JP2012021294A - Asphalt mixture for elastic pavement - Google Patents
Asphalt mixture for elastic pavement Download PDFInfo
- Publication number
- JP2012021294A JP2012021294A JP2010158613A JP2010158613A JP2012021294A JP 2012021294 A JP2012021294 A JP 2012021294A JP 2010158613 A JP2010158613 A JP 2010158613A JP 2010158613 A JP2010158613 A JP 2010158613A JP 2012021294 A JP2012021294 A JP 2012021294A
- Authority
- JP
- Japan
- Prior art keywords
- asphalt
- asphalt mixture
- hollow resin
- fine particles
- resin fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 125
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- 229920005989 resin Polymers 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 47
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 17
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 17
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 17
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 239000010419 fine particle Substances 0.000 claims description 45
- 230000000694 effects Effects 0.000 abstract description 13
- 238000007710 freezing Methods 0.000 abstract description 9
- 230000008014 freezing Effects 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 abstract description 3
- 230000001629 suppression Effects 0.000 abstract description 3
- 230000006378 damage Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 19
- 239000004575 stone Substances 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 239000002480 mineral oil Substances 0.000 description 9
- 235000010446 mineral oil Nutrition 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- UHKPXKGJFOKCGG-UHFFFAOYSA-N 2-methylprop-1-ene;styrene Chemical compound CC(C)=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 UHKPXKGJFOKCGG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
Abstract
Description
本発明は、凍結抑制舗装に用いられる弾性舗装用アスファルト混合物に関する。 The present invention relates to an asphalt mixture for elastic pavement used for freeze suppression pavement.
従来、積雪寒冷地においては、冬季の路面の走行安全性を確保することが求められている。そして、舗装の分野では、路面摩擦係数の低下を防ぎ、除雪作業を容易にするために、様々な凍結抑制舗装が開発され、実道の路面管理に採用されている。 Conventionally, in snowy and cold regions, it has been required to ensure road safety in winter. In the field of pavement, various anti-freezing pavements have been developed and used for road management of actual roads in order to prevent a decrease in road friction coefficient and facilitate snow removal work.
凍結抑制舗装は、その原理により2種類に大別される。 Freezing suppression pavement is roughly classified into two types according to its principle.
その1つ目は、舗装表面にある弾性体が走行車両の荷重によってたわみ、氷版を破壊、剥離させる「物理系」である。例えば、特許文献1には、ゴム片を含み、弾性を持たせることによって凍結抑制の機能を持たせたものが開示されている。このように、ゴム片などの弾性体を混入したものは、弾性体の混入率が高く、粒経が大きいほど、路面に露出する弾性体が増加し、氷版の破壊、剥離の効果が高くなる。しかし、弾性体の混入率を高くするにしたがって、弾性体がアスファルトから分離しやすくなるという問題があり、必ずしも満足される効果が得られていなかった。 The first is a “physical system” in which an elastic body on the pavement surface bends due to the load of the traveling vehicle, and destroys and peels off the ice plate. For example, Patent Document 1 discloses a rubber piece that has a function of inhibiting freezing by providing elasticity. As described above, the mixture of elastic bodies such as rubber pieces has a higher mixing ratio of elastic bodies, and the larger the particle size, the more elastic bodies exposed on the road surface, and the higher the effect of breaking and peeling the ice plate. Become. However, there is a problem that the elastic body is easily separated from the asphalt as the mixing ratio of the elastic body is increased, and a satisfactory effect is not necessarily obtained.
また、その2つ目は、舗装体に添加、混入した塩化カルシウムなどの凍結抑制剤が溶出し、圧雪や凍結を抑制する「化学系」である。しかし、化学系は効果の持続性に難があった。 The second is a “chemical system” that suppresses snow crushing and freezing by elution of freezing inhibitors such as calcium chloride added to and mixed in the pavement. However, the chemical system has difficulty in sustaining the effect.
なお、近年は、より効果の高いハイグレードな凍結抑制舗装が開発されているものの、使用材料や工数が増える場合が多く、汎用化には至っていない。 In recent years, high-grade anti-freezing pavements that are more effective have been developed, but there are many cases where materials and man-hours increase, and they have not been widely used.
そこで、本発明は、物理系の凍結抑制舗装において、弾性体がアスファルトから分離する虞がなく、氷版に対する高い破壊効果及び剥離効果を有し、さらに、歩行者用舗装及びひび割れ抵抗性舗装としても適用可能な、新規の弾性舗装用アスファルト混合物を提供することを目的とする。また、そのような弾性舗装用アスファルト混合物によって構築された弾性舗装体を提供することを目的とする。 Therefore, the present invention is a physical anti-freezing pavement, there is no possibility that the elastic body is separated from the asphalt, has a high breaking effect and peeling effect on the ice plate, and further, as a pedestrian pavement and a crack resistant pavement It is an object of the present invention to provide a new asphalt mixture for elastic pavement that can be applied. Another object of the present invention is to provide an elastic pavement constructed with such an asphalt mixture for elastic pavement.
本発明の弾性舗装用アスファルト混合物は、骨材、アスファルト、中空樹脂微粒子、低アニリン点炭化水素成分を含み、前記中空樹脂微粒子が、気体又は液体を内包した熱可塑性樹脂の殻からなり加熱により体積が膨張したものである。 The asphalt mixture for elastic pavement of the present invention contains aggregate, asphalt, hollow resin fine particles, low aniline point hydrocarbon component, and the hollow resin fine particles are made of a shell of a thermoplastic resin containing a gas or a liquid and heated to heat. Is expanded.
また、前記アスファルトが、ストレートアスファルト又はポリマー改質アスファルトである。 The asphalt is straight asphalt or polymer-modified asphalt.
本発明の弾性舗装体は、本発明の弾性舗装用アスファルト混合物を用いて構築されたものである。 The elastic pavement of the present invention is constructed using the asphalt mixture for elastic pavement of the present invention.
本発明の弾性舗装用アスファルト混合物は、気体又は液体を内包した熱可塑性樹脂の殻からなり加熱により体積が膨張した中空樹脂微粒子を含むことにより、氷版に対する高い破壊効果及び剥離効果を有する。 The asphalt mixture for elastic pavement of the present invention contains hollow resin fine particles which are made of a thermoplastic resin shell enclosing gas or liquid and whose volume is expanded by heating, and thus has a high breaking effect and peeling effect on ice plates.
本発明の弾性舗装用アスファルト混合物は、骨材、アスファルト、中空樹脂微粒子、低アニリン点炭化水素成分を含み、前記中空樹脂微粒子が、気体又は液体を内包した熱可塑性樹脂の殻からなり、加熱により体積が膨張したものである。本発明の弾性舗装用アスファルト混合物の概念図を図1(A)に示す。本発明の弾性舗装用アスファルト混合物は、図1(B)に示す従来の弾性舗装用アスファルト混合物とは異なり、路面に露出した粒状弾性体を有しておらず、アスファルトモルタル(アスモル)中に微粒弾性体として中空樹脂微粒子を均一に分散させたものである。 The asphalt mixture for elastic pavement of the present invention comprises aggregate, asphalt, hollow resin fine particles, low aniline point hydrocarbon component, and the hollow resin fine particles are made of a shell of a thermoplastic resin containing a gas or a liquid, and are heated. The volume is expanded. A conceptual diagram of the asphalt mixture for elastic paving of the present invention is shown in FIG. Unlike the conventional elastic pavement asphalt mixture shown in FIG. 1 (B), the elastic pavement asphalt mixture of the present invention does not have a granular elastic body exposed on the road surface, and is fine in asphalt mortar (asmole). Hollow resin fine particles are uniformly dispersed as an elastic body.
本発明において使用される中空樹脂微粒子は、熱可塑性樹脂の殻からなるマイクロカプセル内に低沸点溶剤の気体又は液体を封入して内包させたものであり、加熱前の直径は6〜40μmであって、80〜200℃に加熱することにより膨張し、60〜100倍に体積を増加する発泡性の粒子である。中空樹脂微粒子に含まれる低沸点溶剤の例としては、イソブタン、ペンタン、石油エーテル、ヘキサン、低沸点ハロゲン化炭化水素、メチルシランがある。中空樹脂微粒子のマイクロカプセルを構成する熱可塑性樹脂の例としては、塩化ビニリデン、アクリロニトリル、アクリル酸エステル、メタクリル酸エステルがある。このような中空樹脂微粒子としては、エクスパンセル(日本フィライト株式会社販売、スウェーデン国エクスパンセル社製)が好適に使用可能である。 The hollow resin fine particles used in the present invention are encapsulated by encapsulating a gas or liquid of a low boiling point solvent in a microcapsule made of a thermoplastic resin shell, and the diameter before heating is 6 to 40 μm. These expandable particles expand by heating to 80 to 200 ° C. and increase in volume by 60 to 100 times. Examples of the low boiling point solvent contained in the hollow resin fine particles include isobutane, pentane, petroleum ether, hexane, low boiling point halogenated hydrocarbon, and methylsilane. Examples of the thermoplastic resin constituting the microcapsules of the hollow resin fine particles include vinylidene chloride, acrylonitrile, acrylic acid ester, and methacrylic acid ester. As such hollow resin fine particles, EXPANSEL (sold by Nippon Philite Co., Ltd., manufactured by EXPANSEL, Sweden) can be suitably used.
中空樹脂微粒子の含有量は、好ましくは、弾性舗装用アスファルト混合物の全質量中、0.05〜0.5質量%である。0.05質量%未満では、氷版に対する破壊効果及び剥離効果が無添加のものと同程度のため好ましくなく、0.5質量%を超えると、弾性舗装体の著しい耐流動性の低下のため好ましくない。或いは、中空樹脂微粒子は、アスファルト100重量部に対して、0.6〜10重量部になるように添加するのが好ましい。 The content of the hollow resin fine particles is preferably 0.05 to 0.5% by mass in the total mass of the asphalt mixture for elastic paving. If it is less than 0.05% by mass, the breaking effect and peeling effect on the ice plate are the same as those without additives, and if it exceeds 0.5% by mass, the flow resistance of the elastic pavement is significantly reduced. It is not preferable. Alternatively, the hollow resin fine particles are preferably added so as to be 0.6 to 10 parts by weight with respect to 100 parts by weight of asphalt.
