JP2012025266A - Ship having ballast water tank system - Google Patents

Ship having ballast water tank system Download PDF

Info

Publication number
JP2012025266A
JP2012025266A JP2010165455A JP2010165455A JP2012025266A JP 2012025266 A JP2012025266 A JP 2012025266A JP 2010165455 A JP2010165455 A JP 2010165455A JP 2010165455 A JP2010165455 A JP 2010165455A JP 2012025266 A JP2012025266 A JP 2012025266A
Authority
JP
Japan
Prior art keywords
water
ballast
ballast water
ship
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010165455A
Other languages
Japanese (ja)
Other versions
JP2012025266A5 (en
JP5596454B2 (en
Inventor
Norihide Saho
典英 佐保
Akira Mochizuki
明 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010165455A priority Critical patent/JP5596454B2/en
Priority to PCT/JP2011/066667 priority patent/WO2012011553A1/en
Publication of JP2012025266A publication Critical patent/JP2012025266A/en
Publication of JP2012025266A5 publication Critical patent/JP2012025266A5/ja
Application granted granted Critical
Publication of JP5596454B2 publication Critical patent/JP5596454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers

Abstract

PROBLEM TO BE SOLVED: To provide a ship that can receive seawater and fresh water within a water area where the ship floats and fresh water supplied from outside the water area, which serve as ballast water, from outside the ship and can discharge the water outside the ship.SOLUTION: In the system, ship water receiving ports 7L and 7R for receiving the fresh water supplied from outside the water area are communicated, via pipes and valves, with suction ports of ballast water delivery pumps 9L and 9R installed in the ship to receive, deliver and discharge, as the ballast water, the seawater and the fresh water within the water area where the ship floats, respectively. Further, the ship has a ballast water tank system in discharge ports of the ballast water delivery pumps communicating with the ship water receiving ports via pipes and valves, respectively.

Description

本発明は、船舶の安定航行のために積載する船舶用バラスト水(以下、単に「バラスト水」と言う。)を注入する船舶のバラスト水槽システムおよびバラスト水槽システムを有する船舶に関する。   The present invention relates to a ballast water tank system for a ship that injects ballast water for ships (hereinafter simply referred to as “ballast water”) to be loaded for stable navigation of the ship, and a ship having a ballast water tank system.

原油タンカー,液化天然ガス(LNG)タンカー,鉱石運搬船等は、空荷や積載量が少ない場合、船体が軽くなり安定した航行ができなくなるため、船舶内に設けたバラスト水槽にバラスト水を積載し、船体を重くして安定させ操作性を確保している。   Crude oil tankers, liquefied natural gas (LNG) tankers, ore carriers, etc. are loaded with ballast water in a ballast tank installed in the ship because the hull becomes lighter and stable navigation is not possible when there is little air cargo or loading capacity. The hull is made heavy and stable to ensure operability.

このバラスト水として、船舶が浮かんでいる水域の海水,湖水や河川水の原水を、船体の底部に設けた取水口から船体内のバラスト水ポンプにより吸水し、船舶内の複数のバラスト水槽に配水する。荷物を積載する場合には、バラスト水槽内のバラスト水をバラスト水ポンプにより吸水し、船舶が浮かんでいる水域に放出する。   As this ballast water, the seawater, lake water and river water in the water area where the ship floats is absorbed by the ballast water pump in the ship body from the intake port provided at the bottom of the ship body, and distributed to multiple ballast tanks in the ship To do. When loading a load, the ballast water in the ballast water tank is absorbed by the ballast water pump and discharged to the water area where the ship is floating.

近年、バラスト水槽に浄化された淡水をバラスト水として注入し、乾燥地域の港ではその水域に放出せずに、前記淡水を陸揚げし灌漑用水等に利用する淡水輸送事業が検討されている。   In recent years, fresh water transportation projects have been examined in which fresh water purified into a ballast water tank is injected as ballast water, and the fresh water is landed and used for irrigation water or the like without being discharged into the water area at a dry area port.

船舶で輸送されるバラスト水を乾燥地域の港でバラスト水を陸揚げし、灌漑用水等に利用する淡水輸送方法としては、例えば浄化された下水処理水を船舶に積載する方法(特開2004−25040号公報)が提案されている。   As a fresh water transportation method for landing ballast water transported by ship at a port in a dry region and using it for irrigation water or the like, for example, a method of loading purified sewage treated water on a ship (Japanese Patent Application Laid-Open No. 2004-25040). No. Gazette) has been proposed.

また、従来のバラススト水槽システムとしては、例えば船舶が浮かんでいる水域の海水,湖水や河川水の原水をバラスト水として、船体の底部に設けた取水口から船体内のバラスト水ポンプにより吸水し、浄化装置を通じて浄化した後、船舶内の複数のバラスト水槽に配水するシステム(特開2006−729号公報)等が提案されている。   In addition, as a conventional ballast tank system, for example, seawater in the water area where the ship is floating, lake water or river water raw water is ballast water, and water is absorbed by a ballast water pump in the hull from a water intake provided at the bottom of the hull, A system (Japanese Patent Laid-Open No. 2006-729) that distributes water to a plurality of ballast tanks in a ship after purification through a purification device has been proposed.

特開2004−25040号公報Japanese Patent Laid-Open No. 2004-25040 特開2006−729号公報JP 2006-729 A

しかしながら、特許文献1,特許文献2には、船舶内のバラスト水槽システムの詳細な構造の開示が無く、原油等の積載/荷下ろし、バラスト水槽への浄化淡水/海水の積載、バラスト水槽からの浄化淡水の荷下ろし/海水の排水を並列して行うための構造も明らかにされていない。従って、浄化淡水の荷下ろしや積載に要する時間を短縮することについては十分な対応がされていない。また、原油等や浄化淡水の荷下ろしや積載時に、船舶の喫水を一定に保つための構造も明らかにされていない。従って、船舶側の受配水口と、港側の受け口の接続部における気密接続を維持し、安全に原油や浄化淡水を荷下ろしや積載することについても十分な対応がされていない。   However, Patent Document 1 and Patent Document 2 do not disclose the detailed structure of the ballast tank system in the ship, loading / unloading crude oil, etc., purifying fresh water / seawater into the ballast tank, The structure for unloading purified freshwater / draining seawater in parallel has not been clarified. Therefore, sufficient measures have not been taken to reduce the time required for unloading and loading purified freshwater. Also, a structure for keeping the draft of the ship constant when unloading or loading crude oil or purified water is not disclosed. Therefore, there is no sufficient response for maintaining the airtight connection at the connecting port between the receiving port on the ship side and the receiving port on the port side, and safely unloading and loading crude oil and purified fresh water.

本発明は、バラスト水槽システムを備えた船舶において、浄化淡水の荷下ろしや積載に要する時間を短縮すること、或いは、安全に原油や浄化淡水を荷下ろしや積載することを目的とする。   An object of the present invention is to reduce the time required for unloading and loading purified fresh water in a ship equipped with a ballast water tank system, or to safely unload and load crude oil and purified fresh water.

上記課題は、第1のバラスト水槽と、該第1のバラスト水槽の注水および排水を行う第1のバラスト水ポンプと、第2のバラスト水槽と、該第1のバラスト水槽の注水および排水を行う第2のバラスト水ポンプと、前記第1のバラスト水槽に注水するように前記第1のバラスト水ポンプを制御しているときに、前記第2のバラスト水槽に注水するように前記第2のバラスト水ポンプを制御する制御手段と、を具備する船舶によって解決される。   The above-described problems include a first ballast water tank, a first ballast water pump that performs water injection and drainage of the first ballast water tank, a second ballast water tank, and water injection and drainage of the first ballast water tank. A second ballast water pump and the second ballast so as to inject into the second ballast water tank when the first ballast water pump is controlled to inject into the first ballast water tank. And a control means for controlling the water pump.

また、浄化淡水を受水又は配水する受配水口と、液体を加圧送水するバラスト水ポンプと、バラスト水を積載するバラスト水タンクと、送水フローを、前記受配水口から前記バラスト水ポンプを介して前記バラスト水タンクに至る第1の送水フローと、前記バラスト水タンクから前記バラスト水ポンプを介して前記受配水口に至る第2の送水フローに切り替え可能な制御装置と、を具備する船舶によって解決される。   In addition, a receiving / distributing port for receiving or distributing purified fresh water, a ballast water pump for supplying pressurized liquid, a ballast water tank for loading ballast water, a water supply flow from the receiving / distributing port to the ballast water pump. And a control device capable of switching to a second water supply flow from the ballast water tank to the receiving water distribution port via the ballast water pump through the ballast water tank. Solved by.

本発明によれば、原油等の積載/荷下ろし、バラスト水槽への浄化淡水/海水の積載、バラスト水槽からの浄化淡水の荷下ろし/海水の排水を並列して行うことができるので、浄化淡水の荷下ろしや積載に要する時間を短縮することができる。また、原油等や浄化淡水の荷下ろしや積載時に、船舶の喫水を一定に保つことができるので、船舶側の受配水口と、港側の受け口の接続部における気密接続を維持でき、安全に原油や浄化淡水を荷下ろしや積載することができる。   According to the present invention, it is possible to carry out parallel loading of loading / unloading of crude oil, etc., loading of fresh water / seawater into a ballast water tank, unloading of fresh water from a ballast tank / water discharge, and so on. The time required for unloading and loading can be reduced. In addition, since the draft of the ship can be kept constant when unloading or loading crude oil or purified water, it is possible to maintain an airtight connection at the connection between the water distribution port on the ship side and the port on the port side, and it is safe. Unload and load crude oil and purified freshwater.

実施例1のバラスト水槽システムのブロック図。The block diagram of the ballast water tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第1の送水フロー図。The 1st water supply flow figure of the ballast water tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第2の送水フロー図。The 2nd water supply flow figure of the ballast tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第3の送水フロー図。The 3rd water supply flow figure of the ballast water tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第4の送水フロー図。The 4th water supply flow figure of the ballast water tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第5の送水フロー図。The 5th water supply flow figure of the ballast water tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第6の送水フロー図。The 6th water supply flow figure of the ballast tank system of Example 1. FIG. 実施例1のバラスト水槽システムの第7の送水フロー図。The 7th water supply flow figure of the ballast tank system of Example 1. FIG. 実施例1のバラスト水槽システムの塩分濃度測定装置の説明図。Explanatory drawing of the salt concentration measuring apparatus of the ballast water tank system of Example 1. FIG. 実施例2のバラスト水槽システムのブロック図。The block diagram of the ballast water tank system of Example 2. FIG. 実施例2のバラスト水槽システムの第1の送水フロー図。The 1st water supply flow figure of the ballast water tank system of Example 2. FIG. 実施例2のバラスト水槽システムの第2の送水フロー図。The 2nd water supply flow figure of the ballast water tank system of Example 2. FIG. 実施例2のバラスト水槽システムの第3の送水フロー図。The 3rd water supply flow figure of the ballast water tank system of Example 2. FIG. 実施例1の船舶における受配水口の設置位置を示す図。The figure which shows the installation position of the receiving water distribution port in the ship of Example 1. FIG.

以下、本発明の実施例を図面について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1を用いて、実施例1の船舶のバラスト水槽システムを説明する。図1において、左半分は左舷のバラスト水槽システムを示し、右半分は右舷のバラスト水槽システムを示す。ここから明らかなように、本実施例のバラスト水槽システムは左右一対のシステムであり、以下では、一対の構成のうち、左舷に係る構成には符号の後にLを付し、右舷に係る構成には符号の後にRを付した。また、左舷のバラスト水槽システムを中心に説明を行うこととし、左舷と共通する右舷の構成、送水フローについては説明を省略することとする。   The ship ballast water tank system of Example 1 is demonstrated using FIG. In FIG. 1, the left half shows a port side ballast aquarium system, and the right half shows a starboard ballast aquarium system. As is clear from this, the ballast aquarium system of the present embodiment is a pair of left and right systems. In the following, among the pair of configurations, the configuration related to the port side is denoted by L after the reference numeral, and the configuration related to the starboard side Is followed by R. In addition, the description will focus on the ballast tank system on the port side, and the description on the starboard configuration and water supply flow common to the port side will be omitted.

図1において、1,2,3は、船体の左舷および右舷の両サイドに配置されたバラスト水槽であって、海水,湖水や河川水等の原水、あるいは、処理水をバラスト水として蓄える。7は、船体の底部に設けられた取排水口であって、ここから海水や原水を船体内に導く。9は、液体を加圧するバラスト水ポンプである。15は、バラスト水原水浄化装置であって、海水,湖水や河川水等の原水を、所定のバラスト水管理水質に浄化する。なお、バラスト水原水浄化装置15として、磁気分離方式のものを用いても良いし、薬剤を添加してバラスト水中の微生物を殺菌するものを用いても良い。43は、左舷側のバラスト水槽1L,2L,3Lに連通する受配水口であり、44は、右舷側のバラスト水槽1R,2R,3Rに連通する受配水口である。28,29,30は、各バラスト水槽に設けられた大気開放口であって、バラスト水槽内のバラスト水水位の上下に伴い、空気が出入りする。80は、バラスト水の圧力を緩和するクッションタンクである。11,17,19,20,22,23,25,26,45,48,50,52,55,65,66,71,76,81,91は、弁である。12,21,24,27,46,47,51,53,56,72,90は、各部材を連結する配管である。100は、制御装置であって、バラスト水ポンプ9やバラスト水原水浄化装置15の動作や、各々の弁の開閉を制御する。バラスト水ポンプ9,バラスト水原水浄化装置15、および、各々の弁を制御するため、制御装置100と各々の構成は信号線で接続されているが、煩雑となるため、図示は省略する。   In FIG. 1, 1, 2, and 3 are ballast tanks disposed on both the port side and the starboard side of the hull, and store raw water such as seawater, lake water, river water, or treated water as ballast water. Reference numeral 7 denotes an intake / drain port provided at the bottom of the hull, from which seawater and raw water are introduced into the hull. Reference numeral 9 denotes a ballast water pump that pressurizes the liquid. Reference numeral 15 denotes a ballast water source water purification device that purifies raw water such as seawater, lake water, and river water into a predetermined ballast water management water quality. In addition, as the ballast water raw water purification apparatus 15, the thing of a magnetic separation system may be used, and the thing which adds a chemical | medical agent and disinfects the microorganisms in ballast water may be used. 43 is a receiving water distribution port communicating with the port side ballast water tanks 1L, 2L, 3L, and 44 is a receiving water distribution port communicating with the starboard side ballast water tanks 1R, 2R, 3R. Reference numerals 28, 29, and 30 denote air release ports provided in the respective ballast water tanks, and air enters and exits as the ballast water level rises and falls in the ballast water tanks. 80 is a cushion tank that relieves the pressure of ballast water. 11, 17, 19, 20, 22, 23, 25, 26, 45, 48, 50, 52, 55, 65, 66, 71, 76, 81, 91 are valves. Reference numerals 12, 21, 24, 27, 46, 47, 51, 53, 56, 72 and 90 are pipes for connecting the members. Reference numeral 100 denotes a control device that controls the operation of the ballast water pump 9 and the ballast water source water purification device 15 and the opening and closing of each valve. In order to control the ballast water pump 9, the ballast water raw water purification device 15, and the respective valves, the control device 100 and the respective components are connected by signal lines.

なお、左右のバラスト水槽システムは基本的には独立しているが、弁48,弁76を適当に開閉制御することで、右舷左舷両方の受配水口,取排水口に対し、バラスト水を受水、送水でき、一体のバラスト水槽システムとして制御することもできる。
(1)図2を用いて、海水,湖水や河川水等の原水(以下、「海水等」と称する。)を浄化し、左舷のバラスト水槽1L,2L,3Lに蓄える場合の送水フローを説明する。ここでは、制御装置100の制御により、弁11L,17L,19L,20L,22L,23L,25L,26Lが開放され、他の弁は閉鎖されているものとする。
Although the right and left ballast tank systems are basically independent, the ballast water is received by the receiving port and intake port on both the starboard and port sides by appropriately opening and closing the valves 48 and 76. Water and water can be supplied and can be controlled as an integrated ballast tank system.
(1) Referring to FIG. 2, the flow of water supply when raw water such as seawater, lake water or river water (hereinafter referred to as “seawater etc.”) is purified and stored in the port side ballast tanks 1L, 2L, 3L. To do. Here, it is assumed that the valves 11L, 17L, 19L, 20L, 22L, 23L, 25L, and 26L are opened and the other valves are closed under the control of the control device 100.

図2に示すように、まず、取排水口7Lから、海水等を船体内に導く。船体内に導かれた海水等は、配管12L,弁11Lを通って、バラスト水ポンプ9Lの給水口に達する。バラスト水ポンプ9Lで加圧送水された海水等は、弁17Lを通って、バラスト水原水浄化装置15Lに至る。ここで浄化された海水等は、弁19L,20Lを通って、バラスト水槽1Lに蓄えられる。なお、バラスト水槽1Lにバラスト水が流入するとき、大気開放口28からは、空気が流出し、バラスト水槽1L内の気圧が一定に保たれる。同様に、弁19L,22L,23Lを通った海水等がバラスト水槽2Lに蓄えられ、弁19L,22L,25L,26Lを通った海水等がバラスト水槽3Lに蓄えられる。   As shown in FIG. 2, first, seawater or the like is introduced from the intake / drain port 7L into the hull. Seawater or the like introduced into the hull passes through the pipe 12L and the valve 11L and reaches the water supply port of the ballast water pump 9L. Seawater or the like fed under pressure by the ballast water pump 9L passes through the valve 17L and reaches the ballast water source water purification device 15L. The purified seawater and the like are stored in the ballast water tank 1L through the valves 19L and 20L. When ballast water flows into the ballast water tank 1L, air flows out from the atmosphere opening port 28, and the atmospheric pressure in the ballast water tank 1L is kept constant. Similarly, seawater or the like that has passed through the valves 19L, 22L, and 23L is stored in the ballast water tank 2L, and seawater that has passed through the valves 19L, 22L, 25L, and 26L is stored in the ballast water tank 3L.

なお、ここでは、左舷の全てのバラスト水槽1L,2L,3Lにバラスト水を蓄えることとしたが、制御装置100が19L,20L,22L,23L,25L,26Lを適切に開閉することによって、任意のバラスト水槽のみにバラスト水を蓄えることにしても良い。
(2)次に、図3を用いて、バラスト水槽1L,2L,3Lに積載したバラスト水を船外に排水する場合の送水フローを説明する。ここでは、制御装置100の制御により、弁19L,20L,22L,23L,25L,26L,65L,52L,66L,71Lが開放され、他の弁は閉鎖されているものとする。
Here, the ballast water is stored in all the ballast tanks 1L, 2L, 3L on the port side. However, the control device 100 arbitrarily opens and closes 19L, 20L, 22L, 23L, 25L, 26L. The ballast water may be stored only in the ballast water tank.
(2) Next, the water supply flow in the case of draining the ballast water loaded in the ballast water tanks 1L, 2L, 3L outside the ship will be described with reference to FIG. Here, it is assumed that the valves 19L, 20L, 22L, 23L, 25L, 26L, 65L, 52L, 66L, and 71L are opened and the other valves are closed under the control of the control device 100.

図3に示すように、バラスト水槽1L内のバラスト水は、配管21L,弁20,弁19,弁65Lを通ってバラスト水ポンプ9の吸水口に達する。なお、バラスト水槽1Lからバラスト水が流出するとき、大気開放口28からは、外気が流入し、バラスト水槽1L内の気圧が一定に保たれる。同様に、バラスト水槽2L内のバラスト水は、配管24L,弁23L,弁22Lを経た後、バラスト水槽1Lからのバラスト水と合流しバラスト水ポンプ9に達し、バラスト水槽3L内のバラスト水は、配管27L,弁26L,弁25Lを経た後、バラスト水槽2Lからのバラスト水と合流しバラスト水ポンプ9に達する。バラスト水ポンプ9Lで加圧送水されたバラスト水は、バラスト水原水浄化装置15Lを回避するように、弁52L,配管53L,弁66L,配管70L,弁71L,配管72Lを通って、取排水口7Lに至る。この取排水口7Lから、船舶が浮かぶ水域に排水される。   As shown in FIG. 3, the ballast water in the ballast water tank 1L reaches the water inlet of the ballast water pump 9 through the pipe 21L, the valve 20, the valve 19, and the valve 65L. When ballast water flows out from the ballast water tank 1L, outside air flows in from the atmosphere opening port 28, and the atmospheric pressure in the ballast water tank 1L is kept constant. Similarly, the ballast water in the ballast water tank 2L passes through the pipe 24L, the valve 23L, and the valve 22L, and then merges with the ballast water from the ballast water tank 1L to reach the ballast water pump 9, and the ballast water in the ballast water tank 3L is After passing through the pipe 27L, the valve 26L, and the valve 25L, it merges with the ballast water from the ballast water tank 2L and reaches the ballast water pump 9. The ballast water fed under pressure by the ballast water pump 9L passes through the valve 52L, the pipe 53L, the valve 66L, the pipe 70L, the valve 71L, and the pipe 72L so as to avoid the raw ballast water purification device 15L. It reaches 7L. The water is discharged from the intake / drain port 7L to the water area where the ship floats.

なお、ここでは、左舷の全てのバラスト水槽1L,2L,3Lからバラスト水を排水することとしたが、任意のバラスト水槽からのみバラスト水を排水するように弁を制御しても良い。また、ここでは、バラスト水原水浄化装置15Lを回避する送水フローを説明したが、バラスト水原水浄化装置15Lで浄化した後、バラスト水を排水する構成としても良い。
(3)次に、図4を用いて、船外の淡水供給施設で浄化した浄化淡水を左舷の受配水口から導入し、左舷のバラスト水槽1L,2L,3Lに積載する場合の送水フローを説明する。ここでは、制御装置100の制御により、弁45L,48L,50L,81L,52L,19L,20L,22L,23L,25L,26Lが開放され、他の弁は閉鎖されているものとする。
Here, the ballast water is drained from all the ballast water tanks 1L, 2L, 3L on the port side, but the valve may be controlled so that the ballast water is drained only from any ballast water tank. Moreover, although the water supply flow which avoids the ballast water raw water purification apparatus 15L was demonstrated here, after purifying with the ballast water raw water purification apparatus 15L, it is good also as a structure which drains ballast water.
(3) Next, referring to FIG. 4, the flow of water supply when purified fresh water purified at the outboard fresh water supply facility is introduced from the port's receiving water distribution port and loaded on the port's ballast tanks 1L, 2L, 3L. explain. Here, it is assumed that the valves 45L, 48L, 50L, 81L, 52L, 19L, 20L, 22L, 23L, 25L, and 26L are opened and the other valves are closed under the control of the control device 100.

図4に示すように、船舶の左舷側に接岸している場合、受配水口43Lから浄化淡水を取り込む。船体内に導かれた浄化淡水は、弁45L,配管46L,弁48L,弁50L,配管51Lを通りクッションタンク80Lに至る。クッションタンク80で圧力が緩和された浄化淡水は、弁81Lを通り、バラスト水ポンプ9Lの給水口に達する。バラスト水ポンプ9Lで加圧送水された浄化淡水は、バラスト水原水浄化装置15Lを回避するように、弁52L,配管53Lを通って、弁19に至る。弁19Lに至った浄化淡水は、図2と同様の送水フローでバラスト水槽1L,2L,3Lに蓄えられる。   As shown in FIG. 4, when the ship is on the port side of the ship, purified fresh water is taken in from the receiving and distributing water outlet 43L. The purified fresh water introduced into the hull passes through the valve 45L, the pipe 46L, the valve 48L, the valve 50L, and the pipe 51L and reaches the cushion tank 80L. The purified fresh water whose pressure is relaxed in the cushion tank 80 passes through the valve 81L and reaches the water supply port of the ballast water pump 9L. The purified fresh water supplied under pressure by the ballast water pump 9L passes through the valve 52L and the pipe 53L to reach the valve 19 so as to avoid the ballast water raw water purification device 15L. The purified fresh water that has reached the valve 19L is stored in the ballast tanks 1L, 2L, and 3L in the same water supply flow as in FIG.

ここで、図4では図示していないが、淡水供給施設にも送水ポンプが設けられており、淡水供給施設の送水ポンプと、バラスト水ポンプ9の運転制御は連動して行われる。これらの連動運転制御は、制御装置100によって行われても良いし、淡水供給施設の制御装置によって行われても良い。   Here, although not shown in FIG. 4, a water pump is also provided in the fresh water supply facility, and operation control of the water pump of the fresh water supply facility and the ballast water pump 9 is performed in conjunction with each other. These interlocking operation control may be performed by the control apparatus 100, and may be performed by the control apparatus of a fresh water supply facility.

また、以上ではバラスト水原水浄化装置15Lを回避する送水フローを示したが、配管46,47,56等に設けた大腸菌検出センサーの検出結果に応じて、バラスト水原水浄化装置15Lを回避する送水フローと、バラスト水原水浄化装置15Lを通過する送水フローを切り替える構成としても良い。この大腸菌検出センサーは、水中の大腸菌を捕集するMEMSチップなどを備え、捕集した細菌の遺伝子検出を自動的に行うものであり、遺伝子検出の結果から大腸菌量を検出することができるものである。バラスト水タンクに積載された浄化淡水に大腸菌が残存していると、大腸菌の活動により酸素が消費され、バラスト水タンク内部が酸欠になる問題や、大腸菌を含む浄化淡水を荷下ろししてもその使い道が限定されてしまう問題がある。これを避けるため、大腸菌検出センサーで規定以上の大腸菌が検出されたときに、制御装置100は、弁17Lを開放するとともに弁52Lを閉鎖することで、浄化装置15Lを通る送水フローに切り替え、大腸菌殺菌・除去の浄化処理を実施するようにする。これにより、バラスト水槽に積載するバラスト水中の大腸菌を殺菌・除去でき、上述した問題を回避することができる。   Moreover, although the water supply flow which avoids the ballast water raw water purification apparatus 15L was shown above, the water supply which avoids the ballast water raw water purification apparatus 15L according to the detection result of the coliform detection sensor provided in piping 46, 47, 56 grade | etc., Is shown. It is good also as a structure which switches a flow and the water supply flow which passes 15L of ballast water raw water purification apparatuses. This Escherichia coli detection sensor is equipped with a MEMS chip that collects Escherichia coli in water, and automatically detects the genes of the collected bacteria, and can detect the amount of E. coli from the results of gene detection. is there. If Escherichia coli remains in the purified freshwater loaded in the ballast water tank, oxygen is consumed by the activity of the E. coli, and the ballast water tank may become deficient. There is a problem that its usage is limited. In order to avoid this, when the Escherichia coli detection sensor detects Escherichia coli that exceeds the specified level, the control device 100 opens the valve 17L and closes the valve 52L to switch to the water supply flow through the purification device 15L. Purify treatment of sterilization and removal. Thereby, Escherichia coli in the ballast water loaded in the ballast water tank can be sterilized and removed, and the above-described problems can be avoided.

なお、ここでは、左舷のバラスト水槽システムを使用する場合を説明したが、右舷のバラスト水槽システムを用いる場合も、受配水口43に代え受配水口44を利用することを除けば同様である。また、ここでは、左舷の全てのバラスト水槽1L,2L,3Lに浄化淡水を蓄えることとしたが、任意のバラスト水槽のみに浄化淡水を蓄えるように弁を制御しても良い。
(4)次に、図5を用いて、左舷のバラスト水槽1L,2L,3Lに蓄えられた浄化淡水を、左舷の受配水口から陸上の淡水利用施設(図示せず)等に荷揚げする場合の送水フローを説明する。ここでは、制御装置100の制御により、弁45L,48L,66L,52L,65L,19L,20L,22L,23L,25L,26Lが開放され、他の弁は閉鎖されているものとする。
In addition, although the case where the starboard ballast tank system was used was demonstrated here, when using the starboard ballast tank system, it is the same except using the receiving / distributing port 44 instead of the receiving / distributing port 43. Here, the purified fresh water is stored in all the ballast tanks 1L, 2L, 3L on the port side. However, the valve may be controlled so that the purified fresh water is stored only in an arbitrary ballast tank.
(4) Next, with reference to FIG. 5, when the purified fresh water stored in the port ballast tanks 1L, 2L, 3L is unloaded from the port's receiving water outlet to a land fresh water utilization facility (not shown), etc. The water supply flow will be described. Here, it is assumed that the valves 45L, 48L, 66L, 52L, 65L, 19L, 20L, 22L, 23L, 25L, and 26L are opened and the other valves are closed under the control of the control device 100.

図5に示すように、バラスト水槽1L内の浄化淡水は、配管21L,弁20,弁19,弁65Lを通ってバラスト水ポンプ9の吸水口に達する。同様に、バラスト水槽2L内の浄化淡水は、配管24L,弁23L,弁22Lを経た後、バラスト水槽1Lからの淡水と合流しバラスト水ポンプ9に達し、バラスト水槽3L内の浄化淡水は、配管27L,弁26L,弁25Lを経た後、バラスト水槽2Lからの淡水と合流しバラスト水ポンプ9に達する。バラスト水ポンプ9Lで加圧送水された淡水は、バラスト水原水浄化装置15Lを回避するように、弁52L,配管53L,弁66L,弁48L,配管46L,弁45Lを通って、受配水口43Lに至る。この受配水口43Lから、陸上の淡水利用施設などに浄化淡水が配水される。   As shown in FIG. 5, the purified fresh water in the ballast water tank 1L reaches the water inlet of the ballast water pump 9 through the pipe 21L, the valve 20, the valve 19, and the valve 65L. Similarly, the purified fresh water in the ballast water tank 2L passes through the pipe 24L, the valve 23L, and the valve 22L, and then merges with the fresh water from the ballast water tank 1L and reaches the ballast water pump 9, and the purified fresh water in the ballast water tank 3L After passing through the valve 27L, the valve 26L, and the valve 25L, the fresh water from the ballast water tank 2L is merged to reach the ballast water pump 9. The fresh water pressure-fed by the ballast water pump 9L passes through the valve 52L, the pipe 53L, the valve 66L, the valve 48L, the pipe 46L, and the valve 45L so as to avoid the ballast water raw water purification device 15L, and receives and distributes water 43L. To. Purified fresh water is distributed from the receiving water distribution port 43L to a land-based fresh water utilization facility or the like.

ここでは、バラスト水原水浄化装置15Lを回避して浄化淡水を配水する構成を示したが、浄化淡水をバラスト水原水浄化装置15Lで更に浄化して排水する構成としても良い。これにより、陸上の淡水利用施設が、バラスト水槽に蓄えられた浄化淡水よりも高品質な浄化淡水を要求する場合であっても容易に対応することができる。   Here, the configuration in which the purified fresh water is distributed while avoiding the ballast water source water purification device 15L is shown, but the purified fresh water may be further purified and drained by the ballast water source water purification device 15L. Thereby, even if the on-site fresh water utilization facility requires purified fresh water of higher quality than the purified fresh water stored in the ballast water tank, it can be easily handled.

ここで、図5では図示していないが、淡水利用施設側にも受水ポンプが設けられており、淡水利用施設側の受水ポンプと、バラスト水ポンプ9の運転制御は連動して行われる。これらの連動運転制御は、制御装置100によって行われても良いし、淡水利用施設側の制御装置によって行われても良い。   Here, although not shown in FIG. 5, a water receiving pump is also provided on the fresh water utilization facility side, and operation control of the water receiving pump on the fresh water utilization facility side and the ballast water pump 9 is performed in conjunction with each other. . These linked operation controls may be performed by the control device 100, or may be performed by a control device on the fresh water utilization facility side.

なお、ここでは、左舷の全てのバラスト水槽1L,2L,3Lから淡水を供給することとしたが、任意のバラスト水槽からのみ淡水を供給するように弁を制御しても良い。
(5)次に、図6を用いて、図3の送水フローから図4の送水フローに切り替えるときの中途の送水フローを説明する。バラスト水槽に積載した海水を排水した直後に、船外で処理した浄化淡水をバラスト水槽に積載すると、バラスト水ポンプ9L,弁52L,配管53Lなどに残留した海水が、浄化淡水と共にバラスト水槽1L,2L,3Lに流入し、バラスト水槽1L,2L,3Lに蓄えられる浄化淡水の塩分濃度が上昇し、浄化淡水の品質が劣化してしまうという問題がある。これを回避するため、図3の送水フローから図4の送水フローに切り替えるときに、制御装置100の制御により、弁45L,91L,52L,66L,71Lを開放し、他の弁を閉鎖することによって図6の送水フローを形成することとした。
Here, fresh water is supplied from all the ballast water tanks 1L, 2L, 3L on the port side. However, the valve may be controlled so that fresh water is supplied only from an arbitrary ballast water tank.
(5) Next, the water supply flow in the middle of switching from the water supply flow of FIG. 3 to the water supply flow of FIG. 4 will be described with reference to FIG. Immediately after draining the seawater loaded in the ballast tank, when the purified fresh water treated outside the ship is loaded on the ballast tank, the seawater remaining in the ballast water pump 9L, the valve 52L, the pipe 53L, etc., together with the purified fresh water, the ballast tank 1L, There is a problem that the salt concentration of the purified fresh water that flows into 2L and 3L and is stored in the ballast water tanks 1L, 2L, and 3L increases, and the quality of the purified fresh water deteriorates. In order to avoid this, when switching from the water supply flow of FIG. 3 to the water supply flow of FIG. 4, the valves 45L, 91L, 52L, 66L, 71L are opened and the other valves are closed by the control of the control device 100. Therefore, the water flow shown in FIG. 6 was formed.

図6に示すように、船舶の左舷側に接岸している場合、受配水口43Lから浄化淡水を取り込む。船体内に導かれた浄化淡水は、弁45L,配管46L,90L,弁91Lを通って、バラスト水ポンプ9Lの給水口に達する。バラスト水ポンプ9Lで加圧送水された浄化淡水は、バラスト水原水浄化装置15Lを回避するように、弁52L,配管53L,弁66L,配管70L,弁71L,配管72Lを通って、取排水口7Lに至る。この取排水口7Lから、船舶が浮かぶ水域に排水される。   As shown in FIG. 6, when the ship is on the port side of the ship, purified fresh water is taken in from the receiving and distributing outlet 43L. The purified fresh water introduced into the hull reaches the water supply port of the ballast water pump 9L through the valve 45L, the pipes 46L and 90L, and the valve 91L. The purified fresh water supplied under pressure by the ballast water pump 9L passes through the valve 52L, the pipe 53L, the valve 66L, the pipe 70L, the valve 71L, and the pipe 72L so as to avoid the raw ballast water purification apparatus 15L. It reaches 7L. The water is discharged from the intake / drain port 7L to the water area where the ship floats.

この図6の送水フローを、配管72Lのバラスト水の塩分濃度が定められた塩分濃度以下になるまで継続し、残留した海水を全て排水した後、図4の送水フローに切り替えることで、バラスト水槽に蓄えられる浄化淡水の塩分濃度上昇を回避することができる。   The water supply flow of FIG. 6 is continued until the salinity concentration of the ballast water in the pipe 72L becomes equal to or less than the predetermined salinity concentration. After all the remaining seawater is drained, the ballast water tank is switched to the water supply flow of FIG. It is possible to avoid an increase in the salt concentration of purified fresh water stored in the water.

図9を用いて、配管72のバラスト水の塩分濃度を測定する構成を説明する。図9に示すように、配管72Lに小規模なバイパス管92Lを設け、その流路内に、流体の電気伝導度を測定し流体の塩分濃度を測定する塩分濃度センサー素子93Lを配置した。塩分濃度センサー素子93Lの測定信号は配線94Lを通じ塩分濃度測定装置95Lに送信され、流体の塩分濃度をリアルタイムで測定する。この測定結果を制御装置100に送信し、配管72Lのバラスト水の塩分濃度が所定値以下になったときに、図6の送水フローを終了し、図4の送水フローに切り替える。このように、塩分濃度測定装置95Lを設けることによって、配管53Lなどから海水が完全に排出されたことを検出することができ、浄化淡水の排水を必要以上に継続することを避けることができる。なお、ここでは、左舷の配管72Lを例に説明したが、右舷の配管72Rにも、同様のバイパス管92R,塩分濃度センサー素子93R,配線94R塩分濃度測定装置95Rを設けても良い。   A configuration for measuring the salinity concentration of the ballast water in the pipe 72 will be described with reference to FIG. As shown in FIG. 9, a small-sized bypass pipe 92L is provided in the pipe 72L, and a salt concentration sensor element 93L for measuring the electrical conductivity of the fluid and measuring the salt concentration of the fluid is disposed in the flow path. The measurement signal of the salinity concentration sensor element 93L is transmitted to the salinity concentration measuring device 95L through the wiring 94L, and the salinity concentration of the fluid is measured in real time. This measurement result is transmitted to the control device 100, and when the salinity concentration of the ballast water in the pipe 72L becomes a predetermined value or less, the water supply flow in FIG. 6 is terminated and switched to the water supply flow in FIG. Thus, by providing the salinity concentration measuring device 95L, it is possible to detect that seawater has been completely discharged from the pipe 53L or the like, and it is possible to avoid continuing the drainage of the purified fresh water more than necessary. Here, the port pipe 72L has been described as an example, but the star pipe 72R may be provided with the same bypass pipe 92R, salt concentration sensor element 93R, and wiring 94R salt concentration measuring device 95R.

なお、ここでは塩分濃度センサーを配管72L,72Rに設置したケースについて説明したが、塩分濃度センサーを各バラスト水槽内にも設け、積載する淡水のバラスト水の塩分濃度を測定し、低塩分濃度の淡水バラスト水を積載できるように制御装置100で積載運転を制御することで、更にバラスト水槽内の淡水バラスト水の水質を安定に確保することができる。
(6)次に、図7,図8を用いて、図2〜図5を組み合わせた送水フローを説明する。図7は、左舷バラスト水槽システムのバラスト水槽2Lから浄化淡水を配水するとともに、右舷バラスト水槽システムのバラスト水槽3Rに海水を積載する例である。一方、図8は、左舷バラスト水槽システムのバラスト水槽2Lに浄化淡水を積載するとともに、右舷バラスト水槽システムのバラスト水槽3Rから海水を排水する例である。
In addition, although the case where the salinity concentration sensor was installed in the pipes 72L and 72R was explained here, the salinity concentration sensor is also provided in each ballast water tank, and the salinity concentration of fresh water ballast water to be loaded is measured, and the low salinity concentration By controlling the loading operation with the control device 100 so that the fresh water ballast water can be loaded, the quality of the fresh water ballast water in the ballast water tank can be secured stably.
(6) Next, the water supply flow combining FIGS. 2 to 5 will be described with reference to FIGS. FIG. 7 shows an example in which purified fresh water is distributed from the ballast aquarium 2L of the port ballast aquarium system and seawater is loaded on the ballast aquarium 3R of the starboard ballast aquarium system. On the other hand, FIG. 8 is an example in which purified fresh water is loaded on the ballast water tank 2L of the port ballast water tank system and seawater is drained from the ballast water tank 3R of the starboard ballast water tank system.

浄化淡水を荷下ろし、または、積載するときには、船舶側の受配水口43と、港側の受け口の接続部における気密接続を維持するため、両者の相対高さの変動を招く船舶の喫水の変動を避ける必要がある。すなわち、制御装置100は、配水された浄化淡水と同重量の海水を積載できるように、あるいは、積載された浄化淡水と同重量の海水を排水できるように、バラスト水ポンプ9L,9Rを制御することによって、船舶の喫水の変動を抑制し、安全に浄化淡水を荷下ろし、または、積載をすることができる。
(7)次に、原油やLNGなど(以下「原油等」と称する。)を荷下ろしするときの、図2,図4の送水フローについて説明する。原油等を荷下ろしするときには、船舶側の排出口と、港側の受け口の接続部における気密接続を維持するため、両者の相対高さの変動を招く船舶の喫水の変動を避ける必要がある。すなわち、制御装置100は、荷下ろしされた原油等と同重量のバラスト水を積載できるように、バラスト水ポンプ9を制御することによって、船舶の喫水の変動を抑制し、安全に原油等を荷下ろしすることができる。
When unloading or loading purified fresh water, the draft of the ship causes fluctuations in the relative height between the receiving and distributing ports 43 on the ship side and the connection between the receiving ports on the port side to maintain an airtight connection. Need to avoid. That is, the control device 100 controls the ballast water pumps 9L and 9R so that seawater having the same weight as the distributed purified freshwater can be loaded or seawater having the same weight as the loaded purified freshwater can be drained. As a result, fluctuations in the draft of the ship can be suppressed, and the purified fresh water can be safely unloaded or loaded.
(7) Next, the water supply flow shown in FIGS. 2 and 4 when unloading crude oil, LNG, etc. (hereinafter referred to as “crude oil etc.”) will be described. When unloading crude oil or the like, it is necessary to avoid fluctuations in the draft of the ship that cause fluctuations in the relative height of the two in order to maintain a hermetic connection at the connection between the discharge port on the ship side and the receiving port on the port side. That is, the control device 100 controls the ballast water pump 9 so that ballast water having the same weight as the unloaded crude oil or the like can be loaded, thereby suppressing fluctuations in the draft of the ship and safely loading the crude oil or the like. Can be taken down.

一方、原油等を積載するときの、図3,図5の送水フローについて説明する。原油等を積載するときにも、船舶側の排出口と、港側の受け口の接続部における気密接続を維持するため、両者の相対位置の変動を招く船舶の喫水の変動を避ける必要がある。すなわち、制御装置100は、積載された原油等と同重量のバラスト水を排水、あるいは、配水できるように、バラスト水ポンプ9を制御することによって、船舶の喫水が略等しくなるように抑制し、安全に原油等を積載することができる。   On the other hand, the water supply flow of FIGS. 3 and 5 when loading crude oil or the like will be described. Even when crude oil or the like is loaded, it is necessary to avoid fluctuations in the draft of the ship that cause fluctuations in the relative positions of the two in order to maintain a hermetic connection at the connection between the discharge port on the ship side and the receiving port on the port side. That is, the control device 100 controls the ballast water pump 9 so as to drain or distribute ballast water having the same weight as the loaded crude oil or the like, thereby suppressing the draft of the ship to be substantially equal, It can safely load crude oil.

図14に、本実施例のバラスト水槽システムを搭載した運搬用船舶111の外観を示す。甲板の左舷側には、原油等の受配液口112L,113L,114L,115Lが設けられ、右舷側にも原油等の受配液口112L,113L,114L,115Lが設けられる。受配液口112,113が主受配液口で、114,115は気化ガス等の回収用の受配液口である。   In FIG. 14, the external appearance of the ship 111 for conveyance carrying the ballast tank system of a present Example is shown. On the port side of the deck, receiving ports 112L, 113L, 114L, 115L for crude oil and the like are provided, and on the starboard side, receiving ports 112L, 113L, 114L, 115L for crude oil and the like are provided. The liquid receiving / distributing ports 112 and 113 are main liquid receiving / distributing ports, and 114 and 115 are liquid receiving / distributing ports for collecting vaporized gas and the like.

また、甲板の左舷側には、受配水口43L,44Lが設けられており、右舷側には、受配水口43R,44Rが設けられる。受配水口43,44は、配管口径も0.5メートル以上の大型の受配水口であり、受配水口43,44を介して毎時数千m3の積載速度で浄化淡水を積載する。図示しない陸上側の給受水口も同様なサイズであり、それらの接続,離脱には船上の荷物用クレーン116を用いる。なお、受配液口112〜115も荷物用クレーン116の稼働操作範囲内に配置されており、荷物用クレーン116を用いて受配液口112〜115の着脱,離脱を行うことができる。 In addition, receiving water distribution ports 43L and 44L are provided on the port side of the deck, and receiving water distribution ports 43R and 44R are provided on the starboard side. The receiving and distributing ports 43 and 44 are large receiving and distributing ports having a pipe diameter of 0.5 meters or more, and the purified fresh water is loaded through the receiving and distributing ports 43 and 44 at a loading speed of several thousand m 3 per hour. The land-side water inlet / outlet (not shown) has the same size, and a cargo crane 116 on board is used for connecting and disconnecting them. The liquid distribution ports 112 to 115 are also disposed within the operation range of the cargo crane 116, and the liquid distribution ports 112 to 115 can be attached and detached using the cargo crane 116.

それぞれの受配液口,受配水口につながる配管はポンプ室入口117に集約されている。受配液口112〜115は、船舶の内部に設けられた、原油等のタンクに連結されており、受配液口112等を介して積載された原油等はタンクに貯蔵される。また、タンクに貯蔵された原油等を、受配液口112等を介して荷下ろしすることができる。受配液口112等の流量は制御装置100によって監視されており、原油等を積載または荷下ろししたことによる重量の変化を求めることができる。上述した喫水変動抑制のための制御には、ここで得られる重量変化情報も用いられる。   The pipes connected to the respective receiving / distributing liquid ports and receiving / distributing water ports are collected at the pump chamber inlet 117. The liquid distribution ports 112 to 115 are connected to a crude oil tank provided inside the ship, and the crude oil loaded via the liquid distribution port 112 is stored in the tank. Moreover, the crude oil stored in the tank can be unloaded via the receiving / distributing liquid port 112 or the like. The flow rate of the receiving / distributing liquid port 112 or the like is monitored by the control device 100, and a change in weight due to loading or unloading of crude oil or the like can be obtained. The weight change information obtained here is also used for the control for suppressing the draft fluctuation described above.

以上で説明した、本実施例1によれば、原油等の積載/荷下ろし、バラスト水槽への浄化淡水/海水の積載、バラスト水槽からの浄化淡水の荷下ろし/海水の排水を並列して行うことができるので、浄化淡水の荷下ろしや積載に要する時間を短縮することができる。また、原油等や浄化淡水の荷下ろしや積載時に、船舶の喫水を一定に保つことができるので、安全に原油や浄化淡水を荷下ろしや積載することができる。   According to the first embodiment described above, loading / unloading of crude oil, etc., loading of purified freshwater / seawater into the ballast tank, unloading of purified freshwater from the ballast tank / draining of seawater are performed in parallel. Therefore, the time required for unloading and loading the purified fresh water can be shortened. In addition, since the draft of the ship can be kept constant when unloading or loading crude oil or purified water, it is possible to safely unload and load crude oil or purified fresh water.

図10を用いて、実施例2の船舶のバラスト水槽システムを説明する。なお、実施例1と同等の構成については同じ符号を付し詳細な説明を省略することとする。実施例2の船舶のバラスト水槽システムは、図10に示すように、実施例1の船舶のバラスト水槽システムに、バラスト水ポンプ284,弁204,207,278,283,286,288,290,291、および、配管279,280,281,282,208,285,287を付加したものであり、左舷システムのみで、あるいは、右舷システムのみで、図7や図8で説明した、バラスト水槽の排水,注入を同時に行うことができるものである。なお、図1で示した、大気開放口28,29,30の表示は省略する。   The ship ballast water tank system of Example 2 is demonstrated using FIG. In addition, the same code | symbol is attached | subjected about the structure equivalent to Example 1, and detailed description is abbreviate | omitted. As shown in FIG. 10, the ballast water tank system of the ship of the second embodiment is different from the ballast tank system of the ship of the first embodiment in that the ballast water pump 284, valves 204, 207, 278, 283, 286, 288, 290, 291 are used. , And pipes 279, 280, 281, 282, 208, 285, 287, and the drainage of the ballast tank described with reference to FIGS. 7 and 8 only with the port system or only with the starboard system, Injection can be performed simultaneously. In addition, the display of the air release ports 28, 29, and 30 shown in FIG. 1 is omitted.

資源国の港Aでは、原油,LNG,鉄鉱石,石炭等(以下「原油等」と称する)を積載し、淡水供給施設のない港Bでは、原油等の一部を荷下ろしし、淡水供給施設のある港Cでは、全ての原油等を荷下ろしするとともに、港Aに運ぶための浄化淡水を積載する場合を考える。   Port A, a resource-rich country, carries crude oil, LNG, iron ore, coal, etc. (hereinafter referred to as “crude oil, etc.”), and at Port B, where there is no freshwater supply facility, unloads part of the crude oil and supplies freshwater. At port C where the facility is located, it is assumed that all crude oil and the like are unloaded and purified fresh water is loaded for transport to port A.

港Bでは、荷下ろしした原油等の重量に相当するバラスト水をバラスト水槽に注入する必要がある。港Bには淡水供給施設が無いので、海水を一部のバラスト水槽に注入する。   At port B, it is necessary to inject ballast water corresponding to the weight of unloaded crude oil or the like into the ballast water tank. Since there is no freshwater supply facility at port B, seawater is injected into some ballast tanks.

港Cでは、原油等を全て荷下ろしし、バラスト水槽の海水を排水するとともに、バラスト水槽に淡水供給施設からの浄化淡水を積載する。このとき、船舶側の受配水口43等と、港側の受け口の接続部における気密接続を維持するため、両者の相対高さの変動を招く船舶の喫水の変動を避ける必要がある。すなわち、原油等の荷下ろしおよびバラスト水の配水による船舶側の重量減少と、浄化淡水の注入による船舶側の重量増加のバランスを取るため、それらを同時に実施する必要がある。実施例2のバラスト水槽システムは、原油等の積載時または荷下ろし時に、バラスト水槽からの海水の排水とバラスト水槽への浄化淡水の積載を同時に行うことができ、浄化淡水を短時間で搭載できるバラスト水槽システムである。   At port C, all the crude oil and the like are unloaded, the seawater in the ballast tank is drained, and purified freshwater from the freshwater supply facility is loaded into the ballast tank. At this time, in order to maintain the airtight connection at the connection portion between the receiving / distributing port 43 on the ship side and the receiving port on the port side, it is necessary to avoid fluctuations in the draft of the ship that cause fluctuations in the relative heights of the two. That is, in order to balance the decrease in weight on the ship side due to unloading of crude oil and the like and the distribution of ballast water, and the increase in weight on the ship side due to the injection of purified fresh water, it is necessary to carry out them simultaneously. The ballast water tank system of Example 2 can load seawater from the ballast water tank and load purified fresh water into the ballast tank at the same time when loading or unloading crude oil, etc., and can carry purified fresh water in a short time. This is a ballast tank system.

以下、図11の送水フローを用いて、実施例2のバラスト水槽システムを詳細に説明する。図11は、初期において、バラスト水槽3Lに海水が注入されており、他のバラスト水槽(1L,2L,1R,2R,3R)は空の状態であった場合に、バラスト水槽3Lの海水を排水し、バラスト水槽1Lに浄化淡水を積載するときの送水フローを示している。   Hereinafter, the ballast water tank system of Example 2 will be described in detail using the water supply flow of FIG. In FIG. 11, seawater is poured into the ballast tank 3L in the initial stage, and when the other ballast tanks (1L, 2L, 1R, 2R, 3R) are empty, the seawater in the ballast tank 3L is drained. In addition, a water supply flow when the purified fresh water is loaded in the ballast water tank 1L is shown.

港Cで原油等を荷下ろしするときに、船舶の喫水線を維持するため、陸上の淡水供給施設からの淡水を空のバラスト水槽1Lに積載するとともに、バラスト水槽3L内の海水を排水する。バラスト水槽3L内の海水は、弁278,配管279,280,281,282,弁283を通り、バラスト水ポンプ84の吸水口に流入し、バラスト水ポンプ284で加圧されたのち、配管285,弁286,配管287,72を通り、取排水口7から船舶外に排出される。一方、図4を用いて説明した送水フローによって、バラスト水槽1Lに浄化淡水を積載することができる。なお、実施例1の構成に加え、バラスト水ポンプ9の吸水口に連通する配管に弁288Lを設けており、バラスト水は弁288を通り、バラスト水ポンプ9Lの吸水口に流入する。   When unloading crude oil or the like at port C, fresh water from the onshore fresh water supply facility is loaded into an empty ballast water tank 1L and seawater in the ballast water tank 3L is drained in order to maintain the waterline of the ship. Seawater in the ballast water tank 3L passes through the valve 278, piping 279, 280, 281, 282, and valve 283, flows into the water inlet of the ballast water pump 84, is pressurized by the ballast water pump 284, and then pipes 285, 285. It passes through the valve 286, the pipes 287, 72, and is discharged from the intake / outlet 7 to the outside of the ship. On the other hand, the purified fresh water can be loaded in the ballast water tank 1L by the water supply flow described with reference to FIG. In addition to the configuration of the first embodiment, a valve 288L is provided in a pipe communicating with the water inlet of the ballast water pump 9, and the ballast water passes through the valve 288 and flows into the water inlet of the ballast water pump 9L.

バラスト水槽3L内の海水が無くなると、バラスト水槽3Lにも浄化淡水を積載する。ただし、バラスト水槽3Lに蓄えられる浄化淡水に海水が混じるのを防ぐため、浄化淡水を貯水する前に、バラスト水槽3L底部、壁面上の残留海水を排出し、海水の排水が完了する必要がある。このため、図12に示すように、バラスト水槽3Lに浄化淡水を注入し、その浄化淡水によって残留海水を排水する。図9で示した、塩分濃度センサー素子93R,配線94R塩分濃度測定装置95Rによって、残留海水が排水されたことを確認できる。残留海水が完全に排水されると、図13に示すように、バラスト水ポンプ284を停止すると共に、弁278Lを閉鎖し、バラスト水槽3Lに浄化淡水を蓄える。バラスト水槽1L,2Lに対しても同様の処理を行える様に、弁290,291が設けられている。なお、ここでは、バラスト水タンク1Lが満水となったため弁20Lを閉鎖し、弁23Lを開放しバラスト水槽2Lにも注水している状況を示している。   When the seawater in the ballast water tank 3L runs out, purified fresh water is also loaded into the ballast water tank 3L. However, in order to prevent the seawater from being mixed with the purified freshwater stored in the ballast tank 3L, it is necessary to discharge the residual seawater on the bottom and wall surface of the ballast tank 3L and complete the drainage of the seawater before storing the purified freshwater. . For this reason, as shown in FIG. 12, purified fresh water is injected into the ballast water tank 3L, and residual seawater is drained by the purified fresh water. It can be confirmed that the residual seawater is drained by the salinity concentration sensor element 93R and the wiring 94R salinity concentration measuring device 95R shown in FIG. When the residual seawater is completely drained, as shown in FIG. 13, the ballast water pump 284 is stopped, the valve 278L is closed, and the purified fresh water is stored in the ballast water tank 3L. Valves 290 and 291 are provided so that the same processing can be performed for the ballast water tanks 1L and 2L. Here, since the ballast water tank 1L is full, the valve 20L is closed, the valve 23L is opened, and water is poured into the ballast water tank 2L.

次に、図10を用いて、バラスト水ポンプ284がバラスト水ポンプ9Lの予備ポンプとして使用できることを説明する。バラスト水ポンプ284Lとバラスト水ポンプ9の吸水口は、弁288L,81L,配管203L,弁204L,配管282L,弁283Lを介して連通している。また、バラスト水ポンプ84Lとバラスト水ポンプ9の吐出口は、配管285L,弁207L,配管208Lを介して連通している。従って、バラスト水ポンプ9が故障したときには、弁288Lを閉鎖するとともに、弁81L,204L,283L,207Lを開放することによって、バラスト水ポンプ9を回避する送水フローを構成することができ、これにより、バラスト水ポンプ284をバラスト水ポンプ9の代用ポンプとして利用することができる。   Next, it will be described with reference to FIG. 10 that the ballast water pump 284 can be used as a spare pump for the ballast water pump 9L. The water inlets of the ballast water pump 284L and the ballast water pump 9 communicate with each other via valves 288L and 81L, a pipe 203L, a valve 204L, a pipe 282L, and a valve 283L. The discharge ports of the ballast water pump 84L and the ballast water pump 9 communicate with each other via a pipe 285L, a valve 207L, and a pipe 208L. Therefore, when the ballast water pump 9 breaks down, the valve 288L is closed and the valves 81L, 204L, 283L, and 207L are opened, so that a water supply flow that avoids the ballast water pump 9 can be configured. The ballast water pump 284 can be used as a substitute pump for the ballast water pump 9.

以上で説明した、本実施例2によれば、実施例1の構成により得られる効果に加え、一方のバラスト水槽システムのみを用いても同時にバラスト水槽の注排水ができるので、より柔軟なバラスト水槽システムの運用を実現することができる。また、バラスト水槽排水用のバラスト水ポンプを、主となるバラスト水ポンプ予備ポンプとしても使えるようにしたので、例え、主となるバラスト水ポンプが故障したとしても、バラスト水槽システムの機能を維持することができる。   According to the second embodiment described above, in addition to the effects obtained by the configuration of the first embodiment, the ballast water tank can be poured and drained at the same time using only one ballast water tank system. System operation can be realized. In addition, the ballast water pump for draining the ballast water tank can be used as a spare pump for the main ballast water pump, so that even if the main ballast water pump fails, the function of the ballast water tank system is maintained. be able to.

1〜3 バラスト水槽
7 取排水口
9,284 バラスト水ポンプ
15 バラスト水原水浄化装置
43,44 受配水口
1-3 Ballast water tank 7 Drainage port 9,284 Ballast water pump 15 Ballast water source water purification device 43, 44 Receiving water distribution port

上記課題は、第1のバラスト水槽と、該第1のバラスト水槽の注水および排水を行う第1のバラスト水ポンプと、第2のバラスト水槽と、該第1のバラスト水槽の注水および排水を行う第2のバラスト水ポンプと、前記第1のバラスト水槽に注水するように前記第1のバラスト水ポンプを制御しているときに、前記第2のバラスト水槽から排水するように前記第2のバラスト水ポンプを制御する制御手段と、を具備する船舶によって解決される。 The above-described problems include a first ballast water tank, a first ballast water pump that performs water injection and drainage of the first ballast water tank, a second ballast water tank, and water injection and drainage of the first ballast water tank. The second ballast water pump and the second ballast water to be drained from the second ballast water tank when the first ballast water pump is controlled to inject water into the first ballast water tank. And a control means for controlling the water pump.

Claims (10)

第1のバラスト水槽と、
該第1のバラスト水槽の注水および排水を行う第1のバラスト水ポンプと、
第2のバラスト水槽と、
該第1のバラスト水槽の注水および排水を行う第2のバラスト水ポンプと、
前記第1のバラスト水槽に注水するように前記第1のバラスト水ポンプを制御しているときに、前記第2のバラスト水槽に注水するように前記第2のバラスト水ポンプを制御する制御手段と、
を具備することを特徴とする船舶。
A first ballast aquarium;
A first ballast water pump for injecting and draining the first ballast water tank;
A second ballast aquarium,
A second ballast water pump for injecting and draining the first ballast water tank;
Control means for controlling the second ballast water pump so as to inject water into the second ballast water tank when the first ballast water pump is controlled so as to inject water into the first ballast water tank; ,
A ship characterized by comprising:
請求項1に記載の船舶において、
前記第1のバラスト水槽に注入されるのは、外部から積載される浄化淡水であり、前記第2のバラスト水槽から排水されるのは、海水であることを特徴とする船舶。
In the ship according to claim 1,
The ship that is injected into the first ballast water tank is purified fresh water loaded from the outside, and the water discharged from the second ballast water tank is seawater.
請求項1に記載の船舶において、
前記第1のバラスト水槽に注入されるのは、海水であり、前記第2のバラスト水槽から排水されるのは、浄化淡水であることを特徴とする船舶。
In the ship according to claim 1,
The ship that is injected into the first ballast aquarium is seawater, and that that is drained from the second ballast aquarium is purified freshwater.
請求項1に記載の船舶において、
前記第1のバラスト水槽に注入される液体の重量と、前記第2のバラスト水槽から排水される液体の重量は、略等しいことを特徴とする船舶。
In the ship according to claim 1,
The weight of the liquid inject | poured into a said 1st ballast water tank and the weight of the liquid drained from a said 2nd ballast water tank are substantially equal, The ship characterized by the above-mentioned.
請求項1に記載の船舶において、
前記第1および第2のバラスト水ポンプ稼働中の喫水は略等しいことを特徴とする船舶。
In the ship according to claim 1,
A ship in which the drafts during operation of the first and second ballast water pumps are substantially equal.
浄化淡水を受水又は配水する受配水口と、
液体を加圧送水するバラスト水ポンプと、
バラスト水を積載するバラスト水タンクと、
送水フローを、前記受配水口から前記バラスト水ポンプを介して前記バラスト水タンクに至る第1の送水フローと、前記バラスト水タンクから前記バラスト水ポンプを介して前記受配水口に至る第2の送水フローに切り替え可能な制御装置と、
を具備することを特徴とする船舶。
Receiving and distributing outlets for receiving or distributing purified fresh water;
A ballast water pump for supplying liquid under pressure;
A ballast water tank for loading ballast water;
A first water supply flow from the receiving water distribution port to the ballast water tank through the ballast water pump and a second water supply flow from the ballast water tank to the receiving water distribution port through the ballast water pump. A control device capable of switching to the water flow,
A ship characterized by comprising:
請求項6に記載の船舶において、
更に、船舶が浮かぶ水域からバラスト水を取水し、または、船舶が浮かぶ水域にバラスト水を排水する取排水口を具備しており、
前記制御装置は、送水フローを、前記取排水口から前記バラスト水ポンプを介して前記バラスト水タンクに至る第3の送水フローと、前記バラスト水タンクから前記バラスト水ポンプを介して前記取排水口に至る第4の送水フローに切り替え可能であることを特徴とする船舶。
In the ship according to claim 6,
Furthermore, it has a water intake port for taking ballast water from the water area where the ship floats or draining ballast water in the water area where the ship floats,
The control device includes a third water supply flow from the water intake / outlet through the ballast water pump to the ballast water tank, and a water supply flow from the ballast water tank through the ballast water pump to the water intake / outlet. It is possible to switch to a fourth water supply flow leading to
請求項7に記載の船舶において、
前記制御装置は、送水フローを、前記受配水口から前記バラスト水ポンプ、前記バラスト水タンクを介して前記取排水口に至る第5の送水フローに切り替え可能であることを特徴とする船舶。
In the ship according to claim 7,
The said control apparatus can switch a water supply flow to the 5th water supply flow from the said receiving / distributing port to the said water intake port through the said ballast water pump and the said ballast water tank, The ship characterized by the above-mentioned.
請求項8に記載の船舶において、
前記バラスト水タンクと前記取排水口を結ぶ配管には、塩分濃度を測定する塩分濃度センサーを設けたことを特徴とする船舶。
In the ship according to claim 8,
A marine vessel characterized in that a salinity concentration sensor for measuring a salinity concentration is provided in a pipe connecting the ballast water tank and the intake / drain port.
請求項6に記載の船舶において、
甲板上には、原油またはLNGの受配液口と、前記受配水口が近接して設けられており、両者は、荷物用クレーンの稼働操作範囲内に配置されていることを特徴とする船舶。
In the ship according to claim 6,
On the deck, a receiving / distributing port for crude oil or LNG and the receiving / distributing port are provided close to each other, both of which are disposed within the operating range of the cargo crane.
JP2010165455A 2010-07-23 2010-07-23 Ship with ballast tank system Expired - Fee Related JP5596454B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010165455A JP5596454B2 (en) 2010-07-23 2010-07-23 Ship with ballast tank system
PCT/JP2011/066667 WO2012011553A1 (en) 2010-07-23 2011-07-22 Ship comprising ballast water tank system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165455A JP5596454B2 (en) 2010-07-23 2010-07-23 Ship with ballast tank system

Publications (3)

Publication Number Publication Date
JP2012025266A true JP2012025266A (en) 2012-02-09
JP2012025266A5 JP2012025266A5 (en) 2012-12-27
JP5596454B2 JP5596454B2 (en) 2014-09-24

Family

ID=45496971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165455A Expired - Fee Related JP5596454B2 (en) 2010-07-23 2010-07-23 Ship with ballast tank system

Country Status (2)

Country Link
JP (1) JP5596454B2 (en)
WO (1) WO2012011553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101276131B1 (en) 2012-04-12 2013-06-18 대우조선해양 주식회사 Balasting system of ship and automatic balasting method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018885A (en) * 1999-07-02 2001-01-23 Mitsubishi Heavy Ind Ltd Ballast water replacing device for ship
JP2005087817A (en) * 2003-09-16 2005-04-07 Hitachi Ltd Freshwater feed system
WO2009035078A1 (en) * 2007-09-13 2009-03-19 Mitsubishi Heavy Industries, Ltd. Ship structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018885A (en) * 1999-07-02 2001-01-23 Mitsubishi Heavy Ind Ltd Ballast water replacing device for ship
JP2005087817A (en) * 2003-09-16 2005-04-07 Hitachi Ltd Freshwater feed system
WO2009035078A1 (en) * 2007-09-13 2009-03-19 Mitsubishi Heavy Industries, Ltd. Ship structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101276131B1 (en) 2012-04-12 2013-06-18 대우조선해양 주식회사 Balasting system of ship and automatic balasting method of the same

Also Published As

Publication number Publication date
JP5596454B2 (en) 2014-09-24
WO2012011553A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
CN102233943B (en) Ballast water treatment system
CN101522576B (en) Apparatus for treating ship ballast water
US6869540B2 (en) Ballast water ozone injection method and system
JP2017503707A (en) Ballast water treatment method and ballast water treatment system in a ship including at least two ballast tanks
CN104817214A (en) On-line anti-fouling ship ballast water treatment system and ship ballast water treatment method
CN108698673B (en) Ship with gas regasification system
JP5596454B2 (en) Ship with ballast tank system
KR20160101597A (en) Ballast Water Treatment System
JP2012025266A5 (en)
JP5798797B2 (en) Liquefied fuel transport ship and ship remodeling method, ship and liquefied fuel transport ship
JP5705588B2 (en) Ballast water treatment systems, ships and floating structures
KR101906640B1 (en) Ballast Water Service Facility on Land
KR20140020817A (en) Ship and ballast water treatment system
KR101910691B1 (en) Ballast Water Service Facility on Land
KR20130014166A (en) System for transferring ballast water of ship
JP5137100B2 (en) Ballast water supply system
KR20160124688A (en) The ballast water treatment apparatus using multi-control
KR101775049B1 (en) Hull Frictional Resistance Reducing and Antibiofouling System and Method Thereof
KR101487405B1 (en) Ballast water treatment system for ships
KR20120132949A (en) Marine growth protection device for ship
CN216468331U (en) External water supply system of full-rotation tugboat
KR101544809B1 (en) Ballast System
KR101875086B1 (en) System for supplying balast water
KR101744640B1 (en) Ballasting apparatus for eco-ship
WO2020217372A1 (en) Ballast water treatment system and ship comprising same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees