JP2012025996A - Forming method of transparent conductive thin film, and forming device of transparent conductive thin film - Google Patents

Forming method of transparent conductive thin film, and forming device of transparent conductive thin film Download PDF

Info

Publication number
JP2012025996A
JP2012025996A JP2010164911A JP2010164911A JP2012025996A JP 2012025996 A JP2012025996 A JP 2012025996A JP 2010164911 A JP2010164911 A JP 2010164911A JP 2010164911 A JP2010164911 A JP 2010164911A JP 2012025996 A JP2012025996 A JP 2012025996A
Authority
JP
Japan
Prior art keywords
thin film
transparent conductive
substrate
conductive thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010164911A
Other languages
Japanese (ja)
Inventor
Takao Amasawa
敬生 天沢
Hironori Torii
博典 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MES Afty Corp
Original Assignee
MES Afty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MES Afty Corp filed Critical MES Afty Corp
Priority to JP2010164911A priority Critical patent/JP2012025996A/en
Publication of JP2012025996A publication Critical patent/JP2012025996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing device of an epitaxially-grown transparent conductive thin film, and a novel photoelectronics device having a multilayered structure formed of a crystal thin film.SOLUTION: A base board 5 in a vacuum chamber is heated to 300°C to 500°C, and controlled into a range of 0.05 Pa to 0.3 Pa of inert gas pressure and 5×10Pa to 1.5×10Pa of oxygen partial pressure. By applying high-density plasma irradiation to the base board, the transparent conductive thin film is formed by epitaxially growing a thin film forming material on the crystal base board.

Description

本発明は、発光デバイスや表示デバイスに用いられる透明導電性薄膜の形成方法および透明導電性薄膜の形成装置に関する。   The present invention relates to a transparent conductive thin film forming method and a transparent conductive thin film forming apparatus used for a light emitting device and a display device.

透明導電性薄膜(以下、単に、薄膜、導電性薄膜ともいう)としては、各種表示デバイス等に広く用いられているITOの他に、IZO、ZnO、AZO、GZOなどが知られている。これらの薄膜の形成法としては、真空蒸着法やスパッタ法のほか、PLD(Pulsed Laser Deposition)やゾルゲル法など、様々な手法が試みられている。これらの薄膜は一般に酸化物などの2元または3元以上の化合物であり、形成法によって、膜組成や結晶性のほか、電気電導率や光学的な透過性、表面平坦性が大きく変化する。このため、例えば同じITOであっても、適用するデバイスに応じて形成法や条件を変え、必要とする特性を引き出してそれぞれのデバイスに利用している。   As the transparent conductive thin film (hereinafter, also simply referred to as a thin film or a conductive thin film), IZO, ZnO, AZO, GZO and the like are known in addition to ITO widely used in various display devices. As a method for forming these thin films, various methods such as a PLD (Pulsed Laser Deposition) and a sol-gel method have been tried in addition to a vacuum deposition method and a sputtering method. These thin films are generally binary or ternary compounds such as oxides, and the electrical conductivity, optical transparency, and surface flatness, as well as the film composition and crystallinity, vary greatly depending on the formation method. For this reason, even for the same ITO, for example, the formation method and conditions are changed according to the device to be applied, and necessary characteristics are extracted and used for each device.

従来ITO膜の形成法として最も一般的に用いられている方法は、スパッタと真空蒸着である。スパッタは大面積基板に均一に成膜でき、膜質も優れていることから、液晶パネルやタッチパネルなど、表示デバイスで多用されている。一方、LEDなどのように、成膜基板が半導体である場合には、半導体へのダメージの懸念や半導体とのオーミックコンタクトが困難であるなどの理由からスパッタが避けられ、長年にわたって真空蒸着が用いられてきた。しかしながら、蒸着で形成したITO膜は、一般に針状結晶のような不安定な膜になりやすく、デバイスプロセスで薬品耐性が不十分な点や、透過率や平坦性などの薄膜特性についての要求特性を満足できないなどで、他の成膜法に置き換えようとする試みが広く行われている。   Conventionally, the most commonly used methods for forming an ITO film are sputtering and vacuum deposition. Sputtering is widely used in display devices such as liquid crystal panels and touch panels because it can be uniformly formed on a large area substrate and has excellent film quality. On the other hand, when the deposition substrate is a semiconductor such as an LED, sputtering is avoided because of concerns such as damage to the semiconductor and difficulty in ohmic contact with the semiconductor, and vacuum deposition has been used for many years. Has been. However, ITO films formed by evaporation generally tend to be unstable films such as needle crystals, have insufficient chemical resistance in device processes, and require characteristics for thin film characteristics such as transmittance and flatness. Attempts to replace it with other film forming methods have been widely conducted.

特許第1553959号公報Japanese Patent No. 1553959 特許第1462543号公報Japanese Patent No. 1462543

これら、スパッタ、真空蒸着、或いはそのほかのほとんどの成膜手段において、透明導電性薄膜の抵抗率を十分に低減するうえで、成膜中の基板加熱が不可欠である。ITOを例に取れば、基板加熱無しの場合、一般に抵抗率を5x10-4Ωcm以下にすることは極めて困難となる一方で、200〜300℃の基板加熱を行うことで、2x10-4Ωcm程度までに低減することが可能となる。このため、特別に成膜時の加熱に制限を受けるような、例えば100℃程度で損傷を受ける有機ELなどのデバイスに用いる以外には、一般に数100℃の基板加熱で成膜されている。 In these sputtering, vacuum deposition, and most other film forming means, heating the substrate during film formation is indispensable for sufficiently reducing the resistivity of the transparent conductive thin film. Taking ITO as an example, in the case of no substrate heating, it is generally very difficult to set the resistivity to 5 × 10 −4 Ωcm or less, but by heating the substrate at 200 to 300 ° C., about 2 × 10 −4 Ωcm. It becomes possible to reduce by this. For this reason, the film is generally formed by heating the substrate at several hundreds of degrees Celsius except for use in a device such as an organic EL that is damaged at about 100 degrees Celsius.

しかしながら、基板加熱を行った場合には多結晶薄膜のそれぞれの結晶粒が大きく成長して表面凹凸が激しくなり、光の散乱などによりデバイス特性上、重大な障害となることがあった。また、表面の凹凸や結晶粒界の影響で抵抗率を十分に低減できないなどの問題もあった。以上のように、これまでは、低い抵抗率と表面平坦性を同時に満足する高品質なITOの成膜手段は無かった。本発明の主要な目的は、十分に低い抵抗率を確保しながら表面平坦性や光学特性に優れた高品質な透明導電性薄膜を得る手法を提供することにある。   However, when the substrate is heated, each crystal grain of the polycrystalline thin film grows large and the surface irregularities become severe, which may cause a serious obstacle in device characteristics due to light scattering. In addition, there has been a problem that the resistivity cannot be sufficiently reduced due to the effects of surface irregularities and crystal grain boundaries. As described above, there has been no high-quality ITO film forming means that satisfies both low resistivity and surface flatness at the same time. A main object of the present invention is to provide a technique for obtaining a high-quality transparent conductive thin film excellent in surface flatness and optical characteristics while ensuring a sufficiently low resistivity.

一方、従来は透明導電性薄膜を500℃以下の低温でエピタキシャル成長する手段は限られており、例えば、GaNのような半導体とITOのような透明導電性薄膜を交互に多層でエピタキシャル成長することは困難であった。本発明の他の目的は、このような結晶性薄膜の多層構造を実現することにより、新たなフォトエレクトロニクスデバイスの提供を可能とするものである。   On the other hand, conventionally, there are limited means for epitaxially growing a transparent conductive thin film at a low temperature of 500 ° C. or lower. For example, it is difficult to epitaxially grow a semiconductor such as GaN and a transparent conductive thin film such as ITO alternately in multiple layers Met. Another object of the present invention is to provide a new photoelectronic device by realizing such a multilayer structure of crystalline thin films.

上記の課題を解決するために、請求項1の発明は、真空室中に置かれた結晶性基板上に薄膜形成材料をエピタキシャル成長させて透明導電性薄膜を形成する方法であって、薄膜形成中に、前記真空室中に置かれた基板を300℃〜500℃に加熱するとともに、不活性ガス圧力を0.05Pa〜0.3Pa、酸素分圧を5x10-4Pa〜1.5x10-3Paの範囲に制御し、前記基板に対して高密度プラズマ照射を行うことを特徴する透明導電性薄膜の形成方法である。 In order to solve the above-mentioned problems, the invention of claim 1 is a method of forming a transparent conductive thin film by epitaxially growing a thin film forming material on a crystalline substrate placed in a vacuum chamber. In addition, the substrate placed in the vacuum chamber is heated to 300 ° C. to 500 ° C., the inert gas pressure is 0.05 Pa to 0.3 Pa, and the oxygen partial pressure is 5 × 10 −4 Pa to 1.5 × 10 −3 Pa. The transparent conductive thin film forming method is characterized in that the substrate is subjected to high density plasma irradiation in a controlled range.

請求項2に記載の発明は、請求項1に記載の透明導電性薄膜の形成方法において、高密度プラズマ照射法としてECRプラズマ流を用いることを特徴とする。   According to a second aspect of the present invention, in the method for forming a transparent conductive thin film according to the first aspect, an ECR plasma flow is used as a high-density plasma irradiation method.

請求項3に記載の発明は、真空室中に置かれた結晶性基板上に薄膜形成材料をエピタキシャル成長させて透明導電性薄膜を形成する装置であって、前記基板を載置して薄膜を形成するための真空室と、薄膜形成中に、前記真空室中に置かれた基板を300℃〜500℃に加熱する手段と、前記真空室内に不活性ガスおよび酸素ガスを導入し、不活性ガス圧力を0.05Pa〜0.3Paとし、酸素分圧を5x10-4Pa〜1.5x10-3Paの範囲に制御する手段と、前記加熱された基板に対して高密度プラズマ照射を行なう手段とを備えることを特徴する透明導電性薄膜の形成装置である。 The invention described in claim 3 is an apparatus for forming a transparent conductive thin film by epitaxially growing a thin film forming material on a crystalline substrate placed in a vacuum chamber, and forming the thin film by placing the substrate. A vacuum chamber for carrying out the process, means for heating the substrate placed in the vacuum chamber to 300 ° C. to 500 ° C. during the formation of the thin film, and introducing an inert gas and an oxygen gas into the vacuum chamber. Means for controlling the pressure to 0.05 Pa to 0.3 Pa and the oxygen partial pressure in the range of 5 × 10 −4 Pa to 1.5 × 10 −3 Pa; and means for performing high-density plasma irradiation on the heated substrate; A device for forming a transparent conductive thin film, comprising:

請求項4に記載の発明は、請求項3記載の透明導電性薄膜の形成装置において、高密度プラズマ照射法としてECRプラズマ流を用いることを特徴とする。   According to a fourth aspect of the present invention, in the transparent conductive thin film forming apparatus according to the third aspect, an ECR plasma flow is used as the high-density plasma irradiation method.

代表的な固体ソースECRプラズマ成膜装置の断面構造を示す図である。It is a figure which shows the cross-section of a typical solid source ECR plasma film-forming apparatus. 基板温度350℃で成膜したITO膜のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the ITO film | membrane formed into a film with the substrate temperature of 350 degreeC. 成膜温度によるITO膜の表面モフォロジー変化を示す図である。It is a figure which shows the surface morphology change of the ITO film | membrane by film-forming temperature. エピタキシャル成長ITO膜の抵抗率の膜厚依存性を示す図である。It is a figure which shows the film thickness dependence of the resistivity of an epitaxial growth ITO film | membrane. ITO膜の透過率を示す図である。It is a figure which shows the transmittance | permeability of an ITO film | membrane.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は、真空室中に置かれた結晶性基板上に薄膜形成材料をエピタキシャル成長させて透明導電性薄膜を形成する方法において、薄膜形成中に、真空室中に置かれた基板を所定の温度で加熱することと、不活性ガス圧力と酸素分圧を所定範囲に制御した状態で、基板に高密度プラズマ照射を行うこととによってエピタキシャル成長させ、低抵抗で表面平坦性や光学特性に優れた透明導電性薄膜を形成することを特徴とする。   The present invention relates to a method of epitaxially growing a thin film forming material on a crystalline substrate placed in a vacuum chamber to form a transparent conductive thin film. During the formation of the thin film, the substrate placed in the vacuum chamber is heated to a predetermined temperature. The substrate is epitaxially grown by heating with a high-density plasma and the substrate is irradiated with high-density plasma while the inert gas pressure and oxygen partial pressure are controlled within a predetermined range, and it has low resistance and excellent surface flatness and optical properties. A conductive thin film is formed.

本実施形態では、この薄膜形成方法の一例として、固体ソース型ECR(Electron Cyclotron Resonance、すなわち電子サイクロトロン共鳴)プラズマ成膜装置を用いたスパッタリング法によりITO膜を形成した。固体ソース型ECRプラズマ成膜装置はこのECR現象を利用してプラズマ流を発生することができる。発生させたプラズマ流の周囲に配置したターゲットに電圧を印加することによりプラズマ中のイオンをターゲットに加速入射させてスパッタリング現象を生ぜしめ、放出したターゲット粒子を近傍に設置した試料基板上に付着させて薄膜を形成する技術は、既に特許化されている(特許文献1および2参照)。   In this embodiment, as an example of this thin film forming method, an ITO film is formed by sputtering using a solid source ECR (Electron Cyclotron Resonance) plasma film forming apparatus. The solid source type ECR plasma film forming apparatus can generate a plasma flow by utilizing this ECR phenomenon. By applying a voltage to the target placed around the generated plasma flow, ions in the plasma are accelerated and incident on the target to cause a sputtering phenomenon, and the released target particles are deposited on a sample substrate placed nearby. A technique for forming a thin film has already been patented (see Patent Documents 1 and 2).

まず、本実施形態にかかる薄膜形成方法を実施できる薄膜形成装置として用いることができる固体ソースECRプラズマ装置について説明する。図1は固体ソースECRプラズマ装置の構造を示したものである。同図において、プラズマ生成室1は試料室2に対して傾斜して取り付けられており、プラズマ引出し窓3を介して試料室に繋がっている。何れも大気から隔離された密閉空間である。   First, a solid source ECR plasma apparatus that can be used as a thin film forming apparatus capable of performing the thin film forming method according to the present embodiment will be described. FIG. 1 shows the structure of a solid source ECR plasma apparatus. In the figure, the plasma generation chamber 1 is attached to the sample chamber 2 at an angle, and is connected to the sample chamber via the plasma extraction window 3. Both are sealed spaces isolated from the atmosphere.

回転する試料台4に置かれた試料基板5上に薄膜を形成するには、まず、プラズマ生成室1と試料室2を、排気路6を通して真空ポンプ(図示せず)により真空排気した後、基板を回転させながら赤外ランプ型の加熱ヒータ7を作動させて基板加熱を開始する。基板が所定温度に到達したら、ガス導入口8またはガス導入口9からガスを導入して所定の圧力に保持する。   In order to form a thin film on the sample substrate 5 placed on the rotating sample stage 4, first, the plasma generation chamber 1 and the sample chamber 2 are evacuated by a vacuum pump (not shown) through the exhaust passage 6, The substrate heating is started by operating the infrared lamp type heater 7 while rotating the substrate. When the substrate reaches a predetermined temperature, a gas is introduced from the gas inlet 8 or the gas inlet 9 and held at a predetermined pressure.

次いで、プラズマ生成室1の周囲に置かれた2つの磁気コイル10に電流を流して磁界を発生させた後、矩形導波管11に導かれたマイクロ波12をプラズマ生成室1下部のマイクロ波導入窓13を通して真空側に導入する。これにより、プラズマ生成室1内で電子サイクロトロン共鳴が生じ、ECRプラズマが発生する。   Next, after a current is passed through two magnetic coils 10 placed around the plasma generation chamber 1 to generate a magnetic field, the microwave 12 guided to the rectangular waveguide 11 is converted into a microwave below the plasma generation chamber 1. It introduces to the vacuum side through the introduction window 13. As a result, electron cyclotron resonance occurs in the plasma generation chamber 1, and ECR plasma is generated.

プラズマ生成室1で発生したプラズマは、発散磁界に沿ってプラズマ引出し窓3から試料基板5へプラズマ流14として流れ込む。この状態でスパッタ電源15を投入してターゲット16に電圧を印加すると、ECRプラズマ中のイオンがターゲット16に向かって加速を受け、そのイオン衝撃によってターゲット構成原子が真空中に放出される。このときにターゲットに印加するスパッタ電源としては直流(DC)または交流(RF)、DCパルスなどが用いられる。   The plasma generated in the plasma generation chamber 1 flows as a plasma flow 14 from the plasma extraction window 3 to the sample substrate 5 along the diverging magnetic field. In this state, when the sputtering power source 15 is turned on and a voltage is applied to the target 16, ions in the ECR plasma are accelerated toward the target 16, and target constituent atoms are released into the vacuum by the ion bombardment. At this time, direct current (DC), alternating current (RF), DC pulse, or the like is used as a sputtering power source applied to the target.

ターゲット16から飛び出した粒子は試料基板5に到達し、基板上に薄膜を形成する。ターゲットの材質としてはあらゆる固体材料が利用でき、代表的なものとして、シリコン、アルミニウム、チタン、ジルコニウム、亜鉛、炭素、タンタル、モリブデン、タングステンなどのほか、ITOやIZO、STOなどの化合物も用いられる。また、成膜する際にアルゴンやキセノンなどの不活性ガス以外に酸素や窒素などを用いれば、ターゲットが単体金属の場合でもシリコン酸化物やシリコン窒化物、アルミナなどの化合物薄膜を形成することができる。   The particles that have jumped out of the target 16 reach the sample substrate 5 and form a thin film on the substrate. Any solid material can be used as the target material. Typical examples include silicon, aluminum, titanium, zirconium, zinc, carbon, tantalum, molybdenum, tungsten, and compounds such as ITO, IZO, and STO. . In addition, when using oxygen or nitrogen in addition to an inert gas such as argon or xenon when forming a film, a compound thin film such as silicon oxide, silicon nitride, or alumina can be formed even when the target is a single metal. it can.

なお、シャッタ17は、通常閉鎖されており、試料基板5に対して所定の時間に亘ってプラズマ照射やスパッタ成膜処理を行う場合に開閉制御される。   The shutter 17 is normally closed and is controlled to be opened and closed when plasma irradiation or sputter film formation processing is performed on the sample substrate 5 for a predetermined time.

本実施形態におけるITO成膜では、上述の図1に示す装置において、ターゲット16としてSn組成10%のITOターゲット、また、ガス導入口8、9から導入されるガスとして不活性ガスであるアルゴンと微量の酸素をそれぞれ用いている。本実施形態の薄膜形成装置は、プラズマ成膜時に、300℃から500℃の温度範囲で基板加熱する手段と、不活性ガス圧力0.05Pa〜0.3Pa、酸素分圧5x10-4Pa〜1.5x10-3Paの範囲に制御する手段とを備え、ECRによる高密度プラズマ流を照射することにより、ITO膜をエピタキシャル成長させ、低い抵抗率のほか、優れた表面平坦性や透過特性をも満足させている。 In the ITO film formation in the present embodiment, in the apparatus shown in FIG. 1 described above, an ITO target having a Sn composition of 10% is used as the target 16, and argon which is an inert gas is introduced as the gas introduced from the gas inlets 8 and 9. A small amount of oxygen is used. The thin film forming apparatus of this embodiment includes a means for heating a substrate in a temperature range of 300 ° C. to 500 ° C., an inert gas pressure of 0.05 Pa to 0.3 Pa, and an oxygen partial pressure of 5 × 10 −4 Pa to 1 during plasma film formation. And a means for controlling in the range of 5 × 10 −3 Pa, and by irradiating a high-density plasma flow by ECR, the ITO film is epitaxially grown, and in addition to low resistivity, excellent surface flatness and transmission characteristics are also satisfied I am letting.

高密度プラズマ照射とは、電子密度1011cm-3程度以上の高密度のプラズマ源を基板に照射することをいう。この高密度のプラズマは、図1で示したECRプラズマ成膜装置を用いたスパッタリング法以外にも、例えば表面波プラズマ、ヘリコン波励起プラズマ(HWP:Helicon Wave Plasma)などを用いることができる。 High density plasma irradiation refers to irradiating a substrate with a high density plasma source having an electron density of about 10 11 cm −3 or more. In addition to the sputtering method using the ECR plasma film forming apparatus shown in FIG. 1, for example, surface wave plasma, helicon wave excitation plasma (HWP: Helicon Wave Plasma), or the like can be used for the high-density plasma.

ITO膜をサファイア基板上にエピタキシャル成長させる条件としては、少なくともプラズマ流照射と基板加熱が必須であるが、更に酸素ガス分圧についても最適な範囲があった。エピタキシャル成長可能な酸素分圧は概略5x10-4Pa〜1.5x10-3Paの範囲であり、このときの酸素流量範囲は、今回用いた装置では0.2sccm〜0.6sccmであった。アルゴン流量やパワー条件などを変えた場合には、最適酸素流量も0.1sccmオーダーで変化するので、それぞれの条件に対して酸素流量を精密に決定する必要がある。 As conditions for epitaxially growing the ITO film on the sapphire substrate, at least plasma flow irradiation and substrate heating are essential, but there is also an optimum range for oxygen gas partial pressure. The oxygen partial pressure capable of epitaxial growth is approximately in the range of 5 × 10 −4 Pa to 1.5 × 10 −3 Pa, and the oxygen flow rate range at this time is 0.2 sccm to 0.6 sccm in the apparatus used this time. When the argon flow rate, power conditions, etc. are changed, the optimum oxygen flow rate also changes on the order of 0.1 sccm. Therefore, it is necessary to accurately determine the oxygen flow rate for each condition.

基板加熱は300℃〜400℃程度の高温側の方がエピタキシャル成長し易い傾向が見られたが、200℃程度の低温でもマイクロ波パワーを大きくするなどによりエピタキシャル成長する条件があった。ただし、基板加熱を行わない場合にはエピタキシャル成長はできなかった。   There was a tendency for the substrate heating to grow epitaxially on the high temperature side of about 300 ° C. to 400 ° C., but there were conditions for epitaxial growth by increasing the microwave power even at a low temperature of about 200 ° C. However, epitaxial growth could not be performed when the substrate was not heated.

また、高密度イオン照射のためには、成膜圧力を所定の値に設定することも好ましい。成膜圧力は主としてAr流量で決定される。たとえば、0.05〜0.3Pa程度になるようにAr流量を設定した場合は、この全範囲でエピタキシャル成長可能であった。その他、ターゲット電力、コイル電流などの条件についてはそれほど大きな依存性は見られなかった。   For high density ion irradiation, it is also preferable to set the film forming pressure to a predetermined value. The film forming pressure is mainly determined by the Ar flow rate. For example, when the Ar flow rate was set to be about 0.05 to 0.3 Pa, epitaxial growth was possible in this entire range. In addition, there was no great dependence on conditions such as target power and coil current.

一方、サファイア基板にITO膜を直接エピタキシャル成長させるだけでなく、サファイア基板上にMOCVD法を用いて予めGaN膜をエピタキシャル成長させた基板を用い、その上にITOを成膜したところ、やはりエピタキシャル成長することが確認された。すなわち、ITOがGaN基板上にも成長することが実験的に確認された。ただし、ITOの面方位は{100}でなく{111}を示し、方位は異なっていた。膜成長のスタート時点では下地結晶の格子状数に依存して面方位が変わるものと考えられるが、エピタキシャル成長可能な成膜条件はほぼ同じであった。ITOのエピタキシャル成長は、そのほかにYSZ単結晶基板などでも確認されており、格子定数が近い結晶であればその他多くの基板を用いることができる。   On the other hand, not only the ITO film is directly epitaxially grown on the sapphire substrate, but also the substrate on which the GaN film is epitaxially grown in advance using the MOCVD method on the sapphire substrate and the ITO is formed thereon, the epitaxial growth is still possible. confirmed. That is, it was experimentally confirmed that ITO also grows on the GaN substrate. However, the plane orientation of ITO showed {111} instead of {100}, and the orientation was different. Although it is considered that the plane orientation changes depending on the number of lattices of the base crystal at the start of film growth, the film forming conditions for epitaxial growth are almost the same. In addition, the epitaxial growth of ITO has been confirmed on a YSZ single crystal substrate or the like, and many other substrates can be used as long as the crystal has a close lattice constant.

本発明の実施例1として、図1の装置を用いて本発明の方法でITO膜の成膜をおこなった。基板加熱温度を無加熱から350℃まで可変し、マイクロ波12の電力800W、ターゲット16に印加するスパッタ電力500W、アルゴンガス流量40sccm、酸素ガス流量0.5sccm、2つの磁気コイルの電流26A、基板回転15rpmとした。なお、アルゴンガス、酸素ガスとも、ガス導入口8から導入した。このときの成膜圧力は0.15Pa、酸素分圧は1.3x10-3Paであった。試料基板5としては、直径6インチのSUS円板にSiウエハとサファイアウエハとをセットしたものを用いた。成膜するITOの膜厚は成膜時間を変えることで調整した。 As Example 1 of the present invention, an ITO film was formed by the method of the present invention using the apparatus of FIG. Substrate heating temperature is varied from no heating to 350 ° C., microwave 12 power 800 W, sputtering power 500 W applied to target 16, argon gas flow rate 40 sccm, oxygen gas flow rate 0.5 sccm, current 26 A of two magnetic coils, substrate The rotation was 15 rpm. Both argon gas and oxygen gas were introduced from the gas inlet 8. The film formation pressure at this time was 0.15 Pa, and the oxygen partial pressure was 1.3 × 10 −3 Pa. As the sample substrate 5, a SUS disk having a diameter of 6 inches and a Si wafer and a sapphire wafer set were used. The thickness of the ITO film to be formed was adjusted by changing the film formation time.

成膜した試料について、Siウエハ上に形成したITO膜では、ヘリウム‐ネオンレーザを照射して、エリプソメトリにより膜厚及び屈折率を測定した。またサファイア基板については、X線回折のほか、四探針法による抵抗率ρの測定、AFMを用いた表面モフォロジーの観察及び平均荒さRaの測定を行った。   With respect to the deposited sample, the ITO film formed on the Si wafer was irradiated with a helium-neon laser, and the film thickness and refractive index were measured by ellipsometry. In addition to X-ray diffraction, the sapphire substrate was measured for resistivity ρ by a four-probe method, surface morphology observation using AFM, and average roughness Ra.

図2は、350℃で成膜したITO膜のX線回折パターンである。図2に示すように、ITOの強いピークは立方晶の{100}系列のみであり、他の面方位は観察されなかった。さらに、(222)面のφスキャンを行ったところ12回対称性を示したことから、サファイア基板上に3ドメインでエピタキシャル成長していることが確認された。一方、図示しないが、基板温度250℃以下のITO膜は{100}系列以外のピークも観察され、何れも多結晶状であることが分かった。   FIG. 2 is an X-ray diffraction pattern of an ITO film formed at 350 ° C. As shown in FIG. 2, the strong peak of ITO is only the cubic {100} series, and no other plane orientation was observed. Further, the φ scan of the (222) plane showed 12-fold symmetry, and it was confirmed that the epitaxial growth was performed in three domains on the sapphire substrate. On the other hand, although not shown, peaks other than the {100} series were observed in the ITO film having a substrate temperature of 250 ° C. or lower, and it was found that all were polycrystalline.

図3は、成膜温度によるITO膜の表面モフォロジーの変化を説明する図である。図3において、(a)は基板加熱なしで成膜したITO膜、(b)は基板加熱温度150℃で成膜したITO膜、(c)は基板加熱温度250℃で成膜したITO膜、(d)は基板加熱温度350℃で成膜したITO膜のそれぞれの表面状態を示している。(a)、(b)、(c)に示すように低温では多結晶状の凹凸の激しい膜となっている。一方で、(d)に示すように350℃で成膜したITO膜は極めて平坦なエピタキシャル膜で、明確な結晶粒界が観察されなかった。また、ITO膜の抵抗率ρと平均粗さRaの測定結果については、(a)のITO膜はρ=4.2x10-4Ωcm、Ra=0.92nmであり、(b)のITO膜はρ=2.6x10-4Ωcm、Ra=3.0nmであり、(c)のITO膜はρ=1.9x10-4Ωcm、Ra=4.5nmであり、(d)のITO膜はρ=1.4x10-4Ωcm、Ra=0.48nmであった。すなわち、多結晶膜(a、b、c)ではRaが数nm程度と大きいのに対し、エピタキシャル膜(d)では0.48nmと低い値であった。抵抗率は基板温度が高くなるに従って低下し、エピタキシャル膜では1.4x10-4Ωcmであった。 FIG. 3 is a diagram for explaining a change in the surface morphology of the ITO film depending on the film formation temperature. 3, (a) is an ITO film formed without substrate heating, (b) is an ITO film formed at a substrate heating temperature of 150 ° C., (c) is an ITO film formed at a substrate heating temperature of 250 ° C. (D) shows each surface state of the ITO film formed at a substrate heating temperature of 350 ° C. As shown in (a), (b), and (c), the film is a polycrystalline film with severe irregularities at low temperatures. On the other hand, as shown in (d), the ITO film formed at 350 ° C. was an extremely flat epitaxial film, and no clear crystal grain boundary was observed. As for the measurement results of the resistivity ρ and average roughness Ra of the ITO film, the ITO film of (a) is ρ = 4.2 × 10 −4 Ωcm, Ra = 0.92 nm, and the ITO film of (b) is ρ = 2.6 × 10 −4 Ωcm, Ra = 3.0 nm, the ITO film in (c) is ρ = 1.9 × 10 −4 Ωcm, Ra = 4.5 nm, and the ITO film in (d) is ρ = It was 1.4 × 10 −4 Ωcm and Ra = 0.48 nm. That is, Ra was as large as several nanometers in the polycrystalline film (a, b, c), whereas it was as low as 0.48 nm in the epitaxial film (d). The resistivity decreased as the substrate temperature increased, and was 1.4 × 10 −4 Ωcm for the epitaxial film.

エピタキシャル成長条件を用いて、成膜時間を変えて異なる膜厚のITO膜を形成し、抵抗率を測定した結果を図4に示す。通常のITO膜は膜厚が薄くなるに従って抵抗率が高くなるのが一般的であるのに対し、図4に示すように、エピタキシャルITO膜では、膜厚が10nm程度と極めて薄くなるまで抵抗率の上昇が見られなかった。これは、結晶粒界での電子の散乱が無いためと考えられる。   FIG. 4 shows the results of measuring the resistivity after forming ITO films having different film thicknesses by changing the film formation time using the epitaxial growth conditions. In general, the resistivity of the normal ITO film increases as the film thickness decreases. On the other hand, as shown in FIG. 4, the resistivity of the epitaxial ITO film is approximately 10 nm until the film thickness becomes extremely thin. The rise of was not seen. This is presumably because there is no scattering of electrons at the grain boundaries.

本実施例で作成したITO膜は、電気的な特性のほか、光学的な特性についても従来に無い優れた特性が確認された。図5は、ITO膜の透過率について、従来の多結晶膜とエピタキシャル膜を比較した結果である。aがエピタキシャル膜の透過率を示し、bが多結晶ITO膜の透過率を示している。エピタキシャル膜では、透過波長が短波長側に伸びており、紫外光でも優れた透過性を示すことが明らかとなった。   The ITO film prepared in this example was confirmed to have excellent characteristics that were not found in the past in terms of optical characteristics as well as electrical characteristics. FIG. 5 is a result of comparing the conventional polycrystalline film and the epitaxial film with respect to the transmittance of the ITO film. a represents the transmittance of the epitaxial film, and b represents the transmittance of the polycrystalline ITO film. In the epitaxial film, the transmission wavelength is extended to the short wavelength side, and it has been clarified that it exhibits excellent transparency even with ultraviolet light.

以上述べたように、本願発明によるエピタキシャルITO膜は、従来のITO膜よりも優れた特性を示しており、LEDなどのデバイスを実現する上で極めて有用な技術と考えられる。   As described above, the epitaxial ITO film according to the present invention exhibits characteristics superior to those of the conventional ITO film, and is considered to be an extremely useful technique for realizing a device such as an LED.

以上の実施形態では、導電性薄膜としてITOを例に挙げて説明したが、透明導電性薄膜としてはITOだけでなく、IZOやAZO、GZOなどの3元化合物のほか、ZnOなどの酸化物薄膜でも基板との格子常数が近い場合には同様の効果が得られる。また、本実施例ではECRプラズマ成膜を用いたが、高密度プラズマとしてはヘリコンや表面波でも同様であり、アンバランスマグネトロンスパッタやイオンビームデポジションなどでも実施可能である。   In the above embodiment, ITO was described as an example of the conductive thin film. However, the transparent conductive thin film is not only ITO, but also ternary compounds such as IZO, AZO, and GZO, and oxide thin films such as ZnO. However, the same effect can be obtained when the lattice constant with the substrate is close. In this embodiment, ECR plasma film formation is used. However, the high-density plasma is the same for helicon and surface wave, and can be performed by unbalanced magnetron sputtering or ion beam deposition.

1 プラズマ生成室
2 試料室
3 プラズマ引出し窓
4 試料台
5 試料基板
6 排気路
7 基板加熱ヒータ
8、9 ガス導入口
10 磁気コイル
11 矩形導波管
12 マイクロ波
13 マイクロ波導入窓
14 プラズマ流
15 スパッタ電源
16 ターゲット
17 シャッタ
DESCRIPTION OF SYMBOLS 1 Plasma production chamber 2 Sample chamber 3 Plasma extraction window 4 Sample stand 5 Sample substrate 6 Exhaust path 7 Substrate heater 8, 9 Gas inlet 10 Magnetic coil 11 Rectangular waveguide 12 Microwave 13 Microwave introduction window 14 Plasma flow 15 Sputtering power supply 16 Target 17 Shutter

Claims (4)

真空室中に置かれた結晶性基板上に薄膜形成材料をエピタキシャル成長させて透明導電性薄膜を形成する方法であって、薄膜形成中に、前記真空室中に置かれた基板を300℃〜500℃に加熱するとともに、不活性ガス圧力を0.05Pa〜0.3Pa、酸素分圧を5x10-4Pa〜1.5x10-3Paの範囲に制御し、前記基板に対して高密度プラズマ照射を行うことを特徴する透明導電性薄膜の形成方法。 A method of forming a transparent conductive thin film by epitaxially growing a thin film forming material on a crystalline substrate placed in a vacuum chamber, wherein the substrate placed in the vacuum chamber is formed at 300 ° C. to 500 ° C. during the thin film formation. The substrate is heated to 0 ° C., the inert gas pressure is controlled to 0.05 Pa to 0.3 Pa, the oxygen partial pressure is controlled to a range of 5 × 10 −4 Pa to 1.5 × 10 −3 Pa, and high-density plasma irradiation is performed on the substrate. A method for forming a transparent conductive thin film characterized by comprising: 高密度プラズマ照射法としてECRプラズマ流を用いることを特徴とする請求項1に記載の透明導電性薄膜の形成方法。   The method for forming a transparent conductive thin film according to claim 1, wherein an ECR plasma flow is used as the high-density plasma irradiation method. 真空室中に置かれた結晶性基板上に薄膜形成材料をエピタキシャル成長させて透明導電性薄膜を形成する装置であって、
前記基板を載置して薄膜を形成するための真空室と、
薄膜形成中に、前記真空室中に置かれた基板を300℃〜500℃に加熱する手段と、
前記真空室内に不活性ガスおよび酸素ガスを導入し、不活性ガス圧力を0.05Pa〜0.3Paとし、酸素分圧を5x10-4Pa〜1.5x10-3Paの範囲に制御する手段と、
前記加熱された基板に対して高密度プラズマ照射を行なう手段とを備えることを特徴する透明導電性薄膜の形成装置。
An apparatus for epitaxially growing a thin film forming material on a crystalline substrate placed in a vacuum chamber to form a transparent conductive thin film,
A vacuum chamber for placing the substrate to form a thin film;
Means for heating the substrate placed in the vacuum chamber to 300 ° C. to 500 ° C. during thin film formation;
Means for introducing an inert gas and an oxygen gas into the vacuum chamber, setting the inert gas pressure to 0.05 Pa to 0.3 Pa, and controlling the oxygen partial pressure to a range of 5 × 10 −4 Pa to 1.5 × 10 −3 Pa; ,
An apparatus for forming a transparent conductive thin film, comprising: means for performing high-density plasma irradiation on the heated substrate.
高密度プラズマ照射法としてECRプラズマ流を用いることを特徴とする請求項3に記載の透明導電性薄膜の形成装置。   4. The transparent conductive thin film forming apparatus according to claim 3, wherein an ECR plasma flow is used as the high density plasma irradiation method.
JP2010164911A 2010-07-22 2010-07-22 Forming method of transparent conductive thin film, and forming device of transparent conductive thin film Pending JP2012025996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164911A JP2012025996A (en) 2010-07-22 2010-07-22 Forming method of transparent conductive thin film, and forming device of transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164911A JP2012025996A (en) 2010-07-22 2010-07-22 Forming method of transparent conductive thin film, and forming device of transparent conductive thin film

Publications (1)

Publication Number Publication Date
JP2012025996A true JP2012025996A (en) 2012-02-09

Family

ID=45779268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164911A Pending JP2012025996A (en) 2010-07-22 2010-07-22 Forming method of transparent conductive thin film, and forming device of transparent conductive thin film

Country Status (1)

Country Link
JP (1) JP2012025996A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947728A (en) * 1982-09-10 1984-03-17 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for plasma coating
JPS63107892A (en) * 1986-10-23 1988-05-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for producing thin oxide film
JPH10152398A (en) * 1996-11-18 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> Formation of ferroelectric thin membrane
JP2001072498A (en) * 1999-07-08 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> Oxide single crystal thin film and its processing
JP2002329669A (en) * 2001-04-27 2002-11-15 Japan Science & Technology Corp Method for forming film, film forming device and semiconductor light-emitting device
JP2008013824A (en) * 2006-07-07 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> LiNbO3 TARGET, AND METHOD FOR DEPOSITING LiNbO3 THIN FILM
JP2011201301A (en) * 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd Laminate, manufacturing method thereof, and functional element using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947728A (en) * 1982-09-10 1984-03-17 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for plasma coating
JPS63107892A (en) * 1986-10-23 1988-05-12 Nippon Telegr & Teleph Corp <Ntt> Apparatus for producing thin oxide film
JPH10152398A (en) * 1996-11-18 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> Formation of ferroelectric thin membrane
JP2001072498A (en) * 1999-07-08 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> Oxide single crystal thin film and its processing
JP2002329669A (en) * 2001-04-27 2002-11-15 Japan Science & Technology Corp Method for forming film, film forming device and semiconductor light-emitting device
JP2008013824A (en) * 2006-07-07 2008-01-24 Nippon Telegr & Teleph Corp <Ntt> LiNbO3 TARGET, AND METHOD FOR DEPOSITING LiNbO3 THIN FILM
JP2011201301A (en) * 2010-03-02 2011-10-13 Sumitomo Metal Mining Co Ltd Laminate, manufacturing method thereof, and functional element using the same

Similar Documents

Publication Publication Date Title
Castro et al. Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: substrate temperature, sputtering pressure and bias voltage
JP6947232B2 (en) Gallium nitride based film and its manufacturing method
JP7031181B2 (en) Gallium nitride based film and its manufacturing method
JP2010519720A (en) Conductive laminate and manufacturing method thereof
JP6023722B2 (en) Method for forming SrRuO3 film
US10741649B2 (en) High mobility doped metal oxide thin films and reactive physical vapor deposition methods of fabricating the same
Kotlyarchuk et al. Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method
WO2010140362A1 (en) Film-formed article and method for manufacturing film-formed article
Guo et al. High-quality transparent conductive indium oxide film deposition by reactive pulsed magnetron sputtering: Determining the limits of substrate heating
CN117026193B (en) High-phase-change-performance vanadium dioxide film and preparation method thereof
US20110079507A1 (en) Manufacturing method of semiconductor element
Hamzah et al. Effect of post-annealing in oxygen environment on ITO thin films deposited using RF magnetron sputtering
Zhao et al. Preparation and characterization of transparent conductive zinc doped tin oxide thin films prepared by radio-frequency magnetron sputtering
WO2012026599A1 (en) Method for producing zno film, method for producing transparent conductive film, zno film, and transparent conductive film
JP2012025996A (en) Forming method of transparent conductive thin film, and forming device of transparent conductive thin film
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
Ma et al. Resistivity depends on preferred orientation for transparent conductive thin films
Kumar et al. Investigations on Physical Properties of Zinc Aluminum Oxide Thin Films Prepared by Multi-target Magnetron Sputtering
JP5243459B2 (en) Method for forming transparent conductive film
JP3929964B2 (en) Method for manufacturing thin film laminated structure
JP2011241471A (en) Method and apparatus of forming conductive thin film
EP4230761B1 (en) A method for reactive magnetron sputter deposition of gallium oxide thin films
Mazwan et al. Structural and optical properties of nickel-doped zinc oxide thin film on nickel seed layer deposited by RF magnetron sputtering technique
RU2459012C2 (en) Manufacturing method of thin films based on samarium monosulphide
JP7556197B2 (en) Laminated film and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701