JP2012021289A - Vacuum consolidation system and vacuum consolidation method - Google Patents

Vacuum consolidation system and vacuum consolidation method Download PDF

Info

Publication number
JP2012021289A
JP2012021289A JP2010158508A JP2010158508A JP2012021289A JP 2012021289 A JP2012021289 A JP 2012021289A JP 2010158508 A JP2010158508 A JP 2010158508A JP 2010158508 A JP2010158508 A JP 2010158508A JP 2012021289 A JP2012021289 A JP 2012021289A
Authority
JP
Japan
Prior art keywords
header pipe
pipe
ground
vacuum
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010158508A
Other languages
Japanese (ja)
Other versions
JP5578715B2 (en
Inventor
Takahiro Kumagai
隆宏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2010158508A priority Critical patent/JP5578715B2/en
Publication of JP2012021289A publication Critical patent/JP2012021289A/en
Application granted granted Critical
Publication of JP5578715B2 publication Critical patent/JP5578715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum consolidation system and a vacuum consolidation method capable of suppressing the loss of suction energy even when there is a height difference between a draining route and a water level of water desired to be sucked/drained or when the ground surface of soil is inclined or uneven.SOLUTION: The vacuum consolidation system includes: a water collecting pipe 12 for collecting water passing through a plurality of drains 11 placed in the soil, a header pipe 13 to which the water collecting pipe is connected; a negative pressure operation chamber 16 connected with the header pipe through the draining route and provided with a vacuum pump 16a; and an airtight container 18 connected with the header pipe and housing a draining pump 19. By keeping the header pipe horizontal and driving the vacuum pump and driving the draining pump inside the airtight container under the condition that there is the height difference in the draining route, a negative pressure is added inside the airtight container and the soil is improved by vacuum consolidation.

Description

本発明は、吸引力の損失を抑制可能な真空圧密システム及び真空圧密方法に関する。   The present invention relates to a vacuum consolidation system and a vacuum consolidation method capable of suppressing loss of suction force.

真空ポンプを用いて圧密地盤改良を行う従来の技術では、例えば、軟弱地盤内に鉛直ドレーンを打設後、真空ポンプによる負圧作用装置を用いて負圧を作用させて地盤内を減圧することによって地盤の圧密を促進する方法が用いられている(例えば、特許文献1〜3参照)。   In the conventional technology for improving the consolidated ground using a vacuum pump, for example, after placing a vertical drain in soft ground, the negative pressure is applied using a negative pressure device using a vacuum pump to reduce the inside of the ground. Is used to promote consolidation of the ground (see, for example, Patent Documents 1 to 3).

特開2000-328550号公報JP 2000-328550 A 特開2001-226951号公報JP 2001-226951 A 特開2002-138456号公報JP 2002-138456 JP

しかし、真空ポンプによる吸引・排水を行う場合、設置される排水経路の最上部の位置が吸引・排水したい水の水位より高い場合、その高低差分を揚水しなければならないため吸引エネルギーの損失が生じてしまう問題がある。この問題について図7を参照して説明する。   However, when suctioning and draining with a vacuum pump, if the position of the top of the installed drainage channel is higher than the level of the water to be suctioned or drained, the difference in height must be pumped, resulting in a loss of suction energy. There is a problem. This problem will be described with reference to FIG.

図7のように、地盤改良対象の軟弱地盤Gに複数本の鉛直ドレーンDを打設し、鉛直ドレーンDを不透気部Fを介して集水管Uに接続し、集水管Uの頭部をつなぐヘッダパイプLに接続する。ヘッダパイプLに接続管Iを接続し、接続管Iを延ばして負圧作用室Pに接続する。負圧作用室Pの内部を真空ポンプにより減圧し負圧にすることで、鉛直ドレーンDから地盤G内の間隙水を吸引し排水し、軟弱地盤Gに対し真空圧密による地盤改良を行う。このとき、ヘッダパイプLと負圧作用室Pとの間に土手や堤防等の障害物Tがある場合、接続管Iは障害物Tを乗り越えるため、接続管Iの最上部と軟弱地盤Gの水位Hとの間にかなりの高低差ができてしまう。このため、負圧作用室Pは、その高低差分を揚水しなければならないため吸引エネルギーの損失が生じてしまう。   As shown in FIG. 7, a plurality of vertical drains D are placed on the soft ground G to be improved, and the vertical drains D are connected to the water collecting pipe U through the air-impermeable portion F. Is connected to the header pipe L connecting the two. The connecting pipe I is connected to the header pipe L, and the connecting pipe I is extended and connected to the negative pressure working chamber P. By reducing the inside of the negative pressure working chamber P to a negative pressure with a vacuum pump, the pore water in the ground G is sucked and drained from the vertical drain D, and the soft ground G is improved by vacuum consolidation. At this time, when there is an obstacle T such as a bank or a dike between the header pipe L and the negative pressure working chamber P, the connection pipe I gets over the obstacle T. Therefore, the uppermost part of the connection pipe I and the soft ground G There is a considerable difference in height from the water level H. For this reason, since the negative pressure working chamber P has to pump up the difference in elevation, a loss of suction energy occurs.

さらに、ヘッダパイプLを配置する地盤の地表面に傾斜や不陸がある場合にエネルギー損失による吸引力の損失やドレーンに対する吸引力の不均一が生じることがある。   Furthermore, when the ground surface of the ground where the header pipe L is arranged has an inclination or unevenness, a loss of suction force due to energy loss or non-uniform suction force with respect to the drain may occur.

本発明は、上述のような従来技術の問題に鑑み、排水経路と吸引・排水したい水の水位との間に高低差のある場合や地盤の地表面に傾斜や不陸がある場合においても吸引エネルギーの損失を抑制可能な真空圧密システム及び真空圧密方法を提供することを目的とする。   In view of the problems of the prior art as described above, the present invention provides suction even when there is a difference in level between the drainage route and the water level to be sucked / drained, or when the ground surface of the ground is inclined or uneven. An object of the present invention is to provide a vacuum consolidation system and a vacuum consolidation method capable of suppressing energy loss.

上記目的を達成するための真空圧密システムは、地盤中に打設された複数本のドレーンを通過する水を集める集水管と、前記集水管が接続するヘッダパイプと、前記ヘッダパイプと排水経路を介して接続され真空ポンプを有する負圧作用室と、前記ヘッダパイプと接続され排水ポンプを収容する気密容器と、を備え、前記ヘッダパイプを水平に保ち、前記排水経路に高低差のある条件の下で前記真空ポンプを駆動するとともに前記気密容器内の排水ポンプを駆動することで前記気密容器内に負圧を付加して真空圧密による地盤改良を行うことを特徴とする。   In order to achieve the above object, a vacuum consolidation system includes a water collecting pipe that collects water passing through a plurality of drains placed in the ground, a header pipe connected to the water collecting pipe, the header pipe, and a drainage path. A negative pressure chamber having a vacuum pump connected thereto, and an airtight container connected to the header pipe and containing a drainage pump, and keeping the header pipe horizontal and having a height difference in the drainage path. The vacuum pump is driven below, and the drainage pump in the airtight container is driven to apply a negative pressure to the airtight container to improve the ground by vacuum consolidation.

この真空圧密システムによれば、ヘッダパイプと接続された気密容器内の排水ポンプを駆動することで排水経路と吸引・排水したい水の水位との間に高低差のある場合においても吸引エネルギーの損失を抑制することができるとともに、ヘッダパイプを水平に保つことで、エネルギー損失による吸引力の損失を防ぐことができ、また、ドレーンに働く吸引力を均一に保つことができる。   According to this vacuum compaction system, a drainage pump in an airtight container connected to a header pipe is driven to lose suction energy even when there is a height difference between the drainage path and the water level to be sucked / drained. Further, by keeping the header pipe horizontal, it is possible to prevent loss of suction force due to energy loss, and it is possible to keep suction force acting on the drain uniform.

上記真空圧密システムにおいて前記地盤またはその近傍を冠水させて前記ヘッダパイプを水に浮かせた状態とすることで前記ヘッダパイプを水平に保つことが好ましい。   In the vacuum compaction system, it is preferable to keep the header pipe horizontal by flooding the ground or the vicinity thereof so that the header pipe is floated on water.

この場合、前記気密容器からの排水を前記地盤またはその近傍に導くことで前記地盤またはその近傍を冠水させることが好ましい。   In this case, it is preferable that the ground or the vicinity thereof is submerged by guiding drainage from the airtight container to the ground or the vicinity thereof.

また、前記ヘッダパイプを平坦な地盤に配置するとすることで前記ヘッダパイプを水平に保つようにしてもよい。   The header pipe may be kept horizontal by arranging the header pipe on a flat ground.

また、前記排水経路に高低差を生じさせる障害物を利用して前記ヘッダパイプを吊り下げることで水平に保つようにしてもよい。   Further, the header pipe may be suspended by using an obstacle that causes a difference in height in the drainage path, and may be kept horizontal.

また、前記ヘッダパイプは比重が1.0以下の材料から構成した軽量型パイプから構成されることが好ましい。ヘッダパイプが軽量となるので、ヘッダパイプを水に浮かせる場合や吊り下げる場合に有利である。   Moreover, it is preferable that the header pipe is composed of a lightweight pipe composed of a material having a specific gravity of 1.0 or less. Since the header pipe is lightweight, it is advantageous when the header pipe is floated or suspended.

なお、前記ヘッダパイプを水に浮かせる場合、ヘッダパイプのための浮体手段を配置するようにしてもよい。これにより、比重の軽い軽量管を用いる代わりにブイ等の浮力が働く浮体手段によりヘッダパイプを浮かせることができる。   When the header pipe is floated on water, floating means for the header pipe may be arranged. Thereby, a header pipe can be floated by the floating body means with which buoyancy, such as a buoy, acts instead of using a lightweight pipe with light specific gravity.

上記目的を達成するための真空圧密方法は、地盤中に打設された複数本のドレーンを通過する水を集める集水管と、前記集水管が接続するヘッダパイプと、前記ヘッダパイプと排水経路を介して接続され真空ポンプを有する負圧作用室と、 前記ヘッダパイプと接続され排水ポンプを収容する気密容器と、を配置し、前記ヘッダパイプを水平に保ち、前記排水経路内に高低差のある条件の下で前記真空ポンプを駆動するとともに前記気密容器内の排水ポンプを駆動することで前記気密容器内に負圧を付加して真空圧密による地盤改良を行うことを特徴とする。   In order to achieve the above object, a vacuum consolidation method includes a water collecting pipe that collects water passing through a plurality of drains placed in the ground, a header pipe to which the water collecting pipe is connected, the header pipe, and a drainage path. A negative pressure chamber having a vacuum pump connected thereto, and an airtight container connected to the header pipe and containing a drainage pump, to keep the header pipe horizontal and to have a height difference in the drainage path The vacuum pump is driven under conditions, and the drainage pump in the airtight container is driven to apply a negative pressure to the airtight container to improve the ground by vacuum consolidation.

この真空圧密方法によれば、ヘッダパイプと接続された気密容器内の排水ポンプを駆動することで排水経路と吸引・排水したい水の水位との間に高低差のある場合においても吸引エネルギーの損失を抑制することができるとともに、ヘッダパイプを水平に保つことで、エネルギー損失による吸引力の損失を防ぐことができ、また、ドレーンに働く吸引力を均一に保つことができる。   According to this vacuum compaction method, even if there is a height difference between the drainage path and the level of the water to be sucked / drained by driving the drainage pump in the airtight container connected to the header pipe, the suction energy is lost. Further, by keeping the header pipe horizontal, it is possible to prevent loss of suction force due to energy loss, and it is possible to keep suction force acting on the drain uniform.

上記真空圧密方法において前記地盤またはその近傍を冠水させて前記ヘッダパイプを水に浮かせた状態とすることで前記ヘッダパイプを水平に保つことが好ましい。   In the vacuum consolidation method, it is preferable to keep the header pipe horizontal by flooding the ground or the vicinity thereof so that the header pipe is floated on water.

また、前記地盤またはその近傍に不陸や傾斜のない平坦な地盤を形成し、前記ヘッダパイプを前記平坦な地盤に設置するようにしてもよい。このように、ヘッダパイプを平坦な地盤に設置することで水平に保つようにしてもよい。   Further, a flat ground having no unevenness or inclination may be formed on or near the ground, and the header pipe may be installed on the flat ground. Thus, you may make it keep horizontal by installing a header pipe in a flat ground.

また、前記排水経路に高低差を生じさせる障害物を利用して前記ヘッダパイプを吊り下げることで水平に保つようにしてもよい。   Further, the header pipe may be suspended by using an obstacle that causes a difference in height in the drainage path, and may be kept horizontal.

なお、真空圧密システムは、地盤中に打設された複数本のドレーンを通過する水を集める集水管と、前記集水管が接続するヘッダパイプと、前記ヘッダパイプと排水経路を介して接続され真空ポンプを有する負圧作用室と、を備え、前記ヘッダパイプを水平に保ち、前記真空ポンプを駆動して前記負圧作用室を負圧にすることで真空圧密による地盤改良を行うように構成してもよい。この真空圧密システムによれば、ヘッダパイプを水平に保つことで、エネルギー損失による吸引力の損失を防ぐことができ、また、ドレーンに働く吸引力を均一に保つことができる。   The vacuum compaction system is a vacuum collecting system that collects water passing through a plurality of drains placed in the ground, a header pipe to which the water collection pipe is connected, and a header pipe connected to the header pipe via a drainage path. A negative pressure working chamber having a pump, and configured to perform ground improvement by vacuum consolidation by keeping the header pipe horizontal and driving the vacuum pump to make the negative pressure working chamber negative pressure. May be. According to this vacuum consolidation system, by keeping the header pipe horizontal, it is possible to prevent a loss of suction force due to energy loss, and it is possible to keep the suction force acting on the drain uniform.

