JP2012023548A - Electric power transmission/reception system, electric power transmission device, electric power reception device, and electric power transmission/reception method - Google Patents

Electric power transmission/reception system, electric power transmission device, electric power reception device, and electric power transmission/reception method Download PDF

Info

Publication number
JP2012023548A
JP2012023548A JP2010159805A JP2010159805A JP2012023548A JP 2012023548 A JP2012023548 A JP 2012023548A JP 2010159805 A JP2010159805 A JP 2010159805A JP 2010159805 A JP2010159805 A JP 2010159805A JP 2012023548 A JP2012023548 A JP 2012023548A
Authority
JP
Japan
Prior art keywords
power
frequency
reference signal
unit
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159805A
Other languages
Japanese (ja)
Other versions
JP5628575B2 (en
Inventor
Kenjiro Nishikawa
健二郎 西川
Toshihiro Seki
智弘 関
Takeshi Hiraga
健 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010159805A priority Critical patent/JP5628575B2/en
Publication of JP2012023548A publication Critical patent/JP2012023548A/en
Application granted granted Critical
Publication of JP5628575B2 publication Critical patent/JP5628575B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To generate a signal synchronized between two devices accurately without using a carrier wave as a reference wave.SOLUTION: An electric power transmission/reception system includes a first device and a second device. The first device includes: an electric power source that supplies electric power; an electric power wireless transmission unit for generating a high-frequency electric power having a predetermined phase and frequency using the electric power supplied from the electric power source and wirelessly transmitting the high-frequency electric power by a resonance system; and a first reference signal generating unit for generating a reference signal whose phase and frequency are the same as those of the high-frequency electric power. The second device includes: a electric power wireless reception unit for receiving the high-frequency electric power from the electric power wireless transmission unit by a resonance system and supplying electric power to the second device; and a second reference signal generating unit for generating a reference signal whose phase and frequency are the same as those of the high-frequency electric power received by the electric power wireless reception unit.

Description

本発明は、一方の装置と他方の装置とで同期した基準信号を生成するための技術に関する。   The present invention relates to a technique for generating a reference signal synchronized between one device and another device.

最近のワイヤレス通信装置では、同期検波方式が採用されることが多い。同期検波方式とは、受信した信号を高精度に復調するための技術である(非特許文献1参照)。図6は、同期検波方式(特に搬送波再生方式)を採用した無線通信システムの概略を表す図である。図6では、同じ構成を有する2台の無線装置P10が、互いに信号を無線伝送で送受信する。無線装置P10は、基準信号源P102を備える。各無線装置P10の基準信号源P102は、所定の精度の範囲内で同期している。無線装置P10同士は、基準信号源P102から出力される基準信号に基づいて同期検波を行う。具体的には以下のとおりである。送信側の無線装置P10は、基準信号源P102から出力される基準信号に基づき変調を行うことによって搬送波を生成する。そして、送信側の無線装置P10は搬送波を送信する。受信側の無線装置P10は、同期検波を行うために基準信号源P102、搬送波再生部P304、クロック再生部P306等を備える。受信側の無線装置P10は、基準信号源P102から出力される基準信号に基づいて、受信した搬送波を復調し復号化する。   In recent wireless communication apparatuses, a synchronous detection method is often adopted. The synchronous detection method is a technique for demodulating a received signal with high accuracy (see Non-Patent Document 1). FIG. 6 is a diagram illustrating an outline of a wireless communication system employing a synchronous detection method (particularly, a carrier wave recovery method). In FIG. 6, two wireless devices P10 having the same configuration mutually transmit and receive signals by wireless transmission. The wireless device P10 includes a reference signal source P102. The reference signal source P102 of each wireless device P10 is synchronized within a predetermined accuracy range. The wireless devices P10 perform synchronous detection based on the reference signal output from the reference signal source P102. Specifically, it is as follows. The transmitting-side radio apparatus P10 generates a carrier wave by performing modulation based on the reference signal output from the reference signal source P102. The transmitting-side radio apparatus P10 transmits a carrier wave. The receiving-side radio apparatus P10 includes a reference signal source P102, a carrier recovery unit P304, a clock recovery unit P306, and the like for performing synchronous detection. The receiving-side radio apparatus P10 demodulates and decodes the received carrier wave based on the reference signal output from the reference signal source P102.

また、上記のように信号を無線伝送するシステムのみならず、電力を無線伝送するシステムも提案されている(非特許文献2参照)。電力無線伝送システムでは、電力送信装置及び電力受信装置に、ループコイル等で構成されたアンテナが設けられる。そして、アンテナ間の共振(共鳴)現象を用いて、電力が無線伝送される。   Further, not only a system that wirelessly transmits signals as described above, but also a system that wirelessly transmits power (see Non-Patent Document 2). In a power wireless transmission system, an antenna configured by a loop coil or the like is provided in a power transmission device and a power reception device. Then, power is wirelessly transmitted using a resonance (resonance) phenomenon between the antennas.

田中公男,“ディジタル通信技術”,東海大学出版会,1986年3月25日Kimio Tanaka, “Digital Communication Technology”, Tokai University Press, March 25, 1986 Andre Kurs, et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", Science 317, 83 (2007)Andre Kurs, et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", Science 317, 83 (2007)