本発明において使用される低アニリン点炭化水素成分は、アスファルトとの親和性が高く、原料混合時の中空樹脂微粒子の飛散を防ぐとともにアスファルト中への分散を促進し、アスファルトが低温でも硬化しにくくするために添加されるものであって、例えば、ナフテン系原油から精製されたオイル成分、中東系原油から精製されたオイルにアニリン点降下剤としてアルキルベンゼン、アルキルナフテン化合物を添加した炭化水素およびその混合物がある。なお、本発明において、アニリン点が100℃以下の炭化水素が低アニリン点炭化水素成分として好適に用いられる。 The low aniline point hydrocarbon component used in the present invention has a high affinity with asphalt, prevents scattering of the hollow resin fine particles during mixing of raw materials and promotes dispersion in the asphalt, and the asphalt is difficult to cure even at low temperatures. For example, an oil component refined from naphthenic crude oil, a hydrocarbon refined from Middle Eastern crude oil and added with alkylbenzene, an alkylnaphthene compound as an aniline point depressant, and a mixture thereof There is. In the present invention, a hydrocarbon having an aniline point of 100 ° C. or lower is suitably used as the low aniline point hydrocarbon component.
低アニリン点炭化水素成分の含有量は、好ましくは、弾性舗装用アスファルト混合物の全質量中、0.2〜1.0質量%である。0.2質量%未満では、低温脆性が無添加のものと同程度のため好ましくなく、1.0質量%を超えると、弾性舗装体の著しい耐流動性の低下のため好ましくない。或いは、低アニリン点炭化水素成分は、アスファルト100重量部に対して、2.5〜20重量部になるように置換するのが好ましい。 The content of the low aniline point hydrocarbon component is preferably 0.2 to 1.0% by mass in the total mass of the asphalt mixture for elastic paving. If it is less than 0.2% by mass, the low-temperature brittleness is not preferable because it is the same as that of no addition, and if it exceeds 1.0% by mass, it is not preferable because the flow resistance of the elastic pavement is significantly reduced. Or it is preferable to substitute a low aniline point hydrocarbon component so that it may become 2.5-20 weight part with respect to 100 weight part of asphalts.
本発明において使用されるアスファルトは、ストレートアスファルト、又は舗装道路の破損を防ぐためにストレートアスファルトを改質したポリマー改質アスファルトが好適に用いられる。ポリマー改質アスファルトとしては、特定のものに限定されるものではないが、例えば、添加物として、ゴム(スチレン−ブタジエンゴム、クロロプレンゴム、天然ゴムなど)、熱可塑性エラストマー(スチレン−イソブチレン−スチレンブロック共重合体、スチレン−ブタジエンブロック共重合体、スチレン−エチレン−ブテン共重合体など)、熱可塑性樹脂(エチレン、酢酸ビニル共重合体、エチレン・エチルアクリレート共重合体、ポリエチレン、ポリプロピレンなど)を加えたものを使用することができる。 As the asphalt used in the present invention, straight asphalt or polymer-modified asphalt obtained by modifying straight asphalt to prevent breakage of a paved road is preferably used. The polymer-modified asphalt is not limited to a specific one. For example, as additives, rubber (styrene-butadiene rubber, chloroprene rubber, natural rubber, etc.), thermoplastic elastomer (styrene-isobutylene-styrene block) Copolymer, styrene-butadiene block copolymer, styrene-ethylene-butene copolymer, etc.) and thermoplastic resin (ethylene, vinyl acetate copolymer, ethylene / ethyl acrylate copolymer, polyethylene, polypropylene, etc.) Can be used.
本発明において使用される骨材は、砕石、粗目砂(粗砂)、細目砂(細砂)、石粉など、一般的に舗装に用いられる骨材であり、特定のものに限定されない。砕石としては、粒径範囲5〜13mmの6号砕石、粒径範囲2.5〜5mmの7号砕石が好適に用いられるが、これら以外の砕石を用いてもよい。 The aggregate used in the present invention is an aggregate generally used for pavement such as crushed stone, coarse sand (coarse sand), fine sand (fine sand), stone powder, etc., and is not limited to a specific one. As the crushed stone, No. 6 crushed stone having a particle size range of 5 to 13 mm and No. 7 crushed stone having a particle size range of 2.5 to 5 mm are preferably used, but other crushed stones may be used.
本発明の弾性舗装用アスファルト混合物を製造する場合は、骨材、アスファルト、中空樹脂微粒子、低アニリン点炭化水素成分を所定の割合で混合する。このとき、中空樹脂微粒子は、骨材の熱によって加熱されて膨張する。そして、この弾性舗装用アスファルト混合物を道路などに敷設することによって、弾性舗装体が構築される。なお、中空樹脂微粒子は、予め加熱して膨張させたものを用意して、骨材、アスファルト等と混合するようにしてもよい。 When producing the asphalt mixture for elastic pavement of the present invention, aggregate, asphalt, hollow resin fine particles, and low aniline point hydrocarbon components are mixed at a predetermined ratio. At this time, the hollow resin fine particles are expanded by being heated by the heat of the aggregate. An elastic pavement is constructed by laying the asphalt mixture for elastic pavement on a road or the like. In addition, the hollow resin fine particles may be prepared by heating in advance and mixing with aggregates, asphalt, and the like.
以下の実施例において、本発明についてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではなく、種々の変形実施が可能である。 In the following examples, the present invention will be described more specifically, but the present invention is not limited to the following examples, and various modifications can be made.
[弾性舗装用アスファルト混合物の配合]
表1に示す粒状弾性体を用いた従来の凍結抑制舗装の配合(配合A)、砕石マスチックアスファルト(SMA)配合(配合B)を基準配合として、石粉(炭酸カルシウム)の体積の80%を中空樹脂微粒子(エクスパンセル グレード:930DU120)で置換した試験用アスファルト混合物(置換率80%)と、比較のために中空樹脂微粒子で置換していない試験用アスファルト混合物(置換率0%)を作製した。なお、中空樹脂微粒子の体積は、加熱による膨張後の体積を基準とした。また、置換率80%のときの試験用アスファルト混合物中の中空樹脂微粒子の含有率は、配合A、配合Bともに0.1質量%であった。また、低アニリン点炭化水素成分として、ナフテン系鉱油(アニリン点70℃、40℃粘度68mm2/s)を試験用アスファルト混合物中の含有率が配合A、配合Bともに0.2質量%となるように配合した。
[Formulation of asphalt mixture for elastic paving]
80% of the volume of stone powder (calcium carbonate) is hollow with the blend of the conventional anti-freezing pavement using the granular elastic body shown in Table 1 (compound A) and crushed stone mastic asphalt (SMA) blend (blend B) as the standard blend. A test asphalt mixture (substitution rate 80%) substituted with resin fine particles (Expansel grade: 930DU120) and a test asphalt mixture not substituted with hollow resin fine particles (substitution rate 0%) were prepared for comparison. . The volume of the hollow resin fine particles was based on the volume after expansion by heating. Moreover, the content rate of the hollow resin fine particles in the test asphalt mixture when the substitution rate was 80% was 0.1% by mass for both Formulation A and Formulation B. Moreover, as a low aniline point hydrocarbon component, the content of the naphthenic mineral oil (aniline point 70 ° C., 40 ° C. viscosity 68 mm 2 / s) in the test asphalt mixture is 0.2% by mass in both the blend A and the blend B. It was blended as follows.
[氷版の剥離性能への影響]
氷着引張強度を指標として、剥離性能を評価した。氷着引張強度は、「舗装性能評価法 別冊,日本道路協会編,丸善,2008年3月」の「氷着引張強度を求めるための引張試験機による測定方法」に準拠したが、剥離性能にのみ着目するために鋼球落下は行わなかった。試験条件を表2、試験の概念図を図2に示す。なお、アスファルトにポリマー改質アスファルトII型を用いたが、これは、ポリマー改質アスファルトのうち、軟化点56.0℃以上、伸度(15℃)30cm以上、タフネス(25℃)8.0N・m以上、テナシティ(25℃)4.0N・m以上のものをいう。
[Impact on ice plate peeling performance]
The peel performance was evaluated using the ice adhesion tensile strength as an index. The ice adhesion tensile strength conforms to the “Measurement method using a tensile tester to determine the ice adhesion tensile strength” of “Pavement Performance Evaluation Method, separate volume, edited by Japan Road Association, Maruzen, March 2008”. The steel ball was not dropped to pay attention only. Test conditions are shown in Table 2, and a conceptual diagram of the test is shown in FIG. The polymer modified asphalt type II was used as the asphalt. Among the polymer modified asphalts, this is a softening point of 56.0 ° C. or higher, elongation (15 ° C.) of 30 cm or higher, and toughness (25 ° C.) of 8.0 N.・ M or more and tenacity (25 ° C.) 4.0 N · m or more.
試験の結果を図3に示す。横軸には、測定した供試体の基準配合と石粉に対する中空樹脂微粒子の置換率を示している。 The test results are shown in FIG. The horizontal axis shows the measured standard composition of the specimen and the substitution rate of the hollow resin fine particles with respect to the stone powder.
配合A、Bともに、中空樹脂微粒子の置換率0%のときよりも置換率80%の方が氷着引張強度が低く、中空樹脂微粒子を混合することで氷版の剥離性能が向上することが確認された。また、中空樹脂微粒子の置換率80%の供試体について、すべり抵抗値(BPN値)を測定したところ、0.7〜0.8の十分なすべり抵抗性を有していることが確認された。 For both Formulations A and B, the substitution rate of 80% has a lower ice adhesion tensile strength than when the substitution rate of the hollow resin fine particles is 0%, and mixing the hollow resin fine particles may improve the peeling performance of the ice plate. confirmed. Further, when the slip resistance value (BPN value) of the specimen having a substitution rate of 80% of the hollow resin fine particles was measured, it was confirmed that the sample had a sufficient slip resistance of 0.7 to 0.8. .
[氷版の破壊性能への影響]
破壊性能については汎用の試験方法がないため、マーシャル供試体や切り取りコアを用いた簡便な試験方法を採用した。マーシャル供試体や切り取りコアの平坦な面に5mm厚の氷版を作製し、この氷版に40mm×40mmの鋼製治具を載置して鋼製治具の上から力をかけて圧縮し、氷版が割れたときの荷重を測定した。ポリマー改質アスファルトII型のかわりに、ポリマー改質アスファルトH型−Fを用いて作製した供試体についても試験を行った。なお、ポリマー改質アスファルトH型−Fとは、ポリマー改質アスファルトのうち、軟化点80.0℃以上、フラース脆化点−12℃以下、曲げ仕事量(−20℃)400kPa以上、曲げスティフネス(−20℃)100MPa以下のものをいう。試験条件を表3、試験の概念図を図4に示す。
[Impact on ice plate breaking performance]
Since there is no general-purpose test method for fracture performance, a simple test method using a Marshall specimen or a cut core was adopted. A 5 mm thick ice plate is prepared on the flat surface of the Marshall specimen and the cut core, and a 40 mm × 40 mm steel jig is placed on the ice plate and compressed by applying force from above the steel jig. The load when the ice plate broke was measured. Tests were also conducted on specimens prepared using polymer-modified asphalt H-F instead of polymer-modified asphalt II. The polymer-modified asphalt H-F means that the polymer-modified asphalt has a softening point of 80.0 ° C. or higher, a fuller embrittlement point of −12 ° C. or lower, a bending work (−20 ° C.) of 400 kPa or higher, a bending stiffness. (−20 ° C.) 100 MPa or less. Test conditions are shown in Table 3, and a conceptual diagram of the test is shown in FIG.
なお、評価は、下式により得られる氷版破壊強度に基づいて行った。この氷版破壊強度は、値が小さいほどより小さな応力で氷版が破壊されることを示す指標となっている。 In addition, evaluation was performed based on the ice plate breaking strength obtained by the following formula. The ice plate breaking strength is an index indicating that the smaller the value, the more the ice plate is broken with a smaller stress.
氷版破壊強度(Pa)=氷版破壊時の荷重(N)/載荷面積(m2)
試験の結果を図5に示す。横軸には、測定した供試体の基準配合、石粉に対する中空樹脂微粒子の置換率、使用したアスファルトを示している。併せて、試験用アスファルト混合物自体の−10℃における圧裂強度を示す。
Ice plate breaking strength (Pa) = Load at the time of ice plate breaking (N) / Loading area (m 2 )
The test results are shown in FIG. The horizontal axis shows the standard composition of the measured specimen, the substitution rate of the hollow resin fine particles with respect to the stone powder, and the asphalt used. In addition, the crush strength at −10 ° C. of the test asphalt mixture itself is shown.
配合Aにおいて、中空樹脂微粒子の置換率0%のときよりも置換率80%の方が氷版破壊強度が低く、中空樹脂微粒子を混合することで氷版の破壊性能が向上することが確認された。これは圧裂強度の差によるものと考えられる。また、アスファルトにポリマー改質アスファルトH型−Fを用いることにより、さらに氷版破壊強度が低くなることが確認された。これは、ポリマー改質アスファルトH型−Fを用いた場合には、−10℃においても中空樹脂微粒子の弾性が損なわれ難いためであると考えられる。 In Formulation A, it is confirmed that the ice plate breaking strength is lower when the substitution rate is 80% than when the substitution rate of the hollow resin fine particles is 0%, and the breaking performance of the ice plate is improved by mixing the hollow resin fine particles. It was. This is thought to be due to the difference in crush strength. Moreover, it was confirmed that the ice plate breaking strength is further reduced by using polymer-modified asphalt H-F for asphalt. This is considered to be because when the polymer-modified asphalt H-type -F is used, the elasticity of the hollow resin fine particles is hardly impaired even at -10 ° C.
[中空樹脂微粒子の含有量]
中空樹脂微粒子の含有量が弾性舗装用アスファルト混合物の性能に及ぼす影響について検討を行った。なお、以下、材料、試験方法等について、上記実施例1と同じ場合には、その詳細な説明を省略する。
[Content of hollow resin fine particles]
The effect of the content of hollow resin fine particles on the performance of asphalt mixture for elastic paving was investigated. In the following, when the materials, test methods, and the like are the same as those in Example 1, detailed description thereof will be omitted.
190℃に加熱した骨材及びポリマー改質アスファルトH型−Fの混合物に中空樹脂微粒子を表4に示した割合で添加し、室内において小型混合装置(容量20L)でアスファルト混合物a〜eを製造した。アスファルト混合物aは中空樹脂微粒子を全く含有しないアスファルト混合物である。また、ナフテン系鉱油は、アスファルト100重量部に対して、10重量部になるように置き換えた。 Hollow resin fine particles are added to the mixture of aggregate heated to 190 ° C. and polymer-modified asphalt H-F at the ratio shown in Table 4, and asphalt mixtures a to e are produced indoors with a small mixing device (capacity 20 L). did. Asphalt mixture a is an asphalt mixture containing no hollow resin fine particles. The naphthenic mineral oil was replaced with 10 parts by weight with respect to 100 parts by weight of asphalt.
アスファルト混合物a〜eについての性能を評価するため160℃で締固めたアスファルト混合物の動的安定度、氷着引張試験、氷版破壊試験を実施した。その結果を表5に示す。 In order to evaluate the performance of the asphalt mixtures a to e, the dynamic stability, ice adhesion tensile test, and ice plate breaking test were performed on the asphalt mixture compacted at 160 ° C. The results are shown in Table 5.
(動的安定度測定結果)
アスファルト混合物の動的安定度については「舗装調査・試験法便覧B003ホイールトラッキング試験方法」に準じて実施した。表5に示すように、中空樹脂微粒子無添加のアスファルト混合物a、0.02質量%添加のアスファルト混合物b、0.05質量%添加のアスファルト混合物cは同程度の動的安定度となっている。
(Dynamic stability measurement results)
The dynamic stability of the asphalt mixture was carried out in accordance with “Pavement Survey / Test Method Handbook B003 Wheel Tracking Test Method”. As shown in Table 5, the asphalt mixture a with no hollow resin fine particles added, the asphalt mixture b with 0.02% by mass added, and the asphalt mixture c with 0.05% by mass added have the same dynamic stability. .
また、0.6質量%添加のアスファルト混合物eは試験に耐えられず、0.5%添加のアスファルト混合物dが動的安定度の測定できる限界となっている。 Further, the asphalt mixture e added with 0.6% by mass cannot withstand the test, and the asphalt mixture d added with 0.5% is at the limit where the dynamic stability can be measured.
したがって、動的安定度の点からは、中空樹脂微粒子の含有量は0.5質量%以下が好ましいことが分かった。 Therefore, it was found that the content of the hollow resin fine particles is preferably 0.5% by mass or less in terms of dynamic stability.
(氷着引張強度測定結果)
表5に示すように、中空樹脂微粒子無添加のアスファルト混合物aと、0.02質量%添加のアスファルト混合物bは同程度の氷着引張強度となっている。また、0.05質量%添加のアスファルト混合物cは、アスファルト混合物a、bと比較して氷着引張強度が減少している。
(Ice accretion tensile strength measurement results)
As shown in Table 5, the asphalt mixture a to which hollow resin fine particles are not added and the asphalt mixture b to which 0.02 mass% is added have the same ice adhesion tensile strength. Further, the asphalt mixture c added with 0.05% by mass has a reduced ice adhesion tensile strength as compared with the asphalt mixtures a and b.
また、0.5%添加のアスファルト混合物dは、アスファルト混合物cと比較して氷着引張強度が減少している。 Moreover, the asphalt mixture d added with 0.5% has a lower ice adhesion tensile strength than the asphalt mixture c.
したがって、氷着引張強度の点からは、中空樹脂微粒子の含有量は0.05質量%以上が好ましいことが分かった。 Therefore, it was found that the content of the hollow resin fine particles is preferably 0.05% by mass or more from the viewpoint of ice adhesion tensile strength.
(氷版破壊強度測定結果)
表5に示すように、中空樹脂微粒子無添加のアスファルト混合物aと、0.02質量%添加のアスファルト混合物bは同程度の氷版破壊強度となっている。また、0.05質量%添加のアスファルト混合物cは、アスファルト混合物a、bと比較して氷版破壊強度が減少している。
(Ice plate breaking strength measurement results)
As shown in Table 5, the asphalt mixture a to which no hollow resin fine particles are added and the asphalt mixture b to which 0.02% by mass are added have the same ice plate breaking strength. Further, the asphalt mixture c added with 0.05% by mass has reduced ice plate breaking strength as compared with the asphalt mixtures a and b.
また、0.5%添加のアスファルト混合物dは、アスファルト混合物cと比較して氷版破壊強度が減少している。 Further, the asphalt mixture d added with 0.5% has reduced ice plate breaking strength as compared with the asphalt mixture c.
したがって、氷版破壊強度の点からは、中空樹脂微粒子の含有量は0.05質量%以上が好ましいことが分かった。 Therefore, it was found that the content of the hollow resin fine particles is preferably 0.05% by mass or more from the viewpoint of ice plate breaking strength.
(まとめ)
各試験を実施した結果、本発明の中空樹脂微粒子及びナフテン系鉱油を添加したアスファルト混合物(弾性舗装用アスファルト混合物)は、中空樹脂微粒子の含有率が0.05〜0.5質量%のアスファルト混合物において、弾性舗装体としての耐流動性を満足しつつ無添加のアスファルト混合物より高い性能を示すことを確認した。
(Summary)
As a result of carrying out each test, the asphalt mixture (asphalt mixture for elastic pavement) to which the hollow resin fine particles and naphthenic mineral oil of the present invention are added is an asphalt mixture having a hollow resin fine particle content of 0.05 to 0.5% by mass. In the above, it was confirmed that while exhibiting fluid resistance as an elastic pavement, it showed higher performance than the additive-free asphalt mixture.
[低アニリン点炭化水素成分の含有量]
低アニリン点炭化水素成分の含有量が弾性舗装用アスファルト混合物の性能に及ぼす影響について検討を行った。なお、以下、材料、試験方法等について、上記実施例1と同じ場合には、その詳細な説明を省略する。
[Content of low aniline point hydrocarbon component]
The effect of low aniline point hydrocarbon content on the performance of asphalt mixture for elastic pavement was investigated. In the following, when the materials, test methods, and the like are the same as those in Example 1, detailed description thereof will be omitted.
190℃に加熱した骨材及びポリマー改質アスファルトH型−Fの混合物にナフテン系鉱油を表6に示した割合で添加し、室内において小型混合装置(容量20L)でアスファルト混合物f〜jを製造した。アスファルト混合物fはナフテン系鉱油を全く含有しないアスファルト混合物である。また、中空樹脂微粒子を試験用アスファルト混合物中の含有率が0.1質量%となるように配合した。 Naphthenic mineral oil is added to the mixture of aggregate and polymer-modified asphalt H-F heated to 190 ° C in the proportions shown in Table 6, and asphalt mixtures f to j are produced indoors with a small mixing device (capacity 20 L). did. The asphalt mixture f is an asphalt mixture that does not contain any naphthenic mineral oil. Further, the hollow resin fine particles were blended so that the content in the test asphalt mixture was 0.1% by mass.
アスファルト混合物f〜jについての性能を評価するため160℃で締固めたアスファルト混合物の動的安定度、氷着引張試験、氷版破壊試験を実施した。その結果を表7に示す。 In order to evaluate the performance of the asphalt mixture fj, a dynamic stability, ice adhesion tensile test, and ice plate breaking test were performed on the asphalt mixture compacted at 160 ° C. The results are shown in Table 7.
(動的安定度測定結果)
表7に示すように、ナフテン系鉱油無添加のアスファルト混合物fと0.1質量%添加のアスファルト混合物g、0.2質量%添加のアスファルト混合物hは同程度の動的安定度となっている。
(Dynamic stability measurement results)
As shown in Table 7, the asphalt mixture f without naphthenic mineral oil, the asphalt mixture g with 0.1% by mass added, and the asphalt mixture h with 0.2% by mass added have the same dynamic stability. .
また、1.5質量%添加のアスファルト混合物jは試験に耐えられず、1.0質量%添加のアスファルト混合物iが動的安定度の測定できる限界となっている。 Further, the asphalt mixture j added with 1.5% by mass cannot withstand the test, and the asphalt mixture i added with 1.0% by mass has a limit in which the dynamic stability can be measured.
したがって、動的安定度の点からは、低アニリン点炭化水素成分の含有量は1.0質量%以下が好ましいことが分かった。 Therefore, it was found that the content of the low aniline point hydrocarbon component is preferably 1.0% by mass or less from the viewpoint of dynamic stability.
(氷着引張強度測定結果)
表7に示すように、ナフテン系鉱油無添加のアスファルト混合物fと、0.1質量%添加のアスファルト混合物gは同程度の氷着引張強度となっている。また、0.2質量%添加のアスファルト混合物hは、アスファルト混合物f、gと比較して氷着引張強度が減少している。
(Ice accretion tensile strength measurement results)
As shown in Table 7, the asphalt mixture f added with no naphthenic mineral oil and the asphalt mixture g added with 0.1% by mass have the same ice adhesion tensile strength. Further, the asphalt mixture h added with 0.2% by mass has a lower ice adhesion tensile strength than the asphalt mixtures f and g.
また、1.0質量%添加のアスファルト混合物iは、アスファルト混合物hと比較して氷着引張強度が減少している。 Further, the asphalt mixture i added with 1.0% by mass has a reduced ice adhesion tensile strength as compared with the asphalt mixture h.
したがって、氷着引張強度の点からは、低アニリン点炭化水素成分の含有量は0.2質量%以上が好ましいことが分かった。
(氷版破壊強度測定結果)
表7に示すように、ナフテン系鉱油無添加のアスファルト混合物fと、0.1質量%添加のアスファルト混合物gは同程度の氷版破壊強度となっている。また、0.2質量%添加のアスファルト混合物hは、アスファルト混合物f、gと比較して氷版破壊強度が減少している。
Accordingly, it was found that the content of the low aniline point hydrocarbon component is preferably 0.2% by mass or more from the viewpoint of ice adhesion tensile strength.
(Ice plate breaking strength measurement results)
As shown in Table 7, the asphalt mixture f to which no naphthenic mineral oil was added and the asphalt mixture g to which 0.1% by mass was added had comparable ice plate breaking strength. Further, the asphalt mixture h added with 0.2% by mass has reduced ice plate breaking strength as compared with the asphalt mixtures f and g.
また、1.0質量%添加のアスファルト混合物iは、アスファルト混合物hと比較して氷版破壊強度が減少している。 Further, the asphalt mixture i added with 1.0% by mass has reduced ice plate breaking strength as compared with the asphalt mixture h.
したがって、氷版破壊強度の点からは、低アニリン点炭化水素成分の含有量は0.2質量%以上が好ましいことが分かった。 Therefore, it was found that the content of the low aniline point hydrocarbon component is preferably 0.2% by mass or more from the viewpoint of ice plate breaking strength.
(まとめ)
各試験を実施した結果、本発明の中空樹脂微粒子及びナフテン系鉱油を添加したアスファルト混合物(弾性舗装用アスファルト混合物)は、中空樹脂微粒子の含有率が0.2〜1.0質量%のアスファルト混合物において、弾性舗装体としての耐流動性を満足しつつ無添加のアスファルト混合物より高い性能を示すことを確認した。
(Summary)
As a result of carrying out each test, the asphalt mixture (asphalt mixture for elastic pavement) to which the hollow resin fine particles and naphthenic mineral oil of the present invention are added is an asphalt mixture having a hollow resin fine particle content of 0.2 to 1.0% by mass. In the above, it was confirmed that while exhibiting fluid resistance as an elastic pavement, it showed higher performance than the additive-free asphalt mixture.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010158613A JP5375761B2 (en) | 2010-07-13 | 2010-07-13 | Asphalt mixture for elastic paving |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010158613A JP5375761B2 (en) | 2010-07-13 | 2010-07-13 | Asphalt mixture for elastic paving |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012021294A true JP2012021294A (en) | 2012-02-02 |
JP5375761B2 JP5375761B2 (en) | 2013-12-25 |
Family
ID=45775767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010158613A Active JP5375761B2 (en) | 2010-07-13 | 2010-07-13 | Asphalt mixture for elastic paving |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5375761B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025259A (en) * | 2012-07-26 | 2014-02-06 | Maeda Road Constr Co Ltd | Asphalt mixture with high flexibility and method for producing the same |
CN111896381A (en) * | 2020-08-12 | 2020-11-06 | 北京市政路桥建材集团有限公司 | Anti-icing performance evaluation method for anti-icing asphalt mixture |
CN112252108A (en) * | 2020-10-23 | 2021-01-22 | 邱旸 | Road construction method for in-situ cold recycling of asphalt pavement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006135006A1 (en) * | 2005-06-17 | 2006-12-21 | Nichireki Co., Ltd. | Binder emulsion for paving and method of constructing pavement with the same |
-
2010
- 2010-07-13 JP JP2010158613A patent/JP5375761B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006135006A1 (en) * | 2005-06-17 | 2006-12-21 | Nichireki Co., Ltd. | Binder emulsion for paving and method of constructing pavement with the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025259A (en) * | 2012-07-26 | 2014-02-06 | Maeda Road Constr Co Ltd | Asphalt mixture with high flexibility and method for producing the same |
CN111896381A (en) * | 2020-08-12 | 2020-11-06 | 北京市政路桥建材集团有限公司 | Anti-icing performance evaluation method for anti-icing asphalt mixture |
CN112252108A (en) * | 2020-10-23 | 2021-01-22 | 邱旸 | Road construction method for in-situ cold recycling of asphalt pavement |
CN112252108B (en) * | 2020-10-23 | 2021-04-20 | 邱旸 | Road construction method for in-situ cold recycling of asphalt pavement |
Also Published As
Publication number | Publication date |
---|---|
JP5375761B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elkashef et al. | Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures | |
Farooq et al. | Laboratory study on use of RAP in WMA pavements using rejuvenator | |
Mashaan et al. | A review on using crumb rubber in reinforcement of asphalt pavement | |
Hassan et al. | A review of crumb rubber modification in dry mixed rubberised asphalt mixtures | |
Cong et al. | Investigation of the properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement | |
Kataware et al. | Evaluating effectiveness of WMA additives for SBS modified binder based on viscosity, Superpave PG, rutting and fatigue performance | |
Chen et al. | Determination of polymer content in modified bitumen | |
Siswanto | The effect of latex on permanent deformation of asphalt concrete wearing course | |
Mashaan et al. | Performance of PET and nano-silica modified stone mastic asphalt mixtures | |
El-Maaty et al. | Characterization of recycled asphalt pavement (RAP) for use in flexible pavement | |
Arshad et al. | Marshall properties and rutting resistance of hot mix asphalt with variable reclaimed asphalt pavement (RAP) content | |
JP5375761B2 (en) | Asphalt mixture for elastic paving | |
ES2828681T3 (en) | Process to obtain the rubber compound | |
Saltan et al. | Effects of utilization of rejuvenator in asphalt mixtures containing recycled asphalt pavement at high ratios | |
CN104302838A (en) | Modified-rubber composite and process for obtaining same | |
Shu et al. | Effect of coarse aggregate angularity on rutting performance of HMA | |
Putri et al. | The effect of Styrofoam addition into HRS-base on Marshall characteristics | |
Çetin | Evaluation on the usability of structure steel fiber-reinforced bituminous hot mixtures | |
Rusbintardjo et al. | The performance characteristics of stone mastic asphalt mixtures using oil palm fruit ash-modified bitumen | |
Evirgen et al. | An evaluation of the usability of glass and polypropylene fibers in SMA mixtures | |
Hassana et al. | A review of crumb rubber modification in dry mixed rubberised asphalt mixtures | |
RU2612681C1 (en) | Cold method for producing extra strength stone mastic asphalt concrete for repairing and setting up layers of road surface | |
Yang et al. | Study on durability of granulated crumb rubber asphalt pavement based on TPS high-viscosity asphalt | |
Dhriyan et al. | Application of waste plastic in modifying bitumen properties | |
Anwar | Studies on marshall and modified marshall specimens by using CRMB |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5375761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |