凍結管を設置し、凍結管によって地盤を凍結止水する場合に、凍結地盤の内面にあらかじめ断熱材を設置すれば、打設する圧縮力伝達部材が凍結等することがない。また、圧縮力伝達部材に防凍材を混ぜておくことで、同様に圧縮力伝達部材の凍結を防止することができる。   In addition, when a freezing pipe is installed and the ground is frozen and stopped by the freezing pipe, if a heat insulating material is previously installed on the inner surface of the freezing ground, the compression force transmitting member to be placed will not freeze. Moreover, freezing of a compressive force transmission member can be similarly prevented by mixing an anti-freezing material with the compressive force transmission member.

また、鋼管同士の間には土砂除去部区画部材が設けられれば、土砂除去部区画部材によって、容易に鋼管同士の間の土砂を掘削することができる。 Moreover, if the earth and sand removal part division member is provided between steel pipes, the earth and sand between steel pipes can be easily excavated by the earth and sand removal part division member.

また、パイプルーフがトンネルの上方にまたがるように形成されるため、アーチ状のパイプルーフからの力をトンネルで受け止めることが可能である。 Further, since the pipe roof is formed so as to straddle the tunnel, the force from the arched pipe roof can be received by the tunnel.

本発明によれば、作業性に優れ、品質の高い地下構造物を構築することが可能な地下構造物の施工方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in workability | operativity and can provide the construction method of an underground structure which can construct | assemble a high quality underground structure.

(a)は地下構造体1を示す図、(b)は地下構造体1'を示す図。 (A) is a figure which shows underground structure 1, (b) is a figure which shows underground structure 1 '. 鋼管13をアーチ状に設置した状態を示す図で、(a)はトンネル軸方向から見た図、(b)は(a)のA−A線断面図。 It is a figure which shows the state which installed the steel pipe 13 in the arch shape, (a) is the figure seen from the tunnel axial direction, (b) is the sectional view on the AA line of (a). パイプルーフ7上方の地盤を凍結止水した状態を示す図で、(a)は図2のB部における拡大図、(b)は全体図。 It is a figure which shows the state which freeze-stopped the ground above the pipe roof 7, (a) is an enlarged view in the B section of FIG. 2, (b) is a general view. 鋼管13に開口部17を設けた状態を示す図で、(a)は図2のB部における拡大図、(b)は平面図。 It is a figure which shows the state which provided the opening part 17 in the steel pipe 13, (a) is an enlarged view in the B section of FIG. 2, (b) is a top view. 鋼管同士の間にジベル24を設けた状態を示す図。 The figure which shows the state which provided the jivel 24 between steel pipes. 鋼管13同士の間にモルタル27を打設した状態を示す図。 The figure which shows the state which nailed mortar 27 between the steel pipes 13. トンネル5の間の地下構造物設置範囲を掘削した状態を示す図。The figure which shows the state which excavated the underground structure installation range between the tunnels 5. FIG.

以下、本発明の実施の形態にかかる地下構造物の施工方法等について説明する。図1(a)は、本発明により構築された地下構造物1を示す図である。地下構造物1は、地面3下方に設けられた一対のトンネル5と、トンネル5の間に形成された合流部等を構成する躯体9等から構成される。なお、本発明は、地下に構築される構造物であれば、図1(a)の例に限られない。   Hereinafter, the construction method of the underground structure concerning embodiment of this invention, etc. are demonstrated. Fig.1 (a) is a figure which shows the underground structure 1 constructed | assembled by this invention. The underground structure 1 is composed of a pair of tunnels 5 provided below the ground 3 and a casing 9 that constitutes a joining portion and the like formed between the tunnels 5. In addition, if this invention is a structure constructed | assembled underground, it is not restricted to the example of Fig.1 (a).

躯体9は、トンネル5の間に構築され、上方にはパイプルーフ7が形成される。すなわち、躯体9は、パイプルーフ7の下方に形成される空間で構築される。なお、躯体9には、躯体9を構築する際にパイプルーフ7を支持していた支保工等が埋設されていることはない。なお、パイプルーフ7は、円断面の鋼管以外でも任意の断面形状のものが使用できる。たとえば、図1(b)に示すように、矩形断面の鋼管を用いてパイプルーフ7’を形成してもよい。以下の例では、円断面の鋼管を用いた例について説明する。   The housing 9 is constructed between the tunnels 5 and a pipe roof 7 is formed above. That is, the housing 9 is constructed in a space formed below the pipe roof 7. In addition, the support body etc. which supported the pipe roof 7 at the time of constructing the housing 9 are not embedded in the housing 9. The pipe roof 7 can be of any cross-sectional shape other than a circular cross-section steel pipe. For example, as shown in FIG. 1B, the pipe roof 7 'may be formed using a steel pipe having a rectangular cross section. In the following example, an example using a steel pipe having a circular cross section will be described.

次に、地下構造物1の構築方法について説明する。図2は、トンネル5の上方にパイプルーフ7を構築した状態を示す図で、図2(a)はトンネル軸方向より見た図、図2(b)は図2(a)のA−A線断面図である。まず、図2に示すように、地下に構築されたトンネル5の間の地下構造物施工部の端部近傍に立坑11が構築される。次いで、立坑11より、複数の鋼管13を打設してパイプルーフ7が構築される。なお、パイプルーフの施工は、立坑のみからではなく、のり面や既設躯体から行ってもよい。   Next, the construction method of the underground structure 1 will be described. FIG. 2 is a view showing a state in which the pipe roof 7 is constructed above the tunnel 5, FIG. 2 (a) is a view as seen from the tunnel axial direction, and FIG. 2 (b) is an AA view of FIG. It is line sectional drawing. First, as shown in FIG. 2, the shaft 11 is constructed in the vicinity of the end of the underground structure construction part between the tunnels 5 constructed underground. Next, the pipe roof 7 is constructed by driving a plurality of steel pipes 13 from the shaft 11. In addition, you may perform construction of a pipe roof not only from a vertical shaft but from a slope or an existing frame.

鋼管13は、例えば1m程度の内径を有し、作業者が内部に入ることが可能である。したがって、以下の工程は、作業者が立坑側より鋼管13内部に入り、鋼管13内部において行うことができる。また、鋼管13は、軸方向に略まっすぐであり、トンネル5の上方にまたがるようにアーチ状に設置される。すなわち、パイプルーフ7の両端部はトンネル5の略頂部に位置し、パイプルーフ7は、トンネル5同士の間の上方に、複数の鋼管13は鋼管13の軸方向に対して略垂直な方向にアーチ状に配置される。   The steel pipe 13 has an inner diameter of about 1 m, for example, and an operator can enter the inside. Therefore, the following steps can be performed inside the steel pipe 13 by the operator entering the steel pipe 13 from the shaft side. The steel pipe 13 is substantially straight in the axial direction, and is installed in an arch shape so as to straddle the tunnel 5. That is, both end portions of the pipe roof 7 are positioned substantially at the top of the tunnel 5, the pipe roof 7 is located between the tunnels 5, and the plurality of steel pipes 13 are in a direction substantially perpendicular to the axial direction of the steel pipe 13. Arranged in an arch shape.

次に、図3に示すように必要に応じて、パイプルーフ7上方の地盤改良が行われる。図3(a)は、図2のB部に対応する部位の拡大図であり、図3(b)は全体図である。図3(a)に示すように、鋼管13内部の上方(例えば、鋼管13の中心から両側方に略45度程度の位置)には凍結管19が設置される。凍結管19内部には図示を省略したポンプ等によって冷媒を流すことが可能である。なお、凍結管19の配置や本数は図示した例に限られない。また、凍結管は、あらかじめ鋼管に設けておいてもよいが、パイプルーフに隣接するように、隣接地盤に別途設置してもよい。   Next, as shown in FIG. 3, the ground improvement above the pipe roof 7 is performed as necessary. 3A is an enlarged view of a portion corresponding to the portion B in FIG. 2, and FIG. 3B is an overall view. As shown in FIG. 3A, a freezing pipe 19 is installed above the inside of the steel pipe 13 (for example, a position of about 45 degrees on both sides from the center of the steel pipe 13). A refrigerant can be flowed into the freezing pipe 19 by a pump or the like (not shown). The arrangement and number of the freezing tubes 19 are not limited to the illustrated example. Moreover, although a freezing pipe may be provided in the steel pipe beforehand, you may install separately in an adjacent ground so that it may adjoin to a pipe roof.

鋼管13外方の凍結管19の設置位置に略対応する位置には、土砂除去部区画部材である板部材15が設けられる。板部材15はあらかじめ鋼管13に溶接等によって接合されており、鋼管13の長手方向に沿って形成される。板部材15は、鋼管13の両側方に向けて設けられている。鋼管13を打設する際には、図3(a)に示すように、隣り合う鋼管13のそれぞれの板部材15同士が重なり合うように、所定間隔をあけて鋼管13が打設される。なお、板部材15は例えば鋼板であるが、鋼管同士の間の土砂を除去する範囲を区画できれば、板状その他の形態でも良い。   A plate member 15 that is a sediment removing part partition member is provided at a position substantially corresponding to the installation position of the freezing pipe 19 outside the steel pipe 13. The plate member 15 is joined to the steel pipe 13 in advance by welding or the like, and is formed along the longitudinal direction of the steel pipe 13. The plate member 15 is provided toward both sides of the steel pipe 13. When the steel pipe 13 is driven, as shown in FIG. 3A, the steel pipe 13 is driven at a predetermined interval so that the plate members 15 of the adjacent steel pipes 13 overlap each other. In addition, although the plate member 15 is a steel plate, for example, a plate shape and other forms may be sufficient if the range which removes the earth and sand between steel pipes can be divided.

凍結管19に冷媒を流すと、図3(a)に示すように、鋼管13の上方(鋼管13同士の間の上方)が凍結土壌21となる。すなわち、板部材15の上方(板部材15近傍)の土壌が凍結する。したがって、鋼管13同士の上方が止水される。なお、鋼板13同士の間の板部材15上方は凍結止水されるため、板部材15は、単体で上方からの土砂を受け持つほどの強度は不要である。   When a refrigerant is passed through the freezing pipe 19, the upper part of the steel pipe 13 (the upper part between the steel pipes 13) becomes the frozen soil 21, as shown in FIG. That is, the soil above the plate member 15 (in the vicinity of the plate member 15) is frozen. Therefore, the upper part between the steel pipes 13 is stopped. In addition, since the upper part of the plate member 15 between the steel plates 13 is frozen and stopped, the plate member 15 does not need to be strong enough to handle the earth and sand from above.

このような地盤改良をパイプルーフ7の全体に行うことで、図3(b)に示すように、パイプルーフ7上方全体に凍結土壌21が形成され、パイプルーフ7の上方から下方に対して止水を行うことができる。なお、地盤改良は、凍結による方法に限られない。たとえば、凍結管に代えて、薬液注入用の配管を鋼管13に設けておき、パイプルーフ7の上方を薬液注入によって止水してもよい。   By performing such ground improvement on the entire pipe roof 7, as shown in FIG. 3 (b), frozen soil 21 is formed on the entire upper portion of the pipe roof 7. Water can be done. The ground improvement is not limited to freezing. For example, instead of the freezing pipe, a pipe for injecting chemical liquid may be provided in the steel pipe 13, and the upper portion of the pipe roof 7 may be stopped by injecting chemical liquid.

次に、鋼管13内部より、鋼管13の側面(隣り合う鋼管13側)に開口部17が設けられる。図4は、鋼管13の側方に開口部17が設けられた状態を示す図である。図4(a)に示すように、鋼管13の側方には開口部17が形成され、鋼管13同士の間の土砂が掘削されて除去される。すなわち、鋼管13同士の間に掘削部23が形成される。なお、鋼管13同士の間の掘削は、板部材15の下方の土砂を掘削すれば良い。また、図示を省略するが、鋼管13の上方のみではなく、下方にも同様の板部材を形成しておき、上下の板部材で囲まれた範囲における鋼管13同士の間を掘削してもよい。   Next, the opening part 17 is provided in the side surface (adjacent steel pipe 13 side) of the steel pipe 13 from the inside of the steel pipe 13. FIG. 4 is a view showing a state in which the opening 17 is provided on the side of the steel pipe 13. As shown to Fig.4 (a), the opening part 17 is formed in the side of the steel pipe 13, and the earth and sand between the steel pipes 13 are excavated and removed. That is, the excavation part 23 is formed between the steel pipes 13. The excavation between the steel pipes 13 may be performed by excavating the earth and sand below the plate member 15. Although not shown, a similar plate member may be formed not only above the steel pipe 13 but also below, and the steel pipes 13 in a range surrounded by the upper and lower plate members may be excavated. .

図4(b)に示すように、開口部17は、鋼管13の軸方向に所定間隔で形成される。なお、開口部17は隣り合う鋼管13同士において、鋼管13の軸方向に対して千鳥状に配置されることが望ましい。こうすることにより、鋼管13の一方の側における開口部17の設置ピッチを広くすることができ、鋼管13の強度低下も抑制することができる。また、開口部17のサイズは、鋼管13同士の間の土砂を掘削できれば良く、例えば500mm角程度である。   As shown in FIG. 4B, the openings 17 are formed at predetermined intervals in the axial direction of the steel pipe 13. The openings 17 are desirably arranged in a staggered manner with respect to the axial direction of the steel pipes 13 between the adjacent steel pipes 13. By carrying out like this, the installation pitch of the opening part 17 in the one side of the steel pipe 13 can be widened, and the strength reduction of the steel pipe 13 can also be suppressed. Moreover, the size of the opening part 17 should just excavate the earth and sand between the steel pipes 13, for example, is about 500 mm square.

なお、鋼管13同士の間を掘削しても、パイプルーフ7の上方(鋼管13の間)が凍結土壌21によって止水されるため、パイプルーフ7上方から漏水等が起こることがなく、また、土砂等が落下することもない。   In addition, even when excavating between the steel pipes 13, the upper part of the pipe roof 7 (between the steel pipes 13) is stopped by the frozen soil 21, so that no water leaks from the upper part of the pipe roof 7. Sediment does not fall.

次に、図5に示すように、鋼管13の開口部17から、隣り合う鋼管13の側面にジベル24が設けられる。すなわち、鋼管13の軸方向における開口部17に対応する部位において、開口部17と対向する隣り合う鋼管13側面にジベル24が形成される。   Next, as shown in FIG. 5, a dowel 24 is provided on the side surface of the adjacent steel pipe 13 from the opening 17 of the steel pipe 13. That is, at a portion corresponding to the opening portion 17 in the axial direction of the steel pipe 13, a diver 24 is formed on the side surface of the adjacent steel pipe 13 facing the opening portion 17.

次に、図6に示すように、鋼管13内部において、開口部17を塞ぐように型枠25が設置され、鋼管13同士の間であって板部材15の下方の領域に圧縮力伝達部材であるモルタル27が打設される。なお、モルタル27は、鋼管13同士の間の掘削部23に面する開口部17全てを塞いだ状態で、鋼管13の全長にわたって一度に打設してもよく、または、鋼管13の長手方向の一部において、掘削部23を軸方向に仕切るように型枠を設け、複数回に分けて打設してもよい。また、モルタル27の打設は、立坑側から行ってもよく、開口部17より行ってもよい。   Next, as shown in FIG. 6, inside the steel pipe 13, a mold 25 is installed so as to close the opening 17, and a compression force transmitting member is provided between the steel pipes 13 and below the plate member 15. A mortar 27 is placed. In addition, the mortar 27 may be driven at once over the entire length of the steel pipe 13 in a state in which all the openings 17 facing the excavation part 23 between the steel pipes 13 are closed, or in the longitudinal direction of the steel pipe 13. In some cases, a formwork may be provided so as to partition the excavation part 23 in the axial direction, and the excavation part 23 may be divided into a plurality of times. The mortar 27 may be placed from the shaft side or from the opening 17.

ここで、モルタル27が打設される前に、あらかじめ板部材の内面(凍結土壌21の内面)に断熱材29が設置されることが望ましい。モルタル27が、凍結管19(凍結土壌21)により冷却され、凍結することを防止するためである。また、モルタル27として、防凍材を予め混ぜておくことで、モルタル27の凍結をより確実に防止することができる。   Here, before the mortar 27 is placed, it is desirable that the heat insulating material 29 be installed on the inner surface of the plate member (the inner surface of the frozen soil 21) in advance. This is because the mortar 27 is cooled by the freezing pipe 19 (frozen soil 21) and is prevented from freezing. Moreover, freezing of the mortar 27 can be more reliably prevented by mixing an anti-freezing material in advance as the mortar 27.

モルタル27が固結すると、鋼管13同士が一体化される。この際、鋼管13の側面には所定間隔でジベル24が設けられるため、モルタル27と鋼管13とが確実に一体化される。なお、型枠25は、モルタル27固結後に撤去してもよく、そのまま埋設してもよい。   When the mortar 27 is consolidated, the steel pipes 13 are integrated. At this time, since the dowels 24 are provided at predetermined intervals on the side surface of the steel pipe 13, the mortar 27 and the steel pipe 13 are reliably integrated. The mold 25 may be removed after the mortar 27 is consolidated, or may be embedded as it is.

以上の工程により、全長にわたって鋼管同士が一体化されると、各鋼管13内部にもモルタルが充填される。したがって、高強度なパイプルーフを得ることができる。次いで、パイプルーフ7の下方の対象部位を掘削して、構造物を構築する。図7は、パイプルーフ7下部を掘削した状態を示す図である。図7に示すように、上方でパイプルーフ7が完全に一体化されているため、上方の土圧をパイプルーフ7が受け持つことが可能である。このため、パイプルーフ7下部に支保工等を設置する必要がなく、躯体の設置時に、躯体と支保工とが干渉することもない。   When the steel pipes are integrated over the entire length by the above steps, the inside of each steel pipe 13 is also filled with mortar. Therefore, a high-strength pipe roof can be obtained. Next, a target part below the pipe roof 7 is excavated to construct a structure. FIG. 7 is a view showing a state where the lower part of the pipe roof 7 is excavated. As shown in FIG. 7, since the pipe roof 7 is completely integrated at the upper side, the pipe roof 7 can handle the upper earth pressure. For this reason, it is not necessary to install a support or the like at the lower part of the pipe roof 7, and the housing and the support work do not interfere when the housing is installed.

また、パイプルーフ7の両端は、トンネル5の頂部近傍の上部に位置する。このため、上方の土圧を受けとめるパイプルーフ7からの力を、トンネル5が受け持つことができる。なお、パイプルーフ7とトンネル5との隙間(図中F部)近傍は、あらかじめ薬液注入等により止水が行われる。   Further, both ends of the pipe roof 7 are located in the upper part near the top of the tunnel 5. For this reason, the tunnel 5 can take charge of the force from the pipe roof 7 that receives the earth pressure above. In addition, in the vicinity of the gap (F portion in the figure) between the pipe roof 7 and the tunnel 5, the water is stopped in advance by chemical solution injection or the like.

本実施の形態にかかる地下構造物の構築方法によれば、躯体の構築部位の上方にあらかじめアーチ状にパイプルーフ7を形成するため、上方からの土圧をパイプルーフ7が受け持つことができ、躯体構築部位に支保工等を設置する必要がない。このため、躯体構築時に支保工と躯体とが干渉することがない。   According to the construction method of the underground structure according to the present embodiment, the pipe roof 7 is preliminarily formed in the arch shape above the construction part of the frame, so that the pipe roof 7 can take over the earth pressure from above, There is no need to install a support work at the building construction site. For this reason, a support work and a frame do not interfere at the time of frame construction.

また、パイプルーフ7に用いられる鋼管13には、継手等が不要であるため鋼管13の製造及び設置が容易である。また、板部材15を設けることで、掘削時にパイプルーフ7上方からの土砂の落下等がなく、また、掘削領域が明確であるため、パイプルーフ上方に堀過ぎることもない。   Moreover, since the steel pipe 13 used for the pipe roof 7 does not require a joint or the like, the steel pipe 13 can be easily manufactured and installed. Further, by providing the plate member 15, there is no fall of earth and sand from above the pipe roof 7 during excavation, and since the excavation area is clear, there is no excessive dug above the pipe roof.

また、地盤改良として凍結管19を用いる場合に、板部材15の内面に断熱材29を設けることで、モルタル27が凍結することがない。また、モルタル27に防凍材を混ぜることで、モルタル27の凍結を確実に防止することができる。   Further, when the freezing pipe 19 is used for ground improvement, the mortar 27 is not frozen by providing the heat insulating material 29 on the inner surface of the plate member 15. In addition, freezing of the mortar 27 can be reliably prevented by mixing the mortar 27 with an anti-freezing material.

また、鋼管同士の間の土砂の除去が鋼管13内部より行われるため、掘削作業が容易である。また、開口部17から対向する隣の鋼管13の側面にジベル24を設けることで、鋼管13打設時にはジベル等を設ける必要がなく、鋼管13の打設が容易である。また、開口部17からモルタル27を打設することも可能であり、モルタル27の打設も容易である。   Moreover, since the removal of the earth and sand between steel pipes is performed from the inside of the steel pipe 13, excavation work is easy. Further, by providing the dowel 24 on the side surface of the adjacent steel pipe 13 facing from the opening portion 17, it is not necessary to provide a gibber or the like when placing the steel pipe 13, and the placing of the steel pipe 13 is easy. Moreover, it is also possible to drive the mortar 27 from the opening 17, and the driving of the mortar 27 is easy.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

たとえば、パイプルーフ7下方を掘削後、パイプルーフ7の両端を水平方向に連結する連結部材を設ければ、パイプルーフ7の下方におけるアーチ形状が広がり、パイプルーフ7が崩壊することをより確実に防止することができる。   For example, if a connecting member that connects both ends of the pipe roof 7 in the horizontal direction is provided after excavating the pipe roof 7 below, the arch shape below the pipe roof 7 spreads and the pipe roof 7 collapses more reliably. Can be prevented.

1………地下構造物
3………地面
5………トンネル
7………パイプルーフ
9………躯体
11………立坑
13………鋼管
15………板部材
17………開口部
19………凍結管
21………凍結土壌
23………掘削部
24………ジベル
25………型枠
27………モルタル
29………断熱材
DESCRIPTION OF SYMBOLS 1 ......... Underground structure 3 ......... Ground 5 ......... Tunnel 7 ......... Pipe roof 9 ......... Housing 11 ......... Shaft 13 ......... Steel pipe 15 ......... Plate member 17 ......... Opening 19 ......... Freezing pipe 21 ......... Frozen soil 23 ......... Excavation section 24 ......... Givel 25 ......... Formwork 27 ......... Mortar 29 ......... Insulation

Claims (8)

  1. 地下構造物の施工方法であって、
    地下構造物の施工予定部上方に複数の鋼管を打設し、前記鋼管の長手方向とは略垂直な方向にアーチ状のパイプルーフを形成する工程(a)と、
    前記鋼管の内部から、隣り合う鋼管側に開口部を形成する工程(b)と、
    前記開口部から、前記鋼管同士の間の土砂を除去する工程(c)と、
    前記開口部から、前記鋼管同士の間に圧縮力伝達部材を打設して前記鋼管同士を一体化する工程(d)と、
    前記パイプルーフの下方を順次掘削し、前記パイプルーフ下部に地下構造物を構築する工程(e)と、
    を具備することを特徴とする地下構造物の施工方法。
    A construction method for an underground structure,
    A step (a) of placing a plurality of steel pipes above the planned construction portion of the underground structure, and forming an arched pipe roof in a direction substantially perpendicular to the longitudinal direction of the steel pipes; A step (a) of placing a plurality of steel pipes above the planned construction portion of the underground structure, and forming an arched pipe roof in a direction substantially perpendicular to the longitudinal direction of the steel pipes;
    From the inside of the steel pipe, a step (b) of forming an opening on the adjacent steel pipe side; From the inside of the steel pipe, a step (b) of forming an opening on the adjacent steel pipe side;
    A step (c) of removing earth and sand between the steel pipes from the opening; A step (c) of removing earth and sand between the steel pipes from the opening;
    A step (d) of integrating the steel pipes by placing a compressive force transmitting member between the steel pipes from the opening; A step (d) of integrating the steel pipes by placing a compressive force transmitting member between the steel pipes from the opening;
    A step (e) of sequentially excavating a lower portion of the pipe roof and constructing an underground structure at a lower portion of the pipe roof; A step (e) of sequentially excavating a lower portion of the pipe roof and constructing an underground structure at a lower portion of the pipe roof;
    The construction method of an underground structure characterized by comprising. The construction method of an underground structure characterized by comprising.
  2. 前記工程(c)の後、前記開口部から、隣り合う前記鋼管の側面に圧縮力伝達部材保持部材を設ける工程(f)を具備することを特徴とする請求項1記載の地下構造物の施工方法。   The construction of an underground structure according to claim 1, further comprising a step (f) of providing a compressive force transmission member holding member on the side surface of the adjacent steel pipe from the opening after the step (c). Method.
  3. 前記開口部が形成される位置は、隣り合う鋼管同士の長手方向に対して互いに千鳥状に配置されることを特徴とする請求項1または請求項2に記載の地下構造物の施工方法。   The construction method for an underground structure according to claim 1 or 2, wherein the positions where the openings are formed are arranged in a staggered manner with respect to the longitudinal direction of adjacent steel pipes.
  4. 前記工程(b)の後、前記パイプルーフから、少なくとも前記パイプルーフの上方の地盤を改良する工程(g)をさらに具備することを特徴とする請求項1から請求項3のいずれかに記載の地下構造物の施工方法。   4. The method according to claim 1, further comprising a step (g) of improving the ground at least above the pipe roof from the pipe roof after the step (b). 5. Construction method for underground structures.
  5. 前記工程(g)は、凍結管によって地盤を凍結止水する工程であり、前記工程(d)の際、凍結地盤内面に断熱材を設置後に圧縮力伝達部材を打設することを特徴とする請求項4記載の地下構造物の施工方法。   The step (g) is a step of freezing and water-stopping the ground with a freezing pipe, and in the step (d), a compressive force transmitting member is placed after installing a heat insulating material on the inner surface of the frozen ground. The construction method of the underground structure of Claim 4.
  6. 前記工程(g)は、凍結管によって地盤を凍結止水する工程であり、前記工程(d)の際、防凍材が混ぜられた圧縮力伝達部材を打設することを特徴とする請求項4または請求項5に記載の地下構造物の施工方法。 5. The step (g) is a step of freezing and water-stopping the ground with a freezing pipe, and a compressive force transmission member mixed with a defrosting material is placed during the step (d). Or the construction method of the underground structure of Claim 5.
  7. 打設される前記鋼管には、隣り合う鋼管方向に張り出した土砂除去部区画部材が前記鋼管の長手方向に沿って接合されており、
    前記工程(c)は、前記土砂除去部区画部材の下部の土砂を除去することを特徴とする請求項1から請求項6のいずれかに記載の地下構造物の施工方法。 The method for constructing an underground structure according to any one of claims 1 to 6, wherein the step (c) removes the earth and sand below the earth and sand removing portion section member. The steel pipe to be placed is joined along the longitudinal direction of the steel pipe with a sand and sand removal section partition member projecting in the direction of the adjacent steel pipe, The steel pipe to be placed is joined along the longitudinal direction of the steel pipe with a sand and sand removal section partition member projecting in the direction of the adjacent steel pipe,
    The said process (c) removes the earth and sand of the lower part of the said earth and sand removal part division member, The construction method of the underground structure in any one of Claims 1-6 characterized by the above-mentioned. The said process (c) removes the earth and sand of the lower part of the said earth and sand removal part division member, The construction method of the underground structure in any one of Claims 1-6 characterized by the above-mentioned.
  8. 前記地下構造物はトンネルの合流部であり、前記パイプルーフは、一対のトンネルの上方にまたがるように形成され、
    前記工程(e)は、前記一対のトンネル間を掘削し、トンネル合流部を構築する工程であることを特徴とする請求項1から請求項7のいずれかに記載の地下構造物の施工方法。 The method for constructing an underground structure according to any one of claims 1 to 7, wherein the step (e) is a step of excavating between the pair of tunnels to construct a tunnel confluence portion. The underground structure is a junction of tunnels, and the pipe roof is formed to straddle a pair of tunnels, The underground structure is a junction of tunnels, and the pipe roof is formed to straddle a pair of tunnels,
    The construction method for an underground structure according to any one of claims 1 to 7, wherein the step (e) is a step of excavating the pair of tunnels to construct a tunnel junction. The construction method for an underground structure according to any one of claims 1 to 7, wherein the step (e) is a step of excavating the pair of tunnels to construct a tunnel junction.
JP2010168935A 2010-07-28 2010-07-28 Construction method for underground structures Active JP5688244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168935A JP5688244B2 (en) 2010-07-28 2010-07-28 Construction method for underground structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168935A JP5688244B2 (en) 2010-07-28 2010-07-28 Construction method for underground structures

Publications (2)

Publication Number Publication Date
JP2012026242A true JP2012026242A (en) 2012-02-09
JP5688244B2 JP5688244B2 (en) 2015-03-25

Family

ID=45779483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168935A Active JP5688244B2 (en) 2010-07-28 2010-07-28 Construction method for underground structures

Country Status (1)

Country Link
JP (1) JP5688244B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397045A (en) * 2019-08-01 2019-11-01 中国矿业大学 It is a kind of with the forced channel steel sheet pile deep foundation pit supporting structure and method that freeze water shutoff function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124513B2 (en) * 1982-08-27 1986-06-11 Nippon Kokuju Tetsudo
JPH04247167A (en) * 1991-02-01 1992-09-03 Ohbayashi Corp Pipe cleaning method of concrete
JP2007191979A (en) * 2006-01-23 2007-08-02 Nishimatsu Constr Co Ltd Element, element joining structure, and element joining method
JP2007217910A (en) * 2006-02-15 2007-08-30 Shimizu Corp Underground cavity construction method and tunnel construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124513B2 (en) * 1982-08-27 1986-06-11 Nippon Kokuju Tetsudo
JPH04247167A (en) * 1991-02-01 1992-09-03 Ohbayashi Corp Pipe cleaning method of concrete
JP2007191979A (en) * 2006-01-23 2007-08-02 Nishimatsu Constr Co Ltd Element, element joining structure, and element joining method
JP2007217910A (en) * 2006-02-15 2007-08-30 Shimizu Corp Underground cavity construction method and tunnel construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397045A (en) * 2019-08-01 2019-11-01 中国矿业大学 It is a kind of with the forced channel steel sheet pile deep foundation pit supporting structure and method that freeze water shutoff function

Also Published As

Publication number Publication date
JP5688244B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
KR100634726B1 (en) Form system for construction of underground slab and method for constructing underground slab and breast wall using the same
KR100866162B1 (en) Chair-type self-supported earth retaining wall constructing method
JP4183470B2 (en) Underground structure and its construction method
KR101018282B1 (en) Method for constructing fabric for undergound tunnel
JP3701280B2 (en) Yamadome support
WO2005024183A1 (en) Concrete element for cladding a tunnel
KR100995384B1 (en) Parallelly connected iron tube assembly and construction method for underground structure using the same
KR101897415B1 (en) Apparatus for forming a cip retaining wall construction method using thereof
JP2006322222A (en) Construction method of large-sectional tunnel
JP3876278B2 (en) Easy-cut tunnel segment structure
KR100794609B1 (en) Construction method of underground structure using concrete filled pipe roof and concrete wall
JP4958035B2 (en) Shield roof construction method
KR100973770B1 (en) Non-excavation type constructed tunnels and conduits using arc-shaped divided segments and its construccting methods thereof
KR100975948B1 (en) Precast diaphragm wall and it's construction technique
JP2004169474A (en) Connecting structure for tunnel cutting and enlarging section
KR20070057653A (en) Underground structure construction method
KR100800028B1 (en) Method for constructing a tunnel using front jacking construction method
KR100698878B1 (en) Y Type Connecting Structure of Steel Pipe Struts
KR100910576B1 (en) Embed anchor and construction method of composite basement wall using the same
KR101331261B1 (en) Underground prefabricated precast concrete rainwater recycling facility using precast concrete continuous wall in strut structure or earth anchor and construction method of the same
KR100844104B1 (en) Unit for supporting center of double tunnel
KR20110033650A (en) Method for underground roadway using slurry wall method
KR101973565B1 (en) Sheathing method for constructing both sheathing wall and cutoff collar by welding cutoff plate to phc pile with longitudinal plate
KR101109320B1 (en) Field assembly concrete culvert box having underground excavation prevention structure and construction method thereof
KR101278687B1 (en) Box-type thrust tube structure, and method of building underground structure using the box-type thrust tube structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5688244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250