本発明の真空圧密システム及び真空圧密方法によれば、排水経路と吸引・排水したい水の水位との間に高低差のある場合においても吸引エネルギーの損失を抑制することができるとともに、ヘッダパイプを水平に保つことでエネルギー損失による吸引力の損失を防ぐことができ、また、各ドレーンに働く吸引力を均一に保つことができる。   According to the vacuum consolidation system and the vacuum consolidation method of the present invention, it is possible to suppress the loss of suction energy even when there is a height difference between the drainage path and the water level to be sucked / drained, and By maintaining the level, it is possible to prevent the loss of the suction force due to the energy loss, and it is possible to keep the suction force acting on each drain uniform.

本実施形態による真空圧密システムを概略的に示す図である。It is a figure showing roughly the vacuum consolidation system by this embodiment. 図1の真空圧密システムの概略的な側面図である。FIG. 2 is a schematic side view of the vacuum consolidation system of FIG. 1. 真空圧密システムにおいてヘッダパイプが傾斜や不陸のある地表面に設置されたとき発生する問題を説明するための概略図である。It is the schematic for demonstrating the problem which generate | occur | produces when a header pipe is installed in the ground surface with an inclination and unevenness in a vacuum compaction system. 図3の問題に対する本実施形態による解決手段を説明するための図である。It is a figure for demonstrating the solution means by this embodiment with respect to the problem of FIG. 実施例として本発明の効果検証するために作製した実験装置を示す概略図である。It is the schematic which shows the experimental apparatus produced in order to verify the effect of this invention as an Example. 図5の実験装置による実験結果を示すグラフである。It is a graph which shows the experimental result by the experimental apparatus of FIG. 従来の真空圧密システムの概略図である。It is the schematic of the conventional vacuum compaction system. 図1,図2のヘッダパイプを水平に保つための別の手段・方法を説明するための真空圧密システムの概略的な側面図である。It is a schematic side view of the vacuum compaction system for demonstrating another means and method for keeping the header pipe of FIG. 1, FIG. 2 horizontal.

以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態による真空圧密システムを概略的に示す図である。図2は図1の真空圧密システムの概略的な側面図である。なお、図2では図1の気密容器18等の図示を省略している。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating a vacuum consolidation system according to the present embodiment. FIG. 2 is a schematic side view of the vacuum compaction system of FIG. 2, illustration of the airtight container 18 and the like in FIG. 1 is omitted.

図1,図2のように、本実施形態の真空圧密システム10は、地盤改良のために鉛直ドレーン11を多数本打設した地盤と、真空圧密のために設置した負圧作用室16との間に土手や堤防などの高さのある障害物Tがある場合に適用して好ましいものである。   As shown in FIGS. 1 and 2, the vacuum consolidation system 10 of the present embodiment includes a ground in which a number of vertical drains 11 are placed for ground improvement, and a negative pressure working chamber 16 installed for vacuum consolidation. This is preferable when there is an obstacle T having a height such as a bank or a bank between them.

すなわち、真空圧密システム10は、軟弱地盤に打設された複数本の鉛直ドレーン11を通過する水を集める集水管12と、集水管12を頭部12aでつなぐようにして接続するヘッダパイプ13と、ヘッダパイプ13と接続管14,15を介して接続され真空ポンプ16aを備える負圧作用室16と、ヘッダパイプ13と接続管17を介して接続され揚水ポンプ19を収容する気密容器18と、を備える。各鉛直ドレーン11は不透気部11aを介して集水管12に連結される。   That is, the vacuum consolidation system 10 includes a water collecting pipe 12 that collects water passing through a plurality of vertical drains 11 placed on soft ground, and a header pipe 13 that connects the water collecting pipe 12 so as to be connected by a head 12a. A negative pressure chamber 16 connected to the header pipe 13 via the connection pipes 14 and 15 and provided with a vacuum pump 16a; an airtight container 18 connected to the header pipe 13 via the connection pipe 17 and containing the pumping pump 19; Is provided. Each vertical drain 11 is connected to a water collecting pipe 12 through an air-impermeable portion 11a.

ヘッダパイプ13は、複数本の集水管12が接続し、円筒管からなるが、比重が1.0未満の樹脂等の軽量材料から構成することが好ましい。これにより、図2のように改良対象の地盤を冠水させて形成された冠水部20(水位H1)に容易に浮上することができる。   The header pipe 13 is connected to a plurality of water collecting pipes 12 and is formed of a cylindrical pipe. The header pipe 13 is preferably made of a lightweight material such as resin having a specific gravity of less than 1.0. Thereby, as shown in FIG. 2, it is possible to easily float on the flooded portion 20 (water level H1) formed by flooding the ground to be improved.

なお、ヘッダパイプ13の周囲にブイ等の浮上手段を配置してもよく、これにより、ヘッダパイプ13を軽量材料から構成しない場合でも確実に浮上させることができる。   In addition, a floating means such as a buoy may be disposed around the header pipe 13 so that the header pipe 13 can be reliably lifted even when the header pipe 13 is not made of a lightweight material.

また、ヘッダパイプ13に接続する集水管12と接続管14とは、公知の可撓性継手を介して接続するようにしてもよく、また、集水管12と接続管14とを可撓性の管から構成してもよい。   Further, the water collecting pipe 12 and the connecting pipe 14 connected to the header pipe 13 may be connected via a known flexible joint, and the water collecting pipe 12 and the connecting pipe 14 are flexible. You may comprise from a pipe | tube.

図1,図2の真空圧密システム10についてさらに説明する。真空ポンプ16aにより減圧し負圧を発生させる負圧作用室16内に揚水ポンプ16bと排水管16cとからなる排水設備を配置するとともに負圧作用室16内部を密閉する。   The vacuum consolidation system 10 of FIGS. 1 and 2 will be further described. A drainage facility composed of a pumping pump 16b and a drain pipe 16c is disposed in a negative pressure working chamber 16 that is depressurized by a vacuum pump 16a to generate a negative pressure, and the inside of the negative pressure working chamber 16 is sealed.

負圧作用室16に排水を導くための接続管15とヘッダパイプ13とを接続管14により連結する。接続管14は、接続管15とともに排水経路を構成するが、土手や堤防等の高さのある障害物Tに沿って配置されるため接続管14(排水経路)の最上部と軟弱地盤Gの水位Hとの間に高低差が生じる。   A connecting pipe 15 and a header pipe 13 for guiding drainage to the negative pressure working chamber 16 are connected by a connecting pipe 14. The connecting pipe 14 constitutes a drainage path together with the connecting pipe 15. However, since the connecting pipe 14 is arranged along the obstacle T having a height such as a bank or a bank, the uppermost part of the connecting pipe 14 (drainage path) and the soft ground G A difference in height from the water level H occurs.

軟弱地盤G内に打設されて間隙水を吸引するための鉛直ドレーン11を集水管12に接続するとともに、揚水ポンプ19を備えた気密容器18に接続されたヘッダパイプ13と複数の集水管12とを高低差のある排水経路内の低い位置で連結する。   A vertical drain 11 placed in the soft ground G for sucking pore water is connected to the water collecting pipe 12, and a header pipe 13 connected to an airtight container 18 having a pumping pump 19 and a plurality of water collecting pipes 12. Are connected at a low position in the drainage channel with a difference in elevation.

揚水ポンプ19は水浸状態においてのみ作動する性質をもつため、揚水ポンプ19を備えた気密容器18の設置位置はヘッダパイプ13と同等もしくは下方位置とする。揚水ポンプ19から水が排出管19aを通して外部に排出される。気密容器18は内部に収容した揚水ポンプ19とともに負圧損失解消装置を構成する。なお、気密容器18の形状としては、立方体、直方体、円筒等いずれの形状でもよく、容積についても揚水ポンプ19を収容できる容積があればよい。   Since the pumping pump 19 has the property of operating only in the water immersion state, the installation position of the airtight container 18 including the pumping pump 19 is set to be equal to or below the header pipe 13. Water is discharged from the pump 19 through the discharge pipe 19a. The airtight container 18 constitutes a negative pressure loss elimination device together with a pumping pump 19 accommodated therein. The shape of the airtight container 18 may be any shape such as a cube, a rectangular parallelepiped, or a cylinder, and any volume that can accommodate the pumping pump 19 is sufficient.

真空ポンプ16aの作動により負圧作用室16内の圧力を減じ負圧とし、排水管16c内に軟弱地盤Gからの水の通過を確認した後に気密容器18内の揚水ポンプ19を作動させるようにする。   By operating the vacuum pump 16a, the pressure in the negative pressure working chamber 16 is reduced to a negative pressure, and after confirming the passage of water from the soft ground G into the drain pipe 16c, the pumping pump 19 in the airtight container 18 is operated. To do.

気密容器18内の揚水ポンプ19からの排水を地盤改良域に導くため排水管19aに別途排水管(図示省略)を接続して(または排水管19aを延長して)改良域の地表面に形成された冠水部20に戻すとともに、必要に応じて、別途水の供給を行いながら地盤を冠水させる。   A separate drain pipe (not shown) is connected to the drain pipe 19a (or the drain pipe 19a is extended) to guide the drainage from the pump 19 in the airtight container 18 to the ground improvement area. In addition to returning to the flooded portion 20, the ground is flooded while supplying water separately as necessary.

図1,図2の真空圧密システム10は、負圧作用室16内で真空ポンプ16aにより負圧(吸引力)を発生させることで、軟弱地盤Gから鉛直ドレーン11を通過する間隙水を図1の矢印方向jに集水管12,ヘッダパイプ13,接続管14,15等を通して吸引し排出することで軟弱地盤Gに対し真空圧密による地盤改良を行う。   The vacuum consolidation system 10 of FIGS. 1 and 2 generates a negative pressure (suction force) by a vacuum pump 16a in the negative pressure working chamber 16, thereby allowing pore water passing through the vertical drain 11 from the soft ground G to be generated as shown in FIG. The soft ground G is improved by vacuum compaction by sucking and discharging through the water collecting pipe 12, the header pipe 13, the connecting pipes 14 and 15 in the arrow direction j.

このとき、負圧作用室16が接続管14の排水経路における高低差分を揚水しなければならないため負圧作用室16による吸引力が一部損なわれるのであるが、図1の気密容器18内の揚水ポンプ19を駆動させて、ヘッダパイプ13から矢印方向kに気密容器18内へ別途排水させ、その水を排水管19aから外部に排出することで、気密容器18内に揚水ポンプ19の駆動に起因する負圧が付加され、この負圧は接続管17を通してヘッダパイプ13に付加される。   At this time, since the negative pressure working chamber 16 has to pump up the difference in height in the drainage path of the connecting pipe 14, the suction force by the negative pressure working chamber 16 is partially lost. The pumping pump 19 is driven to drain separately from the header pipe 13 into the airtight container 18 in the arrow direction k, and the water is discharged from the drain pipe 19a to drive the pumping pump 19 in the airtight container 18. The resulting negative pressure is applied, and this negative pressure is applied to the header pipe 13 through the connecting pipe 17.

上述のようにして、負圧作用室16内の真空ポンプ16aによる吸引力について高低差のある排水経路内で揚水に係るエネルギー損失が生じるとしても気密容器18内の揚水ポンプ19の駆動によりヘッダパイプ13において負圧が補われ全体として吸引力の損失を抑制することができる。このように、気密容器18と揚水ポンプ19とによる負圧損失解消装置により、図1,図2のように排水経路に高低差があってもその吸引力の損失を解消することができる。   As described above, the header pipe is driven by the pumping pump 19 in the hermetic vessel 18 even if energy loss related to pumping occurs in the drainage path having a difference in height with respect to the suction force by the vacuum pump 16a in the negative pressure working chamber 16. In FIG. 13, the negative pressure is compensated and the loss of the suction force can be suppressed as a whole. As described above, the negative pressure loss elimination device using the airtight container 18 and the pumping pump 19 can eliminate the loss of the suction force even if the drainage path has a height difference as shown in FIGS.

以上のように、本実施形態の真空圧密システム10によれば、排水経路において高低差があるためエネルギー損失が生じても気密容器18内の揚水ポンプ19の駆動により、負圧作用室16の吸引力の損失を抑制し解消できるので、効率的な吸引・排水を実施することができる。   As described above, according to the vacuum consolidation system 10 of the present embodiment, the suction of the negative pressure working chamber 16 is performed by driving the pumping pump 19 in the airtight container 18 even if energy loss occurs due to the difference in height in the drainage path. Since power loss can be suppressed and eliminated, efficient suction and drainage can be carried out.

したがって、軟弱地盤の間隙水の排水による真空圧密改良を実施する際に、排水経路に高低差がある場合でも高い吸引力を発揮させることができるため軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮することができる。   Therefore, when performing vacuum consolidation improvement by draining pore water in soft ground, even if there is a height difference in the drainage path, it is possible to exert a high suction force, so the ground required for the soft ground to reach a predetermined strength The improvement period can be shortened.

次に、軟弱地盤の真空圧密改良において地盤沈下により地表面に傾斜や不陸が生じる場合がある。かかる場合に生じる問題及びその解決手段について図3,図4を参照して説明する。   Next, in the vacuum consolidation improvement of soft ground, there are cases where the ground surface is inclined or uneven due to ground subsidence. A problem that occurs in such a case and a solution to the problem will be described with reference to FIGS.

図3はヘッダパイプ13が傾斜や不陸のある地表面に設置されたとき発生する問題を説明するための概略図である。図4は図3の問題に対する本実施形態による解決手段を説明するための図である。   FIG. 3 is a schematic diagram for explaining a problem that occurs when the header pipe 13 is installed on a ground surface that is inclined or uneven. FIG. 4 is a diagram for explaining the solving means according to the present embodiment for the problem of FIG.

高い負圧を働かせる条件では排水中の溶存空気が気化するため、複数の集水管12と連結するヘッダパイプ13を単純に地盤の地表面に設置すると、地表面に傾斜等がある条件、すなわち、図3のように矢印方向Yに低くなるように傾斜していると、ヘッダパイプ13において、地盤高の高い箇所Mに気化した溶存空気が集まる一方、鉛直ドレーン11からの水が各集水管12を矢印方向aに流れ、それらの排水が矢印方向bに流れ地盤高の低い箇所Nに集中する。   Since the dissolved air in the drainage is vaporized under the condition that the high negative pressure is applied, if the header pipe 13 connected to the plurality of water collecting pipes 12 is simply installed on the ground surface of the ground, the ground surface has an inclination, that is, When the header pipe 13 is inclined so as to be lowered in the arrow direction Y as shown in FIG. 3, the dissolved air evaporated in the header ground 13 at the location M where the ground height is high is collected, while the water from the vertical drain 11 is collected by each collecting pipe 12. In the direction of the arrow a, and the drainage flows in the direction of the arrow b and concentrates at the low location N.

ここで、図3のようにヘッダパイプ13から接続管14a、14bを通して負圧作用室16(図1,図2)に向かう排水流量Qは次の数式(1)で与えられる。   Here, as shown in FIG. 3, the drainage flow rate Q from the header pipe 13 to the negative pressure working chamber 16 (FIGS. 1 and 2) through the connecting pipes 14a and 14b is given by the following formula (1).

Figure 2012021289
Figure 2012021289

ここに、vは各接続管の管内流速で、Aはその通過断面積である。iは水が流れる接続管の番号、Nは水が流れている接続管の総数である。   Here, v is an in-tube flow velocity of each connecting pipe, and A is a passing cross-sectional area thereof. i is the number of the connecting pipe through which water flows, and N is the total number of connecting pipes through which water flows.

また、管内を流れる水の摩擦によるエネルギー損失水頭hLは次の式(2)のダルシー・ワイスバッハの式で与えられる。 Further, the energy loss head h L due to friction of water flowing in the pipe is given by the Darcy-Weissbach equation of the following equation (2).

Figure 2012021289
Figure 2012021289

ここに、Lは管長、Dは管径、fは摩擦係数、gは重力加速度である。   Here, L is the tube length, D is the tube diameter, f is the friction coefficient, and g is the gravitational acceleration.

図1の気密容器18と接続するヘッダパイプ13の水平性が保たれていない条件では、上述のようにヘッダパイプ13の上部に空気が集まり下部には水が集まるため、式(1)において水が流れる接続管の総数が減少する。図3では接続管14aで空気が矢印方向cに流れる一方、接続管14bに水が集中し矢印方向dに流れる。このため、排水流量を確保するためには管内流速が増加しなければならないが、管内流速が増加すると式(2)によりエネルギー損失が流速の2乗で増加するためエネルギー損失が非常に大きくなり吸引力の損失につながってしまう。   In the condition where the horizontality of the header pipe 13 connected to the airtight container 18 in FIG. 1 is not maintained, air gathers at the upper part of the header pipe 13 and water gathers at the lower part as described above. The total number of connecting pipes that flow through decreases. In FIG. 3, air flows in the arrow direction c in the connecting pipe 14a, while water concentrates in the connecting pipe 14b and flows in the arrow direction d. For this reason, in order to secure the drainage flow rate, the flow velocity in the pipe must increase, but if the flow velocity in the pipe increases, the energy loss increases by the square of the flow velocity according to equation (2), so the energy loss becomes very large and suction is performed. It leads to the loss of power.

また、ヘッダパイプ13の水平性が保たれていない条件では、地盤高の低い箇所Mに水が集まることにより上部と下部で水頭差が生じる。この水頭差のためヘッダパイプ13の下部で接続する鉛直ドレーン11に働く吸引力が低下し、ヘッダパイプ13の上部で連結する吸引力に違いが生じる。このような吸引力の不均一性は地盤改良の品質の確保上大きな問題になる。   Further, under the condition that the horizontality of the header pipe 13 is not maintained, a water head difference is generated between the upper part and the lower part due to water collecting at the location M where the ground height is low. Due to this water head difference, the suction force acting on the vertical drain 11 connected at the lower part of the header pipe 13 decreases, and a difference occurs in the suction force connected at the upper part of the header pipe 13. Such non-uniformity of the suction force is a big problem in ensuring the quality of ground improvement.

これに対し、図1,図2,図4のように地盤に水を張って形成した水位H1の冠水部20にヘッダパイプ13を浮かせた状態とすることで、ヘッダパイプ13を水平に保つことができる。これにより、図4のように、鉛直ドレーン11から各集水管12を矢印方向aに流れる水がヘッダパイプ13に入り、各接続管14a、14bで一様に流れ、1つの接続管に集中することはないので、上述のようなエネルギー損失による吸引力の損失を防ぐことができる。   On the other hand, the header pipe 13 is kept horizontal by making the header pipe 13 float in the flooded portion 20 of the water level H1 formed by spreading water on the ground as shown in FIGS. Can do. As a result, as shown in FIG. 4, water flowing from the vertical drain 11 through each water collecting pipe 12 in the arrow direction a enters the header pipe 13, flows uniformly through each connecting pipe 14 a, 14 b, and concentrates on one connecting pipe. Since this is not the case, it is possible to prevent the loss of the attractive force due to the energy loss as described above.

また、ヘッダパイプ13の水平性が保たれていないときに上部と下部で水頭差が生じたが、ヘッダパイプ13の水平性が保たれて、ヘッダパイプ13で水頭差が生じることはないので、各鉛直ドレーン11に働く吸引力を均一に保つことができる。このため、地盤改良の品質を確実に確保することができる。   Further, when the horizontality of the header pipe 13 is not maintained, there is a head difference between the upper part and the lower part. However, since the horizontality of the header pipe 13 is maintained, the head pipe 13 does not cause a head difference. The suction force acting on each vertical drain 11 can be kept uniform. For this reason, the quality of ground improvement can be ensured reliably.

なお、図1のように、ヘッダパイプ13から単数の接続管14が延びる場合にも、ヘッダパイプ13の水平性が保たれていないと、条件によっては接続管14を空気のみが通ることやヘッダパイプ13において上述の水頭差が生じてしまうことが考えられ、上述と同様の各問題が生じてしまうが、ヘッダパイプ13を冠水部20に浮かせることで、かかる問題を解決できる。   As shown in FIG. 1, even when a single connecting pipe 14 extends from the header pipe 13, if the header pipe 13 is not kept horizontal, only air may pass through the connecting pipe 14 or the header depending on conditions. The above-described water head difference may occur in the pipe 13, and the same problems as described above may occur. However, such a problem can be solved by floating the header pipe 13 in the flooded portion 20.

また、真空ポンプを用いて軟弱地盤の真空圧密改良を行う場合、地表面の水分は、圧密改良や天日の影響により脱水・蒸発し、亀裂が生じやすく、地表面で亀裂が発生すると気密漏れが生じるため負圧の確保が困難になるという問題が生じるが、本実施形態のように、地盤上に水を張り冠水部20とすることにより地表面の湿潤状態を常に保ち気密性を維持する効果を併せて得ることができる。なお、ヘッダパイプを水に浮上させるか否かに関わらず、気密容器18からの排水により改良域の地表面を冠水させることが好ましい。   In addition, when vacuum consolidation of soft ground is performed using a vacuum pump, the water on the ground surface dehydrates and evaporates due to consolidation consolidation and the influence of the sun, and cracks are likely to occur. However, as in this embodiment, water is applied on the ground to make the submerged portion 20 to keep the ground surface moist and maintain airtightness. The effect can also be obtained. Regardless of whether or not the header pipe is floated on the water, it is preferable to submerge the ground surface of the improved area by drainage from the airtight container 18.

次に、本実施形態においてヘッダパイプを水平に保つための別の手段・方法について図8を参照して説明する。図8は図1,図2のヘッダパイプを水平に保つための別の手段・方法を説明するための真空圧密システムの概略的な側面図である。   Next, another means and method for keeping the header pipe horizontal in this embodiment will be described with reference to FIG. FIG. 8 is a schematic side view of a vacuum compaction system for explaining another means and method for keeping the header pipe of FIGS. 1 and 2 horizontal.

図8の例は、土手や堤防等の障害物Tを利用してヘッダパイプを吊り下げることで水平に保つようにしたものである。すなわち、図8のように、土手や堤防等の障害物Tの上側にワイヤーの固定部21を設け、固定部21から延びたワイヤー22によりヘッダパイプ13を吊り下げる。これによりヘッダパイプ13を水平に保ちながら設置できる。この場合、ヘッダパイプ13の長さ方向に所定間隔で複数本のワイヤー22を配置してヘッダパイプ13を水平に吊り下げることが好ましい。   In the example of FIG. 8, the header pipe is suspended by using an obstacle T such as a bank or a bank, so that the header pipe is kept horizontal. That is, as shown in FIG. 8, a wire fixing portion 21 is provided above the obstacle T such as a bank or a bank, and the header pipe 13 is suspended by the wire 22 extending from the fixing portion 21. Thereby, it can install, keeping the header pipe 13 horizontal. In this case, it is preferable to suspend the header pipe 13 horizontally by arranging a plurality of wires 22 at predetermined intervals in the length direction of the header pipe 13.

なお、ヘッダパイプを水平に保つためのさらに別の手段・方法として、地表面Sに架台やブロック等を設置し、架台やブロック等の上にヘッダパイプ13を載せて水平に保つようにしてもよい。さらに、地盤またはその近傍に不陸や傾斜のない平坦な地盤を形成し、その平坦な地盤にヘッダパイプ13を水平に設置するようにしてもよい。   As another means and method for keeping the header pipe horizontal, a pedestal or block may be installed on the ground surface S, and the header pipe 13 may be placed on the pedestal or block to keep it horizontal. Good. Furthermore, a flat ground without unevenness or inclination may be formed on the ground or in the vicinity thereof, and the header pipe 13 may be installed horizontally on the flat ground.

実験例Experimental example

実験例として揚水ポンプを収容した気密容器が発揮する負圧補助機能の効果を検証するために図5に示すような実験装置を作製し実験を行った。   As an experimental example, in order to verify the effect of the negative pressure assist function exhibited by the airtight container containing the pump, a test apparatus as shown in FIG.

実験概要
以下の手順で実験を行った。
Outline of experiment The experiment was performed according to the following procedure.

ステップ1:真空ポンプによって減圧を行う負圧作用室に向かう排水経路において長さ2mの鉛直管を用いて高低差のある排水経路とる。長さ2mの鉛直管の下端に揚水ポンプを収容した気密容器を接続する。   Step 1: A drainage path having a height difference is taken using a vertical pipe having a length of 2 m in a drainage path toward a negative pressure working chamber where pressure is reduced by a vacuum pump. An airtight container containing a pump is connected to the lower end of a 2 m long vertical pipe.

ステップ2:鉛直管上端から気密容器内まで水を満たして実験の初期条件とする。   Step 2: Fill the water from the upper end of the vertical pipe to the inside of the airtight container to set the initial conditions for the experiment.

ステップ3:気密容器内の揚水ポンプは止めたままで真空ポンプを起動させるとともに、負圧作用室内の負圧を−50kN/m2程度で一定に保つ。また、負圧作用室内のSt.1と鉛直管下端のSt.2との各高さ位置で負圧の計測を行う。 Step 3: The vacuum pump is started while the pump in the airtight container is stopped, and the negative pressure in the negative pressure working chamber is kept constant at about −50 kN / m 2 . Further, negative pressure is measured at each height position of St. 1 in the negative pressure chamber and St. 2 at the lower end of the vertical pipe.

ステップ4:一定時間経過後に気密容器内の揚水ポンプを起動させる。揚水ポンプによる排水に伴って高低差のある鉛直管内の水位が初期の2.0mの高さから1.0mの高さまで低下した時点で実験を終了する。   Step 4: Start up the pump in the airtight container after a certain period of time. The experiment is terminated when the water level in the vertical pipe with the difference in height is lowered from the initial 2.0 m height to 1.0 m height along with the drainage by the pump.

実験結果
負圧の計測結果を図6に示す。150秒が経過するまでは揚水ポンプを止めたままで真空ポンプを駆動させた状態とした。図6から、負圧作用室内の負圧と比べて、鉛直管の下端部では初期状態において2mの水位差があるため、鉛直管の下端部において作用する負圧が20kN/m2程度小さいことがわかる。すなわち、鉛直管の下端部で負圧の損失が生じている。
Experimental results Fig. 6 shows the measurement results of the negative pressure. The vacuum pump was driven while the pump was stopped until 150 seconds passed. FIG. 6 shows that the negative pressure acting at the lower end of the vertical pipe is about 20 kN / m 2 smaller than the negative pressure in the negative pressure working chamber because there is a water level difference of 2 m in the initial state at the lower end of the vertical pipe. I understand. That is, a negative pressure loss occurs at the lower end of the vertical pipe.

一方、150秒経過後に揚水ポンプを起動させると、揚水ポンプによって負圧が新たに生み出されることにより、負圧作用室内および鉛直管の下端でともに負圧が増加していくことがわかる。特に、実験終了時において、鉛直管内の水位が1m程度の位置にあるにも関わらず、揚水ポンプ起動前の負圧作用室で発生させていた負圧よりも大きい負圧を鉛直管の下端で発生させることができており、気密容器内の揚水ポンプによる負圧の付加効果が高いことを検証することができた。   On the other hand, when the pump is started after 150 seconds, a negative pressure is newly generated by the pump, so that the negative pressure increases in both the negative pressure chamber and the lower end of the vertical pipe. In particular, at the end of the experiment, a negative pressure higher than the negative pressure generated in the negative pressure chamber before the pumping pump is activated at the lower end of the vertical pipe, even though the water level in the vertical pipe is about 1 m. It was possible to verify that the negative pressure application effect by the pump in the airtight container was high.

以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1では、ヘッダパイプ13と負圧作用装置とを単数の接続管14で接続したが、本発明はこれに限定されず、図4のように二本の接続管14a,14bで接続するようにしてもよく、また、二本以上で接続してもよい。   As described above, the modes for carrying out the present invention have been described. However, the present invention is not limited to these, and various modifications can be made within the scope of the technical idea of the present invention. For example, in FIG. 1, the header pipe 13 and the negative pressure operating device are connected by a single connecting pipe 14, but the present invention is not limited to this, and is connected by two connecting pipes 14 a and 14 b as shown in FIG. 4. Alternatively, two or more may be connected.

本発明の真空圧密システム及び方法によれば、軟弱地盤の真空圧密による地盤改良を行うとき、排水経路に高低差がある場合でも高い吸引力を発揮させることができるため軟弱地盤が所定の強度に達するまでに要する地盤改良期間を短縮できる。   According to the vacuum consolidation system and method of the present invention, when performing ground improvement by vacuum consolidation of soft ground, even if there is a height difference in the drainage path, a high suction force can be exhibited, so that the soft ground has a predetermined strength. The ground improvement period required to reach it can be shortened.

10 真空圧密システム
11 鉛直ドレーン
12 集水管
13 ヘッダパイプ
14,15 接続管
14a,14b 接続管
16 負圧作用室
16a 真空ポンプ
16b 揚水ポンプ
17 接続管
18 気密容器
19 揚水ポンプ
20 冠水部
H1 冠水部20の水位
T 障害物
DESCRIPTION OF SYMBOLS 10 Vacuum compaction system 11 Vertical drain 12 Water collecting pipe 13 Header pipe 14, 15 Connecting pipe 14a, 14b Connecting pipe 16 Negative pressure action chamber 16a Vacuum pump 16b Pumping pump 17 Connecting pipe 18 Airtight container 19 Pumping pump 20 Submerged part H1 Submerged part 20 Water level T Obstacle

Claims (10)

地盤中に打設された複数本のドレーンを通過する水を集める集水管と、
前記集水管が接続するヘッダパイプと、
前記ヘッダパイプと排水経路を介して接続され真空ポンプを有する負圧作用室と、
前記ヘッダパイプと接続され排水ポンプを収容する気密容器と、を備え、
前記ヘッダパイプを水平に保ち、
前記排水経路に高低差のある条件の下で前記真空ポンプを駆動するとともに前記気密容器内の排水ポンプを駆動することで前記気密容器内に負圧を付加して真空圧密による地盤改良を行うことを特徴とする真空圧密システム。
A water collecting pipe for collecting water passing through a plurality of drains placed in the ground;
A header pipe to which the water collecting pipe is connected;
A negative pressure working chamber having a vacuum pump connected to the header pipe through a drainage path;
An airtight container connected to the header pipe and containing a drain pump,
Keep the header pipe horizontal,
Driving the vacuum pump under conditions with a difference in elevation in the drainage path and driving the drainage pump in the hermetic container to apply a negative pressure in the hermetic container to improve the ground by vacuum consolidation Vacuum compaction system characterized by
前記地盤またはその近傍を冠水させて前記ヘッダパイプを水に浮かせた状態とすることで前記ヘッダパイプを水平に保つ請求項1に記載の真空圧密システム。   The vacuum consolidation system according to claim 1, wherein the header pipe is kept horizontal by flooding the ground or the vicinity thereof to make the header pipe float in water. 前記気密容器からの排水を前記地盤またはその近傍に導くことで前記地盤またはその近傍を冠水させる請求項2に記載の真空圧密システム。   The vacuum consolidation system according to claim 2, wherein the ground or the vicinity thereof is submerged by guiding drainage from the airtight container to the ground or the vicinity thereof. 前記ヘッダパイプを平坦な地盤に配置するとすることで前記ヘッダパイプを水平に保つ請求項1に記載の真空圧密システム。   The vacuum consolidation system according to claim 1, wherein the header pipe is kept horizontal by arranging the header pipe on a flat ground. 前記排水経路に高低差を生じさせる障害物を利用して前記ヘッダパイプを吊り下げることで水平に保つ請求項1に記載の真空圧密システム。   The vacuum consolidation system according to claim 1, wherein the header pipe is kept horizontal by suspending the header pipe using an obstacle that causes a height difference in the drainage path. 前記ヘッダパイプは比重が1.0以下の材料から構成した軽量型パイプから構成される請求項1乃至5のいずれか1項に記載の真空圧密システム。   The vacuum consolidation system according to any one of claims 1 to 5, wherein the header pipe is composed of a lightweight pipe composed of a material having a specific gravity of 1.0 or less. 地盤中に打設された複数本のドレーンを通過する水を集める集水管と、
前記集水管が接続するヘッダパイプと、
前記ヘッダパイプと排水経路を介して接続され真空ポンプを有する負圧作用室と、
前記ヘッダパイプと接続され排水ポンプを収容する気密容器と、を配置し、
前記ヘッダパイプを水平に保ち、
前記排水経路内に高低差のある条件の下で前記真空ポンプを駆動するとともに前記気密容器内の排水ポンプを駆動することで前記気密容器内に負圧を付加して真空圧密による地盤改良を行うことを特徴とする真空圧密方法。
A water collecting pipe for collecting water passing through a plurality of drains placed in the ground;
A header pipe to which the water collecting pipe is connected;
A negative pressure working chamber having a vacuum pump connected to the header pipe through a drainage path;
An airtight container connected to the header pipe and containing a drainage pump; and
Keep the header pipe horizontal,
The vacuum pump is driven under the condition that there is a difference in height in the drainage passage, and the drainage pump in the airtight container is driven to apply a negative pressure to the airtight container to improve the ground by vacuum consolidation. A vacuum consolidation method characterized by that.
前記地盤またはその近傍を冠水させて前記ヘッダパイプを水に浮かせた状態とすることで前記ヘッダパイプを水平に保つ請求項7に記載の真空圧密方法。   The vacuum consolidation method according to claim 7, wherein the header pipe is kept horizontal by flooding the ground or the vicinity thereof to make the header pipe float in water. 前記地盤またはその近傍に不陸や傾斜のない平坦な地盤を形成し、
前記ヘッダパイプを前記平坦な地盤に設置する請求項7に記載の真空圧密方法。
Form a flat ground without unevenness or inclination on the ground or the vicinity thereof,
The vacuum consolidation method according to claim 7, wherein the header pipe is installed on the flat ground.
前記排水経路に高低差を生じさせる障害物を利用して前記ヘッダパイプを吊り下げることで水平に保つ請求項7に記載の真空圧密方法。   The vacuum consolidation method according to claim 7, wherein the header pipe is kept horizontal by suspending the header pipe by using an obstacle that causes a height difference in the drainage path.
JP2010158508A 2010-07-13 2010-07-13 Vacuum compaction system and vacuum compaction method Active JP5578715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010158508A JP5578715B2 (en) 2010-07-13 2010-07-13 Vacuum compaction system and vacuum compaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158508A JP5578715B2 (en) 2010-07-13 2010-07-13 Vacuum compaction system and vacuum compaction method

Publications (2)

Publication Number Publication Date
JP2012021289A true JP2012021289A (en) 2012-02-02
JP5578715B2 JP5578715B2 (en) 2014-08-27

Family

ID=45775762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158508A Active JP5578715B2 (en) 2010-07-13 2010-07-13 Vacuum compaction system and vacuum compaction method

Country Status (1)

Country Link
JP (1) JP5578715B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294812A (en) * 2014-09-09 2015-01-21 江苏鑫泰岩土科技有限公司 Tumbler-type water collecting device for vacuum preloading
CN106436682A (en) * 2016-10-09 2017-02-22 江苏鑫泰岩土科技有限公司 Sand-free vacuum-preloading vacuum system
CN107543913A (en) * 2017-07-31 2018-01-05 中交天津港湾工程研究院有限公司 Vacuum combined heating foundation drainage test instrument
CN111305186A (en) * 2020-02-20 2020-06-19 浙江省疏浚工程有限公司 Double-layer vacuum preloading soft soil foundation reinforcing structure
CN112504785A (en) * 2020-12-02 2021-03-16 温州大学 Test device for preparing ultra-soft soil sample and implementation method thereof
CN112946238A (en) * 2021-01-29 2021-06-11 天津大学 Seabed soft clay consolidation test method
CN112985936A (en) * 2021-01-29 2021-06-18 天津大学 Seabed soft clay consolidation test system
CN113404516A (en) * 2021-06-24 2021-09-17 北京中铁诚业工程建设监理有限公司 Method and device for processing foundation rock surface of railway tunnel
CN113950884A (en) * 2021-09-27 2022-01-21 江苏大学 System for accelerating soil salt washing and water drainage based on negative pressure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815804B1 (en) 2017-03-13 2018-01-30 주식회사 동아지질 Individual Vacuum Consolidation Method‘s Drainage Vacuum Inspection Equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189406A (en) * 1982-04-26 1983-11-05 Kiyoshi Yamamoto Horizontal water draining method
JP2003160927A (en) * 2001-11-28 2003-06-06 Fudo Constr Co Ltd Forcible drainage facility for soft ground
JP2010090696A (en) * 2009-11-02 2010-04-22 Penta Ocean Construction Co Ltd Suction force generation device and suction force generation method by siphon, and construction method for improving vacuum consolidated ground

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189406A (en) * 1982-04-26 1983-11-05 Kiyoshi Yamamoto Horizontal water draining method
JP2003160927A (en) * 2001-11-28 2003-06-06 Fudo Constr Co Ltd Forcible drainage facility for soft ground
JP2010090696A (en) * 2009-11-02 2010-04-22 Penta Ocean Construction Co Ltd Suction force generation device and suction force generation method by siphon, and construction method for improving vacuum consolidated ground

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294812A (en) * 2014-09-09 2015-01-21 江苏鑫泰岩土科技有限公司 Tumbler-type water collecting device for vacuum preloading
CN106436682A (en) * 2016-10-09 2017-02-22 江苏鑫泰岩土科技有限公司 Sand-free vacuum-preloading vacuum system
CN107543913A (en) * 2017-07-31 2018-01-05 中交天津港湾工程研究院有限公司 Vacuum combined heating foundation drainage test instrument
CN111305186A (en) * 2020-02-20 2020-06-19 浙江省疏浚工程有限公司 Double-layer vacuum preloading soft soil foundation reinforcing structure
CN111305186B (en) * 2020-02-20 2021-09-03 浙江省疏浚工程有限公司 Double-layer vacuum preloading soft soil foundation reinforcing structure
CN112504785A (en) * 2020-12-02 2021-03-16 温州大学 Test device for preparing ultra-soft soil sample and implementation method thereof
CN112985936A (en) * 2021-01-29 2021-06-18 天津大学 Seabed soft clay consolidation test system
CN112946238A (en) * 2021-01-29 2021-06-11 天津大学 Seabed soft clay consolidation test method
CN112985936B (en) * 2021-01-29 2022-04-22 天津大学 Seabed soft clay consolidation test system
CN112946238B (en) * 2021-01-29 2022-05-03 天津大学 Seabed soft clay consolidation test method
CN113404516A (en) * 2021-06-24 2021-09-17 北京中铁诚业工程建设监理有限公司 Method and device for processing foundation rock surface of railway tunnel
CN113404516B (en) * 2021-06-24 2023-09-22 北京中铁诚业工程建设监理有限公司 Railway tunnel bedrock surface processing method and processing device thereof
CN113950884A (en) * 2021-09-27 2022-01-21 江苏大学 System for accelerating soil salt washing and water drainage based on negative pressure
CN113950884B (en) * 2021-09-27 2023-02-17 江苏大学 System for accelerating soil salt washing and water drainage based on negative pressure

Also Published As

Publication number Publication date
JP5578715B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5578715B2 (en) Vacuum compaction system and vacuum compaction method
JP5342300B2 (en) Collection device and method for collecting bottom resources
JP2019052503A (en) Open pit method
JP4920630B2 (en) Embedded pipe internal filling method and trap used therefor
JP5659566B2 (en) Pumping equipment, soft ground improvement method, ground excavation method, contaminated soil purification method, and condensate method
JP6052691B1 (en) Mining equipment and method for mining rare earth resources in the deep sea
JP5305957B2 (en) Suction force generator and vacuum consolidation ground improvement method
US20140241815A1 (en) Apparatus and method for reduction of sonic vibrations in a liquid
JP2008057294A (en) Floating oil removing device for well
JP2013011089A (en) Groundwater lifting device
JP5142348B2 (en) How to prevent ground liquefaction
JP2006341214A (en) Vacuum type aw method
JP2016014256A (en) Vacuum consolidation method combined with banking
WO2013084303A1 (en) Facility for transporting underwater sedimentation by suction and method for capturing foreign matter
JP2017154571A (en) Vacuum type anchor, and wave force power generation facility
CN214648947U (en) Underwater detection device capable of automatically adjusting buoyancy
JP5808008B2 (en) Suction force generator and vacuum consolidation ground improvement method
JP6439110B2 (en) Negative pressure drive for ground improvement using ejector pump
JP2017031598A (en) Groundwater level lowering device for water bottom ground, volume reduction method for mud and sludge at water bottom, and recovery device and method for methane hydrate in seabed
JP2012012884A (en) Decompression unit and vacuum consolidation soil improvement method
JP6886576B2 (en) Negative pressure generator for ground improvement
CN111962540A (en) Automatic drainage box
JP3706368B2 (en) Method and apparatus for pumping up groundwater and returning it to the basement again
JP2002088770A (en) Air leakage recovering apparatus for use in caisson method
KR101664388B1 (en) Water-bloom remover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5578715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250