上記の同期検波方式を採用した無線通信システムでは、送信側の無線装置P10から受信側の無線装置P10へ無線伝送される搬送波が、参照信号として用いられる。すなわち、受信側の無線装置P10は、基準信号源P102から出力される基準信号を搬送波同期する。そして、受信側の無線装置P10は、搬送波同期された基準信号を用いて同期検波を行う。そのため、搬送波は低雑音で無線伝送される必要があった。すなわち、搬送波が低雑音で無線伝送されない場合には、同期検波の精度が低下してしまうという問題があった。
上記事情に鑑み、本発明は、搬送波を参照波として用いることなく、一方の装置と他方の装置との間で精度良く同期した信号を生成することを可能とする技術を提供することを目的としている。
In a wireless communication system employing the above-described synchronous detection method, a carrier wave wirelessly transmitted from the transmitting-side wireless device P10 to the receiving-side wireless device P10 is used as a reference signal. That is, the receiving-side radio apparatus P10 synchronizes the reference signal output from the reference signal source P102 with a carrier wave. Then, the radio device P10 on the receiving side performs synchronous detection using the reference signal synchronized with the carrier wave. Therefore, the carrier wave needs to be wirelessly transmitted with low noise. That is, when the carrier wave is not transmitted wirelessly with low noise, there is a problem that the accuracy of synchronous detection is lowered.
In view of the above circumstances, an object of the present invention is to provide a technique capable of generating a signal that is accurately synchronized between one device and the other device without using a carrier wave as a reference wave. Yes.

本発明の一態様は、第一装置と第二装置とを備える電力送受信システムであって、前記第一装置は、電力を供給する電源と、前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式により前記高周波電力を無線で伝送する電力無線送信部と、前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成部と、を備え、前記第二装置は、前記電力無線送信部から共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信部と、前記電力無線送信部によって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成部と、を備えることを特徴とする。   One aspect of the present invention is a power transmission / reception system including a first device and a second device, wherein the first device uses a power source that supplies power and power that is supplied from the power source. A power wireless transmission unit that generates high-frequency power of phase and frequency and wirelessly transmits the high-frequency power by a resonance method; and a first reference signal generation unit that generates a reference signal of the same phase and frequency as the high-frequency power. The second device receives a high frequency power from the power wireless transmission unit by a resonance method and supplies power to the second device; and the high frequency power received by the power wireless transmission unit And a second reference signal generation unit that generates a reference signal having the same phase and frequency.

本発明の一態様は、上記の電力送受信システムであって、前記第一装置は、送信対象の情報を、前記第一基準信号生成部によって生成された前記基準信号に基づいて搬送波を生成し送信する送信部をさらに備え、前記第二装置は、前記送信部から送信された前記搬送波を受信し、前記第二基準信号生成部によって生成された前記基準信号に基づいて前記搬送波を検波する受信部をさらに備える、ことを特徴とする。   One aspect of the present invention is the above power transmission / reception system, wherein the first device generates and transmits a transmission target information based on the reference signal generated by the first reference signal generation unit. A receiving unit that receives the carrier wave transmitted from the transmitting unit and detects the carrier wave based on the reference signal generated by the second reference signal generating unit. Is further provided.

本発明の一態様は、共鳴方式により高周波電力を受信して自装置に電力を供給し且つ前記高周波電力と同じ位相及び周波数の基準信号を生成する電力受信装置に対し、電力を送信する電力送信装置であって、電力を供給する電源と、前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式によって前記高周波電力を無線で伝送する電力無線送信部と、前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成部と、を備えることを特徴とする。   One aspect of the present invention is a power transmission that transmits power to a power reception device that receives high-frequency power by a resonance method, supplies power to the device itself, and generates a reference signal having the same phase and frequency as the high-frequency power. A power source that supplies power, and a power wireless transmission unit that generates high-frequency power having a predetermined phase and frequency using the power supplied from the power source and wirelessly transmits the high-frequency power using a resonance method And a first reference signal generator that generates a reference signal having the same phase and frequency as the high-frequency power.

本発明の一態様は、電力受信装置であって、電源から供給される電力を用いて所定の位相及び周波数の高周波電力を生成し共鳴方式により前記高周波電力を無線で伝送し且つ前記高周波電力と同じ位相及び周波数の基準信号を生成する電力送信装置から、共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信部と、前記電力無線送信部によって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成部と、を備えることを特徴とする。   One aspect of the present invention is a power receiving apparatus that generates high-frequency power having a predetermined phase and frequency using power supplied from a power source, wirelessly transmits the high-frequency power using a resonance method, and the high-frequency power. A power wireless reception unit that receives high-frequency power by a resonance method from a power transmission device that generates a reference signal having the same phase and frequency, and supplies power to the second device; and the high-frequency power received by the power wireless transmission unit And a second reference signal generation unit that generates a reference signal having the same phase and frequency as the power.

本発明の一態様は、電力を供給する電源を有する第一装置と第二装置とを備える電力送受信システムが行う電力送受信方法であって、前記第一装置が、前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式により前記高周波電力を無線で伝送する電力無線送信ステップと、前記第一装置が、前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成ステップと、前記第二装置が、共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信ステップと、前記第二装置が、前記電力無線送信ステップによって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成ステップと、を備えることを特徴とする。   One aspect of the present invention is a power transmission / reception method performed by a power transmission / reception system including a first device having a power supply for supplying power and a second device, wherein the first device supplies power supplied from the power supply. A power wireless transmission step of generating high-frequency power having a predetermined phase and frequency and wirelessly transmitting the high-frequency power by a resonance method; and the first device uses a reference signal having the same phase and frequency as the high-frequency power. A first reference signal generation step to generate; a power wireless reception step in which the second device receives high-frequency power by a resonance method and supplies power to the second device; and the second device transmits the power wireless transmission And a second reference signal generation step of generating a reference signal having the same phase and frequency as the high-frequency power received by the step.

本発明により、搬送波を参照波として用いることなく、一方の装置と他方の装置との間で精度良く同期した信号を生成することが可能となる。   According to the present invention, it is possible to generate a signal that is accurately synchronized between one device and the other device without using a carrier wave as a reference wave.

無線伝送システムのシステム構成を表すシステム構成図である。It is a system configuration figure showing the system configuration of a radio transmission system. 第一無線装置の機能構成を表す図である。It is a figure showing the function structure of a 1st radio | wireless apparatus. 第二無線装置の機能構成を表す図である。It is a figure showing the function structure of a 2nd radio | wireless apparatus. 無線伝送システムにおける電力伝送の動作の流れを表すシーケンス図である。It is a sequence diagram showing the flow of operation | movement of the power transmission in a wireless transmission system. 無線伝送システムにおける情報無線伝送の動作の流れを表すシーケンス図である。It is a sequence diagram showing the flow of operation | movement of the information wireless transmission in a wireless transmission system. 同期検波方式を採用した無線通信システムの概略を表す図である。It is a figure showing the outline of the radio | wireless communications system which employ | adopted the synchronous detection system.

図1は、無線伝送システム100のシステム構成を表すシステム構成図である。無線伝送システム100は、複数の無線装置を備える。無線伝送システム100が備える無線装置の一部は、電力送信側となる第一無線装置10である。無線伝送システム100が備える無線装置の他の一部は、電力受信側となる第二無線装置50である。第一無線装置10は、電源を備えており、その電源から出力される電力の一部を、第二無線装置50に対して無線で伝送する。第二無線装置50は、第一無線装置10から無線伝送される電力を受け、この電力によって動作する。また、第一無線装置10と第二無線装置50とは、電力の無線伝送に用いられる周波数及び位相に基づいて、同期検波を行う。以下、第一無線装置10及び第二無線装置50について詳細に説明する。なお、図1では、無線伝送システム100が1台の第一無線装置10と1台の第二無線装置50を備える構成が図示されているが、各装置の台数は1台に限定されない。   FIG. 1 is a system configuration diagram illustrating a system configuration of the wireless transmission system 100. The wireless transmission system 100 includes a plurality of wireless devices. Part of the wireless device included in the wireless transmission system 100 is the first wireless device 10 on the power transmission side. Another part of the wireless device included in the wireless transmission system 100 is a second wireless device 50 on the power receiving side. The first wireless device 10 includes a power supply, and transmits a part of the power output from the power supply to the second wireless device 50 wirelessly. The second radio apparatus 50 receives power wirelessly transmitted from the first radio apparatus 10 and operates with this power. The first radio apparatus 10 and the second radio apparatus 50 perform synchronous detection based on the frequency and phase used for wireless transmission of power. Hereinafter, the first radio apparatus 10 and the second radio apparatus 50 will be described in detail. In FIG. 1, a configuration in which the wireless transmission system 100 includes one first wireless device 10 and one second wireless device 50 is illustrated, but the number of devices is not limited to one.

図2は、第一無線装置10の機能構成を表す図である。第一無線装置10は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、第一通信プログラムを実行する。第一無線装置10は、電力送信部20、送信部30、受信部40を備える。第一無線装置10の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)やその他のハードウェアを用いて実現されても良い。   FIG. 2 is a diagram illustrating a functional configuration of the first radio apparatus 10. The first wireless device 10 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a first communication program. The first radio apparatus 10 includes a power transmission unit 20, a transmission unit 30, and a reception unit 40. All or some of the functions of the first wireless device 10 may be realized using an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), or other hardware. .

電力送信部20は、磁界共鳴方式により、第二無線装置50に対して電力を無線で伝送する。送信部30は、電力送信部20から出力される基準信号に基づいて変調を行う。そして、送信部30は、第二無線装置50に対して、変調された信号を無線で送信する。受信部40は、第二無線装置50から信号を無線で受信する。そして、受信部40は、電力送信部20から出力される基準信号に基づいて同期検波を行う。   The power transmission unit 20 wirelessly transmits power to the second wireless device 50 by the magnetic field resonance method. The transmission unit 30 performs modulation based on the reference signal output from the power transmission unit 20. Then, the transmission unit 30 wirelessly transmits the modulated signal to the second wireless device 50. The receiving unit 40 receives a signal from the second wireless device 50 wirelessly. Then, the receiving unit 40 performs synchronous detection based on the reference signal output from the power transmission unit 20.

電力送信部20は、電源201、電力無線送信部202、送電コイル203を備える。電源201は、電力無線送信部202、送信部30、受信部40へ電力を供給する。電力無線送信部202は、所定の周期及び位相の高周波電力を生成し、送電コイル203を介して電力を無線で伝送する。このとき、電力伝送の高効率化のために、極めて狭帯域な周波数で電力伝送が行われ、Q値は数千以上となる。電力無線送信部202が生成する高周波電力は、例えば数MHz〜数十MHzの周波数の電力である。また、電力無線送信部202は、生成される高周波電力と同じ位相及び周波数の基準信号を送信部30及び受信部40へ出力する。基準信号の周波数は、生成される高周波電力の周波数を逓倍した周波数であっても良い。基準信号の出力先は、例えば変調部303、無線部304、無線部304、復調部403、復号化部404である。なお、電力無線送信部202が生成する高周波電力の周波数は、上記の周波数に限定されない。送電コイル203は、第二無線装置50に備えられる受電コイルと等しい又はほとんど等しい共振周波数を有する。送電コイル203は、電力無線送信部202から電力の供給を受けることによって、電磁界を形成する。   The power transmission unit 20 includes a power source 201, a power wireless transmission unit 202, and a power transmission coil 203. The power source 201 supplies power to the power wireless transmission unit 202, the transmission unit 30, and the reception unit 40. The power wireless transmission unit 202 generates high-frequency power having a predetermined cycle and phase, and wirelessly transmits the power via the power transmission coil 203. At this time, in order to increase the efficiency of power transmission, power transmission is performed at an extremely narrow band frequency, and the Q value becomes several thousand or more. The high frequency power generated by the power wireless transmission unit 202 is, for example, power having a frequency of several MHz to several tens of MHz. Further, the power wireless transmission unit 202 outputs a reference signal having the same phase and frequency as the generated high-frequency power to the transmission unit 30 and the reception unit 40. The frequency of the reference signal may be a frequency obtained by multiplying the frequency of the generated high-frequency power. The output destination of the reference signal is, for example, the modulation unit 303, the radio unit 304, the radio unit 304, the demodulation unit 403, and the decoding unit 404. In addition, the frequency of the high frequency electric power which the electric power wireless transmission part 202 produces | generates is not limited to said frequency. The power transmission coil 203 has a resonance frequency that is equal to or almost equal to that of the power reception coil provided in the second radio apparatus 50. The power transmission coil 203 forms an electromagnetic field by receiving power supply from the power wireless transmission unit 202.

送信部30は、デジタル信号処理部301、符号化部302、変調部303、無線部304、送信アンテナ305を備える。デジタル信号処理部301は、デジタル信号処理を行うことによって、他の無線装置へ送信するビット列を生成する。符号化部302は、デジタル信号処理部301によって生成されたビット列に対し符号化処理を行うことによって符号化データを生成する。符号化部302が行う符号化処理には、例えば誤り訂正符号化や畳み込み符号化などがある。変調部303は、電力無線送信部202から出力される基準信号に基づいて符号化データに対して変調処理を行い、変調信号を生成する。無線部304は、変調信号に対しアップコンバート等の送信処理を行い、搬送波を生成する。送信アンテナ305は、無線部304によって生成された搬送波を第二無線装置50へ送信する。   The transmission unit 30 includes a digital signal processing unit 301, an encoding unit 302, a modulation unit 303, a radio unit 304, and a transmission antenna 305. The digital signal processing unit 301 generates a bit string to be transmitted to another wireless device by performing digital signal processing. The encoding unit 302 generates encoded data by performing an encoding process on the bit string generated by the digital signal processing unit 301. Examples of the encoding process performed by the encoding unit 302 include error correction encoding and convolutional encoding. Modulation section 303 performs modulation processing on the encoded data based on the reference signal output from power wireless transmission section 202 to generate a modulated signal. Radio section 304 performs transmission processing such as up-conversion on the modulated signal to generate a carrier wave. The transmission antenna 305 transmits the carrier wave generated by the wireless unit 304 to the second wireless device 50.

受信部40は、受信アンテナ401、無線部402、復調部403、復号化部404、デジタル信号処理部405を備える。受信アンテナ401は、第一無線装置10から搬送波を受信する。無線部402は、受信アンテナ401によって受信された搬送波に対し、ダウンコンバート等の受信処理を行い、変調信号を復元する。復調部403は、電力無線送信部202から出力される基準信号に基づいて変調信号に対し復調処理を行い、符号化データを復元する。復号化部404は、電力無線送信部202から出力される基準信号に基づいて符号化データを復号化し、ビット列を復元する。デジタル信号処理部405は、復元されたビット列に応じて処理を行う。   The reception unit 40 includes a reception antenna 401, a radio unit 402, a demodulation unit 403, a decoding unit 404, and a digital signal processing unit 405. The receiving antenna 401 receives a carrier wave from the first radio apparatus 10. The radio unit 402 performs reception processing such as down-conversion on the carrier wave received by the receiving antenna 401 and restores the modulated signal. Demodulation section 403 performs demodulation processing on the modulated signal based on the reference signal output from power wireless transmission section 202 to restore the encoded data. The decoding unit 404 decodes the encoded data based on the reference signal output from the power wireless transmission unit 202 and restores the bit string. The digital signal processing unit 405 performs processing according to the restored bit string.

図3は、第二無線装置50の機能構成を表す図である。第二無線装置50は、電力受信部60、送信部70、受信部80を備える。電力受信部60は、磁界共鳴方式により、第一無線装置10から無線伝送される電力を受ける。そして、電力受信部60は、受けた電力を、送信部70及び受信部80へ供給する。また、電力受信部60は、受けた電力の周波数及び位相に応じた基準信号を、送信部70及び受信部80に出力する。送信部70は、電力受信部60から出力される基準信号に基づいて変調を行う。そして、送信部70は、第二無線装置50に対して、変調された信号を無線で送信する。受信部80は、第一無線装置10から信号を無線で受信する。そして、受信部80は、電力受信部60から出力される基準信号に基づいて同期検波を行う。   FIG. 3 is a diagram illustrating a functional configuration of the second radio apparatus 50. The second wireless device 50 includes a power reception unit 60, a transmission unit 70, and a reception unit 80. The power receiving unit 60 receives power wirelessly transmitted from the first wireless device 10 by the magnetic field resonance method. The power receiving unit 60 supplies the received power to the transmitting unit 70 and the receiving unit 80. In addition, the power receiving unit 60 outputs a reference signal corresponding to the frequency and phase of the received power to the transmitting unit 70 and the receiving unit 80. The transmission unit 70 performs modulation based on the reference signal output from the power reception unit 60. Then, the transmission unit 70 wirelessly transmits the modulated signal to the second wireless device 50. The receiving unit 80 wirelessly receives a signal from the first wireless device 10. The receiving unit 80 performs synchronous detection based on the reference signal output from the power receiving unit 60.

電力受信部60は、受電コイル601及び電力無線受信部602を備える。受電コイル601は、第一無線装置10の送電コイル203によって生成された電磁界に共鳴し、送電コイル203から送られた高周波電力を受ける。電力無線受信部602は、受電コイル601によって受けた電力を、送信部70及び受信部80に供給する。また、電力無線受信部602は、第一無線装置10から受けた高周波電力と同じ位相及び周波数の基準信号を送信部70及び受信部80へ出力する。基準信号の周波数は、受信される高周波電力の周波数を逓倍した周波数であっても良い。基準信号の出力先は、例えば変調部703、無線部704、無線部802、復調部803、復号化部804である。受電コイル601は、第一無線装置10に備えられる送電コイルと等しい又はほとんど等しい共振周波数を有する。   The power receiving unit 60 includes a power receiving coil 601 and a power wireless receiving unit 602. The power reception coil 601 resonates with the electromagnetic field generated by the power transmission coil 203 of the first radio apparatus 10 and receives the high frequency power transmitted from the power transmission coil 203. The power wireless reception unit 602 supplies the power received by the power reception coil 601 to the transmission unit 70 and the reception unit 80. Further, the power wireless reception unit 602 outputs a reference signal having the same phase and frequency as the high-frequency power received from the first wireless device 10 to the transmission unit 70 and the reception unit 80. The frequency of the reference signal may be a frequency obtained by multiplying the frequency of the received high frequency power. The output destination of the reference signal is, for example, the modulation unit 703, the radio unit 704, the radio unit 802, the demodulation unit 803, and the decoding unit 804. The power receiving coil 601 has a resonance frequency equal to or almost equal to that of the power transmitting coil provided in the first radio apparatus 10.

送信部70は、デジタル信号処理部701、符号化部702、変調部703、無線部704、送信アンテナ705を備える。送信部70は、電力及び基準信号の供給元が電力受信部60である点を除いては、第一無線装備10の送信部20と同じ構成である。   The transmission unit 70 includes a digital signal processing unit 701, an encoding unit 702, a modulation unit 703, a radio unit 704, and a transmission antenna 705. The transmission unit 70 has the same configuration as the transmission unit 20 of the first radio equipment 10 except that the power and reference signal supply source is the power reception unit 60.

受信部80は、受信アンテナ801、無線部802、復調部803、復号化部804、デジタル信号処理部805を備える。受信部80は、電力及び基準信号の供給元が電力受信部60である点を除いては、第一無線装備10の受信部30と同じ構成である。   The reception unit 80 includes a reception antenna 801, a radio unit 802, a demodulation unit 803, a decoding unit 804, and a digital signal processing unit 805. The receiving unit 80 has the same configuration as the receiving unit 30 of the first radio equipment 10 except that the power and reference signal is supplied from the power receiving unit 60.

図4は、無線伝送システム100における電力伝送の動作の流れを表すシーケンス図である。第一無線装置10の電力無線送信部202が、電源201から供給された電力を用いて、所定の周波数の高周波電力を生成する(ステップS101)。電力無線送信部202は、生成した高周波電力を送電コイル203へ供給する。送電コイル203は、供給された高周波電力に基づいて電磁界を形成することによって電力を送信する(ステップS102)。第二無線装置20の受電コイル601が、送電コイル203によって形成された電磁界に応じて共鳴することによって、電力無線受信部602に高周波電力が供給される(ステップS103)。電力無線受信部602は、第一無線装置10から供給された高周波電力に応じて自装置の送信部70及び受信部80に電力を供給する。また、電力無線受信部602は、第一無線装置10から供給された高周波電力と同じ周波数及び位相の基準信号を生成する(ステップS104)。そして、電力無線受信部602は、生成した基準信号を、変調部703、無線部704、無線部802、復調部803、復号化部804に供給する(ステップS105)。   FIG. 4 is a sequence diagram illustrating a flow of power transmission operation in the wireless transmission system 100. The power wireless transmission unit 202 of the first wireless device 10 uses the power supplied from the power supply 201 to generate high-frequency power with a predetermined frequency (step S101). The power wireless transmission unit 202 supplies the generated high-frequency power to the power transmission coil 203. The power transmission coil 203 transmits electric power by forming an electromagnetic field based on the supplied high frequency power (step S102). The power receiving coil 601 of the second wireless device 20 resonates according to the electromagnetic field formed by the power transmitting coil 203, whereby high frequency power is supplied to the power wireless receiving unit 602 (step S103). The power wireless reception unit 602 supplies power to the transmission unit 70 and the reception unit 80 of the own device according to the high frequency power supplied from the first wireless device 10. Further, the power wireless reception unit 602 generates a reference signal having the same frequency and phase as the high-frequency power supplied from the first wireless device 10 (step S104). The power wireless reception unit 602 supplies the generated reference signal to the modulation unit 703, the wireless unit 704, the wireless unit 802, the demodulation unit 803, and the decoding unit 804 (step S105).

図5は、無線伝送システム100における情報無線伝送の動作の流れを表すシーケンス図である。図5は、第一無線装置10から第二無線装置50へ情報が伝送される場合の動作の流れを表す。まず、第一無線装置10の符号化部302が、送信対象のビット列に対し符号化処理を行い、符号化データを生成する(ステップS201)。次に、第一無線装置10の変調部303が、電力無線送信部202から出力される基準信号に基づいて変調処理を行い、変調信号を生成する(ステップS202)。無線部304は、変調信号に対しアップコンバート等の送信処理によって搬送波を生成し、送信アンテナ305から送信する(ステップS203)。   FIG. 5 is a sequence diagram showing a flow of operation of information wireless transmission in the wireless transmission system 100. FIG. 5 shows an operation flow when information is transmitted from the first radio apparatus 10 to the second radio apparatus 50. First, the encoding unit 302 of the first radio apparatus 10 performs an encoding process on the transmission target bit string to generate encoded data (step S201). Next, the modulation unit 303 of the first radio apparatus 10 performs modulation processing based on the reference signal output from the power radio transmission unit 202, and generates a modulation signal (step S202). The radio unit 304 generates a carrier wave by transmission processing such as up-conversion for the modulated signal and transmits it from the transmission antenna 305 (step S203).

第二無線装置50の無線部802は、受信アンテナ801を介して第一無線装置10から搬送波を受信する。無線部802は、受信アンテナ801によって受信された搬送波に対し、ダウンコンバート等の受信処理を行い、変調信号を復元する。復調部803は、電力無線受信部602から出力される基準信号に基づいて変調信号に対し復調処理を行い、符号化データを復元する(ステップS204)。復号化部804は、電力無線送信部602から出力される基準信号に基づいて符号化データを復号化し、ビット列を復元する(ステップS205)。   The radio unit 802 of the second radio apparatus 50 receives a carrier wave from the first radio apparatus 10 via the reception antenna 801. The radio unit 802 performs reception processing such as down-conversion on the carrier wave received by the reception antenna 801 and restores the modulated signal. Demodulation section 803 performs demodulation processing on the modulated signal based on the reference signal output from power wireless reception section 602, and restores the encoded data (step S204). The decoding unit 804 decodes the encoded data based on the reference signal output from the power wireless transmission unit 602, and restores the bit string (step S205).

このように構成された無線伝送システム100では、第一無線装置10から第二無線装置50へ供給される高周波電力と同じ位相及び周波数の基準信号が、第二無線装置50において生成される。そのため、第一無線装置10と第二無線装置50との間で、位相及び周波数が同期した基準信号を生成するに際して、搬送波を参照波として用いる必要が無い。また、位相及び周波数が同期した基準信号を生成する基準信号源を、第一無線装置10及び第二無線装置50の双方に備える必要が無い。さらに、高周波電力の伝送は、極めて狭帯域な周波数で行われるため、高い精度で周波数及び位相がそのまま伝送される。したがって、第二無線装置50において、基準信号の周波数や位相の同期を行う搬送波再生部P304やクロック再生部P306などの機能が不要となる。   In the wireless transmission system 100 configured as described above, a reference signal having the same phase and frequency as the high-frequency power supplied from the first wireless device 10 to the second wireless device 50 is generated in the second wireless device 50. Therefore, when generating a reference signal whose phase and frequency are synchronized between the first radio apparatus 10 and the second radio apparatus 50, it is not necessary to use a carrier wave as a reference wave. Further, it is not necessary to provide both the first radio apparatus 10 and the second radio apparatus 50 with a reference signal source that generates a reference signal whose phase and frequency are synchronized. Furthermore, since the transmission of the high frequency power is performed at a very narrow frequency, the frequency and phase are transmitted as they are with high accuracy. Therefore, in the second radio apparatus 50, functions such as the carrier recovery unit P304 and the clock recovery unit P306 that synchronize the frequency and phase of the reference signal become unnecessary.

また、電力送信部20及び電力受信部60の間で行われる電力無線伝送では、磁界共鳴方式が用いられる。そのため、電力送信部20から出力される高周波電力の周波数及び位相は、精度良く電力受信部60に伝達される。そのため、第一無線装置10と第二無線装置50との間で、精度良く同じ位相及び同じ周波数の基準信号を生成できる。したがって、精度良く同期検波を実現できる。   Further, in the wireless power transmission performed between the power transmission unit 20 and the power reception unit 60, a magnetic resonance method is used. Therefore, the frequency and phase of the high frequency power output from the power transmission unit 20 are transmitted to the power reception unit 60 with high accuracy. Therefore, the reference signal having the same phase and the same frequency can be generated with high accuracy between the first radio apparatus 10 and the second radio apparatus 50. Therefore, synchronous detection can be realized with high accuracy.

また、第二無線装置50は、駆動するための電力の供給を第一無線装置10から受ける。そのため、第二無線装置50はバッテリーを備える必要が無い。したがって、第二無線装置50を小型化することや、製造コストを低減させることが可能となる。また、第一無線装置10から必要時に電力を供給することによって、動作時間の制限なく第二無線装置50を動作させることが可能となる。   Further, the second radio apparatus 50 receives supply of power for driving from the first radio apparatus 10. Therefore, the second wireless device 50 does not need to include a battery. Therefore, it is possible to reduce the size of the second radio apparatus 50 and reduce the manufacturing cost. In addition, by supplying power from the first wireless device 10 when necessary, it is possible to operate the second wireless device 50 without limitation on the operation time.

<変形例>
第二無線装置50は、電源を備えるように構成されても良い。この場合、第二無線装置50は、自身が備える電源から供給される電力と、第一無線装置10から無線伝送される電力とを用いて動作しても良い。
<Modification>
The second radio apparatus 50 may be configured to include a power source. In this case, the second radio apparatus 50 may operate using electric power supplied from a power source included in the second radio apparatus 50 and electric power wirelessly transmitted from the first radio apparatus 10.

第一無線装置10の電力送信部20は、第二無線装置50の電力受信部60との間で、インピーダンスマッチングを行うように構成されても良い。すなわち、電力送信部20は、送電コイル203のインダクタンスやキャパシタンスを調整することによって、受電コイル601との間の相互リアクタンスの変化を動的に相殺するように構成されても良い。   The power transmission unit 20 of the first radio apparatus 10 may be configured to perform impedance matching with the power reception unit 60 of the second radio apparatus 50. That is, the power transmission unit 20 may be configured to dynamically cancel the change in the mutual reactance with the power reception coil 601 by adjusting the inductance and capacitance of the power transmission coil 203.

上述した説明では、第一無線装置10は第二無線装置50と通信を行う。しかしながら、第一無線装置10の通信相手は第二無線装置50に限られず、他の第一無線装置10と通信を行っても良い。同様に、第二無線装置50の通信相手は第一無線装置10に限られず、他の第二無線装置50と通信を行っても良い。   In the above description, the first wireless device 10 communicates with the second wireless device 50. However, the communication partner of the first wireless device 10 is not limited to the second wireless device 50 and may communicate with another first wireless device 10. Similarly, the communication partner of the second radio apparatus 50 is not limited to the first radio apparatus 10 and may communicate with another second radio apparatus 50.

上述した説明では、第一無線装置10と第二無線装置50とは無線で通信を行う。しかしながら、通信方式は無線に限られず、有線で通信が行われても良い。また、上述した説明では、第一無線装置10と第二無線装置50とは同期検波方式で通信を行う。しかしながら、第一無線装置10と第二無線装置50とで周波数及び位相が同期した基準信号を用いて通信が行われる方式であれば、他のどのような通信方式が採用されても良い。   In the above description, the first wireless device 10 and the second wireless device 50 communicate wirelessly. However, the communication method is not limited to wireless, and wired communication may be performed. In the above description, the first radio apparatus 10 and the second radio apparatus 50 communicate with each other using a synchronous detection method. However, any other communication method may be adopted as long as communication is performed using a reference signal whose frequency and phase are synchronized between the first wireless device 10 and the second wireless device 50.

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

10…第一無線装置(第一装置,電力送信装置), 20…電力送信部, 30…送信部, 40…受信部, 50…第二無線装置(第二装置,電力受信装置), 60…電力受信部, 70…送信部, 80…受信部, 201…電源, 202…電力無線送信部(電力無線送信部、第一基準信号生成部), 203…送電コイル, 301…デジタル信号処理部, 302…符号化部, 303…変調部, 304…無線部, 305…送信アンテナ, 401…受信アンテナ, 402…無線部, 403…復調部, 404…符号化部, 405…デジタル信号処理部, 601…受電コイル, 602電力無線受信部(電力無線受信部、第二基準信号生成部), 701…デジタル信号処理部, 702…符号化部, 703…変調部, 704…無線部, 705…送信アンテナ, 801…受信アンテナ, 802…無線部, 803…復調部, 804…符号化部, 805…デジタル信号処理部 DESCRIPTION OF SYMBOLS 10 ... 1st radio | wireless apparatus (1st apparatus, power transmission device), 20 ... Power transmission part, 30 ... Transmission part, 40 ... Reception part, 50 ... 2nd radio | wireless apparatus (2nd apparatus, power reception device), 60 ... Power receiving unit, 70 ... transmitting unit, 80 ... receiving unit, 201 ... power source, 202 ... power wireless transmitting unit (power wireless transmitting unit, first reference signal generating unit), 203 ... power transmission coil, 301 ... digital signal processing unit, 302: Encoding unit, 303: Modulation unit, 304 ... Radio unit, 305 ... Transmission antenna, 401 ... Reception antenna, 402 ... Radio unit, 403 ... Demodulation unit, 404 ... Encoding unit, 405 ... Digital signal processing unit, 601 ... Receiving coil, 602 wireless power receiver (power wireless receiver, second reference signal generator), 701 ... digital signal processor, 702 ... encoder, 703 ... modulator, 704 ... none Line unit, 705 ... Transmitting antenna, 801 ... Receiving antenna, 802 ... Radio unit, 803 ... Demodulating unit, 804 ... Coding unit, 805 ... Digital signal processing unit

Claims (5)

第一装置と第二装置とを備える電力送受信システムであって、
前記第一装置は、
電力を供給する電源と、
前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式により前記高周波電力を無線で伝送する電力無線送信部と、
前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成部と、
を備え、
前記第二装置は、
前記電力無線送信部から共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信部と、
前記電力無線送信部によって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成部と、
を備えることを特徴とする、電力送受信システム。
A power transmission / reception system comprising a first device and a second device,
The first device is:
A power supply for supplying power;
A power wireless transmission unit that generates high-frequency power having a predetermined phase and frequency using power supplied from the power source, and wirelessly transmits the high-frequency power by a resonance method;
A first reference signal generation unit that generates a reference signal having the same phase and frequency as the high-frequency power;
With
The second device is
A radio power receiver that receives high frequency power from the power radio transmitter by a resonance method and supplies power to the second device;
A second reference signal generation unit that generates a reference signal having the same phase and frequency as the high-frequency power received by the power wireless transmission unit;
A power transmission / reception system comprising:
前記第一装置は、送信対象の情報を、前記第一基準信号生成部によって生成された前記基準信号に基づいて搬送波を生成し送信する送信部をさらに備え、
前記第二装置は、前記送信部から送信された前記搬送波を受信し、前記第二基準信号生成部によって生成された前記基準信号に基づいて前記搬送波を検波する受信部をさらに備える、ことを特徴とする電力送受信システム。
The first device further includes a transmission unit that generates and transmits a transmission target information based on the reference signal generated by the first reference signal generation unit,
The second apparatus further includes a receiving unit that receives the carrier wave transmitted from the transmitting unit and detects the carrier wave based on the reference signal generated by the second reference signal generating unit. Power transmission / reception system.
共鳴方式により高周波電力を受信して自装置に電力を供給し且つ前記高周波電力と同じ位相及び周波数の基準信号を生成する電力受信装置に対し、電力を送信する電力送信装置であって、
電力を供給する電源と、
前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式によって前記高周波電力を無線で伝送する電力無線送信部と、
前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成部と、
を備えることを特徴とする電力送信装置。
A power transmission device that transmits power to a power reception device that receives high frequency power by a resonance method, supplies power to the device itself, and generates a reference signal having the same phase and frequency as the high frequency power,
A power supply for supplying power;
A power wireless transmission unit that generates high-frequency power having a predetermined phase and frequency using power supplied from the power source, and wirelessly transmits the high-frequency power by a resonance method;
A first reference signal generation unit that generates a reference signal having the same phase and frequency as the high-frequency power;
A power transmission device comprising:
電源から供給される電力を用いて所定の位相及び周波数の高周波電力を生成し共鳴方式により前記高周波電力を無線で伝送し且つ前記高周波電力と同じ位相及び周波数の基準信号を生成する電力送信装置から、共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信部と、
前記電力無線送信部によって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成部と、
を備えることを特徴とする電力受信装置。
From a power transmission device that generates high-frequency power having a predetermined phase and frequency using power supplied from a power source, wirelessly transmits the high-frequency power by a resonance method, and generates a reference signal having the same phase and frequency as the high-frequency power A radio power receiver for receiving high frequency power by a resonance method and supplying power to the second device;
A second reference signal generation unit that generates a reference signal having the same phase and frequency as the high-frequency power received by the power wireless transmission unit;
A power receiving apparatus comprising:
電力を供給する電源を有する第一装置と第二装置とを備える電力送受信システムが行う電力送受信方法であって、
前記第一装置が、前記電源から供給される電力を用いて、所定の位相及び周波数の高周波電力を生成し、共鳴方式により前記高周波電力を無線で伝送する電力無線送信ステップと、
前記第一装置が、前記高周波電力と同じ位相及び周波数の基準信号を生成する第一基準信号生成ステップと、
前記第二装置が、共鳴方式により高周波電力を受信し、前記第二装置に電力を供給する電力無線受信ステップと、
前記第二装置が、前記電力無線送信ステップによって受信された前記高周波電力と同じ位相及び周波数の基準信号を生成する第二基準信号生成ステップと、
を備えることを特徴とする、電力送受信方法。
A power transmission / reception method performed by a power transmission / reception system including a first device and a second device having a power supply for supplying power,
The first device generates high-frequency power having a predetermined phase and frequency using power supplied from the power source, and wirelessly transmits the high-frequency power by a resonance method.
A first reference signal generating step in which the first device generates a reference signal having the same phase and frequency as the high-frequency power;
The second device receives a high frequency power by a resonance method, and a power wireless reception step of supplying power to the second device;
A second reference signal generation step in which the second device generates a reference signal having the same phase and frequency as the high-frequency power received by the power wireless transmission step;
A power transmission / reception method comprising:
JP2010159805A 2010-07-14 2010-07-14 Power transmission / reception system, power transmission device, power reception device, and power transmission / reception method Expired - Fee Related JP5628575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159805A JP5628575B2 (en) 2010-07-14 2010-07-14 Power transmission / reception system, power transmission device, power reception device, and power transmission / reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159805A JP5628575B2 (en) 2010-07-14 2010-07-14 Power transmission / reception system, power transmission device, power reception device, and power transmission / reception method

Publications (2)

Publication Number Publication Date
JP2012023548A true JP2012023548A (en) 2012-02-02
JP5628575B2 JP5628575B2 (en) 2014-11-19

Family

ID=45777439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159805A Expired - Fee Related JP5628575B2 (en) 2010-07-14 2010-07-14 Power transmission / reception system, power transmission device, power reception device, and power transmission / reception method

Country Status (1)

Country Link
JP (1) JP5628575B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298368A (en) * 1998-04-07 1999-10-29 Nippon Steel Corp Data carrier system and interrogator for data carrier system
JP2002078247A (en) * 2000-08-23 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic field receiving apparatus
JP2010093723A (en) * 2008-10-10 2010-04-22 Olympus Imaging Corp Cradle apparatus, method of controlling cradle apparatus, and image processing system
JP2010141966A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Non-contact power transmission device, non-contact power receiving device, and non-contact power transfer system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298368A (en) * 1998-04-07 1999-10-29 Nippon Steel Corp Data carrier system and interrogator for data carrier system
JP2002078247A (en) * 2000-08-23 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic field receiving apparatus
JP2010093723A (en) * 2008-10-10 2010-04-22 Olympus Imaging Corp Cradle apparatus, method of controlling cradle apparatus, and image processing system
JP2010141966A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Non-contact power transmission device, non-contact power receiving device, and non-contact power transfer system

Also Published As

Publication number Publication date
JP5628575B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
Zhang et al. Reliable backscatter with commodity BLE
Zhao et al. Towards scalable backscatter sensor mesh with decodable relay and distributed excitation
CN106230133B (en) A kind of energy based on vortex electromagnetic wave and information synergism Transmission system
KR101702134B1 (en) System, apparatus and method for Concurrent Wireless Energy Transmission and Communication
CN103701227A (en) Wireless energy and signal synchronous transmission system based on multi-resonant technique
US11191065B2 (en) Coding technique for multi-stage control information
WO2012125825A2 (en) Methods and apparatus for communicating scrambling seed information
KR20080030494A (en) Hybrid on-chip-off-chip transformer
US10917194B2 (en) Systems and methods for rate-compatible polar codes for general channels
JP2018515956A5 (en)
WO2016014267A1 (en) Phase-modulated on-off keying for millimeter wave spectrum control
CN104935087A (en) Wireless electric energy and signal synchronous transmission system based on magnetic coupling resonance
CN106576003A (en) Device with external metal frame as coupling element for body-coupled-communication signals
KR20130087976A (en) Wireless elctric power transmitter, method for tarnsmittng wireless electric power, and system thereof
WO2022212630A1 (en) Sync scatter low power backscatter wake up receiver
Chen et al. Reliable and practical bluetooth backscatter with commodity devices
JP5628575B2 (en) Power transmission / reception system, power transmission device, power reception device, and power transmission / reception method
Han et al. Radio frequency energy harvesting for long lifetime wireless sensor networks
US20190082498A1 (en) Ultra low power sub-wireless sensor network (sub-wsn) for internet of things (iot) system
US20180278407A1 (en) Wireless communication apparatus, sensing apparatus and signal processing system
JPWO2010095267A1 (en) Satellite communication system and data transmission method
KR20170112180A (en) Integrated circuit including multiple transmitters and near field communication system having the integrated circuit
Zhang et al. Design principles for simultaneous wireless information and power transmission systems
US20180131412A1 (en) Methods for increasing data communication bandwidth between wireless power devices
US20140203655A1 (en) Apparatus for transmitting magnetic resonance wireless power using higher order mode resonance, receiving terminal, and method for transmitting and receiving wireless power using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees