JP2012025791A - Heat storage material and heat accumulator - Google Patents
Heat storage material and heat accumulator Download PDFInfo
- Publication number
- JP2012025791A JP2012025791A JP2010162593A JP2010162593A JP2012025791A JP 2012025791 A JP2012025791 A JP 2012025791A JP 2010162593 A JP2010162593 A JP 2010162593A JP 2010162593 A JP2010162593 A JP 2010162593A JP 2012025791 A JP2012025791 A JP 2012025791A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- storage material
- heat
- hydrate
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Other Air-Conditioning Systems (AREA)
Abstract
Description
本発明は、ゲスト物質とホスト物質である水とを混ぜ、これを冷却してクラスハイドレートを生成する蓄熱材及び蓄熱装置に関するものである。 The present invention relates to a heat storage material and a heat storage device that mix a guest material and water as a host material and cool the mixture to generate a class hydrate.
クラスレートハイドレート(包接水和物、以下単に水和物という)はメタンのような疎水性の分子と水分子とから生成される氷状固体物質であり、水分子(ホスト物質)が、低温・高圧条件下でクラスレートハイドレート生成分子(ゲスト物質)と接するとゲスト物質を包接する結晶構造となる。 Clathrate hydrate (clathrate hydrate, hereinafter simply referred to as hydrate) is an icy solid substance formed from a hydrophobic molecule such as methane and a water molecule, and the water molecule (host substance) When in contact with a clathrate hydrate-generating molecule (guest material) under low temperature and high pressure conditions, a crystal structure is formed that includes the guest material.
水和物は、生成時に熱を発生し、分解時には熱を吸収するため蓄熱材として用いることができ、例えば深夜電力で水和物を生成し、これを昼間の冷房用の冷熱源として使用することがなされつつある。 Hydrates generate heat when generated and absorb heat when decomposed, and can be used as a heat storage material. For example, hydrates are generated at midnight power and used as a cooling source for daytime cooling. Things are being done.
本発明者らは、特許文献1にて、ゲスト物質としてシクロペンタンを用い、これと水とを界面活性剤で乳化させた分散液を蓄熱材に用いることを提案した。
The present inventors have proposed in
しかしながら、ゲスト物質にシクロペンタンを用いた蓄熱材は、引火のおそれがあり、安全性を確保できない可能性がある。そこで、引火のおそれが無い蓄熱材の開発が望まれる。 However, a heat storage material using cyclopentane as a guest material may ignite and may not ensure safety. Therefore, development of a heat storage material that is free from the risk of ignition is desired.
引火のおそれが無い蓄熱材として、例えば特許文献2には、ゲスト物質として臭化テトラnブチルアンモニウム(TBAB)を用いた蓄熱材が開示されている。
For example,
そこで本発明者らは、引火のおそれが無く、TBABと同等の優れた蓄熱性能(水和物の生成/分解熱量)を有し、かつ冷房空調温度に適する0〜20℃で水和物を生成できる新規な蓄熱材のゲスト物質を検討した。 Therefore, the present inventors have no possibility of ignition, have excellent heat storage performance equivalent to TBAB (hydrate formation / decomposition heat amount), and are suitable for cooling air conditioning temperature at 0 to 20 ° C. A new heat storage material guest material that can be produced was investigated.
本発明は上記事情に鑑みなされたものであり、引火のおそれが無く、蓄熱材として十分な蓄熱性能を有し、冷房空調に適した温度で水和物を生成できる新規な蓄熱材及び蓄熱装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and there is no possibility of ignition, a novel heat storage material and a heat storage device that have sufficient heat storage performance as a heat storage material and can generate hydrates at a temperature suitable for cooling air conditioning. The purpose is to provide.
上記目的を達成するために請求項1の発明は、ゲスト物質とホスト物質である水とを混ぜ、これを冷却して水和物を生成する蓄熱材において、前記ゲスト物質としてアクリル酸テトラブチルアンモニウムを用いる蓄熱材である。
In order to achieve the above object, the invention according to
請求項2の発明は、前記ゲスト物質と前記ホスト物質との合計100質量部のうち、前記アクリル酸テトラブチルアンモニウムが30質量部以上40質量部以下である請求項1記載の蓄熱材である。
The invention according to
請求項3の発明は、請求項1又は2に記載の蓄熱材が充填された蓄熱槽と、前記蓄熱材を冷却して水和物を生成する冷却手段と、水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を取り出す熱利用手段と、を備えた蓄熱装置である。
Invention of
請求項4の発明は、請求項1又は2に記載の蓄熱材が充填されたカプセルと、そのカプセルが投入されると共に冷媒が充填される蓄熱槽と、前記冷媒を冷却することで前記カプセル内の蓄熱材を冷却して水和物を生成する冷却手段と、水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を前記冷媒を介して取り出す熱利用手段と、を備えた蓄熱装置である。
The invention according to
請求項5の発明は、請求項1又は2に記載の蓄熱材が充填された伝熱管集合体と、その伝熱管集合体が配置されると共に冷媒が充填される蓄熱槽と、前記冷媒を冷却することで前記伝熱管集合体内の蓄熱材を冷却して水和物を生成する冷却手段と、水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を前記冷媒を介して取り出す熱利用手段と、を備えた蓄熱装置である。
The invention according to
本発明によれば、引火のおそれが無く、蓄熱材として十分な蓄熱性能を有し、冷房空調に適した温度で水和物を生成できる新規な蓄熱材及び蓄熱装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, there is no fear of ignition, it has sufficient heat storage performance as a heat storage material, and the novel heat storage material and heat storage apparatus which can produce | generate a hydrate at the temperature suitable for cooling air conditioning can be provided.
以下、本発明の好適な実施の形態を添付図面にしたがって説明する。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
上述のように、冷却により水和物を生成する蓄熱材のゲスト物質には、引火のおそれが無いこと、蓄熱材として十分な蓄熱性能を有すること、冷房空調温度に適する0〜20℃で水和物を生成すること、が要求される。 As described above, the guest material of the heat storage material that generates hydrates by cooling has no risk of ignition, has sufficient heat storage performance as a heat storage material, and water at 0 to 20 ° C. suitable for cooling air conditioning temperature It is required to produce a Japanese product.
このような要求を満たす蓄熱材について本発明者らが鋭意検討した結果、アクリル酸テトラブチルアンモニウム((n−C4H9)4N−CH2CHCOO;以下、TBAAcという)が水和物を生成することを見出し、本発明に至った。
Results heat storage material for the present inventors have studied intensively to satisfy such requirements, the acrylic acid tetrabutylammonium ((n-C 4 H 9 ) 4 N-
本実施の形態に係る蓄熱材は、ゲスト物質とホスト物質である水とを混ぜた水溶液からなり、ゲスト物質として、TBAAcを用いたものである。 The heat storage material according to the present embodiment is an aqueous solution obtained by mixing a guest substance and water as a host substance, and uses TBAAc as the guest substance.
すなわち、本実施の形態に係る蓄熱材はTBAAcの水溶液からなる。TBAAcの水溶液は、TBAAcの粉末に水を加えて撹拌することで得られる。TBAAcの粉末は水溶性であるため、ゲスト物質が良好に分散した蓄熱材を得ることができる。 That is, the heat storage material according to the present embodiment is made of an aqueous solution of TBAAc. An aqueous solution of TBAAc can be obtained by adding water to TBAAc powder and stirring. Since the TBAAc powder is water-soluble, a heat storage material in which the guest substance is well dispersed can be obtained.
この蓄熱材を水和物生成温度に対して約3℃程度低い温度に制御して冷却することで、水和物とすることができる。なお、本発明は水和物結晶の形状や寸法については特に規定するものではない。 A hydrate can be obtained by cooling the heat storage material at a temperature lower by about 3 ° C. than the hydrate formation temperature. In addition, this invention does not prescribe | regulate in particular about the shape and dimension of a hydrate crystal.
蓄熱材のゲスト物質としてのTBAAcは、ゲスト物質(TBAAc)とホスト物質(水)との合計100質量部のうち、30質量部以上40質量部以下であることが好ましい。これは、TBAAcが30質量部未満であると、十分な蓄熱性能を確保できない可能性があり、一方、40質量部より多いと、水和物を生成した際に余剰なゲスト物質が析出して繰り返し運転に支障をきたしたり、蓄熱材のコストが高くなるためである。 TBAAc as a guest substance of the heat storage material is preferably 30 parts by mass or more and 40 parts by mass or less, out of a total of 100 parts by mass of the guest substance (TBAAc) and the host substance (water). This is because if TBAAc is less than 30 parts by mass, sufficient heat storage performance may not be ensured. On the other hand, if it is more than 40 parts by mass, surplus guest substances will precipitate when hydrates are generated. This is because it interferes with repeated operation and the cost of the heat storage material increases.
次に、ゲスト物質としてTBAAcを用いた本発明の蓄熱材の蓄熱温度(水和物の生成/分解温度)とその際の熱量を示差走査熱量測定(DSC)により求め、その結果を図1に示した。図1において、縦軸は熱流(mW)、横軸は温度(℃)を表す。また、この測定で得られた曲線(DSC曲線)10において、ベースラインBより下方に出現するピークは吸熱反応を表している。 Next, the thermal storage temperature (hydrate formation / decomposition temperature) of the thermal storage material of the present invention using TBAAc as a guest substance and the amount of heat at that time were determined by differential scanning calorimetry (DSC), and the results are shown in FIG. Indicated. In FIG. 1, the vertical axis represents heat flow (mW) and the horizontal axis represents temperature (° C.). Further, in the curve (DSC curve) 10 obtained by this measurement, the peak appearing below the baseline B represents an endothermic reaction.
この測定は30mass%のTBAAc水溶液を用い、窒素雰囲気下(窒素ガス流量を20ml/min)で行った。測定に使用したTBAAcは14.41mgである。また、測定の温度プログラムは、室温から−40℃まで10℃/minで降温した後、−40℃から−5℃まで5℃/minで昇温し、−5℃から35℃まで1℃/minで昇温するように設定した。図1は、この−5℃から35℃まで昇温したときに出現した吸熱ピークを示したものである。 This measurement was performed using a 30 mass% TBAAc aqueous solution in a nitrogen atmosphere (nitrogen gas flow rate of 20 ml / min). The TBAAc used for the measurement is 14.41 mg. In addition, the temperature program for the measurement was as follows: from room temperature to −40 ° C. at a rate of 10 ° C./min, then from −40 ° C. to −5 ° C. at a rate of 5 ° C./min, The temperature was set to increase in min. FIG. 1 shows an endothermic peak that appears when the temperature is raised from −5 ° C. to 35 ° C.
図1より、30mass%のTBAAc水溶液は蓄熱温度が17.60℃であり、熱量は179.04J/gであった。従って、30mass%のTBAAc水溶液からなる蓄熱材は、17.60℃で水和物を生成/分解し、蓄熱量(水和物の生成/分解熱量)は179.04kJ/kgである。 From FIG. 1, the 30 mass% TBAAc aqueous solution had a heat storage temperature of 17.60 ° C. and a heat quantity of 179.04 J / g. Therefore, the heat storage material made of 30 mass% TBAAc aqueous solution generates / decomposes hydrate at 17.60 ° C., and the heat storage amount (generation / decomposition heat amount of hydrate) is 179.04 kJ / kg.
なお、蓄熱温度と熱量は、従来用いられている手法と同様にして決定した。つまり、熱量はDSC曲線10のベースラインBより下方に出現した吸熱ピークPとベースラインBの延長線とで形成される面積により求め、蓄熱温度は吸熱ピークPの低温側のDSC曲線10の立ち上がり部の接線(つまり吸熱ピークPに至る最大勾配の接線)とベースラインの延長線との交点から求めた。
The heat storage temperature and the amount of heat were determined in the same manner as conventionally used methods. That is, the amount of heat is obtained from the area formed by the endothermic peak P appearing below the baseline B of the
続いて、同様の方法で臭化テトラnブチルアンモニウム(TBAB)水溶液、シクロペンタン(CP)を水に分散させた分散液、及び氷(Ice)についても示差走査熱量測定(DSC)を行った。これらの結果を表1に示す。 Subsequently, differential scanning calorimetry (DSC) was also performed on a tetra-n-butylammonium bromide (TBAB) aqueous solution, a dispersion obtained by dispersing cyclopentane (CP) in water, and ice (Ice) by the same method. These results are shown in Table 1.
表1において、「蓄熱密度」とは蓄熱量(水和物の生成/分解熱量)を示したものである。 In Table 1, “heat storage density” indicates a heat storage amount (a hydrate formation / decomposition heat amount).
表1より、本発明の蓄熱材である、30mass%のTBAAc水溶液の蓄熱温度は17.6℃であり、TBAB水溶液の蓄熱温度の9.9℃より約8℃高い。従って、蓄熱材を冷却して水和物を生成する際の冷媒の温度をTBAB水溶液を用いた蓄熱材より高くすることができ、15〜20℃の温度で十分な電算機器冷却用の冷房に対して冷凍機効率を高めることができる。 From Table 1, the heat storage temperature of the 30 mass% TBAAc aqueous solution, which is the heat storage material of the present invention, is 17.6 ° C., which is about 8 ° C. higher than the heat storage temperature of the TBAB aqueous solution 9.9 ° C. Therefore, the temperature of the refrigerant at the time of cooling the heat storage material to produce a hydrate can be made higher than that of the heat storage material using the TBAB aqueous solution, and sufficient cooling for computer equipment cooling at a temperature of 15 to 20 ° C. On the other hand, the efficiency of the refrigerator can be increased.
また、この30mass%のTBAAc水溶液の蓄熱密度は179kJ/kgである。これに対し、32mass%のTBAB水溶液は蓄熱密度199kJ/kgであり、TBAB水溶液の蓄熱密度(蓄熱量)を1としたときのTBAAc水溶液の蓄熱密度(蓄熱量)は0.90と、ほとんど差はない。つまり、本発明の蓄熱材は、TBAB水溶液からなる蓄熱材と同等の蓄熱性能を有している。 The heat storage density of this 30 mass% TBAAc aqueous solution is 179 kJ / kg. On the other hand, the 32 mass% TBAB aqueous solution has a heat storage density of 199 kJ / kg, and the heat storage density (heat storage amount) of the TBAA aqueous solution when the heat storage density (heat storage amount) of the TBAB aqueous solution is 1 is almost different from 0.90. There is no. That is, the heat storage material of the present invention has a heat storage performance equivalent to that of a heat storage material made of a TBAB aqueous solution.
一方、CP分散液の蓄熱密度(蓄熱量)を1としたときのTBAAc水溶液の蓄熱密度(蓄熱量)は0.63であり、また、Iceの蓄熱密度(蓄熱量)を1としたときのTBAAc水溶液の蓄熱密度(蓄熱量)は0.54であり、TBAAc水溶液の蓄熱密度(蓄熱量)はCP分散液やIceより小さい。 On the other hand, when the heat storage density (heat storage amount) of the CP dispersion liquid is 1, the heat storage density (heat storage amount) of the TBAAc aqueous solution is 0.63, and when the heat storage density (heat storage amount) of Ice is 1. The heat storage density (heat storage amount) of the TBAAc aqueous solution is 0.54, and the heat storage density (heat storage amount) of the TBAAc aqueous solution is smaller than the CP dispersion or Ice.
このように、TBAAc水溶液はCP分散液及びIceより蓄熱密度(蓄熱量)は小さいものの、CP分散液で懸念される引火のおそれが無い。また、Iceと比べて蓄熱温度が約18℃高いので、蓄熱材を冷却して水和物を生成する際の冷媒の温度を高くして冷凍機の効率を高めることができる。 Thus, although the TBAAc aqueous solution has a smaller heat storage density (heat storage amount) than the CP dispersion and Ice, there is no risk of ignition that is a concern with the CP dispersion. Moreover, since the heat storage temperature is about 18 degreeC higher than Ice, the temperature of the refrigerant | coolant at the time of cooling a heat storage material and producing | generating a hydrate can be raised, and the efficiency of a refrigerator can be improved.
次に、TBAAc水溶液の濃度を33.2mass%に調整して水和数が35のTBAAc水溶液を調製し、上記と同様に示差走査熱量測定(DSC)を行った。また、TBAAc水溶液の濃度を37mass%に調整して水和数が30のTBAAc水溶液を調製し、恒温槽による水和物結晶分解観察試験を行い、蓄熱温度を測定した。これらの結果と、表1で説明した30mass%のTBAAc水溶液(水和数40)の示差走査熱量測定の結果をまとめたものを表2及び図2に示す。なお、図2には、TBAB水溶液(40mass%と32mass%)、CP分散液及びIceの示差走査熱量測定の結果についても併せて記載している。図2において、縦軸は蓄熱温度(水和物の生成/分解温度)、横軸は蓄熱量(水和物の生成/分解熱量)である。 Next, a TBAAc aqueous solution having a hydration number of 35 was prepared by adjusting the concentration of the TBAAc aqueous solution to 33.2 mass%, and differential scanning calorimetry (DSC) was performed in the same manner as described above. Further, a TBAAc aqueous solution having a hydration number of 30 was prepared by adjusting the concentration of the TBAAc aqueous solution to 37 mass%, and a hydrate crystal decomposition observation test using a thermostatic bath was performed to measure the heat storage temperature. Table 2 and FIG. 2 summarize these results and the results of differential scanning calorimetry of the 30 mass% TBAAc aqueous solution (hydration number 40) described in Table 1. FIG. 2 also shows the results of differential scanning calorimetry of the TBAB aqueous solution (40 mass% and 32 mass%), CP dispersion, and Ice. In FIG. 2, the vertical axis represents the heat storage temperature (hydrate generation / decomposition temperature), and the horizontal axis represents the heat storage amount (hydrate generation / decomposition heat amount).
表2及び図2に示したように、TBAAc水溶液の濃度が37mass%〜30mass%のとき、蓄熱温度は約18℃でほぼ一定であり、また、蓄熱密度は179.04kJ/kg〜195.07kJ/kgである。この蓄熱密度は、TBAB水溶液の蓄熱密度とほぼ同等の値であり、37mass%〜30mass%のTBAAc水溶液は蓄熱材として十分な蓄熱性能を有することがわかる。なお、本発明の蓄熱材としては、蓄熱性能が高い33.2mass%のTBAAc水溶液を用いることが望ましい。 As shown in Table 2 and FIG. 2, when the concentration of the TBAAc aqueous solution is 37 mass% to 30 mass%, the heat storage temperature is almost constant at about 18 ° C., and the heat storage density is 179.04 kJ / kg to 195.07 kJ. / Kg. This heat storage density is a value substantially equivalent to the heat storage density of the TBAB aqueous solution, and it can be seen that the 37 mass% to 30 mass% TBAAc aqueous solution has sufficient heat storage performance as a heat storage material. In addition, as a heat storage material of this invention, it is desirable to use 33.2 mass% TBAAc aqueous solution with high heat storage performance.
以上説明したように、本実施の形態に係る蓄熱材では、水和物を生成するゲスト物質としてTBAAcを使用している。 As described above, in the heat storage material according to the present embodiment, TBAAc is used as a guest substance that generates a hydrate.
これにより、引火のおそれが無く、十分な蓄熱性能を有し、冷房空調に適した温度で水和物を生成する蓄熱材を実現することができる。 Thereby, there is no fear of ignition, it has sufficient heat storage performance, and the heat storage material which produces | generates a hydrate at the temperature suitable for air conditioning can be implement | achieved.
さらに、ゲスト物質にシクロペンタンを用いた蓄熱材では、ホスト物質である水と層分離するので、分散性を向上させるために界面活性剤を加えて乳化させる必要があるが、本発明の蓄熱材では、ゲスト物質として用いるTBAAcの粉末は水溶性であり、ゲスト物質の分散が容易に行えるため、界面活性剤等を用いる必要がない。 Furthermore, in the heat storage material using cyclopentane as the guest material, it is necessary to emulsify by adding a surfactant to improve the dispersibility because the layer is separated from water as the host material. Then, the TBAAc powder used as the guest material is water-soluble, and the guest material can be easily dispersed, so that it is not necessary to use a surfactant or the like.
また、TBAAc水溶液の蓄熱温度(水和物の生成/分解温度)はTBAB水溶液の蓄熱温度より高く、水の融点より約18℃高いため、10℃以上で冷熱を取り出せれば十分な場合に有効である。例えば、生産機械の冷却装置や電算機器用の空調装置として用いれば、冷却して水和物を生成する際の冷媒の温度を高くすることができるので、冷凍機の効率を高めることによって省エネルギー化に繋がる。 In addition, the heat storage temperature (hydrate formation / decomposition temperature) of the aqueous TBAAc solution is higher than the thermal storage temperature of the aqueous TBAB solution and about 18 ° C higher than the melting point of water. It is. For example, if it is used as a cooling device for a production machine or an air conditioner for computer equipment, the temperature of the refrigerant when it is cooled to produce a hydrate can be increased. Therefore, energy efficiency can be saved by increasing the efficiency of the refrigerator. It leads to.
次に、本発明の蓄熱材を用いた蓄熱装置を説明する。 Next, a heat storage device using the heat storage material of the present invention will be described.
図3に示すように、本実施の形態に係る蓄熱装置30は、蓄熱材1を充填した蓄熱槽31と、蓄熱材1を冷却して水和物を生成する冷却手段11と、水和物となった蓄熱材1を分解させて蓄熱材1の冷熱を取り出す熱利用手段12とを備える。
As shown in FIG. 3, the
冷却手段11としては、冷凍機32と、冷凍機32の冷却管33と、冷却管33内のブライン(または水)を冷凍機32に導入する冷凍機用ブライン(または水)ポンプ34とが設けられ、冷却管33の一部が蓄熱槽31内を通過するようになっている。 As the cooling means 11, a refrigerator 32, a cooling pipe 33 of the refrigerator 32, and a brine (or water) pump 34 for introducing a brine (or water) in the cooling pipe 33 into the refrigerator 32 are provided. In addition, a part of the cooling pipe 33 passes through the heat storage tank 31.
また、熱利用手段12としては、蓄熱を利用する熱負荷35と、熱負荷35の加熱管(吸熱管)36と、加熱管36内のブライン(ここでは水を用いる)を熱負荷35に供給する熱負荷用水ポンプ37とが設けられ、加熱管36の一部が蓄熱槽31内を通過するようになっている。 Further, as the heat utilization means 12, a heat load 35 using heat storage, a heating tube (heat absorption tube) 36 of the heat load 35, and a brine (here, water is used) in the heating tube 36 are supplied to the heat load 35. The heat load water pump 37 is provided, and a part of the heating pipe 36 passes through the heat storage tank 31.
蓄熱装置30では、深夜電力などを利用して冷凍機32を駆動し、冷凍機用ブライン(または水)ポンプ34によりブライン(または水)を蓄熱槽31内の冷却管33に流して蓄熱槽31内の蓄熱材1を冷却し、水和物を生成する。この時、蓄熱温度が15℃前後であればブラインを使用する必要がなく、冷却管33と加熱管36とを共用するなどしてシステムの簡素化が可能である。
In the
その後、冷房を行う際には、熱負荷用水ポンプ37を駆動することで水を蓄熱槽31内の加熱管36に流し、そこで水和物を加熱することで水が冷却され、熱負荷35で冷熱を放出して冷房を行う。 Thereafter, when cooling, the heat load water pump 37 is driven to cause water to flow through the heating pipe 36 in the heat storage tank 31, where the hydrate is heated to cool the water, and the heat load 35 Cooling is performed by releasing cold heat.
蓄熱槽31は、熱負荷35の日中の冷房負荷量に見合った容量の蓄熱材1を収容する容積にされる。本発明では、蓄熱材1として引火のおそれが無いTBAAc水溶液を用いるため、蓄熱装置30はシクロペンタン分散液を用いる従来技術と比較して安全な運用が可能となる。
The heat storage tank 31 has a capacity for accommodating the
本発明の蓄熱材を用いた蓄熱装置の他の例を説明する。 Another example of the heat storage device using the heat storage material of the present invention will be described.
図4に示す蓄熱装置40は、蓄熱材1が充填されたカプセル41と、そのカプセル41が投入されると共に冷媒である水42が充填される蓄熱槽31と、水42を冷却することでカプセル41内の蓄熱材1を冷却して水和物を生成する冷却手段13と、水和物となった蓄熱材1を分解させて蓄熱材1の冷熱を水42を介して取り出す熱利用手段14とを備える。
The
冷却手段13として、蓄熱槽31には、冷却循環ライン43を介して冷凍機32が接続され、冷却循環ライン43には、水42を冷凍機32に導入する循環ポンプ44が設けられる。また、熱利用手段14として、蓄熱槽31には、加熱循環ライン45を介して熱負荷35が接続され、加熱循環ライン45には、水42を熱負荷35に供給する循環ポンプ46が設けられる。 As the cooling means 13, a refrigerator 32 is connected to the heat storage tank 31 via a cooling circulation line 43, and a circulation pump 44 for introducing water 42 into the refrigerator 32 is provided in the cooling circulation line 43. Further, as the heat utilization means 14, a heat load 35 is connected to the heat storage tank 31 via a heating circulation line 45, and a circulation pump 46 that supplies water 42 to the heat load 35 is provided in the heating circulation line 45. .
蓄熱装置40では、深夜電力などで循環ポンプ44により冷凍機32に導入された水42を冷却し、その水42を蓄熱槽31に戻して、カプセル41内の蓄熱材1を冷却して水和物を生成する。また、冷房などの使用時には、水42が循環ポンプ46により熱負荷35に供給され、熱負荷35で加熱された水42を蓄熱槽31に戻す。カプセル41内の蓄熱材1では、加熱された水42を冷却することにより水和物が分解される。
In the
図5に示す蓄熱装置50は、基本的に図4に示す蓄熱装置40と同じ構成であり、カプセル41に替えて、蓄熱槽31内に蓄熱材1を充填した複数の伝熱管(伝熱管集合体)51を配置したものである。
The
蓄熱装置40、50では、水42を充填した蓄熱槽31内に蓄熱材1を充填したカプセル41、あるいは蓄熱材1を充填した伝熱管集合体51を設けるため、既設の蓄熱装置(氷蓄熱装置など)に容易に適用することが可能となり、導入コストを低く抑えることができる。
In the
蓄熱装置40、50では、蓄熱槽31内の水42を直接冷凍機32や熱負荷35に導入したが、必要に応じて冷却熱交換機や加熱熱交換機を設けてもよい。
In the
Claims (5)
前記ゲスト物質としてアクリル酸テトラブチルアンモニウムを用いることを特徴とする蓄熱材。 In the heat storage material that mixes the guest material and water, which is the host material, and cools it to produce hydrates,
A heat storage material using tetrabutylammonium acrylate as the guest material.
前記蓄熱材を冷却して水和物を生成する冷却手段と、
水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を取り出す熱利用手段と、
を備えたことを特徴とする蓄熱装置。 A heat storage tank filled with the heat storage material according to claim 1 or 2,
Cooling means for cooling the heat storage material to produce a hydrate;
Heat utilization means for decomposing the heat storage material that has become a hydrate and extracting the cold energy of the heat storage material;
A heat storage device characterized by comprising:
前記冷媒を冷却することで前記カプセル内の蓄熱材を冷却して水和物を生成する冷却手段と、
水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を前記冷媒を介して取り出す熱利用手段と、
を備えたことを特徴とする蓄熱装置。 A capsule filled with the heat storage material according to claim 1 or 2, a heat storage tank filled with a refrigerant while the capsule is charged,
Cooling means for cooling the heat storage material in the capsule by cooling the refrigerant to generate a hydrate;
Heat utilization means for decomposing the heat storage material that has become a hydrate and taking out the cold energy of the heat storage material through the refrigerant;
A heat storage device characterized by comprising:
前記冷媒を冷却することで前記伝熱管集合体内の蓄熱材を冷却して水和物を生成する冷却手段と、
水和物となった前記蓄熱材を分解させて前記蓄熱材の冷熱を前記冷媒を介して取り出す熱利用手段と、
を備えたことを特徴とする蓄熱装置。 A heat transfer tube assembly filled with the heat storage material according to claim 1, and a heat storage tank in which the heat transfer tube assembly is arranged and filled with a refrigerant,
A cooling means for cooling the heat storage material in the heat transfer tube assembly by cooling the refrigerant to generate a hydrate;
Heat utilization means for decomposing the heat storage material that has become a hydrate and taking out the cold energy of the heat storage material through the refrigerant;
A heat storage device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162593A JP5461331B2 (en) | 2010-07-20 | 2010-07-20 | Thermal storage material and thermal storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162593A JP5461331B2 (en) | 2010-07-20 | 2010-07-20 | Thermal storage material and thermal storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012025791A true JP2012025791A (en) | 2012-02-09 |
JP5461331B2 JP5461331B2 (en) | 2014-04-02 |
Family
ID=45779115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010162593A Expired - Fee Related JP5461331B2 (en) | 2010-07-20 | 2010-07-20 | Thermal storage material and thermal storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5461331B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019044095A (en) * | 2017-09-04 | 2019-03-22 | パナソニック株式会社 | Heat storage material and heat storage device |
WO2019146390A1 (en) * | 2018-01-29 | 2019-08-01 | パナソニック株式会社 | Cold storage material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220259475A1 (en) | 2019-10-04 | 2022-08-18 | Mitsubishi Electric Corporation | Heat storage apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007161893A (en) * | 2005-12-14 | 2007-06-28 | Jfe Engineering Kk | HEAT-STORAGE AGENT, HEAT-TRANSFER MEDIUM, MELTING POINT-CONTROLLING AGENT FOR HEAT-STORAGE AGENT, AGENT FOR PREVENTION OF OVERCOOLING FOR USE IN HEAT-STORAGE AGENT, METHOD FOR PRODUCING THE HEAT-STORAGE AGENT OR MAIN INGREDIENT OF THE HEAT-TRANSFER MEDIUM AND TRI-n-BUTYL-n-PENTYLAMMONIUM CHLORIDE HYDRATE |
JP2008120871A (en) * | 2006-11-09 | 2008-05-29 | Sanyo Chem Ind Ltd | Heat-storing substance and heat-storing material by using the same |
JP2008285526A (en) * | 2007-05-15 | 2008-11-27 | Keio Gijuku | Method for forming hydrate |
-
2010
- 2010-07-20 JP JP2010162593A patent/JP5461331B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007161893A (en) * | 2005-12-14 | 2007-06-28 | Jfe Engineering Kk | HEAT-STORAGE AGENT, HEAT-TRANSFER MEDIUM, MELTING POINT-CONTROLLING AGENT FOR HEAT-STORAGE AGENT, AGENT FOR PREVENTION OF OVERCOOLING FOR USE IN HEAT-STORAGE AGENT, METHOD FOR PRODUCING THE HEAT-STORAGE AGENT OR MAIN INGREDIENT OF THE HEAT-TRANSFER MEDIUM AND TRI-n-BUTYL-n-PENTYLAMMONIUM CHLORIDE HYDRATE |
JP2008120871A (en) * | 2006-11-09 | 2008-05-29 | Sanyo Chem Ind Ltd | Heat-storing substance and heat-storing material by using the same |
JP2008285526A (en) * | 2007-05-15 | 2008-11-27 | Keio Gijuku | Method for forming hydrate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019044095A (en) * | 2017-09-04 | 2019-03-22 | パナソニック株式会社 | Heat storage material and heat storage device |
WO2019146390A1 (en) * | 2018-01-29 | 2019-08-01 | パナソニック株式会社 | Cold storage material |
JP6590127B1 (en) * | 2018-01-29 | 2019-10-16 | パナソニック株式会社 | Cold storage material |
US11028302B2 (en) | 2018-01-29 | 2021-06-08 | Panasonic Corporation | Cold storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP5461331B2 (en) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Development of novel composite PCM for thermal energy storage using CaCl2· 6H2O with graphene oxide and SrCl2· 6H2O | |
Mehrali et al. | Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials | |
Song et al. | A new methane hydrate decomposition model considering intrinsic kinetics and mass transfer | |
Jerbi et al. | Characterization of CO2 hydrate formation and dissociation kinetics in a flow loop | |
JP2021533976A (en) | Hydrogen reactor containing catalyst in the flow conduit | |
JP5461331B2 (en) | Thermal storage material and thermal storage device | |
Li et al. | Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems | |
JP2006219557A (en) | Heat storage material composition, heat storage body using the same and heat storage apparatus | |
AU2008351793B2 (en) | Clathrate hydrate with latent heat storing capability, process for producing the same, and apparatus therefor, latent heat storing medium, and method of increasing amount of latent heat of clathrate hydrate and processing apparatus for increasing amount of latent heat stored of clathrate hydrate | |
Fang et al. | Experimental study of the thermal properties of a fatty acid-modified graphite composite phase change material dispersion system | |
JP2012021087A (en) | Heat storage material and heat storage apparatus | |
Kalidasan et al. | Thermal performance and corrosion resistance analysis of inorganic eutectic phase change material with one dimensional carbon nanomaterial | |
Liu et al. | Effect of additives on the cyclic thermal stability and thermal properties of sodium acetate trihydrate as a phase change material: An experimental study | |
US20110143240A1 (en) | Hydrogen Generation System, Method for Generating Hydrogen Using Solid Hydrogen Fuel and Method for Providing Hydrogen for Fuel Cell Using the Same | |
Li et al. | Experimental investigation on the promotion of CO2 hydrate formation for cold thermal energy storage–Effect of gas-inducing stirring under different agitation speeds | |
Sidik et al. | Thermo physical enhancement of advanced nano-composite phase change material | |
Song et al. | Can surfactant promote cyclopentene hydrate formation for cool storage? | |
Sharma et al. | Enhancement of latent heat energy storage system using nanomaterials for different applications: A review | |
CN109943290A (en) | A kind of phase change fluid of low conductivity and preparation method thereof | |
CN104945206A (en) | Compounded oil phase for high-temperature sensitization process emulsion explosive and preparation method thereof | |
JPH08504872A (en) | Novel clathrate-producing medium and its use in thermal energy storage devices and methods of thermal energy storage and transfer | |
Pang et al. | Hydrolysis of MgH2 enhanced by acetic acid for stable hydrogen generation | |
JP2016199427A (en) | Apparatus and method for producing ozone hydrate | |
CN106701035A (en) | Nano-composite phase change energy storage material with long cycle life and preparation method thereof | |
JP6480247B2 (en) | Gas hydrate production apparatus and gas hydrate production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130321 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131211 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5461331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |